
Introduction to computing,
architecture and the UNIX

OS

HORT 530 Lecture 1
Jan 11th 2022

Instructor : Kranthi Varala
Email : kvarala@purdue.edu

Kranthi Varala

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler
–R. Frost

• Class Times:
vLecture: Tuesday 3:00 pm - 4:15 pm BRNG B282
vLab: Thursday 3:30 pm - 5:20 pm Hicks G959

• Lectures are in person, but also streamed on zoom
• Lab will be in person FOR NOW
• Zoom link sent via email
• 7 quizzes (70%), final project (30%)
• Website:
https://www.purdue.edu/hla/sites/varalalab/IDAB/

Introduction to Computing for Biology

https://www.purdue.edu/hla/sites/varalalab/IDAB/

Course goals
• Learning to use remote servers

• UNIX operating system
• Command-line tools
• Shell scripting
• Clusters and job management

• Learning programming
• Introduction to Python
• Learn to:

• Automate repetitive tasks
• Handle large data sets
• Link processes/tasks together (Serial & Parallel)

Lecture Plan

Final project stages

Week Lecture Lab Topic Quiz

1 11-Jan 13-Jan Introduction to computing, architecture and the UNIX OS
2 18-Jan 20-Jan The UNIX Operating System 1
3 25-Jan 27-Jan Doing more in UNIX: Command-line tools 2

4 1-Feb 3-Feb Regular expressions: Text manipulation 3

5 8-Feb 10-Feb Shell scripting and system variables

6 15-Feb 17-Feb Super Computers, Job management, PBS 4

7 22-Feb 24-Feb Intro to Programming, Variables and Objects Idea

8 1-Mar 3-Mar Introduction to Python: Data types 5

9 8-Mar 10-Mar Numbers, strings, and lists

10 22-Mar 24-Mar Lists, conditions and loops Pseudocode

11 29-Mar 31-Mar Dictionaries, tuples and sets 6

12 5-Apr 7-Apr Functions, Scope, Arguments 7
13 12-Apr 14-Apr Algorithms, Sorting Version 1.0

14 19-Apr 21-Apr Libraries

15 26-Apr 28-Apr No Lecture

Computer architecture: “How stuff works©”

• Almost everything you do on a computer passes through a series
of components and is eventually broken down to individual
calculations/operations.

• The individual operations are performed on the CPU and the
output is returned through another series of components to the
user.

• For example, clicking on a web link goes as follows: Mouse->USB
port->Motherboard->CPU->Browser. Browser responds to this
click in reverse: CPU->Motherboard->Graphics card->Monitor.

• Much of this complexity is hidden from the average user, but
becomes important when you are writing your own programs.

Hardware terminology

• CPU = Central Processing Unit
• Core = Complete subunit of CPU
• CPU => 1 to Many cores
• RAM = Memory = Fast, temporary storage
• Secondary Storage (Disk) = Slow, permanent storage
• Bus = Communication channel to move data
• Cache = Very small, but very fast storage
• I/O = Input and output devices or channels
• Bandwidth = Size of data moved in 1 operation

Von Neumann Architecture

Image Credit: Kapooht - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25789639

• This basic structure was first proposed by John Von Neumann in 1945.
• The Arithmetic/Logic Unit (ALU) does all the calculations.
• The Memory Unit (RAM) holds the program to be run and the data.
• The Control unit manages the flow of data and the execution of the

programs.

Data flows through busses

Bus Bus

Bus

• A Bus is a dedicated channel for transmitting data from one component
to another. Busses vary in size and speed.

• The speed of information transfer through the various busses is a key
limitation on computational speed.

Eg:
Keyboard,
Mouse, Hard
drive,
CD/DVD etc.

Eg:
Monitor, Hard
disk, Printer etc.

Image Credit: Kapooht - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25789639

Harvard Architecture

Image Credit: Nessa los - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10303637

• The main difference is that there are two separate busses for the data
and instructions (i.e., programs).

