
Introduction to DDS

OMG Real-Time Workshop
Washington DC

July 2008

Gerardo Pardo-Castellote, Ph.D.
Co-chair OMG DDS SIG
CTO, Real-Time Innovations
gerardo.pardo@rti.com

www.rti.com

mailto:gerardo.pardo@rti.com

© 2008 RTI - All rights Reserved

Agenda

Background: Middleware Technologies

Introduction: DDS Model & Applicability

Details: DDS in depth

© 2008 RTI - All rights Reserved

Introduction: Middleware Technologies

The concept of network middleware

Communications Model
Object Model
Architecture Model
Protocol

© 2008 RTI - All rights Reserved

With increased complexity…

End User Application

© 2008 RTI - All rights Reserved

With increased complexity…

Kernel

Network Stack File System

Operating System
Device Drivers

End User Application

Routing protocols

© 2008 RTI - All rights Reserved

With increased complexity…

Kernel

Network Stack File System

Operating System

Data base

Device Drivers

End User Application

HTTP Service Mail Service

Routing protocols

FTP Service

© 2008 RTI - All rights Reserved

… middleware becomes necessary

Kernel

Network Stack File System

Operating System & Pre-Packaged Services

Data base

Message Service

Application Server

Device Drivers

Physics Engine

Graphics Engine

End User Application

Middleware

Event Processing
Engine

HTTP Service Mail Service

Routing protocols

FTP Service

© 2008 RTI - All rights Reserved

What is network middleware?

Middleware =
API and service layer above operating system and
below “application” code that abstracts common
interaction patterns

Network Middleware =
Most popular class of middleware
Middleware used for developing distributed applications

Distributed Applications =
Those requiring interaction/communication between
multiple computers

© 2008 RTI - All rights Reserved

Network Middleware Examples

DCE/RPC, DCOM, CORBA, ICE
TIBCO, 29 West
JMS, MQ Series, ActiveMQ, SoniqMQ
DDS, RTI DDS, OpenSplice, tao-dds, GigaSpaces
New trend:
– Application Servers (WebSphere, WebLogic, JBOSS)
– Include network middleware as a component

NOTE: Middleware “packages” are building blocks, not
stand-alone applications like…
– Skype, gtalk, …
– BitTorrent, eMule, …

Why aren’t ‘popular’ consumer applications built on top
of middleware?

© 2008 RTI - All rights Reserved

Historical note: From Telephone to Blogs

Why so many flavors?

Parallels evolution of general communication
patterns:
– Started with point-to-point connections
– Then request-reply services
– Then Message Queue Services
– Then Publish-Subscribe Services
– Then Data-Caching services

Other examples:
– FTP, email -> WEB -> Blogs, RSS -> Podcasts

© 2008 RTI - All rights Reserved

Middleware = Service Model + Protocol

Service model composed
of:
– Communications model
– Object Model
– Architecture model

All these interact

The service model and
protocol are also coupled

Communications
Model

Object
Model

Architecture
Model

Middleware

PROTOCOL

Protocols cannot be compared in isolation!
They must be compared in the context of the service model

© 2008 RTI - All rights Reserved

Middleware Service Model

Service Model = Communications Model
+ Object Model
+ Architecture Model

Communications Model:
– Abstract model of how applications interact:

Remote Method Invocation
Queue Based, Pub-Sub
Data-Distribution
Replicated Data
Distributed Transactions

Object Model
– Middleware entities the application uses to interact with the

service:
Queues, Publishers, Domains, Caches, Federations, Remote
Objects…

Architecture Model
– Centralized, Brokered, Peer-to-Peer

© 2008 RTI - All rights Reserved

Agenda

The concept of network middleware

Communications Model
Object Model
Architecture Model
Protocol

© 2008 RTI - All rights Reserved

Communications Model

Abstract model of how applications
interact

– Remote Method Invocation
– Message-Oriented, Queue Based
– Pub-Sub Data-Distribution
– Replicated Data
– Distributed Transactions

© 2008 RTI - All rights Reserved

Point-to-Point
Telephone, TCP
Simple, high-bandwidth
Leads to stove-pipe systems

Client-Server
File systems, Database, RPC, CORBA, DCOM
Good if information is naturally centralized
Single point failure, performance bottlenecks

Publish/Subscribe Messaging
Magazines, Newspaper, TV
Excels at many-to-many
communication
Excels at distributing time-critical
information

Middleware Communication Models

Replicated Data
Libraries, Distributed databases
Excels at data-mining and analysis

© 2008 RTI - All rights Reserved

RMI (WebServices, CORBA, DCOM) offer a remote
method abstraction
– Familiar OO programming model
– Results in a tightly-coupled system

Forces synchronous invocations
Imposes global object model
Limited QoS (appearance of local method call)
Lack robustness: cascading points of failure

– Typically built on top of TCP:
impacts scalability and time-determinism

– Best-suited to smaller, closely-coupled systems

Pub-Sub (Messaging Data-Distribution) offer a queue-
based and/or replicated-data model
– Subsystems are decoupled in time, space, and

synchronization
Contracts established by verifying QoS compatibility

– Supports a variety of transports including multicast UDP
– Better suited for high-performance and real-time

RMI vs Pub-Sub/Messaging/Data-Distribution

Topic/Queue

© 2008 RTI - All rights Reserved

Queue versus Pub-Sub

Queue
– Message sent to Queue
– Multiple readers can read from the

queue
– Each message is delivered to ONLY

one reader
Readers “affect each other”

