
Introduction to Computers and
Programming Languages

CS 180
Sunil Prabhakar
Department of Computer Science
Purdue University

1

2

Week 1 Objectives

This week we will REVIEW:
 Computer systems and Java
 Simple Java programs
 Java data types
 Conditional statements: if and switch

2

3

Computer Architecture (simplified)

CPU
“brains”

Keyboard

Monitor

Memory

Storage
Devices

Mouse
Printer

Network
Devices

More in CS250: Computer
Architecture.

3

4

Software

 Everything is in binary -- 0s and 1s
 Two types of information

 Instructions(programs) -- executed by the CPU
 Data -- manipulated by CPU

 These are stored in memory
 The software provides a means to access and

control the hardware
 This is done through a very important piece of

software called the Operating System
 The OS is always running. More in CS354

4

5

Machine Language
 A computer only runs programs that are specified

in its own machine language (ML)
 Also called binary or executable code.
 The ML is specific to the CPU, e.g. Pentium, 386,

PowerPC G3, G4, …
 A program written for one CPU will not run on

another CPU -- i.e. it is not portable.

5

6

Assembly language
 Machine language codes are not easy to remember
 Assembly language uses mnemonics and symbols

to ease programming, e.g.
 JMP L2
 A special program called an assembler must be

used to convert the assembly code to machine code
 The assembly code is also hardware-specific.
 Eases programming but still requires one to think in

terms of low-level steps taken by the CPU.
 Humans think at a higher level.

6

7

High-Level Languages

 Allow programmers to work with constructs that are
closer to human language.
 E.g. Java, C, C++, Basic, Fortran, COBOL, Lisp, …

 Need a special purpose program to convert the
high-level program to machine language.

 This program is called a compiler.
 Can write programs in many different HLLs for the

same CPU.
 Need a compiler for each language and CPU (OS).
 Efficient conversion is still an issue. More in CS352

Compilers

7

8

High-Level Languages (cont.)

 Since the language is not specific to the
hardware, HLL programs are more portable
 Some hardware, OS issues limit portability

 All we need is the program and a compiler for that
language on the given hardware platform
 E.g. a C compiler for Mac OSX

 Thus we can write a program once in a HLL and
compile it to run on various platforms, e.g.
Netscape

8

9

Algorithms

 Humans tend to think of programs at a
higher level than HLL -- more in terms of
algorithms.

 An algorithm is a well-defined, finite set of
steps that solves a given problem
 E.g. the rules for multiplying two numbers

9

10

HLL Paradigms

 Procedural
 A program is composed of packets of code called

procedures, and variables. A procedure is at full liberty
to operate on data that it can see. E.g. C, Pascal,
COBOL, Fortran

 Object-Oriented
 Programs are composed of Objects, each of a specific

class with well defined methods. Data and programs
are tightly coupled -- better design. E.g. Java, C++,
Objective-C, C#

 Functional
 Programs are composed of functions. E.g. Lisp

 More in CS456 Programming Languages.

10

11

Object-Oriented Programming

 The OOP paradigm uses the notion of
objects and classes as basic building
blocks

 Other important components of OOP are
 Encapsulation
 Inheritance
 Polymorphism
 Dynamic binding

11

12

Java

 Java is based upon C++ (which in turn is based
on C).

 Unlike C++ which is really a hybrid language,
Java is purely Object-Oriented.

 This results in significant advantages.
 Most HLL programs are compiled to run on a

single platform.
 Java programs can run on multiple platforms after

compilation -- i.e. its compiled format is platform-
independent.

 This design choice comes from its history.

12

13

History of Java

 Java was developed by J. Gosling at Sun Microsystems in
1991 for programming home appliances (variety of
hardware platforms).

 With the advent of the WWW (1994), Java’s potential for
making web pages more interesting and useful was
recognized. Java began to be added to web pages (as
applets) that could run on any computer (where the browser
was running).

 Since then it has been more widely accepted and used as a
general-purpose programming language, partly due to
 its platform-independence, and
 it is a truly OO language (unlike C++)

13

14

Platform-Independence

 Notion of a “Java Virtual Machine” (JVM)
 Java programs are compiled to run on a virtual

machine (just a specification of a machine). This
code is called Byte Code

 Each physical machine that runs a Java program
(byte code) must “pretend” to be a JVM.

 This is achieved by running a program on the
machine that implements the JVM and interprets
the byte code to the appropriate machine code.

