
Introduction to Computing with MATLAB

Arun Prakash

School of Civil Engineering

Purdue University.

Contents

1 Introduction to Computing 4
1.1 Computing . 4
1.2 Computer Programming . 5
1.3 Basic Matrix Algebra . 7

2 MATLAB Basics: Datatypes, Arrays, Input/Output, Plotting 8
2.1 Datatypes in MATLAB . 8

2.1.1 Variables . 8
2.1.2 Arrays . 9
2.1.3 Initialization of Variables and Arrays 10
2.1.4 Multi-dimensional Arrays . 11
2.1.5 Subarrays . 12

2.2 Matrices Operations vs. Arrays Operations 13
2.2.1 Matrix operations . 13
2.2.2 Array operations . 14

2.3 Input and Output (I/O) of Data . 15
2.3.1 Input the data from keyboard . 15
2.3.2 Output of Data to the Screen . 15
2.3.3 I/O through Data Files . 17

2.4 Introduction to Plotting . 18
2.4.1 The plot command . 18
2.4.2 Title, Label, Grid and Text . 18
2.4.3 Multiple curves on one plot . 20
2.4.4 Line Color, Line Style, Marker Style, and Legends 21
2.4.5 Controlling x- and y-axis Plotting Limits 22
2.4.6 Controlling Plot features using the GUI 23

3 Branching Statements 24
3.1 Branching . 24

3.1.1 The Logical Data Type . 25
3.1.2 Relational Operators . 25
3.1.3 Logical Array Masking . 26
3.1.4 Logical Operators . 27

3.2 The if branch . 29
3.2.1 The Nested if Statement . 30

1

3.3 The switch statement . 31
3.4 MATLAB Debugger . 32

4 Loops 33
4.1 Top-Down Design Techniques . 33
4.2 Loops . 35
4.3 The for Loop . 36

4.3.1 The general form of the for Loop . 36
4.4 The while Loop . 38
4.5 Simple Applications . 39
4.6 Timing, Preallocation and Vectorization of Loops 41
4.7 The break and continue Statements . 42
4.8 Nested Loops . 43

5 More Plotting and Graphics 45
5.1 Additional Types of Two-dimensional Plots 46

5.1.1 Other Useful Plotting Functions . 46
5.1.2 Logarithmic Plots . 47
5.1.3 Subplots . 47
5.1.4 Creating Multiple Figure Windows 48
5.1.5 Exporting a Plot as a Graphical Image 49

5.2 Three-dimensional Plots . 50
5.2.1 plot3 function . 50
5.2.2 The meshgrid, mesh and surf commands 51
5.2.3 The Contour functions . 52
5.2.4 Generating Animations of Plots . 53

6 User De�ned Functions, Recursion 54
6.1 Introduction to Matlab Functions . 54
6.2 Variable Passing in Matlab: The Pass-by-Value Scheme 59
6.3 Optional Arguments . 60
6.4 Function of functions . 60
6.5 Recursive Functions . 61

7 External File Input/Output 64
7.1 The textread() Function . 64
7.2 Introduction to MATLAB File Processing 65
7.3 File Opening and Closing . 65

7.3.1 The fopen Function . 65
7.3.2 The fclose Function . 67

7.4 File Positioning and Status Functions . 68
7.5 I/O Functions for Formatted Text Data . 69

7.5.1 The fprintf Function . 69
7.5.2 The fscanf Function . 70
7.5.3 The fgetl and fgets Functions . 70

2

7.6 I/O Functions for Binary Data . 71
7.6.1 The fwrite Function . 71
7.6.2 The fread Function . 72

8 Numerical Methods in MATLAB 73
8.1 Matrix Algebra . 73
8.2 Data Analysis . 74
8.3 Polynomials . 76

8.3.1 Roots . 76
8.3.2 Curve Fitting . 76

8.4 Integration . 78
8.5 Di�erential Equations . 78

8.5.1 IVP Format . 78
8.5.2 ODE Solvers . 79
8.5.3 Basic Use . 79

8.6 Advanced MATLAB Features . 84

9 Application to Civil Engineering: Structural Dynamics 85

3

Chapter 1

Introduction to Computing

Using computers to solve (engineering) problems of our interest is called Computing. In
this process, we develop computational tools that help us do our jobs better and faster. Com-
puting is di�erent from Computer Science. Computer Scientists try to design the Computer
itself and develop programming languages that we, as programmers, can use for our own
engineering applications.

1.1 Computing

Why do we need Computing?

• Volume of data and societal needs have grown beyond human capabilities

• Human error, consistency of results, speed and accuracy

• Examples: Banking, Automotive, Manufacturing, Communication etc.

• Questions: Reliability, Fault tolerance, robustness, backup

• Caveat: Utilization vs. Dependence; we are responsible for the technology we create
and use.

Types of Computing

• On-site Data Analysis and response systems in real-life applications:
Structural Health Monitoring and Control
Water quality management
Earthquake Engineering

• Direct simulation of physical phenomena (Scienti�c Computing)
Analysis & design of systems such as buildings, bridges, machines etc.
Verify & Validate current and future theories of physics - Simulate stu� we cannot
measure or observe - subatomic particles, core of stars, even origin of the universe!!

4

Components of a computer

• Hardware
CPU - Binary (0,1) instructions go in ; Binary output obtained
Memory - ROM, RAM, Hard Disk, External Storage
Input Devices - Keyboard, Mouse, Touch Screen etc.
Output Devices - Monitor, Printer etc.

• Software

� Operating system
Windows, MacOS, Linux, Unix, Sun Solaris,

� Applications Programs
Internet Explorer, Media Players, Photoshop, Adobe Acrobat
Programming languages: C/C++, Fortran, Pascal etc.
MATLAB
Your programs

1.2 Computer Programming

What is programming

De�ning the set of operations for a computer to perform (telling the computer what
to do). Computers understand only certain binary instructions. So computer scientists
developed more user friendly languages that translated (compiled / interpreted) into binary
code. We need to learn these languages in order to communicate with the computers by
writing programs.

• Structure of a program:

� Get input

� Compute - operate upon the input data to generate meaningful information

� Output the results

• Some Essentials of Programming

� Data Structure for Memory management - Variables, Array, Pointers

� Conditional Branching Statements

� Loops

� File Handling

� Input / Output

� Graphics

5

MATLAB - Matrix Laboratory

Advantages:

• Relatively easy to use and good for beginners, GUI

• Prede�ned functions for a lot of Mathematical operations:
Matrix Algebra, Solving system of equations, Eigenvalue computations

• Symbolic Mathematics: Algebra, Di�erentiation, Integration

• Additional Toolboxes

• Plotting / Imaging / Visualization of Results - device independent

• Combine Languages, C/C++, Fortran

• Di�erent platforms run the same MATLAB program / code

• Demos : Membrane, 3D peaks, Bar with notch

Disadvantages:

• Interpreter based : Slower, but can be compiled

• Kernel overhead - not suitable for very large problems

• Limited advanced programming features:
Pointers, Pass by Reference, Object-oriented

The MATLAB Environment

• Desktop

• Command window
>> is called the 'command prompt'
Arithmetic: +, -, *, /, ∧
Line continuation (Ellipsis) ...

• Command History window

• Workspace browser: Variables whos, clear, clc, clf

• Path Browser - Variable, m-�le in current directory, �rst occurrence
which

• Editor window : m-�les as scripts

• Figure windows
plot

6

• Help
help, lookfor

Getting started section

• Start Button

• Other commands
CTRL-c : Cancel or Interrupt Operation (when MATLAB 'hangs')
! : execute command on MS-DOS or Unix shell prompt
diary

Built-in functions in MATLAB

Elementary Math Functions:

• abs()

• sqrt()

• factorial()

• exp()

• log() ; log10()

Trigonometric functions

• sin() ; asin()

• cos() ; acos()

• tan() ; atan()

• cot() ; acot()

Hyberbolic functions

• sinh() ; cosh()

• tanh() ; coth()

1.3 Basic Matrix Algebra

Refer to Matrices Handout.

7

Chapter 2

MATLAB Basics: Datatypes, Arrays,
Input/Output, Plotting

Before we can write programs, it is important to understand how MATLAB uses and
operates on di�erent types of data.

2.1 Datatypes in MATLAB

The two most common data types in MATLAB areNumeric and character data (Refer
to MATLAB help for details on other types of data).

1. Numeric Data is stored in double precision format by default. Double precision num-
bers use 64 bits (binary digits - 0, 1) and can store a number with 15 to 16 signi�cant
digits of precision (mantissa) and 10−308 to 10308 as exponent. Double precision data
types can be real, imaginary or complex.

2. Character data types are stored in 16-bit value representing a single character. Strings
are a collection of characters where each character uses 16 bits.
Example char(65) is 'A' and char(97) is 'a'.

2.1.1 Variables

A Variable is user given name that refers to a certain location in the computers memory
where MATLAB stores data. The user can access that data by specifying the variable name
associated with it.
Rules:

1. Variable names are case sensitive. Example: var, Var, VAR are all di�erent.

2. Must begin with an alphabet followed by alphabets, numbers and the underscore _
character.

3. MATLAB can distinguish variable names upto 63 characters in length.

8

Examples
x = 10

x = x + 1

X = 20 + 20i

character1 = 'a'

character2 = '1'

CharVar1 = char(97)

StrVar1 = 'This is CEE 15'

string_variable = 'That�s cool!'

Prede�ned Variables in MATLAB (not protected: can be overwritten)
pi

i, j

Inf, Nan, ans

realmax, realmin, eps

clock, date

Note: Choose the names of your variables so that no inbuilt prede�ned variables or functions
are over-written.

2.1.2 Arrays

MATLAB treats all data as arrays. An array is a `collection of data' (any data - num-
bers, characters etc.) that is stored in continuous locations in the computers memory. All
variables refer to arrays in the computers memory. Even scalars are actually treated as 1 ×
1 array.

Arrays are primarily of two types: Vectors (dimension 1) and Matrices (2 or more
dimensions). The size of an array is the number of rows and columns in an array. (For
higher dimensional arrays it includes the extent of all dimensions).

Example:

a =

1 2
3 4
5 6

 3 × 2 matrix

b =
[
1 2 3 4

]
1 × 4 array, row vector

c =

1
2
3

 3 × 1 array, column vector

COMMANDS: length(), size()

size(a) gives the size of a speci�c matrix a.
length(a) returns the length of a vector or the longest dimension of a 2-D array.

9

Individual elements in an array are accessed using the row and column number of the
element in parentheses. For example, in the above arrays a(2,1) is 3, b(2) is 2, and c(3)

is 3.

2.1.3 Initialization of Variables and Arrays

Variables need not be declared prior to using them (unlike C, C++, Fortran etc.). Vari-
ables can be created and stored using:

1. Assignment
var = expression

area = pi*(2.3)̂ 2

myarray1 = [1 2 3 ; 4 5 6]

myarray1(3,2) = 1 (expanding an existing array)
Note If a particular subscript in not in range of an array, MATLAB automatically
increases the dimensions of the array to �t the new element.

2. Shortcut Expressions
var = first : inc : last (default inc is 1)
myarray2 = [1:5] creates a row vector
myarray3 = [1:5:26 ; 25:5:50]

Note: Number of entries in each row must be equal.

3. Combining arrays
col1 = [1:3]'

col2 = [6:-1:4]'

myarray4 = [col1 col2]

myarray4 = [myarray4 col2 col1]

name = ['Mike' ' ' 'Smith']

4. Built-in Functions
magic(), zeros(), ones(), eye()

magic: The magic(n) function generates an n×nmatrix constructed from the integers
from 1 through n2. The integers are ordered in such a way that all the row sums and
all the column sums are equal to the same number.
zeros: The zeros function generates a matrix containing all zeros.
ones: The ones function generates a matrix containing all ones.
eye: The eye function generates an identity matrix.

10

Summary of symbols related to array operations
Character Description

: Used in short-cut expressions
= Assignment operator
() Subscripts of arrays
[] Brackets; forms arrays
, Separates array elements
; Semicolon; suppresses echo of input, ends row in array
' Single quote; matrix transpose, creates string

2.1.4 Multi-dimensional Arrays

Three dimensional arrays can be visualized as cuboids and can be addressed using 3
subscripts. For example

array3d(:,:,1) = [1 2 3 ; 4 5 6]

array3d(:,:,2) = [7 8 9 ; 10 11 12]

is a 2 × 3 × 2 array.

However higher dimension arrays are harder to visualize and should be thought of in
terms of subscripts. For example

array4d(2,2,2,2) = 1

is a 2 × 2 × 2 × 2 array.

11

2.1.5 Subarrays

It is possible to select and use subsets of MATLAB arrays as though they were separate
arrays. To select a portion of an array, just include a list of all the elements to be selected
in the parentheses after the array name. For example,

arr1 = [1.1 -2.2 3.3 -4.4 5.5];
arr1(3) −→ 3.3

arr1([1 4]) −→ [1.1 -4.4]

arr1([1:2:5]) −→ [1.1 3.3 5.5]

For a two-dimensional array, a colon can be used in a subscript to select all of the val-
ues of that subscript. For example,

arr2 = [1 2 3; -2 -3 -4; 3 4 5];
arr2(1,:) −→ [1 2 3]

arr2(:,1:2:3) −→ [1 3; -2 -4; 3 5]

The end function
end function returns the highest value taken on by that subscript, For example

arr2(2:end,:) −→ [-2 -3 -4; 3 4 5]

Assigning using subarrays
Subarrays can also be used to change the values of that portion of the main array. For
example,

arr2(:,1:2:3) = [111 222 ; 333 444 ; 555 666]

arr2(:,1:2:3) = 10

Empty array [] ; Deleting elements of an array
Elements of an array can be deleted by assigning them to the empty array [].

arr3 = magic(7)

arr3([1 3],:) = []

12

2.2 Matrices Operations vs. Arrays Operations

2.2.1 Matrix operations

MATLAB has all the operators of conventional matrix algebra already built in.