– Apps:
Job Scheduling
Load Balancing
Collaboration

Pub Sub
– Message Sent to Topic
– Multiple readers can subscribe to Topic

with or without filters
– Each message delivered to ALL

subscribers that pass filter
Readers are decoupled

– Apps:
Notifications
Information Distribution

Queue

Topic/Queue

1

2

3

1

1 2 3

1 2 3
1 2 3

1 2 3

1 3

© 2008 RTI - All rights Reserved

Pub-Sub versus Data-Distribution

Pub-Sub
– Only messages no concept of data
– Each message is interpreted without

context
– Messages must be delivered FIFO or

according to some “priority” attribute
– No Caching of data
– Simple QoS: filters, durability, lifespan

Data-Distribution
– Messages represent update to data-objects
– Data-Objects identify by a key
– Middleware maintains state of each object
– Objects are cached. Applications can read

at leisure
– Smart QoS

Ownership
History (per key)
Deadline

– Subsumes messaging

Topic/Queue

1

1 2 3
1 2 3

1 2 3

1 3

1 2 3 1 2 3 1 2 3

1 2 2 3

© 2008 RTI - All rights Reserved

Other (non DDS)
Commercial Pub-Sub Models

Older, but widely deployed
– TIBCO (RendezVous, EMS)
– IBM MQSeries

Limited deployment:
– CORBA Event Service
– CORBA Notification Service

Emerging standards – not really used yet
– WS-Eventing
– WS-Notification

Emerging
– 29West
– IBM LLM

© 2008 RTI - All rights Reserved

JMS/MessageQueue Service Model:
Communication Model

Shared Queue Space

Client Pub ClientSub

Client
Sub

Client Pub
Client

Queue1

Queue2

Queue3

E

E

Sub

Provides a “Shared Queue Space” that is accessible to all interested
applications.
– Message are sent to an Exchange
– Each message has an associated Routing Key
– Brokers forward messages to one or more Queues based on the

Routing Key
– Subscriber get messages from named Queues
– Only one subscriber can get a given message from each Queue

© 2008 RTI - All rights Reserved

DDS Service Model:
Communication Model

Provides a “Global Data Space” that is accessible to all
interested applications.
– Data objects addressed by Domain, Topic and Key
– Subscriptions are decoupled from Publications
– Contracts established by means of QoS
– Automatic discovery and configuration

Global Data Space

Participant Pub ParticipantPub

Sub Participant
Sub

Participant Pub Alarm

Track,2

Track,1 Track,3

Participant
Sub

© 2008 RTI - All rights Reserved

MessageQueue Service Model : Object Model

Exchange – Receives messages and routes to a set of message queues
Queue – Stores messages until they can be processed by the application(s)
Binding – Routes messages between Exchange and Queue. Configured externally
to the application

– Default binding maps routing-key to Queue name
Routing Key – label used by the exchange to route Content to the queues
Content – Encapsulates application data and provides the methods to send receive,
acknowledge, etc.

Binding

Broker Server
Queue

Queue

Queue

Publisher
Client Subscriber

Client

AMPQ?AMPQ?
Routing key

Content

Exchange

© 2008 RTI - All rights Reserved

DDS Service Model: Object Model

Global Data Space

Offered
QoS

Data
Writer

Publisher

Topic

Domain
Participant

Requested
QoS

Subscriber

Data
Reader

Domain
Participant

Topic

DomainParticipant – Allows application to join a DDS Domain (Global Data Space)
Topic – A string that addresses a group of objects in the Global Data Space

– Each Object is identified by a Key (some fields within the object data)
Publisher, Subscriber – Pools resources for DataWriters and DataReaders
DataWriter – Declares intent to publish a Topic and provides type-safe operations to
write/send data
DataReader – Declares intent to subscribe to a Topic and provides type-safe
operations to read/receive data

© 2008 RTI - All rights Reserved

Agenda

The concept of network middleware
Communications Model
Object Model
Architecture Model
Protocol

© 2008 RTI - All rights Reserved

Architecture Models

Brokered
– Centralized
– Segmented
– Federated

Peer to Peer

© 2008 RTI - All rights Reserved

Server

Client
Application

Pub-Sub Service

Centralized Broker Pub-Sub Service

One central server materializes all middleware entities

All traffic flows via server

E.g. “naïve” implementations of JMS, CORBA Notification, etc.

© 2008 RTI - All rights Reserved

Server

Client
Application

Pub-Sub Service

Segmented (Grid-based) Pub-Sub Service

Each Queue/Topic Can be placed on a different Server

E.g. Better implementations of JMS, CORBA Notification, etc.

© 2008 RTI - All rights Reserved

Server

Client
Application

Pub-Sub Service

Federated Brokered Pub-Sub Service

App uses messaging or RMI to interact with Service Access points

Pub-Sub Service distributes messages internally between servers

Internally PS-Service can be peer-to-peer, hub-and-spoke, multicast, etc.

© 2008 RTI - All rights Reserved

Peer-to-Peer Pub-Sub Service

Client
Application

App links (binds) directly with the Pub-Sub service

Queuing occurs locally on each client

Clients communicate peer-to-peer

Server

Pub-Sub Service

© 2008 RTI - All rights Reserved

Service Model Architecture Examples

Model Examples

Centralized
Brokered

Typical JMS implementations

Segmented
(Grid Based)

Better JMS implementations
CORBA event & notification service

Federated Brokered TIBCO RendezVous
TIBCO SmartSockets
IBM WebSphere MQ (MQSeries) using client connection

Peer-to-Peer
Un-brokered

Most DDS implementations: RTI DDS, OpenSplice, Tao-DDS
IBM LLM, 29West

© 2008 RTI - All rights Reserved

Agenda

The concept of network middleware
Communications Model
Object Model
Architecture Model
Protocol

© 2008 RTI - All rights Reserved

Service Model and Protocol relationship

There are interactions between the service model and
the Protocol
A Brokered Service model requires 2 protocols:
– Client Protocol (used by client applications)
– Service Protocol (used between the Brokers)