 This interpreting is done at run-time which can
cause a slow down!

14

15

Regular Programming Languages

Fortran program

C-OSX
Compiler

C-Linux
Compiler

For-OSX
Compiler

FOR-Linux
Compiler

0101
0110
0101

1101
0010
0111

C program

1010
0110
1111

1101
0010
0111

15

16

Java

Java Program Java
Compiler

OSX
Interpreter

0101
0110
0101

1101
0010
0111

Linux
Interpreter

Java Byte
Code

16

Simple Input & Output

17

17

18

Standard Output

 Using the print method of the System.out
class is a simple way to write to the console
window from which the program was run.

System.out.print(“How are you?”);

This output will appear
at the console window.

> How are you?

18

19

JOptionPane

 Using showMessageDialog of the
JOptionPane class is a simple way to bring
up a window with a message.

JOptionPane.showMessageDialog(null, “How are you?”);

This dialog will appear
at the center of the
screen.

19

20

Displaying Multiple Lines of Text
 We can display multiple lines of text by

separating lines with a new line marker \n.

JOptionPane.showMessageDialog(null,“one\ntwo\nthree”);

20

21

JOptionPane for Input

 Using showInputDialog of the JOptionPane
class is another way to input a string.

String name;

name = JOptionPane.showInputDialog
 (null, “Your full name:”);

This dialog will appear
at the center of the
screen ready to accept
an input.

21

22

Standard Input and Scanner

 The System class has a special object that
accepts input from the keyboard: System.in

 It reads only one byte at a time. We often
need to read multiple bytes at a time.

 The Scanner class provides the necessary
methods.

 A scanner object is created that “wraps” the
System.in object.

 Calls to the method next() return one “word”
at a time from the standard input

 Words are separated by whitespaces.

22

23

Standard Input and Scanner

import java.util.*;
...
Scanner scanner;
scanner = new Scanner(System.in);
System.out.print(“Enter your first name: ”);
System.out.println(“Hello ”+ scanner.next() +
“.”);

“Lisa” is typed by the
user followed by the
Enter (Return) key

> Enter your first name: Lisa ↩
> Hello Lisa.

23

24

Program Components

 A Java program is composed of

 comments,

 import statements, and

 class declarations.

24

25

Sample Program

import javax.swing.*;
import java.util.*;

class SimpleProgram {

 public static void main(String[] args) {

String name;
name = JOptionPane.showInputDialog(“Enter

your name:”);
System.out.println(“Hello “ + name);

 }
}

25

Data and Identifiers

 Program = Data + Instructions
 Data is stored in memory.
 In Java, each piece of data has

 a location in memory
 an identifier (name)
 a type

 specifies legal values and operations (methods)
 Identifier names have rules and

conventions (Recitation).
 Data are also called variables.

26

26

27

Data Types

 The primary type of data in OOP is objects.
 An object is composed of other object(s), and/or

primitive data types.
 In contrast, objects are reference data types.
 There is no class for primitive data.
 There are three groups of primitive types:

 Character: char
 Numeric: byte, short, int, long, float, double
 Boolean: boolean

27

Primitive Data Types

28

28

29

Characters
 In Java, single characters are represented

using the data type char.
 Character values are written as symbols

enclosed in single quotes.
 Characters are stored in memory using some

form of encoding.
 ASCII, which stands for American Standard

Code for Information Interchange, is one of
the document coding schemes widely used
today.

 Java uses Unicode, which includes ASCII, for
representing char values.

29

30

Unicode Encoding

 The Unicode Worldwide Character Standard
(Unicode) supports the interchange, processing,
and display of the written texts of diverse
languages.

 A UNICODE character takes up two bytes. ASCII
characters take up one byte.

char ch1 = 'X';

System.out.println(ch1);
System.out.println((int) ch1);

X
88

30

31

Character Processing

Type conversion between
int and char.

System.out.print("ASCII code of character X is " +
 (int) 'X');

System.out.print("Character with ASCII code 88 is "
 + (char)88);

This comparison returns
true because ASCII value
of 'A' is 65 while that of 'c'
is 99.

‘A’ < ‘c’

Can compare characters
with numbers directly.

if(ch1 < ‘A’ && ch2 == 99)
 System.out.print(“Done”);

char ch1, ch2 = ‘X’;
Declaration and
initialization

31

32

Numeric Data Types

The various data types differ in the
precision of the values they can hold.