Addition and Subtraction of Matrices is carried out on two or more matrices of the
same size by adding or subtracting the corresponding elements of the matrices.

Transpose of a Matrix The transpose of a matrix is a new matrix in which the rows of
the original matrix are the columns of the new matrix. If a matrix contains a complex value
then we can have both the complex conjugate transpose (ctranspose and ') and complex
nonconjugate transpose (transpose and .').

Dot Product MATLAB command: c = dot(a,b)

The dot product is the scalar computed from two vectors of the same size.

c =
n∑

i=1

aibi

Matrix Multiplication MATLAB command: c = a*b

The matrix multiplication is de�ned by

c = a ∗ b cij =
n∑

k=1

aikbkj

For example if matrices a and b of dimensions m × n and n × p respectively are such that
number of columns of a are equal to number of rows in b (in this case: n) then the resulting
matrix c will have dimensions m× p according the above formula.

Matrix Powers The command for the power of a matrix a is a�2 (where, power is equal
to 2). a�2 is equivalent to a*a. Similarly, a�4 is equivalent to a*a*a*a. To raise a matrix
to a power, the matrix must be a square matrix.

Matrix Inverse MATLAB Command: b = inv(a)

By de�nition, if b is an inverse of a square matrix a, then a*b or b*a are both equal to an
identity matrix with only the diagonal elements being 1 and other elements being 0.

Determinants MATLAB Command: det(a)

Solving system of equations
The solution of a system of equations Ax = b is given by x = A−1 b. The direct way of cal-
culating this solution using x = inv(A)*b is expensive. Alternatively, MATLAB can solve
this system using Gaussian elimination which is implemented as the backslash \ .
MATLAB Command: x = A \ b.

13

2.2.2 Array operations

Sometimes we have to perform arithmetic operations between the elements of two arrays
of the same size in an element-by-element manner. These operators are denoted by
preceding the normal arithmetic operators by a dot . such as (.+, .-, .*, ./, .�) .
For example if a and b are matrices of same size:
a = [1 2 3 ; 4 5 6]

b = [4 5 6 ; 1 2 3]

a .* b denotes element-by-element multiplication of a and b. A normal
matrix multiplication between the above matrices is not de�ned.

Note + & .+ - & .- operations produce the exact same result.

Summary of Array and Matrix operators
Character Description

+ or - Array and Matrix addition or subtraction of arrays
.* Element-by-element multiplication of arrays
./ Element-by-element right division : a/b = a(i,j)/b(i,j)

.\ Element-by-element left division : a\b = b(i,j)/a(i,j)

.� Element-by-element exponentiation
* Matrix multiplication
/ Matrix right divide : a/b = a*(b)−1

\ Matrix left divide (equation solve) : a\b = (a)−1 * b

� Matrix exponentiation

Precedence (higher to lower):

1. Parentheses ()

2. transpose .', power .�, complex conjugate transpose ', matrix power �

3. unary operator: Unary plus +, unary minus -, logical negation �

4. multiplication .*, right division ./, left division .\, matrix multiplication *, matrix
right division /, matrix left division \

5. addition +, subtraction -

6. colon operator :

For the operators with the same precedence, the executions proceed from left to right.

Refer to MATLAB help for complete precedence rules
MATLAB → Programming → Basic Programming Components → Operators

14

2.3 Input and Output (I/O) of Data

2.3.1 Input the data from keyboard

We can ask the user to provide input data using the input() command.

var = input('Enter the value to be stored: ')

This allows the user to enter any valid MATLAB expression, that evaluates to a numeric

or character value.

stringvar = input('Enter the string to be stored: ','s')

When used with the option 's', anything that the user enters is stored as character data.

2.3.2 Output of Data to the Screen

The format statement

In MATLAB the decimal fractions are printed using a default format (short format) that
shows 4 decimal decimal digits (eben though MATLAB internally stores double precision
variables with 14-15 digits of accuracy). If we want values to be displayed in a decimal for-
mat with 14 decimal digits, we use the command format long. The format can be returned
to a decimal format with 4 decimal digits using the command format short. format short

e command will print the values in scienti�c notation with 5 signi�cant digits and format

long e prints the same but with 15 signi�cant digits. format + command is used to print
the sign only. When a matrix is printed with the format + command, the only character
printed is plus and minus signs. If a value is positive a plus sign will be printed; if a value
is zero, a space will be printed; if a value is negative, a minus sign will be printed.

Display formats
Command Description
format short (Default) Fixed-point format with 4 decimal digits
format short e Scienti�c notation with 4 decimal digits
format short g Best of 5-digit �xed or �oating point
format long Fixed-point format with 14 decimal digits
format long e Scienti�c notation with 15 decimal digits
format long g Best of 15-digit �xed or �oating point
format bank Two decimal digits
format compact Eliminates empty lines
format loose Adds empty lines
format + Only signs are printed

15

The disp and num2str functions

The disp function accepts one array argument whether numeric or string, and displays
the value of the array in the Command Window. If the array is of type char, then the
character string contained in the array is printed out.

This is useful for displaying the �nal result of a program. num2str function can be used
to convert numeric values to character strings and then use disp() for displaying them. For
example,

n = 20;

disp(['Total number of students in the class =' num2str(n)])

disp(n)

The fprintf Function

The general form of the fprintf function is:

fprintf (format, data)

where format is a string that controls the way the data is to be printed, and data is one or
more scalars or arrays to be printed. The format is a character string containing text to be
printed plus special characters describing the format of the data.

Common Special Characters in fprintf Format Strings
Format String Results

%d Display value as an integer
%e Display value in exponential format
%f Display value in �oating point format
%g Display value in either �oating point or exponential format,

whichever is shorter
%c Display a single character
%s Display a string of characters
\n Skip to a new line

Example
temp = 78.234567989;

fprintf(`The temperature is %f degrees. \n',temp)

will print: The temperature is 78.2346 degrees.

It is also possible to specify the width of the �eld in which a number will be displayed
and the number of decimal places to display. This is done by specifying the width and pre-
cision after the % sign and before the f. For example,

fprintf(`The temperature is %4.1f degrees. \n',temp)

16

will print: The temperature is 78.2 degrees.

The output contains the value of temp printed with 4 positions, one of which will be a
decimal position as shown above.

2.3.3 I/O through Data Files

Matrices can be de�ned from information that has been stored in a data �le. MATLAB
can interface to two di�erent types of data �les.

• MAT �les: Data stored in a memory-e�cient binary format. They are preferable for
data that are going to be generated and used by MATLAB programs only.

• ASCII �les: Data stored in ASCII characters. They are necessary if the data are to
be shared (imported or exported) with programs other than MATLAB.

MAT Files
save filename var1 var2 var3

The save command saves the values of variables var1, var2, etc. in a �le named filename.
By default, the �le name will be give the extent mat, and such data �les are called MAT-�les.

save filename x y z -append

adds the variables x, y, z to an existing MAT �le filename.mat.

The load command is the opposite of the save command. It loads data from a disk �le
into the current MATLAB workspace. For example,
load filename

ASCII Files

• The ASCII �les must contain only numeric information. We can use % in the ASCII
�le for comment lines.

• Each row of the ASCII �le must contain the same number of data values to be read
by another program in MATLAB.

save temp.dat c d -ascii

• By loading the ascii �le, data value will be automatically stored in a matrix temp (with
the same name as the data �le) which will have the same size as the data.

• Though values of the variables c and d were stored in the temp.dat �le, they can be
read as a variable matrix (temp) for our case.

load temp.dat

17

2.4 Introduction to Plotting

Plotting is useful when we have to display the output / results of our program in a
graphical format.

2.4.1 The plot command

The plot() command generates an x-y plot using 2 arrays. For example to plot the
function y = x2 − 10x+ 15 for values of x between 0 and 8.

x = 0:1:8;

y = x.^2 - 8.*x + 15;

plot(x,y);

Figure 2.1: Plot of y = x2 − 8x+ 15 from 0 to 8.

The �rst statement creates a vector of x values between 0 and 10 using the colon op-
erator. The second statement calculates the y values from the equation. Finally, the third
statement creates the plot using plot function. When the plot function is executed, Matlab
opens a Figure Window and displays the plot in the window, see Figure 2.1.

Note: Both vectors of x and y must have the same length.

2.4.2 Title, Label, Grid and Text

Titles and axis labels can be added to a plot with the title, xlabel, and ylabel

functions. Each function is called with a string containing the title or label to be applied to

18

the plot. Grid lines can be added or removed from the plot with the grid command: grid
on turns on the grid lines, and grid off turns o� grid lines.

For example, titles, labels and grid lines are applied to the previous �gure, as shown in
Figure 2.2.

x = 0:1:8;

y = x.^2 - 8.*x + 15;

plot(x,y);

title('Plot of y = x^2 - 8*x + 15');

xlabel('x'); ylabel('y');

grid on;

Figure 2.2: Plot of y = x2 − 8x+ 15 from 0 to 8 with a title, axis labels, and grid lines.

The function, text(x,y,'string') writes the string on the graphics screen at the
points speci�ed by the coordinates (x,y) using the axes from the current plot. If x and y

are vectors then the text is written in each point.

text{2.5, 3, 'y(x) = x^2 - 8x + 15'}

text{2.1, 3, '\leftarrow'}

19

2.4.3 Multiple curves on one plot

It is possible to plot multiple curves on the same graph. We can plot multiple curves on
the same graph by using multiple arguments in the plot command, for example, plot(x1,y1,x2,y2).
Here, x1, y1, x2 and y2 are vectors. When the command is executed, the curve correspond-
ing to x1 and y1 will be plotted, and then the curve corresponding to x2 and y2 will be
plotted on the same graph. Another way to plot multiple curves on the same graph is with
the hold command. After a hold on command is issued, all additional plots will be laid on
top of the previously existing plots. A hold off command switches plotting behavior back
to the default situation, in which a new plot replaces the previous one.

For example, suppose that we want to plot the function f(x) = sin2x and its derivative,
2cos2x, on the same plot. We can use either of the following two ways (the result is shown
in Figure 2.3):

x = 0:pi/100:2*pi;

y1 = sin(2*x);

y2 = 2*cos(2*x);

plot(x,y1,x,y2);

or

x = 0:pi/100:2*pi;

y1 = sin(2*x);

y2 = 2*cos(2*x);

plot(x,y1);

hold on;

plot(x,y2);

Figure 2.3: Plot of f(x) = sin2x and f(x) = 2cos2x on the same graph.

20

2.4.4 Line Color, Line Style, Marker Style, and Legends

Matlab allows to select the color of a line to be plotted, the style of the line to be plotted,
and the type of marker to be used for data points on the line. These traits may be selected
using an attribute character string after the x and y vectors in the plot function.

The attribute character string can have up to three characters, with the �rst character
specifying the color of the line, the second character specifying the style of the marker, and
the last character specifying the style of the line. The characters for various colors, markers,
and line styles are shown in the following table:

Table of Plot Colors, Marker Styles, and Line Styles

Color Marker Style Line Style
y yellow . point - solid
m magenta o circle : dotted
c cyan x x-mark -. dash-dot
r red + plus -- dashed
g green * star <none> no line
b blue s square
w white d diamond
k black v triangle (down)

� triangle (up)
< triangle (left)
> triangle (right)
p pentagram
h hexagram
<none> no marker

The attribute characters may be mixed in any combination, and more than one attribute
string may be speci�ed if more than one pair of (x, y) vectors are included in a single plot
function.

Enhanced Control Plotted Lines
It is also possible to set additional properties associated with lines and markers in the �gure.

• LineWidth speci�es the width of each line in points.

• MarkerEdgeColor speci�es the color of the marker or the edge color for �lled markers.

• MarkerFaceColor speci�es the color of the face of �lled markers.

• MarkerSize speci�es the size of the marker in points.

These properties are speci�ed in the plot command after the data to be plotted in the fol-
lowing fashion:
plot(x, y, 'PropertyName', value, ...)

21

Adding Legends
Legends may be created with the legend function. The basic form is

legend('string1', 'string2', ..., 'Location', pos)

or
legend('string1', 'string2', ...)

where string1, string2, etc. are the labels associated with the lines plotted, and pos may
be a string specifying where to place the legend. Command legend off will remove an
existing legend. The possible values of position are given in the following table.

Values of position in the legend Command

Value Legend Location
'NorthWest' Top left corner
'North' Top center
'NorthEast' Top right corner (default)
'West' Middle left edge
'East' Middle right edge
'SouthWest' Bottom left corner
'South' Bottom center
'SouthEast' Bottom right corner

2.4.5 Controlling x- and y-axis Plotting Limits

By default, a plot is displayed with x- and y-axis ranges wide enough to show every
point in an input data set. However, we can use the axis command/function to control axis
scaling and appearance. Some of the forms of the axis command/function are:

1. v = axis; returns a 4-element row vector containing the current limits, xmin, xmax,

ymin, and ymax, of the plot.

2. axis([xmin xmax ymin ymax]) sets the x and y limits of the plot to the speci�ed
values.

3. axis equal sets the axis increments to be equal on both axes.

4. axis square makes the current axis box square.

5. axis normal cancels the e�ect of axis equal and axis square.

6. axis off turns o� all axis labelling, tick marks, and background.

7. axis on turns on all axis labelling, tick marks, and background (default case).

An example of a complete plot is shown in Figure 2.4, and the statements to produce
that plot are shown below.

22

x = 0:pi/25:2*pi;

y1 = sin(2*x);

y2 = 2*cos(2*x);

plot(x, y1, 'go-', 'MarkerSize', 6.0, 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'g');

hold on;

plot(x, y2, 'rd-', 'MarkerSize', 6.0, 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'g');

title('Plot of f(x) = sin(2x) and its derivative');

xlabel('x');

ylabel('y');

legend('f(x)', 'd/dx f(x)', 'Location', 'NorthWest');

Figure 2.4: A complete plot with title, axis labels, legend, grid, and multiple line styles.