• These independent busses can then be different in size. For example,
the data bus can be bigger than the instructions bus.

Bus Bus

Bus

Caches improve CPU performance

• A cache is a small, temporary storage location directly
attached to the CPU.

• Modern CPUs are built with extremely fast caches to
reduce the limitation caused by the need to move data
through the busses.

• A cache can hold the data/instructions needed by the
CPU for the next calculation(s) which reduces the time
the CPU has to wait for the next instruction AND data.

• The CPU, Memory and Storage devices have separate
caches.

• Multiple cores in a CPU share caches.

Modern CPU architecture

Image Credit: https://www.embedded.com/print/4007065

• Most modern computers use a hybrid architecture that is sometimes
called a modified Harvard architecture.

• Many of the modern gains in computing speed are a result of cache
optimization and prediction of how data/instructions will be reused.

Examples of Hybrid architecture

Image Credit: 1. IBM, 2. Fujitsu 3. By Ashley Pomeroy - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=62729054

Mainframe Personal Computer

• Computers come in a wide range of shapes and sizes.
• They still follow the same basic architecture.
• These computers differ vastly in their computational ability, portability and

user experience.

Workstation

Examples of Hybrid architecture

Image sources: 1. IBM
2. https://pixabay.com/en/imac-pc-personal-computer-computer-2493287/
3. http://www.flickr.com/photos/intelfreepress/6675870523/sizes/o/in/photostream/

Decreasing computational power

Increasing portability

Increasing ease-of-use

Mainframe Personal ComputerWorkstation

Hardware vs. Software
• Hardware is the physical component of a computer and

includes the CPU, Storage and I/O devices. Hard to change
and typically remains constant for the life of the machine.

• Software is the set of instructions that allows you to use the
hardware. It includes the Operating System (OS), Device
drivers, Applications etc. Easier to update, and is often
patched to improve function and/or security.

• Firmware is a specialized kind of software that is specific to
and resides on the individual hardware components. May be
updated, but rarely does.

Operating Systems
• An Operating System (OS) serves as the middle layer

between the hardware and the programs the user
needs.

• Examples of common operating systems are: UNIX,
Windows, MacOS, Linux, Android, iOS etc.

• The common tasks of an OS include communication
with hardware, memory management, storage
management, process/task management, networking,
security, etc…

Operating Systems

Image By Golftheman - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4558519

• Operating systems allow the separation of hardware management from
applications/programs.

• For example, when an application reads or writes a file, the file access
and the writing functions are handled by the OS.

• This allows the applications to work across different hardware platforms,
although the applications are still specific to the OS.

Operating Systems

Image By Golftheman -
https://commons.wikimedia.
org/w/index.php?curid=455
8519

• The Kernel is the core function of the OS and handles basic-level
communication between the various processes and the hardware.

• Specific modules such as the memory manager and device drivers allow
easier ways to update the OS as required.

• Libraries provide applications with standardized access to kernel
functions.

Kernel

Virtual
Memory

Device
Drivers

File
Server

Library Library

Virtual Memory
• An abstract layer created and

managed by the kernel.
• All memory requests from

applications are sent to the Virtual
memory management process.

• Allows the applications to use
physically separate memory
locations as if they are continuous.

• Allows combining Memory chips
(RAM) and Disk space into a single
memory space.

• Disk space configured for memory
use is called “swap”. It is sloooow.

Image Credit: Ehamberg - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8352077

1

2

3

4

5

OS paradigms for user interaction

• Multiuser, shared access
• Examples: Clusters, Web

clients, Browsers etc.
• Computational resources

are managed by the OS
and users may have
different levels of priority.

• User tasks are scheduled
by the OS based on
priority.

• Single user, exclusive
access

• Examples: PCs,
Smartphones etc.

• All resources are
dedicated to the single
active user.