Type Content Default
Value

Size
(bytes)

Minimum
Value

Maximum
Value

byte

Integer 0

1 -128 127

short 2 -32768 32767

int 4 -2147483648 2147483647

long 8 -9.22337E+18 9.22337E+18

float
Real 0.0

4 -3.40282347 x 1038 3.40282347 x 1038

double 8 -1.7977 x 10308 1.7977 x 10308

32

33

Arithmetic Operators

 The following table summarizes the
arithmetic operators available in Java.

Operation Java Operator Example Value
(x=10, y=7, z=2.5)

Addition + x + y 17
Subtraction - x - y 3
Multiplication * x * y 70
Division / x / y

x / z
1
4.0

Modulo division
(remainder)

% x % y 3

This is integer division
where the fractional part
is truncated.

33

34

Arithmetic expressions

 An arithmetic expression is composed of numeric
values, numeric variables, and operators.

 For example, given: int i,j;
i + 3
(i + 2*(j-i))
-i + j

 Expressions can be used to assign values:
 i = j + 3;
Take the value of j, add 3 to it and assign that value

to i.

34

35

Order of evaluation

 How is the following expression evaluated?
 x + 3 * y

 Answer: x is added to 3*y .
 We determine the order of evaluation by

following precedence rules.
 Evaluation is in order of precedence.
 Operators at same level are evaluated left

to right for most operators.

35

36

Precedence Rules

Order Group Operator Rule

High

Low

Subexpression () Starting with innermost ()

Unary
operators

-, + Left to right.

Multiplicative
operators

*, /, % Left to right.

Additive
operators

+, - Left to right.

36

37

Precedence Examples

(x + y * (4 - x) / z + 2 / -x) =?

x + 4*y - x/z + 2/x = ?

x + (4*y) - (x/z) + (2/x)

(x + ((y * (4-x)) / z) + (2 / (-x)))

To be safe, use parentheses!

1 2 3

4 5 6

1 23

4 56 7

37

38

Shorthand operators

 Some assignments and operators are
combined into one operator to ease
programming.

Operator Usage Meaning

+= a+=b; a=a+b;
-= a-=b; a=a-b;
= a=b; a=a*b;
/= a/=b; a=a/b;

%= a%=b; a=a%b;

38

39

Checkpoint

x = y*4-z/5

Which of these is equivalent to the above expression?

A. x = ((y*4)-z)/5
B. x = (y*(4-z))/ 5
C. x = (y*4)-(z/5)
D. x = y * ((4-z)/5)

39

Reference Data Types

40

40

Objects

 Most data in OOP is organized as objects.
 An object is a collection of other objects

and/or primitive data.
 Each object belongs to a Class.
 The class determines

 the structure of each object (names and types
of data members)

 the behavior (allowed methods)

41

41

42

Object creation and assignment

Student student;

student = new Student();

student = new Student();

Student student;

student

student = new Student();

student = new Student();

: Student : Student

The identifier
student is
allocated.

The reference to the first
object is stored in student.

The reference to the second
object is stored in student.
The old reference is lost.

42

43

Assigning Primitive Data

int i,j;

i = 5;

j = i;

int i,j;

i

j = i;

i = 5;

Memory is
allocated.

The value stored in i is
copied to j.

j5 5

43

44

Assigning objects

Student student1, student2;

student1 = new Student();

student2 = student1;

Student student1, student2;

student1

student1 = new Student();

student2 = student1;

: Student

The identifiers
are allocated.

The reference to the object
is stored in student1.

The reference stored in
student1. is copied to student2.

student2

44

45

Really the same

Student student1, student2;

student1 = new Student();

student2 = student1;

student1

student2 = student1;

: Student

The value stored in student1
is copied to student2.

student2

The value happens to be a
reference to an object.

Hence reference type vs.
primitive type.

45

Strings

46

46

47

Strings are reference types

1

2
String name;

name = new String(“CS 180”);

String name;

name = new String(“CS 180”);

1. The identifier name is
declared and space is
allocated in memory.

2. A String object is
created and the
identifier name is set to
refer to it.

name

: String

CS 180

47

48

String Indexing

The position, or index,
of the first character is
0.

String text;
text = “Purdue!!”;

P

0

u

1

r

2

d

3

u

4

e

5

!

6

!