2.4.6 Controlling Plot features using the GUI

You can perform similar operations to control the settings of a plot using GUI Plotting
Tools. However, this process has to be done manually and is not recommended when dealing
with a large of plots. Refer to MATLAB help for details on plotting tools.

23

Chapter 3

Branching Statements

All of the MATLAB programs developed previously consist of a series of MATLAB
statements that are executed one after another in a �xed order. Such programs are called
sequential programs. There is no way to repeat sections of the program more than once, and
there is no way to selectively execute only certain portions of the program.

We will introduce two broad categories of control statements: branches, which select
speci�c sections of the code to execute, and loops, which cause speci�c sections of the
code to be repeated. By using these control statements, we can control the order in which
statements are executed in a program.

3.1 Branching

Branches are used to make decisions in your program and to run di�erent pieces of code
depending upon some logical condition that can be either true or false . For example:

...
if <logical condition>

statement group A
else

statement group B
end
...

If the logical condition is true, then the program executes the statements A, otherwise,
the program executes the statements B. After the if-construct the program goes to the line
immediately following end.

The value of these logical conditions is stored in a di�erent MATLAB datatype called
the logical datatype.

24

3.1.1 The Logical Data Type

The logical data type can have one of only two possible values: true or false. These
values are produced by the two special functions true and false. They are also produced by
two types of MATLAB operators: relational operators and logical operators. To create a
logical variable, just assign a logical value to it in an assignment statement. For example,
the following statement creates a logical variable l1 containing the logical value true.

l1 = true;

Automatic conversion between numeric and logical datatypes:
In MATLAB, numerical and logical data can be mixed in expressions. If a logical value

is used in a place where a numerical value is expected, true values are converted to 1 and
false values are converted to 0, and then used as numbers. If a numerical value is used in
a place where a logical value is expected, non-zero values are converted to true and zero
values are converted to false, and then used as logical values.

The inbuilt function logical() does this conversion explicitly. For example logical(0)
is false and logical(x), where x is some non-zero number, gives true.

3.1.2 Relational Operators

Relational Operators are operators with two numerical or string operands that yield a
logical result, depending on the relationship between the two operands. The general form
of a relational operator is

a1 <op> a2

where a1 and a2 are arithmetic expressions, variables, or strings, and <op> is one of the
following relational operators:

Summary of Relational Operators <op>
Operator Interpretation
== Equal to
∼= Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

Note:

• Relational operators may be used to compare a scalar value with an array.
logarr1 = array1 < 3

• Relational operators may be used to compare two arrays if they have the same size.
logarr2 = array1 > array2

25

• Relational operators may be used to compare two strings if they are of equal lengths.
logarr3 = 'This is string 1' == 'This is STRING 2'

• The == symbol is a comparison operation that returns a logical result, while the =

symbol is an assignment operation that assigns the value of the expression on the right
of the equal sign to the variable on the left of the equal sign.

• Due to roundo� errors during computer calculation, two theoretically equal numbers
can di�er slightly. For example,

a = 0;

b = sin(pi);

c = (a == b);

The logical variable c should have the value of true, while the result of MATLAB
is false. Because the result of sin(pi) MATLAB calculated is 1.2246×10−16 instead
of exactly zero. So, instead of using exact `equal to' operation, we use the following
statement

c = (abs(a - b) < 1.0E-14)

and if c has the value of true, we consider a and b have the same values.

• All the relational operators have the same precedence.

3.1.3 Logical Array Masking

An array of logical values can be used to conduct operations on another numeric array
of the same size. This is called masking. A mask is a logical array that selects only those
elements of a main array that correspond to a true value in the mask array.

For example:

>> a = [1 2 3 ; 4 5 6 ; 7 8 9]

>> b = a>5

>> a(b) = sqrt(a(b))

The array b above is the masking array (it is the same size as a) and contains only true

or false value. Thus a(b) is the subarray of a containing only those elements that have a
true value in the corresponding element of b. Masking is helpful when one is trying to do
some operations on a part of a bigger array based on some logical condition.

26

3.1.4 Logical Operators

On several occasions in branching, one needs to combine multiple logical conditions into
a single condition. These is done by logical operators. Logical operators combine or operate
on logical variables and yield a logical true or false result. There are �ve logical operators
that operate on two logical variables: AND (& and &&), OR (| and ||), and Exclusive-OR
(xor), The general form of these operations is

l1 <op> l2

where l1 and l2 are expressions or variables.
In addition there is a unary operator: NOT (∼) with the general form

∼ l1

The NOT operator takes the value of l1 and simply returns the opposite value. Thus
it changes true to false and false to true.

Summary of Logical Operators <op>
Operator Operation
& Logical AND
&& Logical AND with shortcut evaluation
| Logical Inclusive OR
|| Logical Inclusive OR with shortcut evaluation
xor Logical Exclusive OR
∼ Logical NOT

Results of Logical Operators
l1 l2 l1 & l2 l1 | l2 xor(l1,l2)

l1 && l2 l1 || l2

false false false false false

false true false true true

true false false true true

true true true true false

Note:
With `shortcut evaluation' MATLAB evaluates the �rst expression l1 and then decides if
evaluating the second expression l2 is going to change the result of the operation. For ex-
ample, if we consider the following expression.

l1 = (4<5) || (dot(1:1000,1:1000) > 0)

Once MATLAB knows the value of the expression on the left of || is true, it does not
matter what the result on the right is because the �nal result is still going to be true. MAT-

27

LAB simply assigns the logical constant l1 a value of true and moves to the next statement.
Thus using shortcut evaluation can speed up your MATLAB program.

However, shortcut evaluation cannot be used to combine two logical arrays. Then one
must use the single | or &.

Hierarchy of Operations

Logic operators are evaluated after all arithmetic operations and all relational operators
have been evaluated.

1. All arithmetic operators are evaluated �rst in the order previously described.

2. All relational operators are evaluated, working from left to right.

3. All ∼ operators are evaluated.

4. All & and && operators are evaluated, working from left to right.

5. All |, ||, and xor operators are evaluated, working from left to right.

28

3.2 The if branch

The simplest form of an if-end statement allows one to decide whether or not to execute
certain block of code. The syntax of an if-end is:

if logical expression

statements A
end

If logical expression is true, the program executes the statements A. Otherwise, the pro-
gram skips the statements in between the if-end construct and goes to the line immediately
following end. A short form of this construct can also be used:

if logical expression , statement A , end

One may choose to execute a di�erent section of code if the logical expression is not true.
This can be done with the if-else-end construct, which has the syntax:

if logical expression

statement group A
else

statement group B
end

If the logical expression is true, then statement group A is executed. If the logical expression
is false, then statement group B is executed. A short form of this construct can also be used:

if logical expression , statement A , else statement B , end

Sometimes, one may have to check multiple conditions one after the other before deciding
what section of code to execute. This can be done by adding the elseif clause to the above
if-end syntax. The general form of the if-elseif-end construct has the following syntax:

if logical expression 1

statement group A
elseif logical expression 2

statement group B
elseif logical expression 3

statement group C
...
end

Here, if logical expression 1 is true, then only statement group A is executed.
otherwise if logical expression 2 is true, then only statement group B is executed.

29

otherwise if logical expression 3 is true, then only statement group C is executed.

Note:
If both the logical expressions 1 and 2 are true, then only statement group A is executed.
If none of the logical expressions is true, then none of the statements within the if-elseif-end
structure is executed.

Another variation of this construct includes an else clause towards the end resulting in
an if-elseif-else-end construct:

if logical expression 1

statement group A
elseif logical expression 2

statement group B
elseif logical expression 3

statement group C
...
else

statement group D
end

Note:
In this case, if none of the logical expressions 1, 2 and 3 is true, then the statement group
D is executed.

3.2.1 The Nested if Statement

When one if branch is completely contained within the statement group of another outer
if branch, the process is called nesting. In general it takes the form:

if logical expression 1

statement group A
if logical expression 2

statement group B
end

statement group C
end

In this case, statement group B is executed only if �rst, the logical expression 1 is true
and then if logical expression 2 is true.

30

3.3 The switch statement

The switch construct is used when you want to match the value of a variable or expres-
sion with a set of di�erent values and then choose to execute a particular block of code. The
variable or expression to be matched is called the switch expression and it is matched with
di�erent case expressions. Both these types of expressions can be integer, character-string,
or logical expressions.

The general form of a switch construct is:

switch (switch expression)
case case expression 1,

statement group A
case case expression 2,

statement group B
...
otherwise,

statement group N
end

If the value of switch expression is equal to case expression 1, then `statement group A'
will be executed, and the program will jump to the �rst statement following the end of the
switch construct. Similarly, if the value of switch expression is equal to case expression 2,
then `statement group B' will be executed, and the program will jump to the �rst statement
following the end of the switch construct. The same idea applies for any other cases in the
construct.

The otherwise code block is optional. If it is present, it will be executed whenever the
value of switch expression is outside the range of all the case selectors. If it is not present
and the value of switch expression is outside the range of all the case selectors, then none of
the code blocks will be executed.

If many values of the switch expression should cause the same code to execute, all of
those values may be included in a single block by enclosing them in curly brackets. In the
following example, if the switch expression matches any of the three case expressions in the
list, then `statement group a' will be executed.

switch (switch expression)
case {case expression 1, case expression 2, case expression 3},

statement group A
...
otherwise,

statement group N
end

At most one code block can be executed. After a code block is executed, execution skips
to the �rst executable statement after the end statement. If the switch expression matches
more than one case expression, only the �rst one of them will be executed.

31

3.4 MATLAB Debugger

The debugger is a useful tool integrated with the MATLAB editor that helps you �nd
errors in your code and follow the execution of your code line by line.

• Breakpoints:
You can stop the execution of your program at a certain point in your code by setting
a breakpoint. Once MATLAB reaches that point in the code it `freezes' execution
and returns the control to the user. At this point you can check all your variables and
run commands as you normally would. To proceed from a breakpoint you may press
F10 to follow your code line by line or press F5 to continue execution till the next
breakpoint (if any).

• Conditional Breakpoints:
Conditional breakpoints can be set when you wish to stop execution of your code at a
point depending upon certain `logical' condition being true. For example, stop only if
a variable has a negative value or only for a certain value of the loop variable.

• Error Breakpoints:
Execution stops if any errors or warnings are encountered.

• Check code with M-lint:
M-lint checks for errors, obsolete features, unused variables etc.

• Pro�ler:
Shows the details of the computational time taken to execute a program. Thus one
can see which parts of the program take up more time and try to make their that part
of the calculation more e�cient.

32

Chapter 4

Loops

As your programs start to get more complicated, you will need to follow some Program
Design techniques before you can begin writing the code.

4.1 Top-Down Design Techniques

Top-down design is the process of starting with a large task and breaking it down into
smaller, more easily understandable pieces (sub-tasks) which perform a portion of the desired
task. Each sub-task may in turn be subdivided into smaller sub-tasks if necessary. Once the
program is divided into small pieces, each piece can be coded and tested independently. The
sub-tasks will be combined into a complete task after each of the sub-tasks has been veri�ed
to work properly by itself.

The concept of top-town design is the basis of program design process. The details of
the process are shown in Figure 3.1.
Program design process

1. Clearly state the problem that you are trying to solve.

2. De�ne the inputs required by the program and the outputs to be produced by the program.

3. Design the algorithm that you intend to implement in the program.

An algorithm is a step-by-step procedure for �nding the solution to a problem. At
this stage, the top-down design techniques are used.

4. Turn the algorithm into MATLAB statements.

5. Test the resulting MATLAB program.

Algorithms are usually described using a pseudo-code (derived from pseudo meaning
false or stand in, and code for program) that uses constructs such as branching and loops
similar to a programming language but does not have a set syntax. We will use a mixture
of MATLAB and English as pseudo-code in this class.

33

Figure 4.1: The program design process

34

4.2 Loops

One of the strongest attributes of a computer is its ability to do fast repetitive operations
on a set of data. As programmers, we use this feature through loops when we want to repeat
certain parts of our program over and over again. For instance, say we want to calculate the
sum of all the elements of an array A. The `brute force' way of doing this would be:

>> sumA = A(1) + A(2) + A(3) + . . . + A(N)

where N is the total number of elements in the array. Another way to write the same is:

>> sumA = 0

>> sumA = sumA + A(1)

>> sumA = sumA + A(2)

>> sumA = sumA + A(3)

...
...

>> sumA = sumA + A(N)

Clearly, this will be very ine�cient for large arrays. However, there is a repetitive
pattern in the above expressions which can be expressed in the following formula:

sumA =
N∑

i=1

A(i)

Having identi�ed the pattern, the formula can be directly coded up in MATLAB as a for

loop as:

sumA = 0

for ii = 1 : N

sumA = sumA + A(ii)

end

The way MATLAB implements this loop is by repeatedly executing the statement between
the for-end construct for each value of ii from 1 to N. In general, as a programmer, if you
�nd yourself doing repetitive operations then you should immediately try to write down an
expression that de�nes the pattern (as in the above equation) and use a loop to implement it.

In MATLAB there are two basic forms of loop constructs: for loops and while loops.
The major di�erence between these two types of loops is in how the repetition is controlled.
The code in a for loop is repeated a speci�ed number of times, and the number of repetitions
is known before the loops starts. By contrast, the code in a while loop is repeated an
inde�nite number of times until some user-speci�ed condition is satis�ed.

35

4.3 The for Loop

The general form of a for loop is

for index = expression

statement group (body of the loop)
end

The expression usually takes the form of a vector in shortcut notation first:incr:last.
The index variable is assigned values from the loop expression incrementally for every pass

of the loop. The number of times the loop will be executed can be computed using the
following equation: floor((last-first)/incr)+1. If the value is negative, the loop is not
executed.