A fully peer-to-peer middleware requires only one
protocol

Client
Protocol

Service
Model

Service
Protocol

© 2008 RTI - All rights Reserved

Protocol layers: Middleware perspective

The existing middleware
perspectives are inadequate to
model middleware protocols:

The 7-layer OSI model:
Has layers with very limited
functionality: (Session
Presentation)
Considers TCP and UDP both
“layer 4 concepts”

The 5-layer TCP/IP model:
Combines all layers above
Transport into single
“Application Layer”
Considers TCP and UDP
equivalent

Layer 5
Middleware operations

Layer 4
Reliability, Flow Control,

Packet Assembly

Layer 3
Packet delivery & routing

Layer 6
Application operations

Some protocols may expand multiple layers

© 2008 RTI - All rights Reserved

Protocol layers (Middleware perspective)

UDP
IP
IP Multicast

SCTP
TCP
RTP
PGM

HTTP
GIOP
SOAP
FTP
TLS

Invoke Operations with known semantics
Send messages to queues
Pub/Sub specific topics

DTLS
STUN

DTLS
STUN

Multi-layer protocols

A middleware protocol at this
Level must operate on top of a
Layer4 protocol like TCP

A middleware protocol at this
Level can operate on top of
UDP or Multicast

Layer 5
Middleware operations

Layer 4
Reliability, Flow Control,

Packet Assembly

Layer 3
Packet delivery & routing

Layer 6
Application operations

© 2008 RTI - All rights Reserved

JMS vs DDS-RTPS Protocols: Scope

Client
Protocol

Service
Model

JMS:
Queues

Exchanges
RoutingKeys

DDS:
Domain
Topic
Key

Service
Protocol

DDS-RTPS

Not Specified!

Not Needed!

Not Specified!

© 2008 RTI - All rights Reserved

DDS-RTPS Protocol: Layers

Invoke Operations with known semantics
Send messages to queues
Pub/Sub specific topics

Layer 5
Middleware operations

Layer 4
Reliability, Flow Control,

Packet Assembly

Layer 3
Packet delivery & routing

Layer 6
Application operations

D
D

S
-R

T
P
S

UDP
IP
IP Multicast

SCTP
TCP
RTP
PGM

HTTP
GIOP
SOAP
FTP
TLS

DTLS
STUN

DTLS
STUN

DDS-RTPS is the only
standard middleware protocol
that supports reliable multicast

© 2008 RTI - All rights Reserved

Take away points

What and why of middleware
– Components of network middleware
– Common models:

Request Reply
Pub Sub
Queue Centric
Data Centric

Architectures used by Middleware
– Brokered, Peer to Peer

Kinds of Protocols used by Network middleware
– Layer 3, 4, 5
– Client to Service. Service to Service

© 2008 RTI - All rights Reserved

Take Away:
Middleware Comparison Dimensions

Protocol:
• Layer
• Features
• Transport Assumptions
• Overhead

Service Model:
• Communication Model
• Object Model
• Architecture Model (+ required brokers)

Impact/Capabilities:
• Features: Reliability, Persistence, QoS, Batching
• Impact:

• Deployment
• Performance (protocol overhead, #intermediaries)
• Robustness (failure conditions)

The DDS Model and its
Applicability

www.rti.com

© 2008 RTI - All rights Reserved

Agenda

History & Applications
What is Data-Centricity?
Top Reasons to use DDS

© 2008 RTI - All rights Reserved

History: DDS the Standard(s)

Data Distribution Service for Real-Time Systems
– Joint submission (RTI, THALES, OIS)
– DDS version 1.0 Adopted December 2004
– DDS version 1.1 Adopted December 2005
– DDS version 1.2 Adopted October 2006

Interoperability wire protocol
– Joint submission (RTI and PrismTech)
– DDS-RTPS version 1.2 adopted in July 2006
– DDS-RTPS version 2.0 adopted in June 2007
– DDS-RTPS version 2.1 approved in June 2008

Related Standards
– Joint submission (Sparx, RTI, PrismTech)
– UML Profile for DDS adopted June 2008

Standards under Development
– DDS for light weight CCM work in progress
– Extensible and Dynamic Topic Types for DDS
– Native Language C++ API for DDS

© 2008 RTI - All rights Reserved

http://www.omgwiki.org/dds

44

Lockheed
AEGIS Insitu

Unmanned
Air Vehicles

Boeing
Future Combat
Systems

E2C Hawkeye

Raytheon
SSDS

Boeing
AWAKS

DDS Adoption –
Aerospace & Defense

Northtrop?
Qinetiq?
SAAB?

45

WiTronix
Train and vehicle
Tracking

Tokyo Japan
Traffic Control

Schneider Electric
Industrial Automation

Kuka
Robotics

Varian
Medical Instruments

DDS Adoption –
Transportation, Industrial

EU and US
Air Traffic
Management

© 2008 RTI - All rights Reserved

Main differences of DDS vs other Pub-Sub

Flexibility and Power of the data-centric model

Performance & Scalability

Rich set of built-in services

Interoperability across platforms and Languages

Natural integration with SOA building-blocks

© 2008 RTI - All rights Reserved

#1 RTI Data-Centric Model

Data WriterData Writer

Data WriterData Writer

Data ReaderData Reader

Data Reader

Data Reader
Data Writer

Data Object

Key (subject)Topic

“Global Data Space” generalizes Subject-Based Addressing
– Data objects addressed by DomainId, Topic and Key
– Domains provide a level of isolation
– Topic groups homogeneous subjects (same data-type & meaning)
– Key is a generalization of subject

Key can be any set of fields, not limited to a “x.y.z …” formatted string

© 2008 RTI - All rights Reserved

Demo: Concepts

Topics
– Square, Circle, Triangle
– Attributes

Data types (schemas)
– Shape (color, x, y, size)

Color is instance Key
– Attributes

Shape & color used for key

QoS
– Deadline, Liveliness
– Reliability, Durability
– History, Partition
– OwnershipControl Area:

Allows selection of objects and QoS

Display Area:
Shows state of objects

Start demo

© 2008 RTI - All rights Reserved

Data
Reader
“Alarm”

Domain
Participant

Data
Writer

“Alarm”

Domain
Participant

DDS communications model

Participants scope the global data space (domain)
Topics define the data-objects (collections of subjects)
Writers publish data on Topics
Readers subscribe to data on Topics
QoS Policies are used configure the system
Listeners are used to notify the application of events

Listener
Offered
QoS Listener

Got new
data

Offered
QoS

New
subscriber!