7

48

49

The substring method

text.substring(6,8)

text.substring(0,8)

text.substring(1,5)

text.substring(3,3)

text.substring(4,2)

“!!”

“Purdue!!”

“urdu”

error

“”

String text = “Purdue!!”;

49

50

The length method

String str1, str2, str3, str4;
str1 = “Hello” ;
str2 = “Java” ;
str3 = “” ; //empty string
str4 = “ ” ; //one space

str1.length()

str2.length()

str3.length()

str4.length()

5

4

1

0

50

51

The indexOf method

String str;
str = “I Love Java and Java loves me.” ;

str.indexOf(“J”)

str.indexOf(“love”)

str.indexOf(“ove”)

str.indexOf(“Me”)

7

21

-1

3

3 7 21

51

52

The concatenation operator

String str1, str2;
str1 = “Jon” ;
str2 = “Java” ;

str1 + str2

str1 + “ “ + str2

str2 + “, “ + str1

“Are you “ + str1 + “?”

“JonJava”

“Jon Java”

“Java, Jon”

“Are you Jon?”

52

Checkpoint

53

String name;
name = “Cheong” ;

name.length();

 What value does this method return?

53

Other Issues

 Type Specifics
 Constants
 Imprecision
 Math Class

54

54

55

Expression Types

 What is the data type of
 i + j;
 Depends upon the types of i and j.
 If they are both

 int then the result is also an int
 double then the result is also a double
 long … long
 etc.

 Similarly for the other operators: -,*, …

55

56

Type Casting

 If x is a float and y is an int, what is the data type
of

 x * y ?
 The answer is float.
 The above expression is called a mixed

expression.
 Operands in mixed expressions are converted to

a common type based on promotion rules.
 All are converted to the type with the highest

precision in the expression.
 The entire expression is of this type too.

56

57

Implicit Type Casting
 Consider the following expression:
 double x = 3 + 5;
 The result of 3 + 5 is of type int. However,

since the variable x is double, the value 8
(type int) is promoted to 8.0 (type double)
before being assigned to x.

 byte short int long float double
 Notice that it is a promotion. Demotion is not

allowed.
 int x = 3.5;

A higher precision value
cannot be assigned to a
lower precision variable.

57

58

Explicit Type Casting

 Instead of relying on the promotion rules,
we can make an explicit type cast:

 (<data type>) <expression>

 Example
 (float) x / 3

 (int) (x / y * 3.0)

 NOTE: Only the type of the return values is
changed -- not the data itself.

Type cast x to float and
then divide it by 3.

Type cast the result of
the expression x / y * 3.0
to int.

58

59

Explicit demotion

 Promotion is automatically done whenever
necessary.

 Demotion is not automatic, but can be
forced:

int x;
double y;
y = 3.5;
x = (int)y;

 Assigning double (or float) to integer types
results in truncation (not rounding).

59

60

Type Mismatch

 Suppose we want to input an age. Will this
work?

int age;

age = JOptionPane.showInputDialog(null, “Enter your age”);

• No.
A string value cannot be assigned directly to
an int variable.

60

61

Type Conversion

 Wrapper classes are used to perform
necessary type conversions, such as
converting a String object to a numerical
value.

int age;
String inputStr;

inputStr = JOptionPane.showInputDialog(
 null, “Enter your age”);

age = Integer.parseInt(inputStr);

61

62

Other Conversion Methods

Class Method Example

Integer parseInt Integer.parseInt(“25”) 25
Integer.parseInt(“25.3”) error

Long parseLong Long.parseLong(“25”) 25L
Long.parseLong(“25.3”) error

Float parseFloat Float.parseFloat(“25.3”) 25.3F
Float.parseFloat(“ab3”) error

Double parseDouble Double.parseDouble(“25”) 25.0
Integer.parseDouble(“ab3”) error

62

63

Constants

 We can change the value of a variable. If
we want the value to remain the same,
we use a constant.

 final double PI = 3.14159;
 final int DAYS_IN_YEAR = 365;

These are constants,
also called named
constants.

The reserved word
final is used to
declare constants.

These are called
literal constants.

63

64

Why use Constants?

 Consistent value
 No errors due to mistyping.

 Easy to manage
 If we need to change the precision of PI, then

we change it only once in the program.
 Programs are more readable.