Client/Server paradigm
• A Server is a central, powerful machine that typically has

LOTS of computational power, memory and disk space.
• A client is a relatively smaller machine that connects to the

server and uses its computational power for specific tasks.
• Servers are optimized for speed and stability, but have very

limited User Interface (UI).
• Clients are optimized for ease-of-user and typically have a

graphical UI.
• Clients and servers may have the same or different OS.

They communicate through standardized communication
protocols.

• Examples of communication protocols are: HTTP, FTP, SSH
etc.

UNIX operating system
• First developed in 1970s, it is a multitasking OS that

supports simultaneous use by multiple users.
• User interface is typically limited to text-only interactions,

thus avoids wasting resources on generating graphics.
• It was built to simultaneously run thousands of programs

and allow linking different programs together.
• Follows the Client/Server architecture where the UNIX

server supports multiple clients/users using a
communication protocol (eg., SSH).

UNIX operating system contd..
• UNIX OS has evolved to have numerous variants over the

past 50 years.
• The most commonly used variant of UNIX is called Linux

(Named after its inventor Linus Torvalds).
• Linux itself comes in hundreds of varieties, called

distributions, that all share the same kernel and differ in the
libraries and UI built on top of the kernel.

• MacOS and iOS is also based on a UNIX variant called
BSD.

• Android is also derived from Linux.
• Windows is the only major OS that is not based on UNIX.

UNIX access via Terminals
• Earliest clients, called terminals, that connected to UNIX

servers were teletypewriters (TTY).
• Video capable terminals included a video screen and a

keyboard (1970’s onward).
• Modern clients (i.e, your PC) uses a terminal emulator to

mimic the behavior of a terminal.
• This terminal emulator establishes a connection to the

server to create a “shell”.
• A shell is a text interface that the users enter their

commands on. The server returns the output to the terminal.
• We will learn more about terminals and shells in the next

lecture..

Compute clusters
• Set of individual machines that are combined to work

together and can be accessed as a single server.
• Each individual machine is called a node in the cluster. A

specialized node called ”Head” node acts as the interaction
point for users.

• A cluster OS manages the communication between nodes
and the submission of user jobs to the appropriate nodes.

• Purdue hosts multiple clusters through the Research
Computing facility (https://www.rcac.purdue.edu)

• You will all have accounts on the Scholar cluster for this
course.

https://www.rcac.purdue.edu)/

Distributed Computing

• A grid of individual machines that are
configured to contribute their idle time to run
jobs for the central job server.

• Typically used when a large job can be broken
down into a set of small tasks that can be run
independently of each other.

• For example: Near-Earth Asteroid search,
Protein folding, Rendering animation etc.

Virtual Machines
• VMs simulate a physical computer with its “hardware” and OS

within another OS.
• Allows one server to provide multiple virtual machines.
• Allows one OS to emulate and run applications from another OS.
• Examples: VirtualBox, Vmware, Xen etc…

Image Credit: John Aplessed,
https://commons.wikimedia.org/w/inde
x.php?curid=12351968

Cloud computing
• An extension of the virtualization concept, where the VM is

created on-demand, on a remote server.
• Extensive customization of the VM is possible by specifying

the “hardware” and the OS+applications package on the
VM.

• Numerous vendors offer cloud computing now, including
Amazon, Microsoft, Oracle and Google.

• For example, I can request a VM instance with the following
specs: “12 cores, 128GB RAM, 1 TB Disk, Linux OS with a
specific list of libraries and applications”.

Architecture and OS Summary
• Be aware of the computer hardware you are working on.
• Pick the computing model best suited for your task, i.e., not

every task is well suited for a cluster.
• Moving data around, especially large biological datasets,

can be ”expensive”.
• When you write programs, try to minimize the slow parts,

such as reading/writing from disk.
• Optimize your programs to make best use of the server

architecture.
• Servers are meant to be shared. Be ”nice” by requesting

only the amount of resources you can use.

