
Introduction to Computer Science
CSCI	109

Andrew	Goodney
Fall	2019

Lecture	1:	Introduction																								August	26,	2019

China	– Tianhe-2



Purpose of this Course

u Introduce	computer	science	as	a	discipline,	a	body	of	
knowledge,	and	a	domain	of	science/engineering
v The	focus	is	on	ideas	and	concepts
v Significant	amounts	of	reading	but	no	programming	(see	CSCI	103L)

u What	is	computing,	a	computer,	science	(and	engineering)?
u How	do	computers	work?

v Computers,	architectures,	data	structures	and	algorithms,	
programming,	operating	systems,	networks,	abstract	machines	and	
theory,	artificial	intelligence,	robotics,	human	computer	interaction,	…

u What	is	comprised	within	the	domain	of	computing?
v Comprehending	its	content	and	structure
v Appreciating	its	past,	present	and	future

u Provide	a	basis	upon	which	you	can	build	throughout	the	
remainder	of	your	computing	education

2



Purpose of this Course 

3



Course Outline

4



ìSurvey:
https://tinyurl.com/y2cot2r5
Password:	CS109Fall2019

5

1.	How	many	college	level	computer	classes	have	you	completed?
a.	0 b.	1 c.	2 d.	3 e.	4	or	more

2.	How	many	years	of	computer	programming	have	you	done?
a.	0 b.	1 c.	2 d.	3 e.	4	or	more

3.	How	many	programming	languages	do	you	know?
a.	0 b.	1 c.	2 d.	3 e.	4	or	more

4.	Are	you	taking	CS	103	concurrently	with	this	class?
a.	Yes b.	No

5.	Your	reason	for	taking	CS	109	is
a. Required	for	your	current	major	or	minor.
b. Not	required	for	your	current	major	or	minor	but	is	required	for	a	major	or	minor	
you	want	to	add	(or	move	to).

c. Not	required	for	your	current	major	or	minor	nor	for	a	major	or	minor	you	are	
considering	but	you	are	interested	in	learning	about	Computer	Science.



ì
Logistics

6



Instructor and TAs
u Instructor:	Andrew	Goodney
u Office:	PHE	406
u Office	Hour: See	course	website

7

u Contact	Info:
goodney@usc.edu

Teaching	Assistants	(TAs)

Max	Pflueger
pflueger@usc.edu

Office: TBD
Office	Hour:	TBD

Artem Molchanov
molchano@usc.edu

Office:	TBD
Office	Hour:	TBD

Note:	Office	hours	start	next	week!	See	course	website	for	details.



Important Info

u Class
v Location:	SGM	123 Days	&	Time:	M	12:00-13:50						

uThere	are	no	discussion	or	quiz	sections
u Co-requisite	:	CSCI	103L

v There	is	no	prerequisite

u Required	Textbook
v Computing	for	Ordinary	Mortals,	St.	Amant,	R.		Oxford	
University	Press,	2013

u Syllabus	is	on	http://bytes.usc.edu/cs109/
u Slides	will	be	posted	on	“bytes”	
uOther	reading	material	will	be	made	available	there

8



Homework (30%)

u Four	homeworks (7.5%	each)
u Collaboration	is	welcome	on	the	homework

v But	copying	is	not	permitted
u You	are	allowed	a	total	of	two	late	days	on	the	
homework
v One	homework	may	be	2	days	late,	or	two	may	be	1	day	late,	
with	no	penalty

v Once	late	days	are	used,	one	day	late	reduces	the	score	by	
25%,	two	days	late	reduces	the	score	by	50%,	no	credit	is	given	
for	three	or	more	days	late

v All	4	homeworks must	be	submitted	to	earn	a	passing	grade
u All	homework	submissions	must	be	typed

9



Quizzes (5%), Midterm (30%),Final (35%)

u ~8	in-class	quizzes	
uNo	collaboration	is	permitted	on	the	quizzes
u Best	five	scores	will	be	retained	so	quizzes	are	worth	5%	
of	your	grade

