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Copula : Definition

The Word Copula is a Latin noun that means
"A link, tie, bond"

(Cassell's Latin Dictionary)

Copula: Conceptual

G(y) (1,1)

Copulas
H(x,y)

(0,0) F()

» Each pair of real number (x,y) leads to a point of (F(x),
G(y)) in unit square [0, 17*[0, 1]
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Formal Definition
» €40,1]2 - [0,1]

1.
2.
3.

Au,0)=C0,v)=0
Au,V)=u, (1,v)=v
C is 2-increasing
Vi, Vo U U €[0,1]; uy=zu,, v,2v,
C(uy,v;)- C(uy,vy)- Cugvy)+ C(uy,vy) 20

(uz’Vz)

(upvy)

Definition (2)

» Function

Ve ([ugu,] x[vy,v,]) = C(uy,vy)- C(uy,vy)- C(uy,v,)+ C(uy,vy) =0

Is called the C-volume of the rectangle [u,,u,] X[v,,v,]

» Copula is the C-Volume of rectangle [0,u]*[0,v]

Copula assigns a number to each rectangle in [0, ]*[0, ],

Au,v)=V. (10, u]x[0, )

which is nonnegative
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Geometrical Property

(1,1

L (U, v)

(0,0

Clu, )=V ([0, ujx[0, v]) =V.(A)+ V.(B)+ V.(O+ V(D)

7

Sklar's Theorem(1959)

Let H be a n-dimensional distribution function with
margins F,..., F..Then there exists an n-copula n_copula C
such that for all x € R"

H(x,.., x,) = C(F,(x,),.., F,(x,))

C is unique if F|,..., F, are all continuous. Conversely, if C is a
n-copula and F,..., F, are distribution functions, then H
defined above is an n-dimensional distribution function with

margins F,..., F,

9/29/2011



Some Basic Bivariate Copulas

» Fréchet Lower bound Copula
C,(uy..,u,)= max{0,u,+..+u,—n +1},u,€[0,1]?

» Fréchet Upper bound Copula

Cy(uy.., u,)=min{u; .., u,},u€[0,1]?

Copula Property

» Any copula will be bounded by Fréchet lower and
upper bound copulas

C,(u,uy) < Clu,u,) <C, (u,u,)Vue[0,1]?
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Additional Properties

» Survival copula

Clug,up) =uy +up — 1+ C(1 — 1y, 1 —up) = Pril)y > uy, Uy > uy]

Dependence Measure

» Pearson’s Correlation coefficient: cov[X,Y]
PRY =—5 3
Xy

» Ranking Correlation:
Spearman’s rho pS(X.Y) = p(F,(X), Fa(Y))

Kendall’s tau
pr = Pri(X; — X,)(Y; —Y2) > 0] — Prl(X; — X,)(Y; — ¥5) < 0]

p: (%, Y) = Priconcordance] — Prdiscordance]
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Properties(2)

* Both o,(X,Y) and po; (XY ) can be expressed
in terms of copulas

1 01
ps(X,Y) =12 fo L {CQuy, up) — wyup }duyduy

1,1
X, Y) = 4 j' j' €y, u)dC (g, 15) — 1

» Are not simple function of moments hence
computationally more involved!

Tail dependence

. C(u,u)
A = JL%I+ u

. S(u,u)
Ay = 1!1»!{'— 1-u

} The dependence measure A, is the limiting value of
S(vv) EI-V) which is the conditional probability
Pr[U;>v|U,>v] (= Pr[U,>v|U,>v])

» The dependence measure A, is the limiting value of

conditional prebability C(v;v) /v which is the conditional
probability
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Tail Dependence

» LTD (Left Tail Decreasing)
Yis said to be LTD in x, 7fPr[ Y <y / X < x] is decreasing in x
forall y
» RTI (Right Tail Increasing)
Yis said to be RTI in Xif Pr[ Y>y / X>x] is increasing in x for
all y
» For copulas with simple analytical expressions, the
computation of A, can be straight-forward. E.g. for the
Gumbel copula A, equals 2 —2°

Positive Quadrant Dependence
» Two random variables X Yare said to exhibit PQD if
their copula is greater than their product, i.e.,
(u,uy) >uu, or C>C*

» PQD implies A(xy) = F,(x) £,(p) forall (xp) in R?
» PQD implies nonnegative correlation and nonnegative
rank correlation

» LTD and RTI properties imply the property of PQD
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Some Popular Copulas

Farlie-Gumbel-Morgentern (FGM)

Clur, uz; 0) = wyua (1 + 6(1 — ug)(1 — uz))

» Proposed in 1956
» It is the perturbation of product copula

» Prieger(2002) used it for modeling selection into health
insurance plan.