64

65

CAUTION: Imprecision

 It is not possible to exactly represent every
possible float (double) number
 Fixed number of bits

 Float: 4 bytes -- 32 bits:232 (~1 billion) values
 double: 8 bytes -- 64 bits: 264 (~1 million trillion) values

 Infinite numbers (e.g. between 1.0 and 2.0)!
 Floats and doubles may only store an

approximation of the actual number!!!!
 Do not rely on exact values!
 Integers are stored precisely though!

65

66

The Math class

 The Math class in the java.lang package
contains class methods for commonly used
mathematical functions.

double num, x, y;

x = …;
y = …;

num = Math.sqrt(Math.max(x, y) + 12.4);

66

67

Some Math Class Methods

Method Input
type

Output
type

Description

exp(a) double double Return e raised to power a.

log(a) double double Return natural log of a.

floor(a) double double Return largest whole number
smaller than a.

max(a,b) int
double

…

int
double

…

Return larger of a or b.

pow(a,b) double double Return a raised to power b.

sqrt(a) double double Return square root of a.

sin(a) double double Return sine of a(in radians).

67

Control Flow

68

68

69

Flow of control

 Once a statement is executed, the next
statement of the program is executed.

 Calling a method transfers the control to
the statements in the method.

 Once the method returns, control returns to
statement that made the call.

 Changing this flow of control is achieved
using if and switch (and other) statements.

 These are called control flow statements.

69

70

Boolean expressions

 boolean is a primitive data type.
 A boolean expression can take only two

values: true or false
 A simple boolean expression compares two

values using a relational operator, e.g.
 testScore < 70
 j > i
 balance == 100;

 Operators:
 <, > , ==, !=, >=, <=

70

next statement;

71

The if-then-else statement
previous statement;<previous statement>

if (testScore < 70)

 JOptionPane.showMessageDialog

 (null,"You did not pass");

else

 JOptionPane.showMessageDialog

 (null, "You passed ");

<next statement>

JOptionPane.
 showMessageDialog
 (null, "You did not pass");

JOptionPane.
 showMessageDialog
 (null, "You passed);

is
testScore < 70

?
truefalse

71

72

Control Flow with no else
previous statement;

next statement;

JOptionPane.
 showMessageDialog(null,
"You are an honor student”);

truefalse

if (testScore >= 95)

 JOptionPane.showMessageDialog

 (null, ”You are an honor
student");

is
testScore >=95

?

72

73

The Nested-if Statement

 The then and else block of an if statement can
contain any valid statements, including other if
statements. An if statement containing another if
statement is called a nested-if statement.

if (testScore >= 70) {

 if (studentAge < 10) {

 System.out.println("You did a great job ");

 } else {

 System.out.println("You passed"); //test score >= 70

 } //and age >= 10

} else { //test score < 70

 System.out.println("You did not pass");

}

73

inner

74

Control Flow

messageBox.show
("You did not pass");

is
testScore >= 70

?

truefalse

is
studentAge < 10

?

messageBox.show
("You passed");

messageBox.show
("You did a great job");

truefalse

74

if (x < y) {

 if (x < z) {

 System.out.print("Hello");

 } else {

 System.out.print("Good bye");

 }

}

Both and mean…A B

75

Matching else

if (x < y)

 if (x < z)

 System.out.print("Hello");

else

 System.out.print("Good bye");

A

if (x < y)

 if (x < z)

 System.out.print("Hello");

 else

 System.out.print("Good bye");

B

Are and different?A B

Each else paired with nearest
unmatched if -- use braces to
change this as needed.

75

76

The switch statement

 The if statement is essential for writing
interesting programs.

 Other control flow statements (e.g., switch
and loops) can be implemented using if
statements.

 They are available since we often need
them. Programs are more readable too.

 Next: switch

76

77

The switch Statement
int recSection;
recSection =
Integer.parseInt(JOptionPane.showInputDialog(“Recitation Section
(1,2,…,4):"));

switch (recSection) {

 case 1: System.out.print("Go to UNIV 101”);

 break;

 case 2: System.out.print("Go to UNIV 119”);
 break;

 case 3: System.out.print("Go to STON 217”);
 break;

 case 4: System.out.print("Go to UNIV 101");
 break;

}

This statement
is executed if
the gradeLevel
is equal to 1.

This statement
is executed if
the gradeLevel
is equal to 4.

77

78

Syntax for the switch Statement
switch (<integer expression>) {

 case <label 1> : <case body 1>

 <break;>

 …

 case <label n> : <case body n>

 <break;>

 default : <default body>

}

The break statement is optional within each case.
A case body is also optional.
The default is optional for the switch statement.

