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Overview of this lecture

Target audience is students and researchers in biomedical sciences without
extensive training in statistics.

I The previous lecture � introduction to survival analysis � covered:

1. The survival function, hazard function, and how they are related.
2. Estimating the survival function using the Kaplan-Meier method.
3. Testing for di�erences in survival using the log rank test.

I This lecture will present an introduction to modelling time-to-event data,
with focus on Cox regression.

I When modelling survival data, we model the rate (hazard) so we'll start with
an introduction to rates.

I Slides available at
http://www.pauldickman.com/video/cox-regression/

I Examples use R, but Stata and SAS code available
on the same page as the slides.
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Rates and person-time

I A rate is a measure of change in one quantity per unit of another quantity.
In biomedical sciences, rates typically have units `events per unit time'.
I Mortality rate: 0.5 deaths per 1,000 person-years
I Incidence rate: 14 cancers per 100,000 person-years

I Mortality rates and incidence rates are event rates.

I The term `hazard rate' (or `hazard') is the generic term used in survival
analysis to describe the `event rate'. If, for example, the event of interest is
disease incidence then the hazard represents the incidence rate.

hazard =
number of events

time at risk

I Time-at-risk is measured in units of person-years or similar (e.g.
person-months).
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Rates and person-time (2)

I Person-time is a method of measurement combining persons and time; it is
used to aggregate the total population at risk assuming that 10 people at
risk for one year is equivalent to 1 person at risk for 10 years.

I If �ve people are followed for one year, they are followed for 5 person-years.

I If two persons are followed for 2.5 years, they are followed for 5 person-years.
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Rates and person-time (3)

I If �ve people are followed for one year, and one experience a cancer, then
the incidence rate is 1/5 = 0.2 cases per person-year.

I If two persons are followed for 2.5 years, and one experience a cancer, then
the incidence rate is 1/5 = 0.2 cases per person-year.

I Often cancer incidences are reported per 100,000 person-years. For example,
an incidence rate of 4 per 100,000 person-years is equivalent to 0.04 per
1,000 person-years and 0.00004 per person-year.
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Hazard rates and the hazard function, λ(t)

I In contrast to the survivor function, which describes the probability of not
failing before time t, the hazard function focuses on the failure rate at time
t among those individuals who are alive at time t. So, the survival function
is formally de�ned for a random time variable T by

S(t) = Pr(T > t) = 1− F (t). (1)

where F (t) is the failure proportion (aka the cumulative density function).

I The hazard function is de�ned, for a random time variable T , by

λ(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t | T ≥ t)

∆t
(2)
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Hazard rates and the hazard function, λ(t) (2)

λ(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t | T ≥ t)

∆t

I The hazard function, λ(t), is the instantaneous event rate at time t,
conditional on survival up to time t.

I From Equation 2, one can see that λ(t)∆t may be viewed as the
`approximate' probability of an individual who is alive at time t experiencing
the event in the next small time interval ∆t.

I The units are events per unit time.

I The hazard is a rate, not a probability, so λ(t) can take any value between
zero and in�nity, as opposed to S(t) which is restricted to the interval [0, 1].

I A lower value for λ(t) implies a higher value for S(t) and vice versa.
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Choice of time scale

I There are several time scales along which rates might vary. These di�er from
one another only in the choice of time origin, the point at which time is zero.

I Consider the following questions?

1. What is the time?
2. How old are you?
3. For how long have you lived at your current address?

I What is the time origin (when is time zero) for each?

I In which units did you specify time? Could di�erent units have been used?

I Time progresses in the same manner but, in answering these questions, we
have applied a di�erent time origin and used di�erent units.
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Common time scales in medical research

Origin Time scale

Birth Age
A �xed date Calendar time
First exposure Time exposed
Entry into study Time in study
Diagnosis Time since diagnosis
Start of treatment Time on treatment

I In many of the methods used in survival analysis, e�ects are adjusted for the
underlying time scale. Choice of time scale therefore has important
implications.