© 2008 RTI - All rights Reserved

QoS: Quality of Service

QoS Policy QoS Policy
DURABILITY USER DATA

HISTORY (per subject) TOPIC DATA

READER DATA LIFECYCLE GROUP DATA

WRITER DATA LIFECYCLE PARTITION

LIFESPAN PRESENTATION

ENTITY FACTORY DESTINATION ORDER

RESOURCE LIMITS OWNERSHIP

RELIABILITY OWNERSHIP STRENGTH

TIME BASED FILTER LIVELINESS

DEADLINE LATENCY BUDGET

CONTENT FILTERS TRANSPORT PRIORITY

© 2008 RTI - All rights Reserved

Demo: Quality of Service (QoS)

Topics
– Square, Circle, Triangle
– Attributes

Data types (schemas)
– Shape (color, x, y, size)

Color is instance Key
– Attributes

Shape & color used for key

QoS
– Deadline, Liveliness
– Reliability, Durability
– History, Partition
– Ownership

RTI DDS delivers

Writers and readers state
Their needs Start demo

© 2008 RTI - All rights Reserved

#2 Performance & Scalability

DDS was designed to support high performance

RTI DDS was developed to maximize performance and minimize
jitter

Advanced techniques employed:
– Pre-allocation of memory

Never allocate/free memory in the critical path
– Use dedicated threads per receive port

Minimize thread switching
Avoid expensing operating system calls (e.g. select())

– Maximize concurrency
Carefully design critical sections
Patented concurrent mutex-free thread-safe data structures

– Employ high-performance data-access APIs
Read data by array (no additional copies)
Scatter/gather APIs to access transport.
Buffer loaning for zero copy access

© 2008 RTI - All rights Reserved

Data-Distribution and Real-Time

Non-real-time Soft real-time Hard real-time Extreme real-time

Java/RMIJava/JMS

CORBA

MPI

Java RTSJ (soft RT) RTSJ (hard RT)

Web Services

M
es

sa
gi

ng
 T

ec
hn

ol
og

ie
s

an
d

St
an

da
rd

s
M

es
sa

gi
ng

 T
ec

hn
ol

og
ie

s
an

d
St

an
da

rd
s

Data Distribution Service / DDS

RT CORBA

Adapted from NSWC-DD OA Documentation

© 2008 RTI - All rights Reserved

Latency – (Linear Scale)

DDS/JMS/Notification Service Comparison - Latency

0

500

1000

1500

2000

2500

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

DDS JMS Notification Service

Message Length (samples)

Adapted from Vanderbilt presentation at July 2006 OMG Workshop on RT Systems

© 2008 RTI - All rights Reserved

Jitter – (Linear Scale)

DDS/JMS/CORBA Notification Service Comparison - Jitter

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

St
an

da
rd

 D
ev

ia
tio

n
(u

se
cs

)

DDS JMS Notification service

Message Length (samples)

Source: Vanderbilt presentation at July 2006 OMG Workshop on RT Systems

DDS/CORBA Notification Service Comparison - Jitter

0

20

40

60

80

100

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

St
an

da
rd

 D
ev

ia
tio

n
(u

se
cs

)

DDS JMS Notification service

Message Length (samples)

© 2008 RTI - All rights Reserved

#3 Powerful Services

– Redundancy & Failover
– Persistent Data
– Last value cache
– Historical cache
– Recording service

© 2008 RTI - All rights Reserved

Ownership and High Availability

Owner determined per subject
Only extant writer with highest strength can publish a subject (or
topic for non-keyed topics)
Automatic failover when highest strength writer:
– Loses liveliness
– Misses a deadline
– Stops writing the subject

Shared Ownership allows any writer to update the subject

Producer / Writer
strength=10

Topic T1

I1 I2
Producer / Writer

strength=5

Producer / Writer
strength=1

I1 Primary

I1 Backup
I2 Primary

I2 Backup

© 2008 RTI - All rights Reserved

Data Persistence

A standalone service that persists data outside of
the context of a DataWriter

Data
Writer

Global
Data Space

Data
Reader

Persistence
Service

Persistence
Service

Data
Reader

Data
Writer

Permanent
Storage

Permanent
Storage

© 2008 RTI - All rights Reserved

Last value cache

A last-value cache is already built-in into every
Writer in the system
– Can used in combination with a Durable Writer

A late joiner will automatically initialize to the
last value
Last value cache can be configure with history
depth greater than 1
The Persistence Service can be used to provide
a last value cache for durable data

© 2008 RTI - All rights Reserved

Historical cache
A partial historical cache is already built-in into every
Writer in the system
– Can used in combination with a Durable Writer

The Persistence Service can be used to provide a
historical cache with larger/unlimited depth
A late joiner will automatically initialize to the desired
history
– Currently amount of history can only be specified as message

count.
– Next release will also allow a age/time based specification.