u 1	midterm:	worth	30%	of	your	overall	grade

u 1	final	exam	(cumulative):	worth	35%	of	your	overall	
grade

10



Quiz policy

There	are	absolutely	no	make	up	quizzes.	If	you	need	to	be	away	from	
class	to	see	a	doctor,	or	to	play	on	a	sports	team,	the	missed	quizzes	need	
to	come	from	your	quota	of	the	two	‘allowed	misses.’	Please	plan	on	this.	
If	you	miss	quizzes	earlier	in	the	semester	because	you	don’t	come	to	
class	for	no	good	reason	and	then	are	faced	with	a	situation	later	in	the	
semester	where	you	need	to	see	the	doctor,	please	do	not	request	a	
medical	exemption.	You	should	marshal	the	quota	of	‘allowed	misses’	
carefully.
The	quizzes	will	be	administered	in	class	but	it	is	impossible	to	predict	
exactly	when	during	the	lecture	they	will	occur.	If	you	come	to	class	after	
the	quiz	for	that	day	has	been	administered	(or	leave	before	it	is	
administered),	you	are	not	entitled	to	a	make	up	or	to	have	the	quiz	re-
administered	for	you.	

11



How is the final grade assigned?

u Each	homework,	quiz	and	exam	receives	a	raw	numeric	score
u Best	five	quiz	scores	are	retained
u Weighted	combination	of	raw	numeric	scores	produces	total	raw	score	
(out	of	100)

u The	total	raw	score	is	normalized	– i.e.	each	total	raw	score	is	divided	
by	the	95th	percentile	raw	score	in	the	class.	Scores	are	NOT	rounded.

u Recent	semesters	have	seen	the	95th percentile	score	be	~95%
v This	means	to	calculate	your	normalized	score	you	divide	your	raw	score	by	.95

u Grade	boundaries	drawn	to	group	similar	normalized	scores	in	same	
final	grade
v Starting	point	for	boundaries	is:	>93:A,	>90:A-,	>87:B+,	>83:B,	>80:B-,	>68:C,	

>65:C-,	>63:D+,	>60:D,	>55:D-

u If	you	“need”	a	particular	grade	for	this	course,	the	time	to	worry	about	
that	is	now! 12



Other Misc. Items
u Grading	disputes/reviews

v When	you	homework	is	graded,	please	review	it	in	a	timely	manner.	If	you	would	
like	clarification	or	review	of	a	graded	item,	you	may	do	so	in	one	of	two	ways:	see	
the	TAs	in	office	hours	(preferred)	or	make	an	“instructors	only”	post	on	Piazza.	
Either	way,	you	must	make	any	requests	within	one	week	of	the	homework	being	
returned.

u DSP	students
v If	you	have	an	accommodation	letter	from	DSP,	please	e-mail	it	to	me	as	soon	as	

possible.	Specific	accommodations	will	be	discussed	in	advance	of	the	exams.

u CECS	->	CS
v If	you	were	a	CECS	student,	and	you	are	switching	to	pure	CS,	please	let	me	know	

(email)

u Piazza
v https://piazza.com/usc/fall2019/csci109/
v We	use	Piazza	for	a	discussion	board,	please	use	it	to	ask	for	help	with	the	

homework	or	other	course	related	questions
v This	lets	all	students	see	the	responses	=	more	efficient	than	e-mail! 13



ì
What is a Computer?

14



Computer or Not?

15



Standard Definitions (dictionary.com)

u An	electronic	device	designed	to	accept	data,	perform	prescribed	mathematical	
and	logical	operations	at	high	speed,	and	display	the	results	of	these	operations

u A	programmable	machine	that	performs	high-speed	processing	of	numbers,	as	well	
as	of	text,	graphics,	symbols,	and	sound
v All	computers	contain	a	central	processing	unit that	interprets	and	executes	instructions;	

input	devices,	such	as	a	keyboard	and	a	mouse,	through	which data	and	commands	enter	
the	computer;	memory	that	enables	the	computer	to	store	programs	and	data;	and	output	
devices,	such	as	printers	and	display	screens,	that	show	the	results	after	the	computer	has	
processed	data

u An	electronic	device	that	stores	and	manipulates	information
v Unlike	a	calculator,	it	is	able	to	store	a	program and	retrieve	information	from	its	memory

u A	machine	that	can	be	programmed	to	manipulate	symbols

u A	person	who	computes;	computist.
v 1640s:	“one	who	calculates”

16
An	information	transformer



Types of Information

u Bits:	0/1,	T/F,	True/False,	Yes/No
v And	strings	of	bits,	such	as	010110

u Numbers:	5,	101,	-3,	3.14159,	i,	π
v And	numeric	expressions,	such	as	(3	+	2)

u Statements	in	logic:	"x At(x,USC)	Ù Person(x)Þ Smart(x)
u Letters,	words,	sentences,	paragraphs,	articles,	books
u Audio,	image	and	video	files
u URLs	(such	as	http://www/google.com)	and	web	pages
u Data	bases
u …