I On many time scales, subjects do not enter follow-up at the time origin,
t = 0. To deal with these issues, the Surv function allows for both the entry
and exit times to be speci�ed prior to the event indicator.
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A sample of 35 patients diagnosed with colon carcinoma during 1985�94;
followed-up until the end of 1995

1984 1986 1988 1990 1992 1994 1996

Date

0 2 4 6 8 10

Year since entry

Figure 1: Calendar time (left) and time from entry in years (right)
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Common forms for the hazard function

decreasing increasing

bathtub

constant

h

Time

I A bathtub-shaped hazard is
appropriate in most human
populations followed from birth,
where the hazard rate decreases to
almost zero after an initial period
of infant mortality, and then starts
to increase again later in life.

I A decreasing hazard is appropriate
following the diagnosis of many
types of cancer, where mortality
due to the cancer is highest
immediately following diagnosis.
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Common forms for the hazard function � constant hazards

decreasing increasing

bathtub

constant

h

Time

I A constant hazard function is often
used for modelling the lifetime of
electronic components, but is also
appropriate following the diagnosis
of some types of cancer, most
notably cancers of the breast and
prostate, where excess mortality
due to the cancer is relatively
constant over time.
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Common forms for the hazard function � constant hazards

decreasing increasing

bathtub

constant

h

Time

I A constant hazard function implies
that survival times can be described
by an exponential distribution
(which has one parameter, the
hazard λ). This distribution is
`memoryless' in that the expected
survival time for any individual is
independent of how long the
individual has survived so far.
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Common forms for the hazard function � constant hazards

decreasing increasing

bathtub

constant

h

Time

I An exponential distribution has also
been used to model the time
between goals in hockey [1].

I The average time to winning a prize
for a regular lotto player, for
example, can be described by an
exponential distribution.
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Parametric survival models

I If we assume that survival times follow an exponential distribution, we could
model the hazard as a function of one or more covariates.

I We could then obtain an estimate of the hazard ratio for the treatment
group compared to the control group while adjusting for other explanatory
variables.

I The disadvantage of this method is that assuming an exponential
distribution for survival times implies the assumption of a constant hazard
function over time, which may not be appropriate.

I The Weibull distribution, which has two parameters, is a more �exible
distribution in which the hazard can be either monotonic increasing,
decreasing, or constant.

I The Weibull, log-normal and Gompertz distributions have proved to be
applicable in several types of medical survival studies, but parametric
distributions are often not appropriate.
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The shape of hazards in a Cox model

I The Cox proportional hazards regression model (`Cox model') does not make
any assumption about the shape of the hazard function (Cox 1972 [2]).

I Instead, the baseline hazard is allowed to vary freely.

I The Cox model estimates hazard ratios relative to the baseline hazard.

I The estimated hazard ratios are adjusted for the e�ect of time, but the
baseline hazard is not estimated when �tting the model.
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An introduction to the Cox model via an example:
Survival of patients diagnosed with colon carcinoma

I Patients diagnosed with colon carcinoma 1984�95. Potential follow-up to
end of 1995; censored after 10 years.

I Outcome is death due to colon carcinoma.

I Interest is in the e�ect of clinical stage at diagnosis (distant metastases vs
no distant metastases).

I How might we specify a statistical model for these data?
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An introduction to the Cox model via an example:
How might we specify a model?
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The Cox proportional hazards model

I A proportional hazards model is on the form

λ(t|X ) = λ0(t) exp(βX ).

I The hazard at time t for an individual with covariates X is a multiple of the
baseline hazard.

I This means that the hazards for di�erent levels of X are proportional.

I The Cox model is a proportional hazards model.

I However, the Cox model does not estimate the baseline hazard, λ0(t). It
only estimates the regression coe�cients, β.

I The `intercept' in the Cox model [2], the hazard for individuals with all
covariates X at the reference level, is an arbitrary function of time, often
called the baseline hazard and denoted by λ0(t).
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The Cox proportional hazards model (2)

I The Cox model can also be written on the log scale

ln[λ(t|X )] = ln[λ0(t)] + βX .

where X = 1 for patients with distant metastases at diagnosis and X = 0 for
patients without distant metastases at diagnosis.

