Introduction to Data Programming

CSE 160 University of Washington Autumn 2021 Ruth Anderson

Agenda for Today

- What is this course?
- Course logistics
- Python!

Welcome to CSE 160!

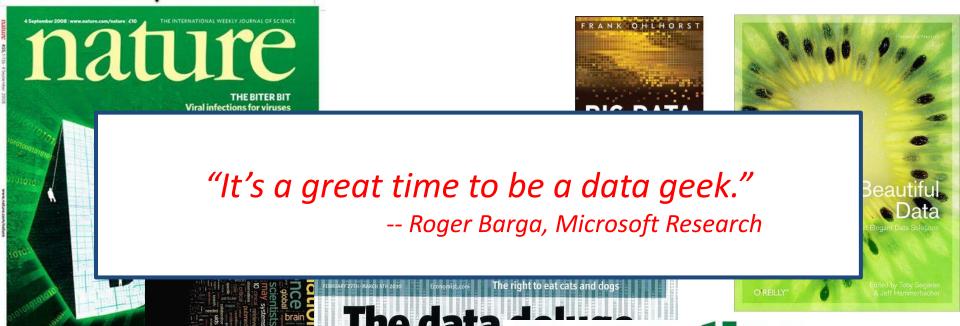
CSE 160 teaches core programming concepts with an emphasis on real data manipulation tasks from science, engineering, and business

Goal by the end of the quarter: Given a data source and a problem description, you can independently write a complete, useful program to solve the problem

Aside: Is CSE 160 the course for you?

- See email sent to class
- For students with no prior programming experience:
 - CSE 142 CS1, in Java, pre-req for CSE 143
 - CSE 160 CS1, in Python, (offered 21au & 22wi)
- For students with some programming experience
 - CSE 163 CS2, in Python, (offered 22wi & 22sp)
 - Can be taken after CSE 160 or CSE 142
 - First few weeks cover the basics of Python
- You will not get credit for CSE 160 if you have already taken CSE 143 (or any 300 level or higher CSE course)
- CSE 160 is a challenging (and fun!) course

Course staff


- Lecturer:
 - Ruth Anderson
- TAs:
 - Amanda Ong
 - Ananditha Raghunath
 - Brian Zhu
 - David Chang
 - Emily Chang
 - Jim Limprasert
 - Joely Nelson
 - Melissa Birchfield
 - Niamh Froelich
 - Tyler Nguyen
 - Wen Qiu
 - Wisdom Ikezogwo
- Ask us for help!

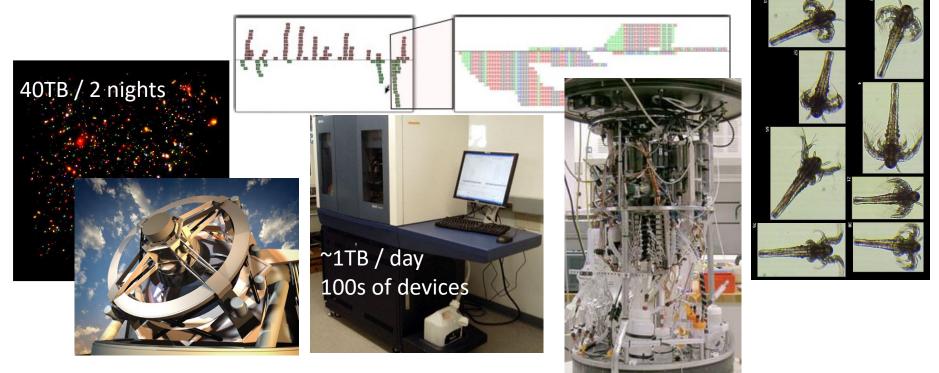
Learning Objectives

- Computational problem-solving
 - Writing a program will become your "go-to" solution for data analysis tasks
- Basic Python proficiency
 - Including experience with relevant libraries for data manipulation, scientific computing, and visualization.
- Experience working with real datasets
 - astronomy, biology, linguistics, oceanography, open government, social networks, and more.
 - You will see that these are easy to process with a program, and that doing so yields insight.