17



Binary

u Modern	computers	use	binary	arithmetic
u Examples:

v 2410 =	16	+	8	=	24 +	23

=	1 *	24	+	1 *	23	+	0 *	22	+	0 *	21	+	0 *	20

= 110002
v 9010 =	64	+	16	+	8	+	2	

=	1 *	26	+	0 *	25	+	1 *	24	+	1 *	23	+	0 *	22	+	1 *	21	+	0 *	20		

=	10110102
v 101112 =	1 *	24	+	0 *	23	+	1 *	22	+	1 *	21	+	1 *	20	

=	16	+	4	+	2	+	1	
=	2310

18



Information Transformation

u Convert	one	body	of	information	to	another
v That	is,	compute

u Example:	Boolean	algebra
v Information	expressed	in	bits:	0/1	(or	F/T)
v Operations	transform	input	bits	to	yield	output	bits

u AND,	OR,	NOT,	…

19

AND 0 1
0 0 0
1 0 1

OR 0 1
0 0 1
1 1 1

NOT 0 1
1 0

XOR 0 1
0 0 1
1 1 0

AND(0,	1)	è 0 OR(0,	1)	è 1

AND(1,	1)	è 1 0OR(0,	0)	è



Information Transformation

20

AND 0 1
0 0 0
1 0 1

OR 0 1
0 0 1
1 1 1

NOT 0 1
1 0

What	is	the	truth	table	for	f(x,y)	=	AND(OR(x,	y),	NOT(AND(x,	y)))?
x y OR(x,	y) AND(x,	y) NOT(AND(x,	y)) AND(OR(x,	y),	NOT(AND(x,	y)))
0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

f 0 1
0 0 1
1 1 0



CS Topic: representing numbers with 
binary

u Here	is	our	first	“real”	CS	topic!
u Get	comfortable	with	looking	at	binary	numbers!
u No	hard	(easier?)	than	base	10
u Why	binary?

v We	use	electronic	computers	(99.99999999%	of	us	anyway)
v Circuits	can	be	on	or	off:	two	states	->	binary	representation

u Boolean	operations	and	algebra	is	one	way	of	computing	
with	binary	numbers

u First	homework	(and	quiz)	has	you	look	at	binary	logic	and	
transforming	numbers	base	10	<->	base	2

21



More on Information Transformation

u Other	examples
v Mathematical	calculations	– (10+2)/2=6	– and	logical	proofs
v Solving	puzzles
v Sorting	lists:	4,	2,	1,	3,	6,	5
v Computational	thinking
v Transforming	data	into	insights	(big	data or	analytics)
v Transforming	knowledge	into	decisions	about	what	actions	to	perform
v Literary,	musical	and	artistic	composition

u Hardware enables	implementing	transformations
u Software (programs)	control(s)	transformations
u Algorithms are	abstract	descriptions	of	transformations

22



Computational Thinking

u “thought	processes	involved	in	formulating	problems	and	their	
solutions	so	that	the	solutions	are	represented	in	a	form	that	can	be	
effectively	carried	out	by	an	information-processing	agent” (Cuny,	Snyder,	
Wing)

v way	of	solving	problems,	designing	systems,	and	understanding	human	
behavior	that	draws	on	concepts	fundamental	to	computer	science
u To	flourish	in	today's	world,	computational	thinking	has	to	be	a	fundamental	part	

of	the	way	people	think	and	understand	the	world
v creating	and	making	use	of	different	levels	of	abstraction,	to	understand	and	

solve	problems	more	effectively
v thinking	algorithmically and	with	the	ability	to	apply	mathematical	concepts	

such	as	induction to	develop	more	efficient,	fair,	and	secure	solutions
v understanding	the	consequences	of	scale,	not	only	for	reasons	of	efficiency	

but	also	for	economic	and	social	reasons

23

Humans	thinking	(i.e.,	transforming	information)	to	devise	procedures	
for	execution	by	information	transformers	(human	and/or	machine)



Computer or Not?