I The di�erence between two hazards is a constant β regardless of t

ln[λ(t|X )]− ln[λ0(t)] = βX .

I That is, the two hazard functions are assumed to be parallel on a log scale.

20 / 51



Empirical hazards on the log scale

I The Cox model assumes that the two hazard curves are parallel on a log
scale. Does that assumption appear reasonable?
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Fit the Cox model in R

> colon2 <- transform(biostat3::colon, distant = (stage == "Distant"),

+ dead = status %in% c("Dead: cancer"))

>

> summary(coxph(Surv(surv_mm,dead)~distant, data=colon2))

Call:

coxph(formula = Surv(surv_mm, dead) ~ distant, data = colon2)

n= 15564, number of events= 8369

coef exp(coef) se(coef) z Pr(>|z|)

distantTRUE 1.66395 5.28011 0.02292 72.61 <2e-16 ***

exp(coef) exp(-coef) lower .95 upper .95

distantTRUE 5.28 0.1894 5.048 5.523
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Fitted hazards

I Although the Cox model does not estimate the hazard functions in the
estimation process, we can estimate the predicted hazards after �tting the
model.
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Fitted hazards on the log scale
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Cox model adjusted for age at diagnosis

> fit <- coxph(Surv(surv_mm,dead) ~ I(age>=75) + I(stage=="Distant"), data=colon2)

> summary(fit)

Call:

coxph(formula = Surv(surv_mm, dead) ~ I(age >= 75) + I(stage == "Distant"), data = colon2)

n= 15564, number of events= 8369

coef exp(coef) se(coef) z Pr(>|z|)

I(age >= 75)TRUE 0.49319 1.63754 0.02232 22.10 <2e-16

I(stage == "Distant")TRUE 1.68755 5.40620 0.02295 73.53 <2e-16

exp(coef) exp(-coef) lower .95 upper .95

I(age >= 75)TRUE 1.638 0.6107 1.567 1.711

I(stage == "Distant")TRUE 5.406 0.1850 5.168 5.655

25 / 51



Cox model adjusted for age at diagnosis (2)
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The Cox proportional hazards model (in detail)

I The most commonly applied model in medical time-to-event studies is the
Cox proportional hazards model [2].

I The Cox proportional hazards model does not make any assumption about
the shape of the underlying hazards, but makes the assumption that the
hazards for patient subgroups are proportional over follow-up time.

I We are usually more interested in studying how survival varies as a function
of explanatory variables (the relative rates) rather than the shape of the
underlying hazard function (the absolute rate).

I In most statistical models in epidemiology (e.g. linear regression, logistic
regression) the outcome variable (or a transformation of the outcome
variable) is equated to the `linear predictor', β0 + β1X1 + · · ·+ βkXk .

I X1, . . . ,Xk are explanatory variables and β0, . . . , βk are regression
coe�cients (parameters) to be estimated.
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The Cox proportional hazards model (in detail) (2)

I The X s can be continuous (age, blood pressure, etc.) or if we have
categorical predictor variables we can create a series of indicator variables
(X s with values 1 or 0) to represent each category.

I We are interested in modelling the hazard function, λ(t;X ), for an
individual with covariate vector X , where X represents X1, . . . ,Xk .

I The hazard function should be non-negative for all t > 0; thus, using

λ(t|X ) = β0 + β1X1 + · · ·+ βkXk

may be inappropriate since we cannot guarantee that the linear predictor is
always non-negative for all choices of X1, . . . ,Xk and β0, . . . , βk .
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The Cox proportional hazards model (in detail) (3)

I However, exp(β0 + β1X1 + · · ·+ βkXk) is always positive so another option
would be

λ(t|X ) = exp(β0 + β1X1 + · · ·+ βkXk)

log λ(t|X ) = β0 + β1X1 + · · ·+ βkXk

I In this formulation, both the left and right hand side of the equation can
assume any value, positive or negative.