Example: Calculate the summation of 1 + 2 + ... + 100.

sum = 0;

for ii=1:100

sum = sum + ii;

end

Good Programming Practice

1. Indent the bodies of loops.

2. Do not modify the loop index ii within the body of a for loop.

4.3.1 The general form of the for Loop

In for loops, the loop expression can take other forms also. In general, the loop expression
can be any matrix. Then, MATLAB assigns one column of the matrix to the index variable
and executes the statements within the body of the for-end loop, successively for as many
columns there are in the matrix.

Example:
for ii = [5 9 7]

ii

end

Example:
for ii = [1 2 3; 4 5 6]

ii

end

36

The for loop construct functions as follows:

1. At the beginning of the loop, MATLAB generates the control expression.

2. The �rst time through the loop, the program assigns the �rst column of the expression
to the loop variable index, and the program executes the statements within the body
of the loop.

3. After the statements in the body of the loop have been executed, the program assigns
the next column of the expression to the loop variable index, and the program executes
the statements within the body of the loop again.

4. The above step 3 is repeated over an over as long as there are additional columns in
the control expression.

Note:

• The index of the for loop must be a variable.

• If the expression is a scalar, then the loop will be executed one time, with the index
containing the value of the scalar.

• If the expression is a row vector, then each time through the loop, the index will contain
the next value in the vector.

• If the expression is a matrix, then each time through the loop, the index will contain
the next column in the matrix.

• Upon completion of the loop, the index contains the last value used.

37

4.4 The while Loop

The general form of a while loop is

while expression

statement group
end

The controlling expression produces a logical value. If the expression is true, the state-
ment group will be executed, and then control will return to the while statement. If the
expression is still true, the statements will be executed again. The process will be repeated
until the expression becomes false. When control returns to the while statement and the
expression is false, the program will execute the �rst statement after the end.

If the expression is always true (for example, we made an mistake in the expression),
the loop becomes an in�nite loop and we need to use the Ctrl-C key to abort it.

Example: Calculate the summation of 1 + 2 + ... + 100.

sum = 0;

current = 1;

while current <= 100

sum = sum + current;

current = current + 1;

end

38

4.5 Simple Applications

1. Finding Statistical Average and Standard Deviation of some numbers:

numbers = input('Enter an array of numbers: ')

n = length(numbers);

sumnum = 0;

sqrsum = 0;

for ii = 1:n

sumnum = sumnum + numbers(ii);

sqrsum = sqrsum + numbers(ii)^2;

end

avg = sumnum/n;

stddev = sqrt((n*sqrsum-sumnum^2)/(n*(n-1)));

fprintf('The mean is %f and the standard deviation is %f. \n', avg, stddev);

2. Searching for a number in a given array:

numbers = input('Enter an array of numbers: ')

srch = input('Enter the number to search: ');

loc = [];

for ii = 1:length(numbers)

if numbers(ii) == srch

loc = [loc ii];

end

end

if length(loc) > 0

fprintf('The number %d occurs at the indices: ', srch);

fprintf(' %d ', loc);

fprintf('in the array. \n');

else

fprintf('The number %d was not found in the array: ', srch);

end

39

3. Find minimum or maximum number in an array:

numbers = input('Enter an array of numbers: ')

minnum = Inf;

maxnum = 0;

minloc = [];

maxloc = [];

for ii = 1:length(numbers)

if numbers(ii) < minnum

minnum = numbers(ii);

minloc = [ii];

elseif numbers(ii) == minnum

minloc = [minloc ii];

end

if numbers(ii) > maxnum

maxnum = numbers(ii);

maxloc = [ii];

elseif numbers(ii) == maxnum

maxloc = [maxloc ii];

end

end

fprintf('The minimum number is: %d \n' , minnum);

fprintf('It was found at the following locations in the array:');

fprintf(' %d ', minloc);

fprintf('\n');

fprintf('The maximum number is: %d \n' , maxnum);

fprintf('It was found at the following locations in the array:');

fprintf(' %d ', maxloc);

fprintf('\n');

40

4.6 Timing, Preallocation and Vectorization of Loops

The commands tic and toc can be used to calculate the the time taken for a certain
MATLAB code to execute.

clear all; clc;

tic;

for ii = 1:10000

sqr(ii) = ii^2; % The size of sqr is GROWING in the loop as ii grows

end % MATLAB has to allocate & deallocate memory

toc % and transfer data which takes a lot of time.

Preallocation of arrays before the loop begins can speed up the execution.

clear all; clc;

% With Preallocation

tic;

sqr = zeros(1,10000); % Here we PREALLOCATE all the memory needed by sqr

for ii = 1:10000

sqr(ii) = ii^2;

end

toc

Alternatively, you can also use Vectorization i.e. use the array operators (.* ./ .�

etc.) to speed up the execution even more.

clear all; clc;

% Vectorization

tic;

ii = 1:10000;

sqr = ii.^2; % Vectorization as an alternative to loops

toc

Note that the for loop has been replaced entirely by the array operations. MATLAB
internally implements the loop for you when you use array operations. It does so using
vectorized memory operations which are faster.

41

4.7 The break and continue Statements

The break and continue statements can be used to control the operation of while loops
and for loops. The break statement terminates the execution of a loop and passes control
to the next statement after the end of the loop, while the continue statement terminates
the current pass through the loop and returns control to the top of the loop.

Examples:

for ii = 1:5

if ii == 3

break;

end

fprintf(`ii = %d \n', ii);

end

disp(`End of loop!');

for ii = 1:5

if ii == 3

continue;

end

fprintf(`ii = %d \n', ii);

end

disp(`End of loop!');

42

4.8 Nested Loops

It is also possible to have one loop be completely inside another loop. If one loop is
completely inside another one, the two loops are called nested loops. Nested loops are
commonly used for doing computations on Matrices.

Example: Ask user for a row vector a. Calculate A = a' * a

clear all;

a = input('Enter a row vector: ')

n = length(a);

for ii = 1:n

fprintf('ii = %d \n', ii);

for jj = 1:n

fprintf(' jj = %d \n', jj);

A(ii,jj) = a(ii)*a(jj);

end

end

A

Gives the output:

a =

2 5 7

ii = 1

jj = 1

jj = 2

jj = 3

ii = 2

jj = 1

jj = 2

jj = 3

ii = 3

jj = 1

jj = 2

jj = 3

A =

4 10 14

10 25 35

14 35 49

43

Note:

• MATLAB associates each end statement with the latest open for loop. You cannot
have an end for the outer loop before the end for the inner loop.

• When for loops are nested, they should have independent loop index variables.

• When a break or continue statement appears inside a set of nested loops, then it
refers to the latest open loops containing it.

Example:

clear all;

a = input('Enter a row vector: ')

n = length(a);

for ii = 1:n

fprintf('ii = %d \n', ii);

if (ii == 3)

fprintf('Outer Loop ii == 3 pass SKIPPED. \n');

continue;

end

for jj = 1:n

fprintf(' jj = %d \n', jj);

if (jj == 3)

fprintf('Inner Loop BROKEN at jj == 3. \n');

break;

end

A(ii,jj) = a(ii)*a(jj);

end

end

A

44

Chapter 5

More Plotting and Graphics

Recall the basic usage of plot() command. An example of a complete plot is shown in
Figure 5.1, and the statements to produce that plot are shown below.

Figure 5.1: A complete plot with title, axis labels, legend, grid, and multiple line styles.

x = 0:pi/25:2*pi;

y1 = sin(2*x);

y2 = 2*cos(2*x);

plot(x, y1, 'go-', 'MarkerSize', 6.0, 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'g');

hold on;

45

plot(x, y2, 'rd-', 'MarkerSize', 6.0, 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'g');

title('Plot of f(x) = sin(2x) and its derivative');

xlabel('x');

ylabel('y');

legend('f(x)', 'd/dx f(x)', 'Location', 'NorthWest');

5.1 Additional Types of Two-dimensional Plots

Some of the additional two-dimensional plotting functions are listed here.

1. bar(x, y) creates a vertical bar plot, with the values in x used to label each bar and
the values in y used to determine the height of the bar.

2. barh(x, y) creates a horizontal bar plot, with the values in x used to label each bar
and the values in y used to determine the horizontal of the bar.

3. compass(x, y) creates a polar plot, with an arrow drawn from the origin to the
location of each (x, y) point.

4. pie(x) creates a pie plot. This function determines the percentage of the total pie
corresponding to each value of x and plots pie slices of that size.

5. stairs(x, y) creates a stair plot, with each stair step centered on an (x, y) point.

6. stem(x, y) creates a stem plot, with a marker at each (x, y) point and a stem drawn
vertically from that point to the x axis.

7. errorbar(X,Y,L,U) plots X versus Y with error bars. For each point de�ned by
(X(i),Y(i)), the vectors L, and U represents the distance L(i) below and U(i) above
the point for the error bar.

5.1.1 Other Useful Plotting Functions

1. ezplot('functionname',[xmin xmax], figure)

2. fplot('functionname',[xmin xmax])

Example:

ezplot('sin(x)/x',[-4*pi 4*pi])

46

5.1.2 Logarithmic Plots

It is possible to plot data on logarithmic scales as well as linear scales. There are four pos-
sible combinations of linear and logarithmic scales on the x and y axes, and each combination
is produced by a separate function.

1. The plot function plots both x and y data on linear axes.

2. The semilogx function plots x data on logarithmic axes and y data on linear axes.

3. The semilogy function plots x data on linear axes and y data on logarithmic axes.

4. The loglog function plots x and y data on logarithmic axes.

5.1.3 Subplots

It is possible to place more than one set of axes on a single �gure, creating multiple
subplots. Subplots are created with a subplot command of the form

subplot(m,n,p)

This command divides the current �gure into m × n equal-sized regions, arranged in m
rows and n columns, and creates a set of axes at position p to receive all current plotting
commands. The subplots are numbered from left to right and from top to bottom. For
example, the command subplot(2, 3, 4) would divide the current �gure into six regions
arranged in two rows and three columns, and create an axis in position 4 (the lower left one)
to accept new plot data.

Example: Figure 5.2 is produced by the following code:

x = 0:pi/30:2*pi;

y1 = sin(2*x);

y2 = 2*cos(2*x);

figure(1)

subplot(2,2,1)

plot(x, y1, 'k-', 'LineWidth', 2.0);

xlabel('x');

ylabel('f(x)');

subplot(2,2,2)

semilogx(x, y1, 'b-', 'LineWidth', 3.0)

xlabel('x');

ylabel('f(x)');

subplot(2,2,3)

47

plot(x, y2, 'r-o', 'LineWidth', 2.0);

xlabel('x');

ylabel('d/dx f(x)');

axis([0 6 -3 3]);

subplot(2,2,4)

plot(x, y2, 'kd', 'MarkerSize', 6.0, 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'g');

xlabel('x');

ylabel('d/dx f(x)');

axis([0 6 -3 3]);

Figure 5.2: A �gure containing four subplots.

5.1.4 Creating Multiple Figure Windows

Matlab can create multiple Figure Windows, with di�erent data displayed in each win-
dow. Window is identi�ed by a �gure number, which is a small positive integer. The �rst
Figure Window is Figure 1, the second is Figure 2, etc. One of the Figure Windows will be
the current �gure, and all new plotting commands will be displayed in that window.

The current �gure is selected with the figure function. This function takes the form
figure(n), where n is a �gure number. When this command is executed, Figure n becomes
the current �gure and is used for all plotting commands. The �gure is automatically created
if it does not already exist. The current �gure may also be selected by clicking on it with
the mouse.

48

5.1.5 Exporting a Plot as a Graphical Image

The print command can be used to save a plot as a graphical image by specifying ap-
propriate options and a �le name.

print -f<handle> -<options> <filename>

where -f<handle> speci�es Graphics handle of �gure to print, -<options> speci�es the
format of the output image, and <filename> speci�es the name of the output image. For
example,

print -f1 -djpeg myplot.jpg

creates a JPEG image of the �gure 1 and store it in a �le called myplot.jpg. Other options
allow image �les to be created in other formats. Some of the important image �le formats
are given in the following table:

print Options to Create Graphics Files
Option Description
dps PostScript for black and white printers
dpsc PostScript for color printers
deps Encapsulated PostScript
depsc Encapsulated Color PostScript
djpeg JPEG image
dtiff Compressed TIFF image
dpng Portable Network Graphic color image

49

5.2 Three-dimensional Plots

Three-dimensional plots are needed when we want to display plots of functions involving
three variables, x, y and z.

5.2.1 plot3 function

This function plots a 3-D curve by connecting (x, y, z) triplets with line segments (similar
to the plot command which connects (x, y) pairs). General format:

plot3(x, y, z)}

where x, y, and z are vectors of equal length containing the locations of data points to plot.
Figure 5.3 is produced by the following code:

z = 0:pi/50:10*pi;

plot3(sin(z),cos(z),z);

Figure 5.3: A three-dimensional line plot.

50

5.2.2 The meshgrid, mesh and surf commands

For plotting a function of two variables z(x,y) we use the mesh and surf commands.
Figure 5.4 and Figure 5.5 are produced by the mesh and surf functions in the following
code.

[x, y] = meshgrid(-4:0.2:4);

z = exp(-0.5*(x.^2 + y.^2));

figure(1)

mesh(x, y, z);

figure(2)

surf(x, y, z);

Note: The meshgrid command is only used to generate the x and y arrays that represent
the `grid' of (x, y) pairs. The function z(x, y) is then calculated upon this grid of values and
plotted using mesh and surf commands.

Figure 5.4: A three-dimensional mesh plot.

Figure 5.5: A three-dimensional surf plot.

51

5.2.3 The Contour functions

Another way to visualize a function of two variables is to use contour plots. MATLAB has
can generate contour plots with functions such as: contour(), contour3() and contourf().
A sample code and its output for the three functions is shown below.

[x, y, z] = peaks(50);

subplot(2,2,1);

surf(x, y, z); title('surf')

subplot(2,2,2);

contour(x, y, z); title('contour')

subplot(2,2,3);

contour3(x, y, z); title('contour3')

subplot(2,2,4);

contourf(x, y, z); title('contourf')

Figure 5.6: MATLAB contour plots.