» Restrictive since it is useful when the dependence
between two marginal is modest in magnitude




Gaussian (Normal) copula

b C(up,up; 8) = g (@7 (g ), P71 (u2); 0),

@l(uy) e (ug) 1
[ 2n(1 — 6%)1/2

—s% — 20st + t*
x{;}dsdt

=00 —r

2(1-63%)

» where @ is the cdf of the standard normal distribution, and
@e(uy,uy) is the standard bivariate normal distribution with
correlation parameter 8 restricted to the interval (-1, I).

» Proposed by Lee(1983)

» Flexibility:The normal copula allows for equal degrees of positive
and negative dependence and as dependence parameter approaches
-1 and |, it attains the Frechet lower and upper bound.

19

fixs)

fixz)

Gaussian Copula

Xy

20
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Student’s t-copula
tgrOur) ptgy(uz) 1
ey~ [ [ T e

=(8;+2)/2
} dsdt

s2— 20,5t + £2
X1+ ——
v(l—85)

» t3'(w)is the inverse of the cdf of standard
univariate t-distribution with 8, degree of
freedom

* 0, controls the heaviness of the tails.

* As 0,-0 it will behave like Gaussian copula

21

Clayton Copula

b
Cup,uz 0) = (ur? +uz® —1)-1/¢

» Dependence parameter 0 restricted (0,00 )

» when 8 approaches zeros the marginal become
independent . As 0 approaches infinity the copula
attain Frechet upper bound but for no value attain its
lower bound

» When correlation between two events strongest in the
left tail of joint distribution it is appropriate for
modeling (e.g. performance of two funds or spouses’ ages at death)

22
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Frank Copula

(e —1)}(e =z —1)
e ?—1 )

Cluy,uy;0)=—60"1log {1+

) Pros:
Values to -0, (), e correspond to
Frechet lower bound, independence, upper bound
Permits negative dependence between the marginal
Dependence is symmetric in both tails
» Cons:

Although covers all range of dependency. dependence in the tails
of Frank copulas are weak wrt. Gaussian Copula. (Meester and

MacKay 1994)

23

Gumbel copula

C(ug,uy; 0) = exp(—(@f + ii§)/%)

iy = —logu;
>
» B Isinthe range [1, ) correspond to independence
and Frechet upper bound.
» Proper for modeling the outcomes that have strong

correlation at high values and have weak correlation at
low values.

24
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Generating Copulas

» Method of inversion
» Algebraic Methods
» Mixtures and Convex sum

Mixture of Powers
» Archimedean Copulas

» Geometric

25

Method of Inversion

» Considering F(y, yz) = C(F;(v) F2(v2))
Using inverse transformation U, = F,(y)), U = F; 1 (v,) we
will have

Cluy, u,) = F(Fi(uy ), 5 (uy)

» Also the survival copula is given by:
Clm.up) = F(R 7 (w) F " (w2))

Where F; ,F, are marginal survival function.

26
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Method of Inversion: Example

b F(y1.¥2) = exp{—[e'yi + e ¥2 — (e—9y1 + e'93’1)'1/s]}
—0 <Yy, <©,020

Jim F (1, ¥2) = Fi(n) = exp(e™) = uy
S F G1.32) = F(2) = exp(e™) = u,
y1 = —log(—log(uy)) and y; = —log(— log(u;))

C(ug,uz) = uruzexp{[(—log(ur)) 0 +(—log(uz))~f1-/%}
This expression can be written as

Clun, ) = w0 {[(—p () ™° + (—p ()] o}
Which will be seen to be a member of Archimedean class

27

Other Copulas : Using Inversion Method

Case  Joint distribution: F(y; ,y2) Margins: F(y1), F(ya)  Copula: Cluy,uz)
1 1—(e=%t 4 e20W2 _ Fly))=1-¢ Y 1—{(1-(1-u2)"
e—fy1 +2u2 ])1;‘0 (1 _ ul}o

20 Flw)=1-c  4(1- )}/

2. exp{—(e~1 +e~%2 )% F(y)) = exp(—e¥1 ) exp{—(~In u;)’

+(=In u2)0}1;0

—00<y1, y2 <00, 021 -F(y2)= Xp(_‘c_u.j )

3. (14+e ¥ 4 ¥2 )1 uyua/(ua + up — ugug)

28
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Algebraic Method

» Some derivations of copulas begin with a relationship
between marginals based on independence.Then this
relationship is modified by introducing a dependence
parameter and the corresponding copula is obtained.