I The one �aw in this potential model is that λ(t|X ) is a function of t,
whereas the right hand side will have a constant value once the values of the
βs and X s are known.

I This does not cause any mathematical problems, although experience has
shown that a constant hazard rate is unrealistic in most practical situations.
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The Cox proportional hazards model (in detail) (4)

I The remedy is to replace β0, the `intercept' in the linear predictor, by an
arbitrary function of time � say log λ0(t); thus, the resulting model
equation is

log λ(t|X ) = log λ0(t) + β1X1 + · · ·+ βkXk .

I The arbitrary function, λ0(t), is evidently equal to the hazard rate, λ(t|X ),
when the value of X is zero, i.e., when X1 = · · · = Xk = 0.

I The model is often written as

λ(t|X ) = λ0(t) exp(Xβ).

I It is not important that an individual having all values of the explanatory
variables equal to zero be realistic; rather, λ0(t) represents a reference point
that depends on time, just as β0 denotes an arbitrary reference point in
other types of regression models.
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The Cox proportional hazards model (in detail) (5)

I This regression model for the hazard rate was �rst introduced by Cox [2],
and is frequently referred to as the Cox regression model, the Cox
proportional hazards model, or simply the Cox model.

I Estimates of β1, . . . , βk are obtained using the method of maximum partial
likelihood.

I As in all other regression models, if a particular regression coe�cient, say βj ,
is zero, then the corresponding explanatory variable, Xj , is not associated
with the hazard rate of the response of interest; in that case, we may wish
to omit Xj from any �nal model for the observed data.
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The Cox proportional hazards model (in detail) (6)

I As with logistic regression, the statistical signi�cance of explanatory
variables is assessed using Wald tests or, preferably, likelihood ratio tests.

I The Wald test is an approximation to the likelihood ratio test. The
likelihood is approximated by a quadratic function, an approximation which
is generally quite good when the model �ts.

I In most situations, the test statistics will be similar.

I Di�erences between these three test statistics are indicative of possible
problems with the �t of the model.
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The Cox proportional hazards model (in detail) (7)

I The assumption of proportional hazards is a strong assumption, and should
be tested (see separate lecture).

I Because of the inter-relationship between the hazard function, λ(t), and the
survivor function, S(t), we can show that the PH regression model is
equivalent to specifying that

S(t|X ) = (S0(t))exp(β1X1+···+βkXk ) (3)

where S(t|X ) denotes the survivor function for a subject with explanatory
variables X , and S0(t) is the corresponding survivor function for an
individual with all covariate values equal to zero.

I Most software packages, will provide estimates of S(t) based on the �tted
proportional hazards model for any speci�ed values of explanatory variables.
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Interpreting the estimated coe�cients

I The estimated coe�cients, β, are log rate ratios. To get the rate ratios we
need to exponentiate the coe�ecients, exp(β).

I The con�dence intervals for the β are on the log scale. The CIs are therefore
not symmetric around the rate ratios.

I Conceptually identical to logistic regression, where we modelled the log odds
as a linear function of covariates and the parameters were interpreted as log
odds ratios.

I Here we are modelling the log rate as a linear function of covariates and the
parameters are interpreted as log rate ratios.
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Interpreting the estimated coe�cients

I Recall that the basic proportional hazard (PH) regression model speci�es

λ(t|X ) = λ0(t) exp(β1X1 + · · ·+ βkXk)

equivalently,

log λ(t|X ) = log λ0(t) + β1X1 + · · ·+ βkXk

I Note the similarity to multiple linear regression, i.e.,

Y = β0 + β1X1 + · · ·+ βkXk

I In linear regression we derive estimates of all the regression coe�cients, i.e.,
β1, . . . , βk and β0.