Request for historical cache is done by creating a
Reader with the desired history depth specified as a
QoS

© 2008 RTI - All rights Reserved

#4 Interoperability

Protocol
– Interoperability Wire protocol adopted in 2006

Languages: C/C++, Java, ADA, .NET
Systems/Platforms/Models
– Data distribution (publishers and subscribers): DDS
– Data management (storage, retrieval, queries): SQL
– ESB Integration, Business process integration: WSDL

DBMS

DBMSDBMS

Global Data Space

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node SQL SQL

DDS SQL

DDSWSDL

D T

© 2008 RTI - All rights Reserved

#5 Natural with SOA building blocks

Real-Time
Devices Fault

Tolerance
Auditing &
Recording

Tools &
Visualization

Database

Event
Processing

Real-Time Pub-Sub/Caching/Messaging
SOA &

Real-Time
Web Services

WS-DDS

© 2008 RTI - All rights Reserved

Relational Actions

Relational Database Integration

Topic T1

I1 I2 I3
I1
I2
I3

Table T1

Messaging Actions
Write()
Read() & Take()
Dispose()
Wait() & Listener

UPDATE & INSERT
SELECT
DELETE

Event driven – The fastest way to observe database
changes!

© 2008 RTI - All rights Reserved

Complex Event Engine Integration

CEP: programmable engines used to transform “data” into “information”
CEP engines are programmed using a derivative of SQL
CEP engines save time: They can implement a lot of the application logic:
– Classification, Correlation, Aggregation, Filter, Cleansing, Pattern Detection, etc.

DDS is the perfect ‘data’ and ‘information’ pipe for CEP engines
– Use high-speed data streams (1,000-1,000,000 msg/sec)
– Require latency measured in sub-milliseconds
– Demand access to events from a heterogeneous systems

CEP Engine

Dashboards

Applications

Alerts

DDS

© 2008 RTI - All rights Reserved

DDS as a Web Service

Global
Data Space

RTI, DDS, Real-Time DDSParticipant

DDSParticipant

WS-DDS
DDS Web Service

Generic
Web Client

(.NET / Java)

SOAP
DDS-RTPS

HTTP

IONA
Web Client

IONA Artix Transports
SOAP, JMS, IIOP

Hi-Performance
Embedded
Real-Time

Web
Enabled
Protocols

DDS In depth

www.rti.com

© 2008 RTI - All rights Reserved

Agenda

Part I -- Concepts
– Middleware Models: Messaging & Data-Distribution
– Publish/Subscribe & Data-Centric Design

Part II -- Patters & Use-Cases
– Sending Data
– State Information
– Alarms and Events
– Discovery
– Sample Application Requirements mapped to QoS

© 2008 RTI - All rights Reserved

Do-yourself Message-Centric System

Model
– 1-1, FIFO

Applications coupled in Lifespan & Content
– Both must be present simultaneously
– Everything sent is received

Excellent performance
Doesn’t scale
– To large-scale systems
– To loosely-coupled systems

Application Application

Queue co-located with each application

© 2008 RTI - All rights Reserved

Middleware-based Message-Centric Systems
(JMS)

Model
– Broker-based, n n communication
– Independent messages, No state

Coupling
– Not coupled in Lifespan
– Coupled in Order and Content (presentation)

Worse performance
Better scalability

Application Application

Global Queues
Queue per message kind

Application Application

© 2008 RTI - All rights Reserved

Do-yourself Data-Centric System

Model
– Shared/replicated structured data/state
– Asynchronous, Selective sharing

Coupling:
– Coupled in Lifespan, Decoupled in Presentation & Content

Excellent performance & scalability

Application Application

Replication
Mechanism

© 2008 RTI - All rights Reserved

Middleware-based Data-Centric Systems
(DDS)

Shared data-space, shared state
Asynchronous communication
Decoupled in Lifespan, Content, presentation
Excellent performance & scalability
Subsumes Message-Centric via QoS

Application Application

© 2008 RTI - All rights Reserved

DDS Data-Centric Model

Provides a virtual “Global Data Space” that is accessible
to all interested applications.
– Data objects addressed by DomainId, Topic and Key
– Subscriptions are decoupled from Publications
– Contracts established by means of QoS
– Automatic discovery and configuration

Data WriterData Writer

Data WriterData Writer

Data ReaderData Reader

Data Reader

Data Reader
Data Writer

Data Object

KeyTopic

© 2008 RTI - All rights Reserved

DDS Global Data

Data WriterData Writer

Data WriterData Writer

Data ReaderData Reader

Data Reader

Data Reader
Data Writer

Address in Global Data Space = (DomainId, Topic, Key)
– Each topic corresponds to a multiple data instances with a common

schema
– A DataWriter can write to any instances of a single topic
– Multiple DataWriters may write to the same instance
– A DataReader receives updates from all instances of a single topic
– Multiple DataReaders may read from the same instances & values

© 2008 RTI - All rights Reserved

DDS Global Data: Domains

Address in Global Data Space = (DomainId, Topic, Key)
– Each Domain is identified by the value of the domainId
– Each Domain is a separate Global Data Space

The same Topic name can mean different things in different domains
The same Topic can have different Types on each Domain

– An application may join multiple Domains
– Domains can be used for isolation, scalability, modulariy

© 2008 RTI - All rights Reserved

Example: Publication

// Entities creation
DomainParticipant participant =

TheParticipantFactory->create_participant(
domain_id, participant_qos, participantA_listener);

Publisher publisher = domain->create_publisher(
publisher_qos, publisher_listener);

Topic topic = domain->create_topic(
“MyTopic”, “Text”, topic_qos, topic_listener);

DataWriter writer = publisher->create_datawriter(
topic, writer_qos, writer_listener);

TextDataWriter twriter = TextDataWriter::narrow(writer);

TextStruct my_text;
twriter->write(&my_track);