52

5.2.4 Generating Animations of Plots

Another example of a repetitive process is encountered when one is trying to generate
an animation (movie) of plots. Generating a movie can be done �rst creating a plot and
then over-writing it with another (slightly di�erent) plot and doing this repeatedly over
and over again.

delay = pi/50;

t = 0:delay:2*pi;

y1 = sin(2*t);

y2 = 2*cos(2*t);

for ii = 1:length(t)

hold off

plot(t(1:ii), y1(1:ii), 'go-', 'MarkerSize', 6.0, 'MarkerEdgeColor', ...

'b', 'MarkerFaceColor', 'g');

hold on;

plot(t(1:ii), y2(1:ii), 'rd-', 'MarkerSize', 6.0, 'MarkerEdgeColor', ...

'r', 'MarkerFaceColor', 'g');

axis([0 2*pi -2 2]);

text(5.0,1.8,['t = ' num2str(t(ii))]);

pause(delay);

end

The axis command is needed to keep the y-axis constant during the animation. The text
command displays the time and the pause command allows the user to see each plot for the
speci�ed delay (in seconds) before it is changed.

3-D plots can also be animated. For example:

[x y] = meshgrid(-pi:pi/10:pi,-pi:pi/10:pi);

figure(1); clf;

for t = 1:20 % Loop over time limits for animation

z = sin(t/20*2*pi)*cos(x).*sin(y); % create the z values

surf(x, y, z); % plot the surface at this instant

axis([-pi pi -pi pi -2 2]); % set axis limits

text(2,-2,2,['t=' num2str(t)]); % output text

pause(0.1); % pause for users to see the image

end

53

Chapter 6

User De�ned Functions, Recursion

Why do we need user-de�ned functions? Well-designed functions enormously reduce the
e�ort required on a large programming project. Their bene�ts include:

1. Independent testing of sub-tasks.

2. Reusable code.

3. Isolation from unintended side e�ects.

6.1 Introduction to Matlab Functions

The general form of a Matlab function is

function [outarg1, outarg2, ...] = fname(inarg1, inarg2, ...)

% H1 comment line

% Other comment lines

(Executable code)

...

(return)

(end)

54

For example, suppose in a Matlab program, many times you need convert Spherical coor-
dinates, (r, θ, φ), to Cartesian coordinates, (x, y, z). Your code may look like this:

...

% converts from (r1, theta1, phi1) to (x1, y1, z1)

z1 = r1*cos(phi1);

x1 = r1*sin(phi1)*cos(theta1);

y1 = r1*sin(phi1)*sin(theta1);

...

% converts from (r2, theta2, phi2) to (x2, y2, z2)

z2 = r2*cos(phi2);

x2 = r2*sin(phi2)*cos(theta2);

y2 = r2*sin(phi2)*sin(theta2);

...

% converts from (r3, theta3, phi3) to (x3, y3, z3)

z3 = r3*cos(phi3);

x3 = r3*sin(phi3)*cos(theta3);

y3 = r3*sin(phi3)*sin(theta3);

...

Alternately if a user de�ned function, which converts from Spherical coordinates to Carte-
sian coordinates, had been used, your code may look like this:

...

% converts from (r1, theta1, phi1) to (x1, y1, z1)

[x1, y1, z1] = Spherical2Cartesian(r1, theta1, phi1);

...

% converts from (r2, theta2, phi2) to (x2, y2, z2)

[x2, y2, z2] = Spherical2Cartesian(r2, theta2, phi2);

...

% converts from (r3, theta3, phi3) to (x3, y3, z3)

[x3, y3, z3] = Spherical2Cartesian(r3, theta3, phi3);

...

where function Spherical2Cartesian is de�ned in the Matlab script �le Spherical2Cartesian.m.

function [x, y, z] = Spherical2Cartesian(r, theta, phi)

% converts from (r, theta, phi) to (x, y, z).

z = r*cos(phi);

x = r*sin(phi)*cos(theta);

y = r*sin(phi)*sin(theta);

return;

55

Notes

1. The function statement speci�es the name of the function and the input and output
argument lists. The input argument list appears in parentheses after the function
name, and the output argument list appears in brackets to the left of the equal sign.
If there is only one output argument, the brackets can be dropped.

2. Matlab function should be placed in a �le with the same name (including capitalization)
as the function, and the �le extent .m. For example, if a function is named Myfun,
then that function should be placed in a �le named Myfun.m.

3. The input argument list is a list of names representing values that will be passed from
the caller to the function. These names are called dummy arguments. They are
just placeholders for actual values that are passed from the caller when the function is
invoked. Similarly, the output argument list contains a list of dummy arguments that
are placeholders for the values returned to the caller when a function �nishes executing.

4. A function is invoked by naming it in an expression together with a list of actual
arguments. A function may be invoked by typing its name directly in the Command
Window or by including it in a script �le or another function. The name in the calling
program must exactly match the function name (including capitalization). When the
function is invoked, the value of the �rst actual argument is used in place of the �rst
dummy argument, and so forth for each other actual argument/dummy argument pair.

5. Execution begins at the top of the function and ends when either a return statement,
an end statement, or the end of the function is reached. The return statement or
the end statement is not actually required in most functions. The only information
returned from the function is contained in the output arguments. So, each
item in the output argument list must appear on the left side of at least one assignment
statement in the function. When the function returns, the values stored in the output
argument list are returned to the caller.

6. Matlab function is a special type of M-�le that runs in its own independent workspace.
For example, the variable de�ned in the main program, i.e. x, has nothing to do with
the variable in a function although they may have the same name x. In other words,
the change of the value of x in the function does not change the value of x in the main
program or vice versa.

7. The initial comment lines in a function serve a special purpose. The �rst comment
line after the function statement is called the H1 comment line. It should always
contain a one-line summary of the purpose of the function. The special signi�cance of
this line is that it is searched and displayed by the lookfor command. The comment
lines from the H1 line until the �rst blank line or the �rst executable statement are
displayed by the help command. They should contain a brief summary of how to use
the function.

56

Examples:

Single input and single output function

function volume = spherevol(r)

% This function calculates the volume of spheres

volume = 4/3*pi*r.*r.*r;

Multiple inputs and single output function

function volume = cylindervol(r, h)

% This function calculates the volume of cylinders

volume = pi*r.*r.*h;

Single input and multiple outputs function

function [sarea, volume] = spheresurvol(r)

% This function calculates the volume and surface area of spheres

volume = 4/3*pi*r.*r.*r;

sarea = 4*pi*r.*r;

Multiple inputs and multiple outputs function

function [sarea, volume] = cylindersurvol(r, h)

% This function calculates the volume and surface area of cylinders

sarea = 2.0*pi*r.*(h + r);

volume = pi*r.*r.*h;

Searching

function [locations] = mysearch(arr, num2search)

% This function searches for a given number (num2search) in a given array (arr).

% It returns an array of the indices [locations] where the number is found.

locations = [];

tol = 1e-14;

n = length(arr);

for ii = 1:n

if abs(arr(ii)-num2search)<tol

locations = [locations ii];

end

end

57

Sorting

function sortedarr = mysort(inparr)

% This function sorts a given array of numbers (inparr) using selection sort

n = length(inparr);

for ii = 1:n-1

% inparr

% pause

min = inparr(ii);

loc = ii;

for jj = ii + 1:n

if inparr(jj)<min

loc = jj;

min = inparr(jj);

end

end

if loc ~= ii % Need to swap inparr(loc) and inparr(ii)

inparr(loc) = inparr(ii);

inparr(ii) = min;

end

end

sortedarr = inparr;

58

6.2 Variable Passing in Matlab: The Pass-by-Value Scheme

Matlab programs communicate with their functions using a pass-by-value scheme.
When a function call occurs, Matlab makes a copy of the actual arguments and passes
them to the function. This copying is highly signi�cant, because it means that even if the
function modi�es the input arguments, it won't a�ect the original data in the caller. This
feature helps to prevent unintended side e�ects, in which an error in the function might
unintentionally modify variables in the calling program.

This behavior is illustrated in the function shown below. This function has two input
arguments: a and b. During its calculation, it modi�es both input arguments.

function out = sample(a, b)

fprintf(`In sample: a = %f, b= %f %f \n', a, b);

a = b(1) + 2*a;

b = a.*b;

out = a + b(1);

fprintf(`In sample: a = %f, b= %f %f \n', a, b);

A simple test program to call this function is shown below.

a = 2; b = [6 4];
fprintf(`Before sample: a = %f, b= %f %f \n', a, b);

out = sample(a, b);

fprintf(`After sample: a = %f, b= %f %f \n', a, b);

fprintf(`After sample: out = %f \n', out);

When this program is executed, the results are:

Before sample: a = 2.000000, b= 6.000000 4.000000

In sample: a = 2.000000, b= 6.000000 4.000000

In sample: a = 10.000000, b= 60.000000 40.000000

After sample: a = 2.000000, b= 6.000000 4.000000

After sample: out = 70.000000

Note that a and b were both changed inside the function sample, but those changes had no

e�ect on the values in the calling program.

59

6.3 Optional Arguments

• nargin

Returns the actual numbers of input arguments that the function was called with.

• nargout

Returns the actual numbers of ouput arguments that the function was called with.

• msg = nargchk(minarg, maxarg, nargs) % nargs = nargin OR nargout

Generates a standard message if the function was called with incorrect number of input
OR output arguments. If there is no error then msg=� is empty

• error(msg), warning(msg)

Displays the error or warning message msg. If msg is empty then no action is taken.

Aside: Global and Persistent variables
Global variables are declared using the keyword global and can be used within all functions
that declare them as global. They are present in a declaring function's workspace but they
are not lost when the function exits after completion.
Persistent variables are local to some function that declares them with the keyword persistent.
The di�erence between persistent variables and normal function variables is that when a func-
tion is called again and again, persistent variables preserve their value between calls.

6.4 Function of functions

Function functions are useful when you need to specify the name of a MATLAB function
or a user de�ned function as an input argument.

• feval('functionname', x1, ... xN)

Evaluates the speci�ed function functionname with inputs x1, ... xN .

• eval('string')

Executes the given 'string' as a MATLAB statement.

• Examples fzero, quad, fminbnd

60

6.5 Recursive Functions

An important class of functions are Recursive functions. A function is said to be recursive
if it calls itself in its own de�nition. Recursion is useful for computing the result of a
function which can be expressed in terms of an integer (n) number of repetitive operations.
In such cases, one can express the function itself as recursive formula. For example, the sum
of �rst n integers can be written as:

S(n) = 1 + 2 + 3 + ...+ (n− 1) +n

S(n) = S(n− 1) +n

The �rst equation shows a non-recursive way of calculating the sum of �rst (n) integers.
This equation can be implemented using the familiar loops.
The second equation de�nes a recursive formula for calculating the sum. The MATLAB
code corresponding to the second recursive equation above:

function [outsum] = sumrec(n)

% sumnonrec : calculates the sum of the first n integers using recursion

if n<1

error('Error: n must be positive \n');

elseif n==1

outsum = 1;

else

outsum = sumrec(n-1) + n;

end

Important points about Recursion

1. Any recursive function calls itself in its own de�nition.
In the above function sumrec() calls itself with a an input that is one less (n-1) than
the given input (n). Thus, when a user calls this function with (say) sumrec(10), the
function calls itself to �nd sumrec(9), which in-turn calls sumrec(8) and so on:

sumrec(10): outsum = sumrec(9) + 10;

sumrec (9): outsum = sumrec(8) + 9;
...

...
...

sumrec (2): outsum = sumrec(1) + 2;

sumrec (1): outsum = 1;

In the end, when sumrec(2) calls sumrec(1), recursion stops and the value of sumrec(1)
= 1 is returned. Then sumrec(2) adds this value to 2 and returns 3 and so on back
upto the level of the original call.

2. Recursion Terminating Condition: Every recursive function must have a termi-
nating condition.
In the above example the terminating condition is chosen as n==1. If the terminating
condition is missing, then the recursive function would keep calling itself an in�nite
number of times.

61

Examples:

• Factorial:

n! = 1× 2× 3× ...× (n− 1)× n

function outfact = factrec(n)

% factrec: calculates the factorial of an integer using recursion

if n<1

error('Error: n must be positive \n');

elseif n==1

outfact = 1;

else

outfact = factrec(n-1) * n;

end

• Calculation of a Power series:
For example, the exponential of a real number x can be obtained using the following
in�nite sum:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·+ xn

n!
+ · · ·

A recursive MATLAB user de�ned function that takes as input the values of x and
n and returns two outputs [factn expxn] which are n! and ex upto n terms can be
implemented as:

function [factn expxn]= recexp(x,n)

%This function takes inputs (x,n) to calculate n! and e^x with n terms and outputs [n! e^x]

if n<0 || n ~=round(n)

error('Error: n must be a non-negative integer');

elseif n==0 %terminating condition

factn = 1;

expxn = 1;

else

%recursive call for (n-1)! and e^x with n-1 terms

[fnm1 expnm1] = recexp(x,n-1);

factn = fnm1*n; % get n!

expxn = expnm1 + x^n/factn; % get e^x with n terms

end

Note that we combined multiple outputs in the above recursive function for better
e�ciency (instead of having di�erent recursive calls for summing and factorial).

62

• Fibonacci numbers: 0 1 1 2 3 5 8 13 21 ...