I In PH regression, the baseline hazard component, λ0(t), vanishes from the
partial likelihood; we only obtain estimates of the regression coe�cients
associated with the explanatory variates X1, . . . ,Xk .
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Interpreting the estimated coe�cients (2)

I Consider the simplest possible setup, one involving only a single binary
variable, X ; then the PH regression model is

log λ(t|X ) = log λ0(t) + βX

or equivalently,

βX = log λ(t|X )− log λ0(t)

= log

(
λ(t|X )

λ0(t)

)
(4)
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Interpreting the estimated coe�cients (3)

I From the last slide:

βX = log

(
λ(t|X )

λ0(t)

)
(5)

I Since λ0(t) is the hazard function when X = 0,

β = log

(
λ(t|X = 1)

λ(t|X = 0)

)
(6)

I That is, β is the logarithm of the ratio of the hazard rate for subjects
belonging to the group denoted by X = 1 to the hazard function for subjects
belonging to the group indicated by X = 0.

I The parameter β is a log hazard ratio and exp(β) is the hazard ratio.
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Interpreting the estimated coe�cients (4)

I β is also the di�erence in log hazards, although a di�erence in log hazards
does not have a practical interpretation.

β = log

(
λ(t|X = 1)

λ(t|X = 0)

)
= log(λ(t|X = 1))− log(λ(t|X = 0))

(7)
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Interpreting the estimated coe�cients (5)

I If we conclude that the data provide reasonable evidence to contradict the
hypothesis that X is unrelated to response, exp(β̂) is a point estimate of the
rate at which response occurs in the group denoted by X = 1 relative to the
rate at which response occurs at the same time in the group denoted by
X = 0. That is, the hazard ratio.

I When more than one covariate is involved, the principle is the same; exp(β̂j)
is the estimated relative rate of failure for subjects that di�er only with
respect to the covariate Xj .

I If Xj is binary, exp(β̂j) estimates the increased/reduced rate of response for
subjects corresponding to Xj = 1 versus those denoted by Xj = 0.

I When Xj is a numerical (continuous) measurement then exp(β̂j) represents
the estimated change in relative rate associated with a unit change in Xj .
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Example: Localised colon carcinoma 1975�1994

I We �tted a proportional hazards model to study the e�ect of sex, age (in 4
categories), and calendar period (2 categories) on cause-speci�c mortality
(only deaths due to colon cancer were considered events).

I We'll begin by restricting the data to localised cases only (stage=1).

I We study cause-speci�c mortality (status=="Dead: cancer").
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Example: Localised colon carcinoma 1975�1994 (2)

> fit1 <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~
sex + agegrp + year8594,
subset=(stage=="Localised"), data=colon)

> summary(fit1)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)
sexFemale -0.08939 0.91449 0.04937 -1.811 0.0702 .
agegrp45-59 -0.05198 0.94934 0.13845 -0.375 0.7073
agegrp60-74 0.29237 1.33960 0.12573 2.325 0.0201 *
agegrp75+ 0.81414 2.25724 0.12607 6.458 1.06e-10 ***
year8594Diagnosed 85-94 -0.28254 0.75387 0.04937 -5.723 1.05e-08 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

exp(coef) exp(-coef) lower .95 upper .95
sexFemale 0.9145 1.0935 0.8301 1.0074
agegrp45-59 0.9493 1.0534 0.7237 1.2453
agegrp60-74 1.3396 0.7465 1.0470 1.7140
agegrp75+ 2.2572 0.4430 1.7631 2.8900
year8594Diagnosed 85-94 0.7539 1.3265 0.6843 0.8305

Concordance= 0.609 (se = 0.007 )
Rsquare= 0.031 (max possible= 0.99 )
Likelihood ratio test= 199.1 on 5 df, p=0
Wald test = 198.4 on 5 df, p=0
Score (logrank) test = 204.2 on 5 df, p=0

I The output commences with a
description of the outcome and
censoring variable and a summary
of the number of subjects and
number of failures.

I The default method for handling
ties (the Efron method) is used.