» Example 3 in the previous Table is Gumbel’s bivariate
logistic distribution denoted F (y, ,y,)

29

Algebraic Method: Example

» Let (I =F(y,y,)) / F(y,,y,) denote the bivariate survival
odds ratio

F(y, y2)

_1 —Fi(n) + 1—F(y2)
F0n) F(y2)

» Observe that in this case there is no explicit dependence
parameter

30
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Algebraic method: Example(Cntd)

¢ Inthe case of independence, since Fly,,¥,) = F,{y;)F,ly,), so
we can write the ratio as:

1-F(.y2)  1-FA(n)RB(Gs)

F(y1, ¥2) Fy (y1)Fa(y2)

_1=Ron 1=K 1
RO | RO

* Noting the similarity between the bivariate odds ratio in
the dependence and independence cases, Ali, Mikhail, and
Hagq proposed a generalized bivariate ratio with a
dependence parameter

31

Algebraic method: Example(Cntd)

1-F(y1,¥2) —

F(y1, ¥2)

- 1-F () 1—F20’z)+(.

Fi(vy) F3(y2)
1-Clupu) 1-—uy 1-—u T
= + +{(1—-8)
Cluy,uz; 6) u Uz ( Tu
whence
Uy iy

Clupuzi8) = 7= 01 —u)(1— uz)

32
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Convex Sum

» We can obtain new copulas using a convex combination of
copula.E.g.
The class of Frechet Copulas, denoted by CF defined as:

CF = T£1CL + (1 — 1 — nz)CJ' + ﬂzCU

» We can generalize this idea by averaging over infinite
collection of copulas indexed by a continuous variable ) with

a distribution function Ag () with parameter 8.so the copula
obtained:

Co(u1,uz) = Ep[Cy(ug, uz)] = J; ( )Cn(unuz)dﬂe(n)
.

33

Mixture of Powers
» Marshall and Olkin(1998) consider the mixture as:

H) = [[FOIMaAG), 1>0  (Eq)

» And they showed that for every specified pair {H(y),

A}, A(0) =1 there exist F(y).

» A well known example from Marshall and Olkin{1998)
shows how convex sum or mixtures lead to copulas
constructed from Laplace Transform of distribution
functions.

34
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Mixture of Powers(2)

p Lets @{t) defines the Laplace wransform of a positive random variable n

distributed as A oo
#@) = [ emdAm)
D

» Now the rhs of equation Eq, Can be written as ¢[-In F{y)] and so F{y) =
exp[-¢~'H()]
» An inverse Laplace transform could be a copula generator. How?

» Let Fi{y) = exp[-¢~'H,{y,}] and F,{y,) = exp[-¢™ H,(y,}] be some
benchmark distribution function for y, and y,

» generallyy, and y, are not independent. What we are doing is to introduce

unchserved heterogeneity term (latent Random Variable) | with the

distribution Ag(r) and now assume that y, and y, are independent
condition on 1.

35

Mixture of Powers(2)

) Let the conditional distribution given the (laten) random
variable n,1>0, be F,(y,| ) = [F1(31) I" and Fy(y,| n)
=[F2(32]) ]" then

H(y1.72:8) = fo F, )P [P ) Pl (1),

= || explonle™ G0 + 07 PG
= gl (Hy(yD) + ¢~ 1 (H2(y2)); 0]
» Is shown to be joint distribution of y, and y, .And it is also a
(Archimedean) copula.
» H{y,) and H,(y,) are the marginal distributions of H(y,.y,; 6)

36
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Convex Sum: Example

» Dependence Between Stock indexes

» Hu(2004) studies the dependence of monthly return
between four stock indexes.

» She uses monthly averages from January 1970 to
September 2003.