© 2008 RTI - All rights Reserved

Example: Subscription

// Entities creation
Subscriber subscriber = domain->create_subscriber(

subscriber_qos, subscriber_listener);

Topic topic = domain->create_topic(
“Track”, “TrackStruct”,
topic_qos, topic_listener);

DataReader reader = subscriber->create_datareader(
topic, reader_qos, reader_listener);

// Use listener-based or wait-based access

© 2008 RTI - All rights Reserved

How to Get Data? (Listener-Based)

// Listener creation and attachment
Listener listener = new MyListener();
reader->set_listener(listener);

// Listener code
MyListener::on_data_available(DataReader reader)
{

TextSeq received_data;
SampleInfoSeq sample_info;
TextDataReader reader = TextDataReader::narrow(reader);

treader->take(&received_data, &sample_info, …)
// Use received_data
printf(“Got: %s\n”, received_data[0]->contents);

}

© 2008 RTI - All rights Reserved

How to Get Data? (WaitSet-Based)

// Creation of condition and attachement
Condition foo_condition =

treader->create_readcondition(…);
waitset->add_condition(foo_condition);

// Wait
ConditionSeq active_conditions;
waitset->wait(&active_conditions, timeout);

// Wait returns when there is data (or timeout)
FooSeq received_data;
SampleInfoSeq sample_info;

treader->take_w_condition
(&received_data,
&sample_info,
foo_condition);

// Use received_data
printf(“Got: %s\n”, received_data[0]->contents);

© 2008 RTI - All rights Reserved

Listeners, Conditions & WaitSets

Middleware must notify user application of relevant events:
– Arrival of data
– But also:

QoS violations
Discovery of relevant entities

– These events may be detected asynchronously by the
middleware

… Same issue arises with POSIX signals

DDS allows the application to choice:
– Either to get notified asynchronously using a Listener
– Or to wait synchronously using a WaitSet

Both approaches are unified using STATUS changes

© 2008 RTI - All rights Reserved

Status Changes

DDS defines
A set of enumerated STATUS
The statuses relevant to each kind of DDS Entity

DDS entities maintain a value for each STATUS
STATUS Entity
INCONSISTENT_TOPIC Topic
DATA_ON_READERS Subscriber
LIVELINESS_CHANGED DataReader
REQUESTED_DEADLINE_MISSED DataReader
RUQESTED_INCOMPATIBLE_QOS DataReader
DATA_AVAILABLE DataReader
SAMPLE_LOST DataReader
SUBSCRIPTION_MATCH DataReader
LIVELINESS_LOST DataWriter
OFFERED_INCOMPATIBLE_QOS DataWriter
PUBLICATION_MATCH DataWriter

struct LivelinessChangedStatus
{

long active_count;
long inactive_count;
long active_count_change;
long inactive_count_change;

}

© 2008 RTI - All rights Reserved

Listeners, Conditions and Statuses

A DDS Entity is associated with:
– A listener of the proper kind (if attached)
– A StatusCondition (if activated)

The Listener for an Entity has a separate operation for each of the
relevant statuses

STATUS Entity Listener operation
INCONSISTENT_TOPIC Topic on_inconsistent_topic
DATA_ON_READERS Subscriber on_data_on_readers
LIVELINESS_CHANGED DataReader on_liveliness_changed
REQUESTED_DEADLINE_MISSED DataReader on_requested_deadline_missed
RUQESTED_INCOMPATIBLE_QOS DataReader on_requested_incompatible_qos
DATA_AVAILABLE DataReader on_data_available
SAMPLE_LOST DataReader on_sample_lost
SUBSCRIPTION_MATCH DataReader on_subscription_match
LIVELINESS_LOST DataWriter on_liveliness_lost
OFFERED_INCOMPATIBLE_QOS DataWriter on_offered_incompatible_qos
PUBLICATION_MATCH DataWriter on_publication_match

© 2008 RTI - All rights Reserved

Listeners & Condition duality

A StatusCondition can be selectively activated to
respond to any subset of the statuses
An application can wait changes in sets of
StatusConditions using a WaitSet
Each time the value of a STATUS changes DDS
– Calls the corresponding Listener operation
– Wakes up any threads waiting on a related status change

Asynchronous notification
via Listener operation

Synchronous notification
via activation/wakeup of

conditions/waitsets

DDS
EntityStatus Change

© 2008 RTI - All rights Reserved

Hands-on Example (C++)

Type
Definition

MyType

rtiddsgen

MyType.h

MyTypeSupport.c MyTypePublisher.cpp

MyTypeSubscriber.cpp

MyType.sln

Publisher.exe Subscriber.exe

Four easy steps:
1. Define your data
2. Create your project
3. Build
4. Run: publisher subscriber

Aux:
File Browser
Console

compiler

© 2008 RTI - All rights Reserved

Components/Mechanics of the GDS

Application Application

Application Application

Protocol

GDS Definition

Cache
Management Cache

Management

Discovery

Listener Listener

© 2008 RTI - All rights Reserved

Components/Mechanics of the GDS

Application Application

Application Application

Protocol

GDS Definition

Cache
Management Cache

Management

Discovery

Listener Listener

Domain Modeling
& Sys. Design

Config &
Qos

© 2008 RTI - All rights Reserved

Designing a Data-Centric System

Define/Model the Global Data Space
Configure the Cache Management
Configure Discovery
Configure the Protocol

Configure/Use hooks for
– Fault detection
– Controlled access

© 2008 RTI - All rights Reserved

Global Data Space / Global State

Identify the number of domains

Domain Information model
– Topics
– Types
– Keys
– Ownership

© 2008 RTI - All rights Reserved

Domain and Domain Participants

N1 App 1
Pub/Sub
(A,B/C,D)