24



Implications

u Defining	computers	in	terms	of	their	functionality…
v Strips	away	ancillary	attributes	previously	thought	essential

u Machine,	electronic,	speed,	explicit	programmability,	…

v Enables	appreciating	the	full	scope	of	computers	and	computing

u Facilitates	recognition	of	“natural”	computers
v Brain:	Thought	is	preeminently	information	transformation
v Embryonic	development:	Based	on	instructions	written	in	DNA
v Evolution:	Combines	and	modifies	information	in	DNA
v Immune	system:	Includes	pattern	recognizers,	memory,	…

25

David	Baltimore:	“How	biology	became	an	information	science”
Richard	Dawkins:	“The	difference	between	life	and	non-life	is	a

matter	not	of	substance	but	of	information”



ì
Computer History
Looms,	the	discrete	machine	abstraction,	and	the	first	computer	programs

26



A History of Human-Built Computers

u Although	computers	can	(and	have	been)	built	using	all	
kinds	of	hardware,	modern	computing	really	took	off	
with	the	invention	of	electronic	computers	which	were	
preceded	by	mechanical	computers

u A	history	of	computing	and	the	Jacquard	Loom
uMechanical	Computers	

v The	Difference	and	Analytical	Engines
v The	Hollerith	Machine

u Electronic	Computers
v From	EDSAC	to	the	Macbook

27

Reading:	
St.	Amant: Introduction,	
Ch.	1	and	Ch.	2



Before Mechanical Computers

Electronic	computers	were	preceded	by	
mechanical	computers	and	mechanical	computers	
were	preceded	by…					

…	looms

28



A Simple Mechanical Loom

u Pressing	treadles	causes	harnesses	to	lift	threads
u The	shuttle	slides	a	cross	thread	under	the	lifted	threads
u Then	the	threads	are	lowered
u Pressing	treadles	causes	harnesses	to	lift	threads
u The	shuttle	slides	a	cross	thread	under	the	lifted	threads
u Then	the	threads	are	lowered
u Pressing	treadles	causes	harnesses	to	lift	threads
u The	shuttle	slides	a	cross	thread	under	the	lifted	threads
u Then	the	threads	are	lowered
u …
u What	kind	of	patterns	does	this	produce?

29



Discrete Machines: State

uHow	does	the	loom	behave	as	a	function	of	time?
u At	any	given	time	a	set	of	threads	is	raised	and	the	rest	
are	lowered

uWriting	down	the	sequence	of	raised	(and	lowered)	
threads	tells	us	the	steps	the	machine	went	through	to	
produce	the	cloth/tapestry/whatever

u The	pattern	of	raised	(and	lowered)	threads	is	called	the	
state of	the	machine

30



CS Topic: State

u State	is	a	very	common	CS	concept
u Here	we	have	the	state	of	a	physical	machine

u In	CS	we	talk	about	the	“state”	of	an	object
v Of	a	database
v Of	a	robot
v Of	a	“state-machine”	(finite,	Turing,	etc…)
v Of	a	system	(physical	or	virtual)
v …

u Then	we	need	a	way	to	describe	the	state
v Gives	us	the	notion	of	an	encoding

31



CS Topic: Discrete Machines, State and 
Encoding

u Choosing	a	state	representation	takes	skill.	The	state	
should	be
v Parsimonious:	it	should	be	a	“small”	descriptor	of	what	the	machine	is	

doing	at	any	given	time
v Adequate:	it	should	be	“big	enough”	to	capture	everything	“interesting”	

about	the	machine

u These	are	sometimes	contradictory.	They	are	also	
qualitative	and	depend	on	what	behavior	of	the	
machine	we	want	to	describe

uUsually	you	need	a	vocabulary	(encoding)	to	describe	
state.	In	the	case	of	a	loom,	state	can	be	expressed	as	a	
binary	pattern	(1	for	raised,	0	for	lowered)

32



Discrete Machines: Abstraction

u The	loom	is	a	discrete	machine
v State	is	binary	pattern	– i.e.	discrete
v The	notion	of	time	is	discrete	– i.e.	time	is	modeled	as	proceeding	in	steps	or	

finite	chunks

uMore	precisely,	the	loom	can	be	usefully	modeled	as	a	
discrete	machine
v Because	of	course	being	a	physical	device	there	is	variation,	nothing	is	

exactly	precise
v But	modeling	the	machine	as	discreet	is	good	enough	and	works	for	this	

purpose

u This	is	an	example	of	an	abstraction – a	key	concept	in	
Computer	Science 33



CS topic: Abstraction

u One	of	the	fundamental	“things”	we	do	in	CS
u Reducing	or	distilling	a	problem	or	concept	to	the	essential	
qualities
v Simple	set	of	characteristics	that	are	most	relevant	to	the	problem

u Many	(most,	all)	of	what	we	do	in	engineering	and	computer	
science	involves	abstractions

u Here	the	abstraction	is	modelling	the	loom	as	a	simple	
discreet	state	machine
v Makes	it	possible	to	understand
v And	makes	it	possible	to	“program”	the	loom