F (n) = F (n− 1) + F (n− 2)

where F (0) = 0 and F (1) = 1.

function [outfn] = fiborec(n)

% fiborec: calculates the first n fibonacci numbers

if n<1

error('Error: n must be positive \n');

elseif n==1

outfn = 0;

elseif n==2

outfn = [0 1];

else

fnm1 = fiborec(n-1);

outfn = fnm1(n-1) + fnm1(n-2);

outfn = [fnm1 outfn];

end

The following MATLAB code computes and displays the �rst n Fibonacci numbers using
Loops and Recursion:

clear all;

clc;

n = input('Enter the number of Fibonacci numbers required: ');

fprintf('Fibonacci numbers with Loops: \n');

for ii = 1:n

if ii==1

fn = 0;

elseif ii==2

fnm1 = 0;

fn = 1;

else

fnew = fn + fnm1;

fnm1 = fn;

fn = fnew;

end

fprintf('%d ', fn);

end

fprintf('\n');

fprintf('Fibonacci numbers with Recursion: \n');

fprintf('%d ',fiborec(n))

fprintf('\n');

63

Chapter 7

External File Input/Output

Previously, we have learned some of the Matlab input/output functions, such as loading
and saving Matlab data using the load and save commands, and writing out formatted data
using the fprintf function. In this chapter, we will learn more about Matlab's input/output
capabilities.

7.1 The textread() Function

The textread function reads ASCII �les that are formatted into columns of data, where
each column can be of a di�erent type, and stores the contents of each column in a separate
output array. The form of the textread function is

[a, b, c, ...] = textread(filename, format, n)

where filename is the name of the �le to open, format is a string containing a descrip-
tion of the type of data in each column, and n is the number of lines to read. If n is missing,
the function reads to the end of the �le. The format string contains the same types of format
descriptors as function fprintf. Note that the number of output arguments must match
the number of columns that you are reading.

For example, suppose that �le input.dat contains the following data:

James Jones O+ 3.51 22 Yes

Sally Smith A+ 3.28 23 No

This data could be read into a series of arrays with the following function:

[first,last,blood,gpa,age,answer] = textread(`input.dat',`%s %s %s %f %d %s')

This function can also skip selected columns by adding an asterisk to the corresponding
format descriptor (for example, %*s). The following statement reads only the �rst name,
last name, and gpa from the �le:

[first,last,gpa] = textread(`input.dat',`%s %s %*s %f %*d %*s')

64

Function textread is much more �exible than the load command. The load command
assumes that all of the data in the input �le is of a single type � it cannot support di�erent
types of data in di�erent columns. In addition, it stores all of the data into a single array.
In contrast, the textread function allows each column to go into a separate variable, which
is much more convenient when working with columns of mixed data.

7.2 Introduction to MATLAB File Processing

To use external �les within a MATLAB program, we need some way to select the desired
�le and to read from or write to it. MATLAB has a very �exible method to read and write
�les, whether they are on disk, magnetic tape, or some other device attached to the computer.
This mechanism is called the �le identi�er, (fid). The �le identi�er is a positive integer
number that MATLAB assigns to a �le when it is opened, and used for all reading, writing,
and control operations on that �le. File identi�ers are assigned to disk �les or devices using
the fopen() statement, and are detached from them using the fclose() statement. Once
an external �le is opened using the fopen() statement and assigned a �le id, we can read and
write to that �le using MATLAB �le input and output statements. When we are done with
the �le, the fclose() statement closes the �le and makes the �le id invalid. The frewind()
and fseek() statements may be used to change the current reading or writing position in a
�le while it is open.

Data can be written to and read from �les in two possible ways: as formatted text
(character) data or as binary data.

• Data in formatted �les is translated into characters that can be read directly by a
user. However, formatted I/O operations are slower and less e�cient than binary I/O
operations.

• Binary data consists of the actual bit (0,1) patterns that are used to store the data in
computer memory. Reading and writing binary data is very e�cient, but a user cannot
read the data stored in the �le.

We will discuss both types of I/O operations later in this chapter.

7.3 File Opening and Closing

7.3.1 The fopen Function

Then fopen function opens a �le and returns a �le id number that MATLAB has assigned
to it. The basic forms of this statement are

fid = fopen(filename, permission)

[fid, message] = fopen(filename, permission)

[fid, message] = fopen(filename, permission, format)

where filename is a string specifying the name of the �le to open, permission is a character
string specifying the mode (read, write or append) in which the �le is opened, and format is

65

an optional string specifying the numeric format of the data in the �le. The format option is
rarely used. If the open is successful, fid will contain a positive integer after this statement
is executed, and message will be an empty string. If the open fails, fid will contain a -1

after this statement is executed, and message will be a string explaining the error. The
possible permission strings are shown in the following table.
fopen() File Permissions

File Permission Meaning
`r' Open an existing �le for reading only (default).
`r+' Open an existing �le for reading and writing.
`w' Delete the contents of an existing �le (or create a new �le)

and open it for writing only.
`w+' Delete the contents of an existing �le (or create a new �le)

and open it for reading and writing.
`a' Open an existing �le (or create a new �le) and open it for

writing only, appending to the end of the �le.
`a+' Open an existing �le (or create a new �le) and open it for

reading and writing, appending to the end of the �le.

On some platforms such as PCs, it is important to distinguish between text �les and bi-
nary �les. If a �le is to be opened in text mode, then a t should be added to the permissions
string (for example, `rt' or rt+). If a �le is to be opened in binary mode, a b may be added
to the permissions string (for example, `rb'), but this is not actually required, since �les are
opened in binary mode by default. This distinction between text and binary �les does not
exist on Unix or Linux computers, so the t and b is never needed on those systems. Some
examples of correct fopen functions are shown below.

Case 1: Opening a Binary File for Input

The function below opens a �le named example.dat for binary input only.

fid = fopen(`example.dat', `r')

The permission string is `r', indicating that the �le is to be opened for reading only.

Case 2: Opening a File for Text Output

The function below open a �le named outdat for text output only.

fid = fopen(`outdat', `wt')

or
fid = fopen(`outdat', `at')

The `wt' permissions string speci�es that the �le is a new text �le; if it already exists,
the old �le will be deleted and a new empty �le will be opened for writing. This is the

66

proper form of the fopen function for an output �le is we want to replace pre-existing data.
The `at' permissions string speci�es that we want to append to an existing text �le. If
it is already exists, then it will be opened and new data will be appended to the currently
existing information. This is the proper form of the fopen function for an output �le if we
don't want replace pre-existing data.

Case 3: Opening a Binary File for Read/Write Access

The function below opens a �le named binexample for binary input and output.

fid = fopen(`binexample', `r+')

The function below also opens the �le for binary input and output.

fid = fopen(`binexample', `w+')

The di�erence between the �rst and the second statements is that the �rst statement required
the �le to exist before it is opened, while the second statement will delete any pre-existing �le.

Always be careful to specify the proper permissions in fopen statements, depending on
whether you are reading from or writing to a �le. This practice will help prevent errors such
as accidentally overwriting data �les that you want to keep. It is also important to check
for errors after you attempt to open a �le. If the fid is -1, then the �le failed to open. You
should report this problem to the user, and either select another �le or else quit the program.

7.3.2 The fclose Function

The fclose function closes a �le. Its form is

status = fclose(fid)

status = fclose(`all')

where fid is a �le id and status is the result of the operation. If the operation is suc-
cessful, status will be 0; if it is unsuccessful, status will be -1. The form status =

fclose(`all') closes all opened �les. It returns a status of 0 if all �les close successfully,
and -1 otherwise.

67

7.4 File Positioning and Status Functions

• exist:
Check whether an item of a speci�ed kind (variable, inbuilt, �le) and speci�ed name

exists or not. It returns 2 if a `�le' of the given name exists. Its form is:

status = exist(name, kind)

Example: stat = exist('fileio.txt','file')

• feof :
Returns logical true(1) or false(0) depending upon whether the end of �le for �le id
fid has been reached or not.

eofstat = feof(fid)

• frewind:
To reset the �le position at the beginning of the �le.

frewind(fid)

• ftell:
Returns the current position within a �le using a non-negative integer denoting bytes
from the beginning.

position = ftell(fid)

• fseek:
To relocate the �le position by offset number of bytes relative to a position speci�ed
by origin which can be ('bof', 'cof', 'eof') denoting beginning of �le, current
position in �le and end of �le.

status = fseek(fid, offset, origin)

• ferror:
Returns the error status number errnum and msg of the most recent �le I/O operation
associated with the speci�ed �le id fid.

[msg errnum] = ferror(fid)

68

7.5 I/O Functions for Formatted Text Data

7.5.1 The fprintf Function

The fprintf function writes formatted data in a user-speci�ed format to a �le. Its form is

count = fprintf(fid, format, val1, val2, ...)

fprintf(format, val1, val2, ...)

where fid is the �le id of a �le to which the data will be written, and format is the format
string controlling the appearance of the data. If fid is missing, the data is written to the
standard output device (the Command Window). This is the form of fprintf that we have
learned before.

The format string speci�es the alignment, signi�cant digits, �eld width, and other as-
pects of output format. It can contain ordinary alphanumeric characters along with special
sequences of characters that specify the exact format in which the output data will be dis-
played. A single % character always marks the beginning of a format. If an ordinary % is to
be printed out, then it must appear in the format string as %%. After the % character, the
format can have a �ag, a �eld-width and precision speci�er, and a conversion speci�er. The
% character and the conversion speci�er are always required in any format, while the �eld,
�eld-width, and precision speci�er are optional.

The possible conversion speci�ers are listed in the following table.

Format Conversion Speci�ers for fprintf

Speci�er Description
`%c' Single character
`%s' String of characters
`%d' Decimal notation (signed)
`%u' Decimal notation (unsigned)
`%e' Exponential notation using a lowercase e
`%E' Exponential notation using an uppercase E
`%f' Fixed-point notation
`%g' The more compact of %e or %f
`%G' Same as %g, but using an uppercase E
`%o' Octal notation (unsigned)
`%x' Hexadecimal notation (using lowercase letters a-f)
`%X' Hexadecimal notation (using uppercase letters A-F)

If a �eld width and precision are speci�ed in a format, then the number before the decimal
point is the �eld width, which is the number of characters used to display the number. The
number after the decimal point is the precision, which is the minimum number of signi�cant
digits to display after the decimal point.

Make sure that there is a one-to-one correspondence between the types of the data in an
fprintf function and the types of the format conversion speci�ers in the associated format
string; otherwise, your program will produce unexpected results.

69

7.5.2 The fscanf Function

The fscanf function reads formatted data in a user-speci�ed format from a �le:

array = fscanf(fid, format)

[array, count] = fscanf(fid, format, size)

where fid is the �le id of a �le from which the data will be read, format is the format
string controlling how the data is read, and array is the array that receives the data. The
output argument count returns the number of values read from the �le.

The optional argument size speci�es the amount of data to be read from the �le. There
are three versions of this argument:

• n � Read exactly n values. After this statement, array will be a column vector con-
taining n values read from the �le.

• Inf � Read until the end of the �le. After this statement, array will be a column
vector containing all of the data until the end of the �le.

• [m, n] � Read exactly m × n values, and format the data as an m × n array.

The format string speci�es the format of the data to be read. It can contain ordinary
characters along with format conversion speci�ers. The fscanf function compares the data
in the �le with the format conversion speci�ers in the format string. As long as the two
match, fscanf converts the value and stores it in the output array. The process continues
until the end of the �le or until the amount of data in size has been read, whichever comes
�rst. If the data in the �le does not match the format conversion speci�ers, the operation
of fscanf stops immediately. The format conversion speci�ers for fscanf are basically the
same as those for fprintf.

7.5.3 The fgetl and fgets Functions

The fgetl and fgets functions read the next line of input from the �le speci�ed by �le
id fid and return a character array (string), line as output. Their general form is

line = fgetl(fid)

line = fgets(fid)

The di�erence is that for fgetl(), the output string line does not contain the end of
line character in the end where as for fgets(), it does. If an end of a �le is encountered, the
value of line is set to -1.

70

7.6 I/O Functions for Binary Data

7.6.1 The fwrite Function

The fwrite function writes binary data in a user-speci�ed format to a �le. Its form is

count = fwrite(fid, array, precision)

count = fwrite(fid, array, precision, skip)

where fid is the �le id of a �le opened with the fopen function, array is the array of
values to write out, and count is the number of values written to the �le.

Matlab writes out data in column order, which means that the entire �rst column is
written out, followed by the entire second column, etc. For example, if

array =

1 2
3 4
5 6

 ,
the data will be written out in the order 1, 3, 5, 2, 4, 6.

The optional precision string speci�es the format in which the data will be output.
Matlab supports both platform-independent precision strings, which are the same for all
computers that Matlab runs on, and platform-dependent precision strings, which vary among
di�erent types of computers. The possible platform-independent precisions are presented in
the following table. All of these precisions work in units of bytes, except for `bitN' or
`ubitN', which work in units of bits.

Selected Matlab Precision Strings

Matlab C/Fortran
Precision String Equivalent Meaning
`char' `char*1' 8-bit character
`schar' `signed char' 8-bit signed character
`uchar' `unsigned char' 8-bit unsigned character
`int8' `integer*1' 8-bit integer
`int16' `integer*2' 16-bit integer
`int32' `integer*4' 32-bit integer
`int64' `integer*8' 64-bit integer
`uint8' `integer*1' 8-bit unsigned integer
`uint16' `integer*2' 16-bit unsigned integer
`uint32' `integer*4' 32-bit unsigned integer
`uint64' `integer*8' 64-bit unsigned integer
`float32' `real*4' 32-bit �oating point
`float64' `real*8' 64-bit �oating point
`bitN' N-bit signed integer, 1 <= N <= 64
`ubitN' N-bit unsigned integer, 1 <= N <= 64

71

The optional argument skip speci�es the number of bytes to skip in the output �le before
each write. Note that if precision is a bit format like `bitN' or `ubitN', skip is speci�ed
in bits instead of bytes.

7.6.2 The fread Function

The fread function reads binary data in a user-speci�ed format from a �le, and returns
the data in a (possibly di�erent) user-speci�ed format. Its form is

[array, count] = fread(fid, size, precision)

[array, count] = fread(fid, size, precision, skip)

where fid is the �le id of a �le opened with the fopen function, size is the number of
values to read, array is the array to contain the data, and count is the number of values
read from the �le.