Optional

Optional

Optional

78

79

Switch statement (cont.)

 The integer expression can have only one of the
following types:
 char, byte, short, or int

 The label must be a literal or named constant of
the same type.

 Each case body may end with a break statement.
 A break causes the execution to go to the

statement following the switch statement.
 The default case applies when no label matches.
 Each label must be unique.
 Labels may be listed in any order.

79

80

Simple switch statement

previous statement;

next statement;

x=10;
true

false

switch (N) {

 case 1: x = 10;

 case 2: x = 20;

 case 3: x = 30;

}

N ==1?

N ==2? x=20;

N ==3?

false

false

true

true
x=30;

80

81

switch with break, and default
previous statement;

next statement;

x=10;
true

false

N ==1?

N ==2?

false

false

true

true

switch (N) {

 case 1: x = 10;

 break;

 case 2: x = 20;

 case 3: x = 30;

 break;

 default: x = 0;

}

break;

break;

x=0;

N ==3? x=30;

x=20;

81

82

Missing case body
previous statement;

next statement;

x=10;
true

false

N ==1?

true

switch (N) {

 case 1: x = 10;

 break;

 case 2:

 case 3: x = 30;

 break;

 default: x = 0;

}

break;

break;

false
true

false

x=0;

N ==3? x=30;

N ==2?

82

Checkpoint

 What is the output of the following code?

83

int x=3, y=2, z=1;

if (x < y)

 if (x < z)

 System.out.print("Inky");

else

 System.out.print("Pinky");

System.out.print("Ponky"); A. Inky
B. Pinky
C. Ponky
D. PinkyPonky
E. No output

83

84

Boolean Operators

 Boolean expressions can be combined using
boolean operators.

 A boolean operator takes boolean values as its
operands and returns a boolean value.

 The boolean operators are
 and &&
 or ||
 not !
 exclusive-OR ^

84

85

Semantics of Boolean Operators

 Truth table for boolean operators

 Sometimes true and false are represented by 1
and 0 (NOT in Java).

 In C and C++, 0 is false, everything else is true.

p q p && q p || q !p p^q
false false false false true false

false true false true true true

true false false true false true

true true true true false false

85

86

Short-Circuit Evaluation

 Consider the following boolean expression:
 x > y || x > z
 The expression is evaluated left to right. If x > y is

true, then there’s no need to evaluate x > z
because the whole expression will be true
whether x > z is true or not.

 To stop the evaluation once the result of the
whole expression is known is called short-circuit
evaluation.

 What would happen if the short-circuit evaluation
is not done for the following expression?

 z == 0 || x / z > 20

86

87

Short-circuit evaluation

 Sometimes this is useful
 it is more efficient
 z == 0 || x / z > 20

 Can force complete evaluation by using:
 & instead of &&
 | instead of ||

 Short-circuit evaluation is also called lazy
evaluation (as opposed to eager
evaluation)

 NOTE: &, | also denote bitwise and and or

87

88

Operator Precedence Rules
Group Operator Precedence Associativity

Subexpresion () 10 (Innermost first) Left to Right

Postfix increment and
decrement operators

++
9 Right to Left

--

Unary operators

Prefix inc, decr

++

8 Right to Left--
-
!

Multiplicative operators
*

7 Left to Right/
%

Additive operators
+

6 Left to Right
-

Relational operators

<

5 Left to Right
<=
>

>=

Equality operators
==

4 Left to Right
!=

Boolean AND && 3
Left to Right

Boolean OR || 2

Assignment = 1 Right to Left

88

89

Precedence Examples

int x= 1, y=10, z=100;
boolean bool, test=false;

 x = -y + y * z;

 x ==1 && y > 5

 4 < x && !test

 bool = x!=y && y == z

 x==y || y>4 && z<2

x = (-y) + (y*z);

(x ==1) && (y > 5)

(4<x) && (!test)

bool = (x!=y) && (y ==z)

(x==y) || ((y>4) && (z<2))

89

Prefix operators

 The increment (++) and decrement (--)
operators can precede the operand
 x++; ++x; y--; --y;

 Their effect on the operand is the same,
however, they vary only in terms of the
timing of the increment or decrement.

 The postfix operators are applied AFTER
the variable’s value is used.