What this course is <u>not</u>

- A "skills course" in Python
 - ...though you will become proficient in the basics of the Python programming language
 - ...and you will gain experience with some important Python libraries
- A data analysis / "data science" / data visualization course
 - There will be very little statistics knowledge assumed or taught
- A "big data" course
 - Datasets will all fit comfortably in memory
 - No parallel programming

"The greatest minds of my generation are trying to figure out how to make people click on ads" -- Jeff Hammerbacher, co-founder, Cloudera


S P

All of science is reducing to computational data manipulation

Old model: "Query the world" (Data acquisition coupled to a specific hypothesis) New model: "Download the world" (Data acquisition supports many hypotheses)

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Biology: lab automation, high-throughput sequencing,
- Oceanography: high-resolution models, cheap sensors, satellites

Slide from Bill Howe, eScience Institute

Example: Assessing treatment efficacy

	Α	В	С	D	E	F	G	Н		J
1	fu_2wk	fu_4wk	fu_8wk	fu_12wk	fu_16wk	fu_20wk	fu_24wk	total4type_fu	clinic_zip	pt_zip
2	1	3	4	7	9	9	9	12	98405	98405
3	2	4	6	7	8	8	8	8	98405	98403
4	0	G				0	0 Zip	code of clinic	98405	98445
5	3	² number of follow ups 5 5 5							98405	98332
6	0	within 16 weeks after 0 0							00405	<mark>98</mark> 405
7	2	; tre	atment	enrollmer	nt.	2	2	Zip code o	of patient	3402
8	1	2	5	6	8	10	10	14	98405	98418
9	1	1	2	2	2	2	2	2	98499	98406
10	0	0	1	2	2	2	2	6	98405	98404
11	0	0	0	0	0	0	0	0	98405	98402
12	1	1	2	2	4	4	4	4	98405	98405
13	1	Question. Describe distances between the							98404	98404
14	2	Question: Does the distance between the								98498
15	0	patie	ent's ho	ome an	d clinic	influer	ice the	number	98499	98445
16	1	of follow ups, and therefore treatment efficacy?							98499	98405
17	1	<i>OJ JOHOW UPS, UNU THEREJORE TREATMENT EJJICUCY?</i> 98499 98498								
18	1	3	3	3	3	3	3	3	98499	98499
19	1	1	4	5	7	7	7	7	98499	98371
										10

Python program to assess treatment efficacy

This program reads an Excel spreadsheet whose penultimate# and antepenultimate columns are zip codes.

It adds a new last column for the distance between those zip# codes, and outputs in CSV (comma-separated values) format.# Call the program with two numeric values: the first and last# row to include.

The output contains the column headers and those rows.

Libraries to use

import random

import sys

import xlrd # library for working with Excel spreadsheets import time

from gdapi import GoogleDirections

No key needed if few queries

gd = GoogleDirections('dummy-Google-key')

wb = xlrd.open_workbook('mhip_zip_eScience_121611a.xls')
sheet = wb.sheet_by_index(0)

User input: first row to process, first row not to process
first_row = max(int(sys.argv[1]), 2)
row_limit = min(int(sys.argv[2]+1), sheet.nrows)

```
def comma_separated(lst):
    return ",".join([str(s) for s in lst])
```

headers = sheet.row_values(0) + ["distance"]
print comma_separated(headers)

for rownum in range(first row,row limit): row = sheet.row values(rownum) (zip1, zip2) = row[-3:-1]if zip1 and zip2: # Clean the data zip1 = str(int(zip1))zip2 = str(int(zip2))row[-3:-1] = [zip1, zip2] # Compute the distance via Google Maps try: distance = gd.guery(zip1,zip2).distance except: print >> sys.stderr, "Error computing distance:", zip1, zip2 distance = "" # Print the row with the distance print comma separated(row + [distance]) # Avoid too many Google queries in rapid succession time.sleep(random.random()+0.5)

23 lines of executable code!

Course logistics

- Website: <u>http://www.cs.washington.edu/cse160</u> — See the website for all administrative details
- Homework 0 due Monday
 - Preliminary Survey and Ed Board intro due Friday
- Questions? rea@cs.washington.edu

How to succeed

- No prerequisites
- <u>Non</u>-predictors for success:
 - Past programming experience
 - Enthusiasm for games or computers
- Programming and data analysis are challenging
- Every one of you can succeed
 - There is no such thing as a "born programmer"
 - Work hard
 - Follow directions
 - Be methodical
 - Think before you act
 - Try on your own, then ask for help
 - Start early

Me (Ruth Anderson)

- Grad Student at UW: in Programming Languages, Compilers, Parallel Computing
- Taught Computer Science at the University of Virginia for 5 years
- PhD at UW: in Educational Technology, Pen Computing
- Current Research: Computing and the Developing World, Computer Science Education

Introductions on Ed Board

- Name
- Major
- Hometown
- Interesting Fact or what I did over break.