N2 App 2
Subscribe

(C)

N4 App 4
Pub/Sub
(D/C,E,F)

N4 App 5
Publish

(C)

N3 App 3
Pub/Sub
(E,F/A,C)

N5 App 6
Subscribe

(B,C)

Domain

Single ‘Domain’ System

• Container for
applications that
want to communicate

• Applications can
join or leave a
domain in any order

• New Applications
are “Auto-Discovered”

• An application that
has joined a domain
is also called a
“Domain Participant”

© 2008 RTI - All rights Reserved

Domain and Domain Participants

Node 1 - App 1
Pub/Sub

Node 2 - App 1
Subscribe

Node 4 - App 1
Pub/Sub

Node 4 - App 2
Publish

Node 3 - App 1
Pub/Sub

Node 5 - App 1
Subscribe

Domain A

Node 5 - App 2
Pub/Sub

Node 6 - App 1
Pub/Sub

Domain B

Domain C
Added Func.

Multiple Domain System

Using Multiple domains for Scalability, Modularity & Isolation

© 2008 RTI - All rights Reserved

Topics & Datatypes, Keys & Subjects

source type symbol Exchange volume bid ask

OPRA IBM NYSE 200000 118.30 118.36
OPRA AAPL NASDAQ 171.20 171.28
RTFP EQ

Exchange type Symbol Order num number limit stop expiration

NYSE BUY IBM 11956 500 120 - DAY

NYSE BUY IBM 11957 1000 124.5 124 DAY

NASDAQ SELL AAPL 11958 400 - 160 DAY

Topic “MarketData”

Topic “OrderEntry”

Key fields Subject Additional fields (payload)

Data-type (name-type-value pairs)

Subject Key fields

© 2008 RTI - All rights Reserved

QoS: Ownership

Data
Writer

Ownership = EXCLUSIVE
“Only highest-strength
data writer can update
each data-instance”

Data
Writer

Data
Writer

Ownership = SHARED
“All data-writers can
each update data-
instance”

Specifies whether more than one DataWriter can
update the same instance of a data-object

Data-
Instance

Data
Writer

Data
Writer

Data
Writer

Data-
Instance

Provides fast, robust, transparent replacement for fail-
over and/or take-over.

© 2008 RTI - All rights Reserved

After QoS Expires
- Deadline
- Liveliness

QoS: Ownership Strength

OWNERSHIP_STRENGTH
“Integer to specify the
strength of an instance”ORDER

Data
Reader

Subscriber

Domain
Participant

Data
Writer

“LEFT”

Publisher

Strength = 1

Data
Writer

“RIGHT”

Publisher

Strength = 4

“LEFT”

Note: Only applies to Topics with Ownership = Exclusive

Specifies which DataWriter is allowed to update the
values of data-objects

“RIGHT”

S SS

© 2008 RTI - All rights Reserved

Configure the Cache Management

Cache State Content
– History
– Lifespan
– Persistence
– Resources

Reader Cache View
– Partitions
– Content-Based Filter
– Time-Based Filter
– Order

Writer
Application

Reader
Application

© 2008 RTI - All rights Reserved

Data
Writer

Publisher

S1

S3
S2

S4
S5
S6
S7

Keep All

Subscriber

S4
S5
S6
S7

Data
Reader

Keep Last 4

QoS: History – Last x or All

KEEP_LAST: “depth” integer for
the number of samples to keep at
any one time

KEEP_ALL:
Publisher: keep all until delivered
Subscriber: keep each sample until the
application processes that instance

Publisher

Keep Last 2

Data
Writer S6

S7

S7 S6 S5 S4 S3 S2 S1

© 2008 RTI - All rights Reserved

QoS: Lifespan

SubscriberPublisher

Topic

Data
Reader

User can set lifespan duration
Manages samples in
the history queues, attached to each
Sample

Data
Writer

S7

S5
S6

S4
S3
S2
S1

Perm.
Storage
S1 S2

S4 S3 S2 S1

© 2008 RTI - All rights Reserved

Content-Based Filtering

Content Filtered
Topic

“Filter Expression ”
Ex. Value > 260

Value = 249Instance 1

Value = 230Instance 2

Value = 275Instance 3

Value = 262Instance 4

Value = 258Instance 5

Value = 261Instance 6

Value = 259Instance 7

The Filter Expression and Expression
Params will determine which instances of the
Topic will be received by the subscriber.

Topic

© 2008 RTI - All rights Reserved

Topic: “Market Data”

Subject Filter (for a Reader)

Field

Value

Symbol Type Exchange
Payload

* * NYSE *

Subject Filter (for a Reader)

SourceField

Value

Symbol Type Exchange Payload

REUTERS * EQ NYSE Volume > x, Ask < y

Payload Filter (for a Reader)

Topic: “Order Entry”

Topic: “Market Data”

Subscriptions: By Topic, Subject, Content

Symbol OrderKind Stop Limit

SourceField

Value

Symbol Type Exchange
Payload

* * * * *

Volume Bid Ask …

OrderNumber …

© 2008 RTI - All rights Reserved

QoS: TIME_BASED_FILTER

Domain
Participant

Data
Writer

Topic

Publisher

SS S S S

minimum separation

Data
Reader

Subscriber

Data Samples

“minimum_separation”:
Data Reader does not want to receive data
faster than the min_separation time