34



Weaving Complex Patterns

u How	to	produce	more	complex	patterns?
u Early	solution	was	human	– the	draw	loom

v Master	weaver	calls	out	which	threads	to	lift
v Drawboy lifts	threads
v Master	weaver	threads	the	shuttle
v Master	weaver	calls	out	which	threads	to	lift
v Drawboy lifts	threads
v Master	weaver	threads	the	shuttle
v Master	weaver	calls	out	which	threads	to	lift
v Drawboy lifts	threads
v Master	weaver	threads	the	shuttle
v …

35



The Jacquard Loom (1801): Mechanism

uMechanism:
v Threads	attached	to	spring-loaded	rods
v Springs	make	all	threads	want	to	lift	
unless	stopped	somehow

v A	metal	‘card’	with	holes	is	inserted	
into	the	path	of	the	threads	

v A	hole	in	the	corresponding	place	
allows	a	thread	to	lift.	No	hole	arrests	
the	thread	motion	and	stops	it	from	
lifting

u The	Jacquard	Loom	(from	the	
Teaching	Palette	via	YouTube)

36



The Jacquard Loom: Programming

uWeaving	becomes	the	process	of
v Creating	cards	with	holes	in	them	(punched	
cards)

v Sequencing	the	cards	in	the	right	order

u Each	card	is	an	instruction to	the	machine	
to	do	precisely	one	thing	(i.e.,	put	itself	
into	one	particular	state)

u A	sequence	of	cards	(i.e.,	a	sequence	of	
instructions)	causes	the	machine	to	step	
through	a	sequence	of	states.	The	card	
sequence	is	a	program

u The	weaver	as	a	programmer
37

Joseph	Marie	Jacquard	
(as	woven	by	his	loom	
via	a	program	of	24,000	
instructions).	Image	
courtesy	of	Wikipedia.



The Jacquard Loom: Programming

u A	discrete,	‘automatic’	machine
u Since	we	have	chosen	a	binary	encoding	the	machine	state
is	a	binary	number

u Each	instruction is	also	a	binary	number	since	each	
instruction	is	(literally)	the	state	the	programmer	wants	the	
machine	to	be	in	when	that	instruction	is	executed

u The	program for	the	machine	is	a	sequence	of	instructions.	
Each	program	is	(literally)	a	sequence	of	states	the	
programmer	wants	the	machine	to	step	through

u The	program is	thus	a	sequence	of	binary	numbers
38



A Loom Program

000000000
010000010

001000100
000101000

000010000

000101000
001000100

010000010
000000000

39

0
130

68
40

16

40
68

130
0

u This	machine’s	state	is	
captured	in	a	9-bit	
word

u Each	instruction	in	the	
program	is	also	a	9-bit	
word

u The	state	and	each	
instruction	is	thus	9	
bits	wide

u This	program	is	9	
instructions	long



Loom Program Limitations

uDoes	not	scale:	
v Large	instructions:	To	program	a	‘big’	machine	you	need	‘big’	
words	(large	state	implies	large	instruction	widths)

v No	counting:	No	repeats	or	loops	to	do	things	over	a	certain	
number	of	times	(No	“do..while”	or	“repeat..until”)

v No	modularity:	No	logical	chunks	for	sub-patterns	that	can	be	
reused	without	replication	(No	“functions,	methods,	
subroutines…”)

uNo	decision	making	on	the	fly:	
v No	branching	to	decide	to	do	one	thing	instead	of	another	
based	on	a	condition	(No	“if-then-else”.	No	jumps	or	“goto”)

u So	is	the	Jacquard	loom	a	computer? 40



How Big/Fast is a Modern Computer?

u Typical	Macbook Pro	laptop	has	~1	billion	transistors
u The	state	of	the	machine	is	a	binary	number	with	~1	
billion	bits	(a	binary	word	of	width	~1	billion)
v Not	possible	to	program	a	Macbook Pro	by	writing	a	sequence	
of	instructions	each	~1	Billion	bits	wide

u A	Macbook Pro	executes	~5	billion	instructions	per	
second
v Possible to	have	programs	that	are	billions	of	instructions	long
and	yet	have	them	finish	operating	in	a	reasonable	time

41



Modern Computers?