 The prefix operator are applied BEFORE

90

Example
int x=2, y=10;

x = y++;
System.out.println(“X is:” + x);
System.out.println(“Y is:” + y);

X is: 10
Y is: 11

int x=2, y=10;

x = y--;
System.out.println(“X is:” + x);
System.out.println(“Y is:” + y);

X is: 10
Y is: 9

int x=2, y=10;

x = ++y;
System.out.println(“X is:” + x);
System.out.println(“Y is:” + y);

X is: 11
Y is: 11

int x=2, y=10;

x = --y;
System.out.println(“X is:” + x);
System.out.println(“Y is:” + y);

X is: 9
Y is: 9

int x=2, y=10, z;

z = x++ * --y;
System.out.println(“X is:” + x);
System.out.println(“Y is:” + y);
System.out.println(“Z is:” + z);

X is: 3
Y is: 9
Z is: 18

int x=2, y=10;

x = --x * ++y;
System.out.println(“X is:” + x);
System.out.println(“Y is:” + y);

X is: 11
Y is: 11

91

92

Side effects -- 1
int x= 1, y=10, z=100;
boolean bool, test=false;

 x = y++;
 x = ++y;

 x = -++y;
 x = -y++;

 x = -y--;
 x = -(--y);

 x = ++y++;

x: 10 y: 11
x: 11 y: 11
x: -11 y: 11
x: -10 y: 11

x: -10 y: 9

x: -9 y: 9

ERROR!

92

Prefix vs. postfix.

 A prefix (postfix) operator is equivalent to
executing the operator before (after) using
the value of the variable:

 z = x++ * --y;
 Is equivalent to:
 y = y-1;
 z = x * y;
 x = x + 1;
What about:
z = x++ * x++;

93

More Examples

 z = x++ * x++;
 Is equivalent to:
 z = x * (x+1);
 x = x+2;

x = x++ * --y;
 Is equivalent to:
 y = y - 1;
 x = x * (y-1) + 1;

94

Side effects -- 2
int x= 1, y=10, z=100;
boolean bool, test=false;

 x = y = z;

 x = y = ++z;

 bool = (x=11)>y

 bool = (x=11)>y++

 bool = (x=11)> ++y

 (x=3) > y && (z=5)<10

 (x=3) > y & (z=5)<10

95

x: 100 y: 100 z: 100

x: 101 y: 101 z: 101

x: 11 y: 10 bool: true

x: 11 y: 11 bool: true
x: 11 y: 11 bool: false

x: 3 y: 10 z: 100

x: 3 y: 10 z: 5

95

96

Comparing Objects

 There is only one way to compare primitive
data types, but with objects (reference
data types) there are two:

1. We can test whether two variables point to the
same object (use ==), or

2. We can test whether two distinct objects have
the same contents.

96

97

Using == With Objects (Sample 1)

String str1 = new String("Java");
String str2 = new String("Java");

if (str1 == str2) {
 System.out.println("Equal");
} else {
 System.out.println("Not equal");
}

Not equal because str1
and str2 point to different
String objects.

97

98

Using == With Objects (Sample 2)

They are equal here
because str1 and str2
point to the same
object.

String str1 = new String("Java");
String str2 = str1;

if (str1 == str2) {
 System.out.println("Equal");
} else {
 System.out.println("Not equal");
}

98

99

Using equals with String

String str1 = "Java";
String str2 = "Java";

if (str1.equals(str2)) {
 System.out.println("Equal");
} else {
 System.out.println("Not equal");
}

It's equal here because
str1 and str2 have the
same sequence of
characters.

99

100

The Semantics of ==

: String

Java

str1

: String

Java

str2

: String

Java

str1 str2

String str1, str2;

str1 = new String(“Java”);
str2 = new String(“Java”);

Case 1: different objects

Case 2: same object
String str1, str2;

str1 = new String(“Java”);
str2 = str1;

str1==str2 ?

str1==str2 ?

false

true

100

101

In creating String objects

: String

Java

word1

: String

Java

word2

: String

Java

word1 word2

String word1, word2;

word1 = new String(“Java”);
word2 = new String(“Java”);

String word1, word2;

word1 = “Java”;
word2 = “Java”;

word1==word2 ?

word1==word2 ?

false

true

Whenever the new operator is used,
there will be a new object.

Literal String objects such as “Java”
will always refer to the same object.