I The test statistic
LR chi2(5) = 199.1 is not
especially informative. The
interpretation is that the 5
parameters in the model (as a
group) are statistically signi�cantly
associated with the outcome
(P < 0.00005).
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Example: Localised colon carcinoma 1975�1994 (3)

> fit1 <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~
sex + agegrp + year8594,
subset=(stage=="Localised"), data=colon)

> summary(fit1)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)
sexFemale -0.08939 0.91449 0.04937 -1.811 0.0702 .
agegrp45-59 -0.05198 0.94934 0.13845 -0.375 0.7073
agegrp60-74 0.29237 1.33960 0.12573 2.325 0.0201 *
agegrp75+ 0.81414 2.25724 0.12607 6.458 1.06e-10 ***
year8594Diagnosed 85-94 -0.28254 0.75387 0.04937 -5.723 1.05e-08 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

exp(coef) exp(-coef) lower .95 upper .95
sexFemale 0.9145 1.0935 0.8301 1.0074
agegrp45-59 0.9493 1.0534 0.7237 1.2453
agegrp60-74 1.3396 0.7465 1.0470 1.7140
agegrp75+ 2.2572 0.4430 1.7631 2.8900
year8594Diagnosed 85-94 0.7539 1.3265 0.6843 0.8305

Concordance= 0.609 (se = 0.007 )
Rsquare= 0.031 (max possible= 0.99 )
Likelihood ratio test= 199.1 on 5 df, p=0
Wald test = 198.4 on 5 df, p=0
Score (logrank) test = 204.2 on 5 df, p=0

I The variable sex is coded as 1 for
males and 2 for females. Since each
parameter represents the e�ect of a
one unit increase in the
corresponding variable, the
estimated hazard ratio for sex
represents the ratio of the hazards
for females compared to males.

I That is, the estimated hazard ratio
is 0.91 indicating that females have
an estimated 9% lower colon cancer
mortality than males. There is
some evidence that the di�erence is
statistically signi�cant (P = 0.07).
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Example: Localised colon carcinoma 1975�1994 (4)

> fit1 <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~
sex + agegrp + year8594,
subset=(stage=="Localised"), data=colon)

> summary(fit1)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)
sexFemale -0.08939 0.91449 0.04937 -1.811 0.0702 .
agegrp45-59 -0.05198 0.94934 0.13845 -0.375 0.7073
agegrp60-74 0.29237 1.33960 0.12573 2.325 0.0201 *
agegrp75+ 0.81414 2.25724 0.12607 6.458 1.06e-10 ***
year8594Diagnosed 85-94 -0.28254 0.75387 0.04937 -5.723 1.05e-08 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

exp(coef) exp(-coef) lower .95 upper .95
sexFemale 0.9145 1.0935 0.8301 1.0074
agegrp45-59 0.9493 1.0534 0.7237 1.2453
agegrp60-74 1.3396 0.7465 1.0470 1.7140
agegrp75+ 2.2572 0.4430 1.7631 2.8900
year8594Diagnosed 85-94 0.7539 1.3265 0.6843 0.8305

Concordance= 0.609 (se = 0.007 )
Rsquare= 0.031 (max possible= 0.99 )
Likelihood ratio test= 199.1 on 5 df, p=0
Wald test = 198.4 on 5 df, p=0
Score (logrank) test = 204.2 on 5 df, p=0

I The model assumes that the
estimated hazard ratio of 0.91 is
the same at each and every point
during follow-up and for all
combinations of the other
covariates.

I That is, the hazard ratio is the
same for females diagnosed in
1975�1984 aged 0�44 (compared to
males diagnosed in 1975�1984 aged
0�44) as it is for females diagnosed
in 1985�1994 aged 75+ (compared
to males diagnosed in 1985�1994
aged 75+).
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Example: Localised colon carcinoma 1975�1994 (5)

> fit1 <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~
sex + agegrp + year8594,
subset=(stage=="Localised"), data=colon)