u If	modern	computers	are	so	big,	how	do	we	program	them?
u We	model	(abstract)	the	computer	as	something	more	
simple

u Program	to	that	model

u Then	let	the	hardware	and	OS	sort	out	the	difference	
between	reality	and	our	abstraction

u This	method	of	problem	solving	is	very,	very	common	in	CS

u More	later	in	semester

42



ì
Computer History
Mechanical	computers:	The	difference	and	analytical	engines,	the	Hollerith	machine

43



The Difference Engine (1822)

u Charles	Babbage
uMechanical	calculator to	compute	mathematical	tables

v Loom:	program	transforms	threads	to	patterns	on	cloth
v Difference	engine:	program	transforms	numbers	into	other	numbers

u Polynomial	function	computation	using	differences
uOutput	was	via	a	‘printer’	– a	device	that	produced	
printer’s	plates	so	they	could	be	stamped	onto	paper

uNo	branching	or	looping,	limited	in	what	it	could	
compute

44

Video	from	
YouTube.



The Analytical Engine (1837)

u Charles	Babbage
uWorld’s	first	general	purpose mechanical	calculator	

v Memory
v Arithmetic	unit
v Branching
v Looping

u Programmed	by	punched	cards	like	a	loom
uOutput	was	via	a	‘printer’	– a	device	that	produced	
printer’s	plates	so	they	could	be	stamped	onto	paper

45

Video	from	
YouTube.



The Hollerith Tabulator (1890)
u Hermann	Hollerith
u First	device	to	read	data into	a	machine:	an	

electromechanical	system	based	on	punched	cards
u Built	to	tabulate	the	results	of	US	census
u Hollerith's	contributions	to	modern	computing	are...	

"incalculable”
v He	did	not	stop	at	his	original	1890	tabulating	machine	and	sorter,	but	

produced	many	other	innovative	new	models.	He	also	invented	the	first	
automatic	card-feed	mechanism,	the	first	key	punch,	and	took	what	was	
perhaps	the	first	step	towards	programming	by	introducing	a	wiring	
panel	in	his	1906	Type I	Tabulator,	allowing	it	to	do	different	jobs	without	
having	to	be	rebuilt!	(The	1890	Tabulator	was	hardwired	to	operate	only	
on	1890	Census	cards.)	These	inventions	were	the	foundation	of	the	
modern	information	processing	industry.

u Hollerith	went	on	to	form	the	Tabulating	Machine	Company.	
Merged	with	others	to	form	the	Computing	Tabulating	
Recording	Company	(CTR).	Renamed	in	1924	to	
International	Business	Machines	(IBM)

46

Hermann	Hollerith	
and	one	of	his	
punched	cards.	
Images	courtesy	of	
Wikipedia.



The ENIAC (1943-46)

u Electronic	Numerical	Integrator	
And	Computer

u Eckert	and	Mauchly (University	of	
Pennsylvania)

u First	electronic,	general	purpose	
computer.	Turing-complete,	
digital,	reprogrammable	
(cumbersome)

u Vacuum	tube	and	diode-based

47



The EDVAC (1944-49)

u Electronic	Discrete	Variable	Automatic	
Computer	(Eckert	and	Mauchly)

u First	stored	program	computer,	binary	
(ENIAC	was	decimal).	Operational	1951.

u Popularized	by	von	Neumann	(First	
Draft	of	a	Report	on	the	EDVAC)	– first	
report	on	a	modern	computer	
architecture

48



Computer History Summary

49

u Although	computers	can	(and	have	been)	built	using	all	
kinds	of	hardware,	modern	computing	really	took	off	
with	the	invention	of	electronic	computers	which	were	
preceded	by	mechanical	computers

u A	history	of	computing	and	the	Jacquard	Loom
uMechanical	Computers	

v The	Difference	and	Analytical	Engines
v The	Hollerith	Machine

u Electronic	Computers
v From	EDSAC	to	the	Macbook



Fundamental Concepts

uState	and	discrete	machines
uAbstraction	and	models
uEncoding	data	and	instructions
uProgramming
uTo	be	general,	programs	need	to	access	a	
memory,	and	to	be	able	to	control	the	order	of	
the	instructions	to	execute	based	on	the	results	
of	computation

50



Review of terms

uState:	The	condition	of	a	system	at	a	point	in	
time

uEncoding:	Symbolic	expression	used	to	represent	
information

uDiscrete:	Proceeding	in	finite	steps,	individually	
separate	and	distinct

uBinary:	Numerical	notation	that	uses	base	2
uAbstraction:	Simplified	(“higher-level”)	
description 51



ì
Next time: Computer Architecture
How	are	computers	built?

52