101

Miscellaneous Recap

102

102

103

Identifiers

 In order to manipulate an object, we have to give it
a name and also create the object.

 Names are also called identifiers
 An identifier

 Cannot be a reserved word
 Can consist only of letters(A..Z,a..z), digits(0..9), $ and _
 Cannot begin with a digit

 These are required rules. We also have naming
conventions that make programs easier to read
 Identifiers begin with a lowercase letter
 Class names begin with an uppercase letter
 Camel case studentName

103

104

Source Code

 A program written in a machine language is called an
executable, or a binary.
 It is not portable.

 A program written in a HLL is often called source code.
 Given an executable, it is difficult to recover the source

code (not impossible).
 Thus, companies release only the executables.
 This makes it hard for someone else to replicate the

software and also to modify it (maybe even to trust it
completely)

 Open-Source is an alternative approach.

104

105

Comparing Strings

 If we want to compare the contents of
string objects, we can use equals

 There is also equalsIgnoreCase and
compareTo

 equalsIgnoreCase treats upper and lower
case letters as the same (e.g. ‘H’ and ‘h’)

String word1, word2;
if(word1.equals(word2)){
 System.out.print(“They are equal”);

} else {
 System.out.print(“They are not equal”);
}

105

106

compareTo method

 This method compares two strings in terms of
their lexicographic order.

 str1.compareTo(str2)
 It returns:

 0 if the strings are exactly the same;
 a negative value if str1 comes before str2;
 a positive value if str1 comes after str2;

 Lexicographic ordering is determined by
UNICODE values.
 …,!,…,+,-,… 0,1,2,…,9,…A,B,…,Z,…,a,b,…,z, …

106

107

Comparing Objects

 The operators <, >=, … cannot be applied
to compare objects.

 In order to compare objects, we need to
implement an appropriate method.

 For example, the equals, compareTo
methods for strings.

 A default equals method exists for each
class, but it may not behave as you expect.

107

108

Overloaded Operator +

 The plus operator + can mean two different
operations, depending on the context.

 <val1> + <val2> is an addition if both are
numbers. If either one of them is a String, then it
is a concatenation.

 Evaluation goes from left to right.

output = “A” + 1 + 2;

output is “A12”

output = 1 + 2 + “A”;

output is “3A”

108

109

The DecimalFormat Class

 Use a DecimalFormat object to format the
numerical output.
double num = 123.45789345;

DecimalFormat df = new DecimalFormat(“0.000”);
 //three decimal places

System.out.print(num);

System.out.print(df.format(num));

123.45789345

123.458

109

110

The GregorianCalendar Class

 Use a GregorianCalendar object to manipulate
calendar information

GregorianCalendar today, independenceDay;

today = new GregorianCalendar();

independenceDay
 = new GregorianCalendar(1776, 6, 4);
 //month 6 means July; 0 means January

110

111

Retrieving Calendar Information
 This table shows the class constants for

retrieving different pieces of calendar information
from Date.

Constant Description
YEAR The year portion of the calendar date

MONTH The month portion of the calendar date

DATE The day of the month

DAY_OF_MONTH Same as DATE

DAY_OF_YEAR The day number within the year

DAY_OF_MONTH The day number within the month

DAY_OF_WEEK The day number within the week (Sun --1, Mon -- 2, etc.)

WEEK_OF_YEAR The week number within the year

WEEK_OF_MONTH The week number within the month

AM_PM The indicator for AM or PM (AM -- 0, PM -- 1)

HOUR The hour in the 12-hour notation

HOUR_OF_DAY The hour in 24-hour notation

MINUTE The minute within the hour

111

112

Sample Calendar Retrieval

GregorianCalendar cal = new GregorianCalendar();
 //Assume today is Nov 9, 2003

System.out.print(“Today is ” +
 (cal.get(Calendar.MONTH)+1) + “/” +
 cal.get(Calendar.DATE) + “/” +
 cal.get(Calendar.YEAR));

Today is 11/9/2003Output

112

Clarification on Division

 Integer division yields a truncated integer
answer.
 14/3 = 4
 14/-3 = -4
 -14/3 = -4
 -14/-3 = 4

113

113

Clarification on Modulo

 Modulo’s sign matches the dividend’s sign.
 Modulo satisfies the following:

 a = ((a/b)*b) + (a%b)
 For example:

 14%3 = 2
 14%-3 = 2
 -14%3 = -2
 -14%-3 = -2

114

114