The optional argument size speci�es the amount of data to be read from the �le. There
are three versions of this argument:

• n � Read exactly n values. After this statement, array will be a column vector con-
taining n values read from the �le.

• Inf � Read until the end of the �le. After this statement, array will be a column
vector containing all of the data until the end of the �le.

• [m, n] � Read exactly m × n values, and format the data as an m × n array.

The precision argument speci�es both the format of the data on the disk and the format
of the data array to be returned to the calling program. The general form of the precision
string is

`disk_precision => array_precision'

where disk_precision and array_precision are both among the precision strings found
in the previous table. The array_precision value can be defaulted. If it is missing, then
the data is returned in a double array. There is also a shortcut form of this expression if
the disk precision and the array precision are the same: `*disk_precision'.

72

Chapter 8

Numerical Methods in MATLAB

8.1 Matrix Algebra

One of the most common linear algebra problems is the solution of a linear set of equa-
tions. For example, consider the set of equations1 2 3

4 5 6
7 8 0

x1

x2

x3

 =

10
11
12


or

Ax = y

The above equations de�ne the product of the n × n matrix A and the n × 1 vector x
as being equal to the n × 1 vector y. The existence of solution to the above equation is
a fundamental problem in linear algebra. Moreover, when a solution does exist, there are
numerous approaches to �nding the solution, such as Gaussian elimination, LU factorization,
or direct use of A−1. It is beyond the scope of this text to discuss the many analytical and
numerical issues of matrix algebra. We will only demonstrate how Matlab can be used to
solve problems like the one above.

Ax = y has a unique solution if the rank of A and the rank of the augmented matrix
[A y] are both equal to n. Alternatively, one can check the condition number of A. If
the condition number is not excessively large, then A has an inverse with good numerical
properties, which means we can �nd A−1. The rank of a matrix can be calculated by using
Matlab function rank. And the condition number of a matrix can be obtained by using
Matlab function cond. For example, rank(A), rank[A y], and cond(A) give the rank of A,
the rank of [A y], and the condition number of A, respectively.

There are two ways to �nd the solution of Ax = y in Matlab:

1. x = inv(A)*y. This method is more straightforward while less favorable. Please note
inv(A) computes A−1.

2. x = A\y. The method using matrix left division is preferable. This method utilizes
an LU factorization approach, which requires fewer �oating-point operations and as a
result is signi�cantly faster.

73

In addition to the solution of linear sets of equations, Matlab o�ers numerous matrix func-
tions that are useful for solving numerical linear algebra problems. Some of these functions
are listed below:

• chol(A) � Cholesky factorization.

• cond(A) � Matrix condition number.

• det(A) � Determinant.

• eig(A) � Vector of eigenvalues.

• [V, D] = eig(A) � Matrix of eigenvectors, and diagonal matrix containing eigenval-
ues.

• inv(A) � Matrix inverse.

• [L, U] = lu(A) � LU decomposition.

• norm(A, type) � Matrix and vector norms.

• rank(A) � Matrix rank.

• schur(A) � Schur decomposition.

• svd(A) � Singular values.

• [U, S, V] = svd(A) � Singular value decomposition.

• trace(A) � Sum of matrix diagonal elements.

8.2 Data Analysis

Matlab provides numerous functions that performs statistical analyses on data sets. Some
of these functions are listed below:

• max(x) � If x is a vector then the function returns the largest value in x. If x is a
matrix then the function returns a row vector containing the maximum element from
each column.

• [a, b] = max(x) � In this form, if x is a vector, then the function stores the maximum
value of x in a scalar a, and the index of the maximum value in the scalar b. If there
are several identical maximum values, the index of the �rst one found is returned. If
x is a matrix, then the function stores the maximum values of x in a vector a and the
indices of the maximum values in a vector b.

• max(x,[],1) � The function returns a row vector containing the maximum element
from each column.

74

• max(x,[],2) � The function returns a column vector containing the maximum ele-
ment from each row.

• Replacing max with min in the above functions gives the corresponding functions for
�nding minimums.

• mean(x) � If x is a vector, this function computes the average value of the elements of
the vector x. If x is a matrix, this function computes a row vector that contains the
average value of each column.

• mean(x,1) � The function returns a row vector containing the average value from each
column.

• mean(x,2) � The function returns a column vector containing the average value from
each row.

• median(x) � If x is a vector, this function computes the median value of the elements
of the vector x. If x is a matrix, this function computes a row vector that contains the
median value of each column.

• median(x,1) � The function returns a row vector containing the median value from
each column.

• median(x,2) � The function returns a column vector containing the median value from
each row.

• sum(x) � If x is a vector, this function returns the sum of the elements of x. If x is a
matrix, this function returns a row vector that contains the sum of each column.

• sum(x,1) � The function returns a row vector containing the sum of elements from
each column.

• sum(x,2) � The function returns a column vector containing the sum of elements from
each row.

• sort(x) � If x is a vector then this function sorts the values into ascending order. If
x is a matrix then this function sorts each column into ascending order.

• [a, b] = sort(x) � The sorted values are returned to the matrix a and reordered
indices are stored in the matrix b.

• std(x) � If x is a vector, this function computes the standard deviation of the values
of x. If x is a matrix, this function computes a row vector containing the standard
deviation of each column.

• var(x) � If x is a vector, this function computes the variance of the values of x. If x is
a matrix, this function computes a row vector containing the variance of each column.

75

8.3 Polynomials

Matlab provides a number of functions for manipulating polynomials. We will introduce
a couple of those functions.

8.3.1 Roots

Finding the roots of a polynomial is a problem common to many disciplines. Matlab
solves this problem and �nds the roots of a polynomial by using function roots. In Matlab
a polynomial is represented by a row vector of its coe�cients in descending order. For ex-
ample, the polynomial x4 − 12x3 + 0x2 + 25x+ 116 is represented by a vector

p = [1 -12 0 25 116];

Note that terms with zero coe�cients must be included. Matlab has no way of knowing
which terms are zero unless you speci�cally identify them. Given this form, the roots can
be found by

r = roots(p);

where r is a column vector containing the roots of the polynomial. Matlab adopts the
convention that polynomials are row vectors and roots are column vectors.

8.3.2 Curve Fitting

In numerous application areas, one is faced with the task of �tting a curve to measured
data. Sometimes the chosen curve passes through the data points, but at other times the
curve comes close to, but does not necessarily pass through the data points. In the most
common situation, the curve is chosen so that the sum of the squared errors at the data
points is minimized. This choice results in a least squares curve �t. It is straightforward
and common to use a polynomial as the basis function for the least squares curve �tting.

In Matlab, the function polyfit solves the least squares polynomial curve-�tting prob-
lem. To illustrate the use of this function, let's start with the data

x = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];

y = [-0.45 1.98 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.20];

To use polyfit, we must give it the above data and the order or degree of the polyno-
mial we wish to best �t the data. If we choose n = 1 as the order, the best straight-line
approximation will be found. This is often called linear regression. If we choose n = 2
as the order, a quadratic polynomial will be found. For example, let's choose a quadratic
polynomial:

n = 2;

p = polyfit(x, y, n);

76

The output of polyfit is a row vector of the polynomial coe�cients, which are -9.8147

20.1338 -0.0327 stored in p. This means the solution is y(x) = −9.8147x2 + 20.1338x −
0.0327. Figure 8.1, which is created by the following code, shows the original data and the
�tted curve.

xi = linspace(0, 1, 100);

yi = polyval(p, xi);

figure(1)

plot(x, y, '-o', xi, yi, '--')

xlabel('x'); ylabel('y = f(x)');

title('Second Order Curve Fitting');

where function polyval is used to evaluate the polynomial at a set of data points.

Figure 8.1: Original data points and the second order curve �tting.

77

8.4 Integration

Matlab provides functions for numerically approximating the integral of a function. These
functions are quad, quadl, and dblquad.

• quad � Numerically evaluate integral, adaptive Simpson quadrature.

• quadl � Numerically evaluate integral, adaptive Lobatto quadrature.

• dblquad � Numerically evaluate double integral.

f(x) = e−x2
occurs frequently in physics problems but cannot be integrated analytically.

Let's show how to use function quad to compute
∫ 1

0
f(x)dx numerically.

First, we need to de�ne the function to be integrated. The function must support a vector
input argument and return a vector of outputs for a vector inputs. For example, f(x) = e−x2

is de�ned in myfun.m as

function y = myfun(x)

y = exp(-x.^2);

Then, we may use quad to compute the integration.

z = quad(@myfun, 0, 1);

or
z = quad(`myfun', 0, 1);

where the �rst argument is the de�ned function to be integrated, the second and third
arguments are the lower limit and upper limit of integration, respectively.

8.5 Di�erential Equations

Matlab has the capability to solve as wide variety of problems involving di�erential
equations, such as ordinary di�erential equations (ODEs), initial value problems (IVPs),
boundary value problems (BVPs), and partial di�erential equations (PDEs).

8.5.1 IVP Format

Matlab computes the time history of a set of coupled �rst-order di�erential equations
with known initial conditions. These problems are called initial value problems and have the
form

ẏ = f(t,y) y(t0) = y0

which is vector notation for the set of di�erential equations

ẏ1 = f1(t, y1, y2, . . . , yn) y1(t0) = y10

ẏ2 = f2(t, y1, y2, . . . , yn) y2(t0) = y20
...

...
ẏn = fn(t, y1, y2, . . . , yn) yn(t0) = yn0

78

where ẏi = dyi/dt, n is the number of �rst-order di�erential equations, and yi0 is the initial
condition associated with the ith equation. When an initial value problem is not speci�ed as
a set of �rst-order di�erential equations, it must be rewritten as one. For example, consider
the classic van der Pol equation

ẍ− µ(1− x2)ẋ+ x = 0

where µ is a parameter greater than zero. If we choose y1 = x and y2 = dx/dt, the van der
Pol equation becomes

ẏ1 = y2

ẏ2 = µ(1− y2
1)y2 − y1

We will demonstrate Matlab ODE solvers by solving this problem.

8.5.2 ODE Solvers

Matlab o�ers seven initial value problem solvers. We will talk about two of them.

• ode45 � An explicit one-step Runge Kutta medium-order (4th- to 5th-order) solver.
Suitable for non-sti� problems that require moderate accuracy. This is typically the
�rst solver to try on a new problem.

• ode15s � An implicit, multistep numerical di�erentiation solver of varying order (1st-
to 5th-order). Suitable for sti� problems that require moderate accuracy. This is
typically the solver to try if ode45 fails or is too ine�cient.

8.5.3 Basic Use

Before a set of di�erential equations can be solved, they must be coded in a function
M-�le. That is, the �le must accept a time t and a solution y and return values for the
derivatives. For the van del Pol equation, this ODE �le can be written as follows.

function [ydot] = vdpol(t, y)

% This function (ydot=f(t,y)) defines the system of ODEs you are trying to solve.

% The input 'y' can be a Nx1 vector; Thus 'ydot' must also be Nx1 vector

mu = 2; % some constant

y1dot = y(2);

y2dot = mu*(1-y(1)^2)*y(2) - y(1);

ydot = [y1dot; y2dot];

Note that the input arguments are t and y but that the function does not use t. Note also
that the output ydot must be a column vector.

Given the above ODE �le, this set of ODEs is solved by the following statements.

tspan = [0 20]; % time span to integrate over

y0 = [2; 0]; % initial conditions (must be a column)

[t, y] = ode45('vdpol', tspan, y0);

plot(t,y(:,1),'b.-',t,y(:,2),'g.-')

legend('y','dy/dt')

79

where t contains the time points, y(:,1) contains the solution of x(t), and y(:,2) contains
the values of dx/dt.

Example 1: In a dynamic problem, we have the following governing equation for a bowl
sliding down a rotating support as shown in 8.2.

r̈ − ω2
0r = −g sin(θ0 + ω0t)

where r is the distance of bowl away from the support end. Initial distance L = 2m ;
Angular rotating speed of slope ω0 = 0.1 rad/s ; Initial angle of the slope θ0 = 0.2 rad. g is
the acceleration due to gravity. Solve for r(t) and ṙ(t) using Matlab. Verify with the exact
solution given by:

r(t) =

(
L− g sinθ0

2ω2
0

)
cosh(ω0t)−

g cosθ0

2ω2
0

sinh(ω0t) +
g

2ω2
0

sin(θ0 + ω0t)

ṙ(t) =

(
Lω0 −

g sinθ0

2ω0

)
sinh(ω0t)−

g cosθ0

2ω0

cosh(ω0t) +
g

2ω0

cos(θ0 + ω0t)

Figure 8.2: Object on rotating slope.

Solution

First we need convert this second order ODE to a set of �rst-order di�erential equations.
Let y1 = r and y2 = dr/dt, we have

ẏ1 = y2

ẏ2 = ω2y1 − g sin(θ0 + ω0t)

The code for the derivative function as well as the statement for solving the ODEs are
listed below.

80

function ydot = bowlonslope(t, y)

w0 = 0.1; theta0 = 0.2; g = 9.8;

ydot = [y(2); w0^2*y(1) - g*sin(theta0+w0*t)];

AND

clear all; close all;

L = 2.0; tspan = [0 1.0]; y0 = [L; 0]; g = 9.8; w0 = 0.1;

theta0 = 0.2;

[t, y] = ode45('bowlonslope', tspan, y0);

ti = linspace(0, 1.0, 100);

ri = (L - g/2/w0^2*sin(theta0))*cosh(w0*ti) - ...

g/2/w0^2*cos(theta0)*sinh(w0*ti) + g/2/w0^2*sin(theta0+w0*ti);

ridot = (L*w0 - g/2/w0*sin(theta0))*sinh(w0*ti) - ...

g/2/w0*cos(theta0)*cosh(w0*ti) + g/2/w0*cos(theta0+w0*ti);

figure(1)

plot(t, y(:,1), 'b.-', ti, ri, 'k-');

xlabel('t');

ylabel('distance r');

legend('Matlab Numerical Solution','Analytical Exact Solution')

figure(2)

plot(t, y(:,2), 'b.-', ti, ridot, 'k-');

xlabel('t');

ylabel('bowl speed');

legend('Matlab Numerical Solution','Analytical Exact Solution')

Figure 8.3 shows the distance r versus time t. In this �gure, analytical solution is also
given for comparison. Figure 8.4 shows the speed of the bowl ṙ versus time t.