» She Modeled dependence on a pair-wise basis using a
mixture of three copulas {Gaussian(C),
Gumbel(C,,,per) and Gumbel-Survival(Cgq)}

C'mix(u: v 0 a, 6) = ﬂ'cha'uss (ul v; P) + ﬂzccumbel(u; v a)
+(1 —m — ) Cas(u,v; 8)

37

Convex Sum : Example(2)

» Such a mixture imparts additional flexibility and also
allows one to capture left and/or right tail dependence

» Hu uses a two-step semi-parametric approach to
estimate the model parameters.

» Note that pairwise modeling of dependence can be
potentially misleading if dependence is more appropriately
captured by a higher dimensional model

38
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Archimedean Copulas

39

Archimedean Copulas
» Consider the function :[0,1]- [0, o] with the following

properties: it has continuous derivative, it is decreasing
and convex

» Such functions are called generator functions. E.g. ¢ (t)=-
Int) , @(t)=t"%,6 > |

Cluyuy 6) = ¢ (Pp(uy) + P(u)

40
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Archimedean Copulas(cntd)

, = If ¢(0) = oo the generator is called strict and inverse ¢~ exist.
In this case we have C{u,,u,) > 0 except u,=0 or u,=0.

— If @(0) < o it s not strict and its pseudo-inverse L~ exist.

TR e

In this case the copula has singular component and takes the form
Cluy,uy)= max[{.),0]

« Eg: p)=(1-6)%0€ [1,)
= Cluyuy) = max[1 — [(1 — )% +(1—14)]5,0]

41

Archimedean Copulas: Example

> Let @(t) = 1-t, t€[0,1]
@~ (t) = max(1-t ,0)
Clu,v) = max(u+v-1,0)

* Let ¢(t) = -In{t), t€[0,1] then ¢(0) =eo,

@ (t)= exp(-t).
C{ul,u2) = uv, the product copula

42
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Archimedean Copulas: Properties
» Archimedean Copula behaves like a binary
operation
» C(u,v) =C(v,u),Vu,e[o,I]
» C(C(u,v),w) =C(u,C(v,w),Vu,v,we[0,1]
» Order preserving:
C(ul ,v1)=sC (u2 v2) ,ul=u2 ,vI=v2 ,€[0,I1]

43

Archimedean Copulas: Properties

» The properties of the generator affect tail
dependency of the Archimedean copula. If ¢(0) <«
and ¢(0) # 0, then C(ul,u2) does not have the RTD
property. If C(?) has the RTD property then 1/¢(0) =

» Quantifying dependence is relatively straightforward
for Archimedean copulas because Kendall’s tau
simplifies to a function of the generator function,

0]
o @{t)

r=1+4 dt

44
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Archimedean Copulas: extended by
transformation

» Let ¢ be a generator then:

g :[0, IT—[0, 1] be a strictly increasing concave function with
g(1) = 1. Then ¢ is a generator.

f:[0,0]— [0,] be a strictly increasing convex function with
f(0) = 0, then f > ¢ is a generator.

45

Multivariate Archimedean Copulas

» Let ¢ be a continuous, strictly decreasing function from
[0 I] to [0, =) such that ¢(0)= = and ¢(l) = 0 and let ¢!
, be the inverse of ¢.Then
Cr(u) = ¢ ((u) + Plug)*...+ d(u,))
Is a n-copula iff ¢! is completely monotonic on
[0, )

k

d
(—1)* Ftp‘l (£) = 0 for all t € int([0,0))and k = 0,1,2, ...

46

9/29/2011

23



Multivariate Archimedean Copulas

» Clayton Family

Clu) =@ +u3% + - +u;P—n+ 1)V @) =t"%—1 for 6 >0

» Frank Family

CRw) = —%ln (1 . (e —1)(e %2 — 1)..(e~%~ — 1))

(e-a —_ 1)1!—1.
-8t _

Po(t) = —In (—i_,_ 11) for8>0

47

Multivariate Archimedean Copulas

» Gumbel-Hougaard Family

1
€)= exp (—[(—tme)® + (—lmty)? + o + (<l )0]P)
e =(-nt)?,0 =1

» A 2-parameter Multivariate Copula

Capluw) = {[(uiﬂ — 1P + @ =D 4+ % —1)F ] e 1} oy

Papg®)=0""—1)F fora>0p21

48
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Archimedean Copulas: summery

» Archimedean Copulas have a wide range of applications
for some reasons:
Easy to be constructed
Easy to extend to high dimension
Capable of capturing wide range of dependence
Many families of copulas belong to it

49

Generating Copula: Geometric method

Without reference to distribution functions or random
variables, we can obtain the copula via the C-Volume of
rectangles in [0, 17*[0, I]

50
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Geometric method

(1,1

let C, denote the copula with
support as the line segments
illustrated in the graph.