> summary(fit1)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)
sexFemale -0.08939 0.91449 0.04937 -1.811 0.0702 .
agegrp45-59 -0.05198 0.94934 0.13845 -0.375 0.7073
agegrp60-74 0.29237 1.33960 0.12573 2.325 0.0201 *
agegrp75+ 0.81414 2.25724 0.12607 6.458 1.06e-10 ***
year8594Diagnosed 85-94 -0.28254 0.75387 0.04937 -5.723 1.05e-08 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

exp(coef) exp(-coef) lower .95 upper .95
sexFemale 0.9145 1.0935 0.8301 1.0074
agegrp45-59 0.9493 1.0534 0.7237 1.2453
agegrp60-74 1.3396 0.7465 1.0470 1.7140
agegrp75+ 2.2572 0.4430 1.7631 2.8900
year8594Diagnosed 85-94 0.7539 1.3265 0.6843 0.8305

Concordance= 0.609 (se = 0.007 )
Rsquare= 0.031 (max possible= 0.99 )
Likelihood ratio test= 199.1 on 5 df, p=0
Wald test = 198.4 on 5 df, p=0
Score (logrank) test = 204.2 on 5 df, p=0

I The indicator variable year8594
has the value 1 for patients
diagnosed during 1985�1994 and 0
for patients diagnosed during
1975�1984.

I The estimated hazard ratio is 0.75.
We estimate that, after controlling
for the time scale, age and sex,
patients diagnosed 1985�1994 have
a 25% lower mortality than patients
diagnosed during 1975�1984. The
di�erence is statistically signi�cant
(P < 0.0005).
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Example: Localised colon carcinoma 1975�1994 (6)

> fit1 <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~
sex + agegrp + year8594,
subset=(stage=="Localised"), data=colon)

> summary(fit1)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)
sexFemale -0.08939 0.91449 0.04937 -1.811 0.0702 .
agegrp45-59 -0.05198 0.94934 0.13845 -0.375 0.7073
agegrp60-74 0.29237 1.33960 0.12573 2.325 0.0201 *
agegrp75+ 0.81414 2.25724 0.12607 6.458 1.06e-10 ***
year8594Diagnosed 85-94 -0.28254 0.75387 0.04937 -5.723 1.05e-08 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

exp(coef) exp(-coef) lower .95 upper .95
sexFemale 0.9145 1.0935 0.8301 1.0074
agegrp45-59 0.9493 1.0534 0.7237 1.2453
agegrp60-74 1.3396 0.7465 1.0470 1.7140
agegrp75+ 2.2572 0.4430 1.7631 2.8900
year8594Diagnosed 85-94 0.7539 1.3265 0.6843 0.8305

Concordance= 0.609 (se = 0.007 )
Rsquare= 0.031 (max possible= 0.99 )
Likelihood ratio test= 199.1 on 5 df, p=0
Wald test = 198.4 on 5 df, p=0
Score (logrank) test = 204.2 on 5 df, p=0

I We chose to group age at diagnosis
into four categories; 0�44, 45�59,
60�74, and 75+ years.

I It is estimated that individuals aged
75+ at diagnosis experience 2.26
times higher risk of death due to
colon carcinoma than individuals
aged 0�44 at diagnosis, a di�erence
which is statistically signi�cant.

I Similarly, individuals aged 60�74 at
diagnosis have an estimated 34%
higher risk of death due to colon
carcinoma than individuals aged
0�44 at diagnosis, a di�erence
which is statistically signi�cant.
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Example: Localised colon carcinoma 1975�1994 (7)

> fit1 <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~
sex + agegrp + year8594,
subset=(stage=="Localised"), data=colon)

> summary(fit1)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)
sexFemale -0.08939 0.91449 0.04937 -1.811 0.0702 .
agegrp45-59 -0.05198 0.94934 0.13845 -0.375 0.7073
agegrp60-74 0.29237 1.33960 0.12573 2.325 0.0201 *
agegrp75+ 0.81414 2.25724 0.12607 6.458 1.06e-10 ***
year8594Diagnosed 85-94 -0.28254 0.75387 0.04937 -5.723 1.05e-08 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

exp(coef) exp(-coef) lower .95 upper .95
sexFemale 0.9145 1.0935 0.8301 1.0074
agegrp45-59 0.9493 1.0534 0.7237 1.2453
agegrp60-74 1.3396 0.7465 1.0470 1.7140
agegrp75+ 2.2572 0.4430 1.7631 2.8900
year8594Diagnosed 85-94 0.7539 1.3265 0.6843 0.8305