81

Figure 8.3: Distance versus time.

Figure 8.4: Speed versus time.

82

Example 2: In Chemical Engineering, the following set of di�erential equations describes
the change in concentration three species in a tank. The reactions A→ B → C occur within
the tank. The constants k1, and k2 describe the reaction rate for A → B and B → C
respectively. The following ODEs are obtained:

dCa

dt
= −k1Ca

dCb

dt
= k1Ca − k2Cb
dCc

dt
= k2Cb

Where k1 = 1 hr−1 and k2 = 2 hr−1 and at time t = 0, Ca = 5 mol and Cb = Cc = 0 mol.
Solve the system of equations and plot the change in concentration of each species over time.
Select a time interval [0 5] for the integration.

Solution:

The derivative function

function ydot = concentration(t, y)

k1 = 1; k2 = 2;

ydot = [-k1*y(1); k1*y(1)-k2*y(2); k2*y(2)];

The main program

clear all; close all;

tspan = [0 5]; y0 = [5 0 0];

[t, y] = ode45('concentration', tspan, y0);

figure(1)

plot(t, y(:,1), 'r-', t, y(:,2), 'b--', t, y(:,3), 'k*')

xlabel('Time (hr)');

ylabel('concentration of each species (mol/hr)');

legend('C_a','C_b','C_c','Location','East');

Figure 8.5 shows the result.

83

Figure 8.5: Concentrations versus time.

8.6 Advanced MATLAB Features

• Cell Arrays

• User de�ned structures and Classes

• Visual Programming with GUI

• Symbolic Math Toolbox

• Objects and Classes

• Parallel Programming

84

Chapter 9

Application to Civil Engineering:
Structural Dynamics

In this chapter, a structural dynamics problem is presented and solved with Matlab.
Suppose the dynamic behavior of a three-�oor building, which is shown in Figure 9.1, needs
to be determined. The building's displacement is measured at each �oor. The columns
separating the �oors are modelled as springs and all the mass of the �oors can be lumped
into one value per �oor. Additionally, velocity proportional dampers exert a small force on
the lumped mass at a �oor directly proportional to the velocity of that degree of freedom.

Figure 9.1: Three-�oor building modelled as mass spring system.

85

The governing di�erential equation along with initial conditions for this system is

M ẍ(t) + C ẋ(t) + K x(t) = F (t)

ẋ(0) = v0 and x(0) = x0

where M is the 3 × 3 mass matrix, K is the 3 × 3 sti�ness matrix, and C is the 3 × 3
damping matrix. Vectors x and F store the �oor displacements and applied loads at each
�oor, respectively. x0 and v0 give the initial state (displacement and velocity) of the structure
at time t = 0.

Based on the given information about the mass of each �oor and the sti�ness of each
column, The mass matrix, sti�ness matrix and damping matrix can be constructed as

M =

 m 0 0
0 m 0
0 0 m/2

 ; K =

 2k −k 0
−k 2k −k
0 −k k

 ; C = αM + βK

The above data can be de�ned in an input �le strdyninput.m:

function [M C K L d u0 v0 Tspan deltaT] = strdyninput

% Initialization

m = 1.0; k = 1.0; L = 0.5; d = 0.5;

M = [m 0 0; 0 m 0; 0 0 m/2.0];

K = [2*k -k 0; -k 2*k -k; 0 -k k];

alpha = 0.0; beta = 0.0;

C = alpha*M + beta*K;

% Initial conditions

u0 = [0.05; 0.05; 0.05]; v0 = [0; 0; 0];

%u0 = [0; 0; 0]; v0 = [0.05; 0.05; 0.05];

%u0 = [0; 0; 0]; v0 = [0; 0; 0];

% Define time span and time step

Tspan = 25.0; deltaT = 0.1;

The externally applied force can also be de�ned as a function of time t in strdynforce.m:

function force = strdynforce(t)

force = [0; 0; 0];

%force = [-0.05*sin(t); 0.1*sin(t); 0.1*cos(t)];

Let's consider a free vibration problem, which has F = 0. Initially, a rope pulled the �rst
�oor with a displacement s0, as shown in Figure 9.2, and suddenly got cut at time t = 0. The
initial conditions of this problem can be described as ẋ(0) = [0 0 0]T and x(0) = [s0 s0 s0]

T .

86

Figure 9.2: Initial con�guration of the three-�oor building.

The following two methods can be used to solve the Structural Dynamics problem:

Method 1: Using ode45()
Convert the given system into standard form:

ẏ = f(t,y)

ẏ(t) = f(t,y(t))

where y(t) =

[
y1(t)
y2(t)

]
, y1(t) = x(t) ; y2(t) = ẏ1(t) = ẋ(t) and

ẏ1(t) = y2(t)

ẏ2(t) = M−1 [F (t)−C y2(t)−K y1(t)]

Now we can code this using ode45(). De�ne the standard form of the equation to be solved:
strdynfun.m:

function ydot = strdynfun(t, y)

[M C K] = strdyninput;

F = strdynforce(t);

87

Figure 9.3: Displacements versus time.

n = size(M,1);

y1 = y(1:n);

y2 = y(n+1:2*n);

y1dot = y2;

y2dot = inv(M)*(F-K*y1-C*y2);

ydot = [y1dot; y2dot];

Main program strdyn.m

clear all; close all;

% Initialization

[M C K L d u0 v0 Tspan] = strdyninput;

[tmat, ymat] = ode45('strdynfun', [0 Tspan], [u0; v0]);

plot(tmat,ymat(:,1),'r', tmat,ymat(:,2),'b', tmat,ymat(:,3),'k');

xlabel('time');

ylabel('Displacement');

legend('Story 1','Story 2','Story 3','Location','SouthEast')

88

Method 2: Central di�erence method
The central di�erence method with a time step ∆t is used for solving the second order
di�erential governing equation. The calculation steps are listed below:

1. Calculate the vector value of initial acceleration, ẍ0.

ẍ0 = M−1 ∗ (F0 −Cẋ0 −Kx0)

2. Compute one backward step (to time -1) by using the following equation.

x−1 = x0 −∆tẋ0 +
(∆t)2

2
ẍ0

3. Compute the e�ective sti�ness matrix by using the following equation.

Ke� =

[
1

(∆t)2
M +

1

2∆t
C

]
4. Loop over time steps i = 1:N

(a) Compute the next state (at ti+1) of the system in terms of the two previous states
ti and ti−1:

xi+1 = K−1
e�

[
Fi −

(
K − 2

(∆t)2
M

)
xi −

(
1

(∆t)2
M − 1

2∆t
C

)
xi−1

]
(b) Store the solution and move to the next time step.

Main Program strdyncd.m

clear all; close all;

% Initialization

[M C K L d u0 v0 Tspan deltaT] = strdyninput;

% Define the time steps

t = -deltaT:deltaT:Tspan;

nsteps = length(t);

% Calculate the vector value of initial acceleration

F = strdynforce(0);

a0 = inv(M)*(F - C*v0 - K*u0);

% Define matrix storing the solutions

% The rows of the matrix are the degrees of freedom

89

% The columns of the array are the state of the system in time

Usol = zeros(3, nsteps);

% The second column is the position at t = 0

Usol(:,2) = u0(:);

% Compute one backward step (t = -\Delta t), and store x(-\Delta t) in the

% first column of the solution matrix

Usol(:,1) = u0(:) - deltaT*v0(:) + deltaT^2/2.0*a0(:);

% Compute the effective stiffness matrix and store the inverse

Keff = M/(deltaT^2) + C/(2.0*deltaT);

Keffinv = inv(Keff);

% March the equation forward, creating new steps by assigning the next

% state of the system as a function of the two previous states

for ii=3:nsteps

F = strdynforce(t(ii));

Usol(:,ii) = Keffinv*(F - (K-2.0*M/(deltaT^2))*Usol(:,ii-1) ...

- (M/(deltaT^2)-C/(2.0*deltaT))*Usol(:,ii-2));

end

% Plot the time history of the displacements of each floor

figure(1);

plot(t(2:nsteps), Usol(1,2:nsteps), 'r-', 'LineWidth', 1.5)

hold on

plot(t(2:nsteps), Usol(2,2:nsteps), 'b-', 'LineWidth', 1.5)

plot(t(2:nsteps), Usol(3,2:nsteps), 'k-', 'LineWidth', 1.5)

xlabel('time'); ylabel('Displacement');

legend('Story 1','Story 2','Story 3','Location','SouthEast')

pause;

% Animation

xp1 = linspace(0, L, 10);

xp2 = linspace(L, 2*L, 10);

xp3 = linspace(2*L, 3*L, 10);

coefMat1 = [0 0 0 1; (L)^3 (L)^2 L 1; 0 0 1 0; 3*(L)^2 2*(L) 1 0];

coefMat2 = [L^3 L^2 L 1; (2*L)^3 (2*L)^2 2*L 1; 3*L^2 2*L 1 0; ...

3*(2*L)^2 2*(2*L) 1 0];

coefMat3 = [(2*L)^3 (2*L)^2 (2*L) 1; (3*L)^3 (3*L)^2 (3*L) 1; ...

3*(2*L)^2 2*(2*L) 1 0; 3*(3*L)^2 2*(3*L) 1 0];

invcoefMat1 = inv(coefMat1);

invcoefMat2 = inv(coefMat2);

90

invcoefMat3 = inv(coefMat3);

figure(2);

for ii=2:nsteps

d1 = Usol(1,ii);

d2 = Usol(2,ii);

d3 = Usol(3,ii);

coef1 = invcoefMat1*[0; d1; 0; 0];

coef2 = invcoefMat2*[d1; d2; 0; 0];

coef3 = invcoefMat3*[d2; d3; 0; 0];

yp1 = polyval(coef1, xp1);

yp2 = polyval(coef2, xp2);

yp3 = polyval(coef3, xp3);

plot(yp1, xp1, 'b-', 'LineWidth', 2);

hold on;

plot(yp2, xp2, 'b-', 'LineWidth', 2);

plot(yp3, xp3, 'b-', 'LineWidth', 2);

plot(yp1+d, xp1, 'b-', 'LineWidth', 2);

plot(yp2+d, xp2, 'b-', 'LineWidth', 2);

plot(yp3+d, xp3, 'b-', 'LineWidth', 2);

plot([d1 d+d1], [L, L], 'r-', 'LineWidth', 4);

plot([d2 d+d2], [2*L, 2*L], 'r-', 'LineWidth', 4);

plot([d3 d+d3], [3*L, 3*L], 'r-', 'LineWidth', 4);

axis([-0.25 0.75 0.0 1.75]);

text(0.6,1.6,['t = ' num2str(t(ii))]);

hold off;

pause(0.01);

end

% Compare with MATLAB ode45 solution:

[tmat, ymat] = ode45('strdynfun', [0 Tspan], [u0; v0]);

figure(1)

hold on;

pause;

plot(tmat,ymat(:,1),'r', tmat,ymat(:,2),'b', tmat,ymat(:,3),'k');

91

	Introduction to Computing
	Computing
	Computer Programming
	Basic Matrix Algebra

	MATLAB Basics: Datatypes, Arrays, Input/Output, Plotting
	Datatypes in MATLAB
	Variables
	Arrays
	Initialization of Variables and Arrays
	Multi-dimensional Arrays
	Subarrays

	Matrices Operations vs. Arrays Operations
	Matrix operations
	Array operations

	Input and Output (I/O) of Data
	Input the data from keyboard
	Output of Data to the Screen
	I/O through Data Files

	Introduction to Plotting
	The plot command
	Title, Label, Grid and Text
	Multiple curves on one plot
	Line Color, Line Style, Marker Style, and Legends
	Controlling x- and y-axis Plotting Limits
	Controlling Plot features using the GUI

	Branching Statements
	Branching
	The Logical Data Type
	Relational Operators
	Logical Array Masking
	Logical Operators

	The if branch
	The Nested if Statement

	The switch statement
	MATLAB Debugger

	Loops
	Top-Down Design Techniques
	Loops
	The for Loop
	The general form of the for Loop

	The while Loop
	Simple Applications
	Timing, Preallocation and Vectorization of Loops
	The break and continue Statements
	Nested Loops

	More Plotting and Graphics
	Additional Types of Two-dimensional Plots
	Other Useful Plotting Functions
	Logarithmic Plots
	Subplots
	Creating Multiple Figure Windows
	Exporting a Plot as a Graphical Image

	Three-dimensional Plots
	plot3 function
	The meshgrid, mesh and surf commands
	The Contour functions
	Generating Animations of Plots

	User Defined Functions, Recursion
	Introduction to Matlab Functions
	Variable Passing in Matlab: The Pass-by-Value Scheme
	Optional Arguments
	Function of functions
	Recursive Functions

	External File Input/Output
	The textread() Function
	Introduction to MATLAB File Processing
	File Opening and Closing
	The fopen Function
	The fclose Function

	File Positioning and Status Functions
	I/O Functions for Formatted Text Data
	The fprintf Function
	The fscanf Function
	The fgetl and fgets Functions

	I/O Functions for Binary Data
	The fwrite Function
	The fread Function

	Numerical Methods in MATLAB
	Matrix Algebra
	Data Analysis
	Polynomials
	Roots
	Curve Fitting

	Integration
	Differential Equations
	IVP Format
	ODE Solvers
	Basic Use

	Advanced MATLAB Features

	Application to Civil Engineering: Structural Dynamics