[V CEEEELE LR L LT

(0,0)

Geometric Method
((H))

)

O |memsmammsmame s

When u<av

(0,0) U

Ca(U,V)=Vca([O,U] X [0’ I]) = u

9/29/2011
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Geometric Method
I,1)
\4 :
A
When
(0,0) ; ¥ |_(|_G)V >u>av
C,(u,v)= C,(av,v)= av
Geometric Method
I,1)

N

\ When u > I—=(l1—a)v

\ V.(A)=0 —

(0,0) a U

C,(uv)=u+yv-I

54
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Geometric Method

C,(wv)=u O<u<av<a
C,(u,v)=av Osav<u<I—=(l—aJv
C,(uv)=u+v-I as |=(l=alv=su=l

» C, :Fréchet Upper bound Copula
» C ,:Fréchet Lower bound Copula

55

Copula Estimation

56
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Copula Estimation

» Full Maximum Likelihood Estimate(FML)
» 2-Step Maximum Like likelihood (TSML)

57

Copula likelihood function

» Let we want to estimate the parameters of copula model in
which we have parametric marginal as well as parametric
copula

» Let marginal density function f}(J’j|x;; 5;) _ ap!(;;;yd j!:ﬁ!)

» Let Copula density:
» (R RO o CRC).F()) =
Co2(Fi (), B(NVAG0)
4 C12((F1|x1iﬁ1); (Fz|xzi ﬁz)); 8) = 2 leaiPo). P lraifa )i )

aF, 3F,

58
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Copula Likelihood Function
4 LNA(’(J’12|I1: B1), (¥2lx3; B2)); 8) =

z In £ (i |i: ;)

i=1 j=1

N
£ CoalFy Ousl25: B2 Fo Ot 1263 B2); 6)

i=1

Ly(B1, B2, 0) = Ly n(B1, B2) + Ly y(Br, B2, 6)

59

Generate Archimedean Copula

» Let (X,, , Xy )s--(X, » X,,) random sample of bivariate
observations

» Assume that the distribution function has an Archimedean
copula C,

» Consider an intermediate pseduo-observation Z; with the
distribution function K(z) = P[Z; < z]

» Genest and Rivies(1993) showed that K is related to ¢
through

8(z)

K(z) =z—é(z)

60
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Generating Archimedean Copula: Algorithm

t. Estimate Kendall's correlation coefficient using the usual
estimate
-1
= () D Signl(Hu — Xyt — Xap)]
i<j
I. Construct a nonparametric estimate of K as follows:
define the pseudo-observations

7= fnumber of (X1;Xz;) such that Xq; > X1jand Xz > X35}

n—1
construct the estimate K, of K as K, (z) = proportion of Z; sz

6l

Generating Archimedean Copula: Algorithm

3) Since K has to satisfy the relation

we obtain an estimate of ¢, of ¢, by solving the equation

Bn(2)

Z—=

Bn(2)

= Kp(2)

62
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Drawbacks of using the copula

» Few parametric copula can be generalized beyond the
bivariate case

» The same is true for copula model selection where most
goodness-of-fit tests are devised for a bivariate copula
and cannot be extended to higher dimensionality

» intuitive interpretation of copula-parameter(s) is not
always available

63

Copula in Machine Learning

» The Nonparanormal: Semiparametric Estimation of High
Dimensional Undirected Graphs, H. Liu, ). Lafferty, L.
Woasserman(JMLR 2009)

» Kernel-based Copula Processes, S. Jaimungal, E. K. H.
Ng, Machine Learning and Knowledge Discovery in
Databases (2009)

» Copula Bayesian Networks, G. Elidan (NIPS 2010)
» Copula Process,A. G.Wilson, Z. Ghahramani (NIPS 2010)

64
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NIPS 2011 Workshop

» Copula in Machine Learning
» Abstract submission deadline, October 21st, 201 |

» Organizers

, The Hebrew University of Jerusalem

Cambridge University and Carnegie
Mellon University

, University of Chicago and Carnegie Mellon
University

Link:

65

Thank you

66
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