Concordance= 0.609 (se = 0.007 )
Rsquare= 0.031 (max possible= 0.99 )
Likelihood ratio test= 199.1 on 5 df, p=0
Wald test = 198.4 on 5 df, p=0
Score (logrank) test = 204.2 on 5 df, p=0

I These signi�cance tests test the
pairwise di�erences and tell us little
about the overall association
between age and survival � we need
to perform a general test.
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Example: Localised colon carcinoma 1975�1994 (8)

> library(car)

> linearHypothesis(fit1, c("agegrp45-59",

"agegrp60-74",

"agegrp75+"))

Linear hypothesis test

Hypothesis:

agegrp45 - 59 = 0

agegrp60 - 74 = 0

agegrp75 + = 0

Model 1: restricted model

Model 2: Surv(surv_mm/12, status == "Dead: cancer") ~

sex + agegrp + year8594

Res.Df Df Chisq Pr(>Chisq)

1 6272

2 6269 3 175.88 < 2.2e-16 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

I This is a Wald test of the null
hypothesis that all age parameters
are equal to zero, i.e. that age is
not associated with the outcome.

I We see that there is strong evidence
against the null hypothesis, i.e. we
conclude that age is signi�cantly
associated with survival time.
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Example: Localised colon carcinoma 1975�1994 (9)

> fit2 <- coxph(Surv(surv_mm/12, status=="Dead: cancer")

~ sex + year8594,

subset=(stage=="Localised"), data=colon)

> anova(fit1,fit2,test="Chisq")

Analysis of Deviance Table

Cox model: response is Surv(surv_mm/12,

status == "Dead: cancer")

Model 1: ~ sex + agegrp + year8594

Model 2: ~ sex + year8594

loglik Chisq Df P(>|Chi|)

1 -14342

2 -14430 176.71 3 < 2.2e-16 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

I The Wald test is an approximation
to the likelihood ratio test, which
compares the likelihood between
models.

I To perform a likelihood ratio test
we �t the reduced model (the
model without age) and see that
the log likelihood is −14430.
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Example: Localised colon carcinoma 1975�1994 (10)

> fit2 <- coxph(Surv(surv_mm/12, status=="Dead: cancer")

~ sex + year8594,

subset=(stage=="Localised"), data=colon)

> anova(fit1,fit2,test="Chisq")

Analysis of Deviance Table

Cox model: response is Surv(surv_mm/12,

status == "Dead: cancer")

Model 1: ~ sex + agegrp + year8594

Model 2: ~ sex + year8594

loglik Chisq Df P(>|Chi|)

1 -14342

2 -14430 176.71 3 < 2.2e-16 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05

?.? 0.1 ? ? 1

I The log likelihood for the model
containing age is −14342; for the
model excluding age it is −14430.

I The likelihood ratio test statistic for
the association of age with survival
is calculated as
2× (−14342− (−14430)) = 177,
which is compared to a χ2

distribution with 3 degrees of
freedom (P=0.0001).

I We see that the Wald test statistic
(175.88) is very similar in value to
the likelihood ratio test statistic
(176.71).
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We might choose to model age as a continuous variable

> fit3 <- coxph(Surv(surv_mm/12, status=="Dead: cancer") ~ sex + age + year8594,

subset=(stage=="Localised"), data=colon)

> summary(fit3)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)

sexFemale -0.102884 0.902232 0.049362 -2.084 0.0371 *

age 0.033624 1.034196 0.002342 14.359 < 2e-16 ***

year8594Diagnosed 85-94 -0.290566 0.747840 0.049343 -5.889 3.89e-09 ***

I For each (and every) one year increase in age at diagnosis, we estimate that
mortality is 3.4% higher.

I For a 10-year increase in age at diagnosis the estimated hazard ratio is
1.03410 = 1.40.
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