SS

Discarded
samples

© 2008 RTI - All rights Reserved

Configure the Protocol

Discovery
Reliability
Liveliness
Flow Control
Asynchronous write
Network Configuration
– Enabled Transports +

transport properties
– Multicast addresses
– Transport Priority

OS settings
– Threads
– Memory

Writer
Application

Reader
Application

© 2008 RTI - All rights Reserved

Tunable Reliability Protocol

Configurable AckNack reply
times to eliminate storms
Fully configurable to bound
latency and overhead
– Heartbeats, delays, buffer

sizes

Reliable
•Guaranteed
Ordered Delivery

•“Best effort” also
supported

Performance can be tracked
by senders and recipients
– Configurable high/low

watermark, Buffer full
Flexible handling of slow
recipients
– Dynamically remove slow

receivers

SubscriberPublisher

Data
Reader

Data
Writer

S1

S3
S2

S4
S5
S6
S7

S7

S5
S6

S4
S3
S2
S1

S8 S7 S3 S5 S4 S2 S1

NACK #6
S6

© 2008 RTI - All rights Reserved

Configure Notifications, Fault Detection &
Management

Listeners
Deadline Qos
Liveliness Qos
Built-in Readers
Notification of
matching

Writer
Application

Reader
Application

© 2008 RTI - All rights Reserved

QoS: Deadline

Topic

Publisher

Data
Writer

Subscriber

Data
Reader

DEADLINE “deadline period”

deadline

Commits
to provide
data each
deadline
period.

Expects data every
deadline period.

S X S S S S S

Listener

Failed to
get data

© 2008 RTI - All rights Reserved

QoS: Liveliness –
Type and Duration

Data
Writer

Topic

Publisher

lease_duration

Data
Reader

Subscriber

Listener

Liveliness Message

Type: Controls who is responsible for issues of ‘liveliness packets’
AUTOMATIC = Infrastructure Managed
MANUAL = Application Managed

Failed to
renew
lease

LP LP LP S

Topic

© 2008 RTI - All rights Reserved

Putting it All Together

Requirements
– Radars

Multiple radars, may track same
objects, but some higher
performance/accuracy than
others

– Fire control
Needs every possible update
quickly; last is best
Needs to know when a track is
lost

– Display console
Can only display 10Hz updates

– Logger
Must record all information in a
database for later analysis

Quality of Service Settings
– Radars

Key for each track
Ownership= Exclusive; Assign
strength by accuracy

– (each object tracked by best radar
that sees it)

Publishers offer reliability
– Fire Control

Maximize determinism
Best efforts; get every sample
Use key state/deadline to know
when objects lost

– Display console
Don’t waste bandwidth
Best efforts
Time-based filter at 0.1sec

– Logger
Reliable subscription

Scenario: Fire-control radar system, gets
updates from multiple sensors up to 500x/sec

© 2008 RTI - All rights Reserved

Application Example:
Financial Trading

Requirements
– Feed handlers

Take direct market data
Publish 750k msgs/sec

– Trading displays
Watch only “interesting”
symbols
Can handle only 2Hz

– Automated trading
Watch for transient price
differences in specific
symbols
300 machines watching
various symbols/aspects of
market

– Audit database
Save everything

Quality of Service Settings
– Feed handlers

Offer multicast, reliable
– Trading displays

Subscribe at low bandwidth with
time-based filters

– Automated trading
Partition market data to divide
load

Exchange, ECNs, OPRA Feeds

Exchange, ECN Order Execution

Trading Desks

Messaging Middleware

Audit DB
Order Book

Mgmt

Feed Handlers

Orders

Normalization

Automated Trading

© 2008 RTI - All rights Reserved

Summary

Designing a fault-tolerant distributed system is
not a simple task
A powerful middleware framework can provide a
lot of value and help you focus on the business
logic
The middleware can save you a lot of time and
effort.
– It is worth learning how to use its power!

Questions

Gerardo Pardo-Castellote, Ph.D.
gerardo.pardo@rti.com

www.rti.com

mailto:gerardo.pardo@rti.com

	Introduction to DDS
	Agenda
	Introduction: Middleware Technologies 	
	With increased complexity…
	With increased complexity…
	With increased complexity…
	… middleware becomes necessary
	What is network middleware?
	Network Middleware Examples
	Historical note: From Telephone to Blogs
	Middleware = Service Model + Protocol
	Middleware Service Model
	Agenda 	
	Communications Model
	Middleware Communication Models
	RMI vs Pub-Sub/Messaging/Data-Distribution
	Queue versus Pub-Sub
	Pub-Sub versus Data-Distribution
	Other (non DDS) �Commercial Pub-Sub Models
	JMS/MessageQueue Service Model: Communication Model
	DDS Service Model: �Communication Model
	MessageQueue Service Model : Object Model
	DDS Service Model: Object Model
	Agenda 	
	Architecture Models
	Centralized Broker Pub-Sub Service
	Segmented (Grid-based) Pub-Sub Service
	Federated Brokered Pub-Sub Service
	Peer-to-Peer Pub-Sub Service
	Service Model Architecture Examples
	Agenda 	
	Service Model and Protocol relationship
	Protocol layers: Middleware perspective
	Protocol layers (Middleware perspective)
	JMS vs DDS-RTPS Protocols: Scope
	DDS-RTPS Protocol: Layers
	Take away points
	Take Away:�Middleware Comparison Dimensions
	The DDS Model and its Applicability �
	Agenda 	
	History:		DDS the Standard(s)
	Slide Number 42
	DDS Adoption – �Aerospace & Defense
	DDS Adoption – �Transportation, Industrial
	Main differences of DDS vs other Pub-Sub
	#1 RTI Data-Centric Model
	Demo: Concepts
	DDS communications model
	QoS: Quality of Service
	Demo: Quality of Service (QoS)
	#2 Performance & Scalability
	Data-Distribution and Real-Time
	Latency – (Linear Scale)
	Jitter – (Linear Scale)
	#3 Powerful Services
	Ownership and High Availability
	Data Persistence
	Last value cache
	Historical cache
	#4 Interoperability
	#5 Natural with SOA building blocks
	Relational Database Integration
	Complex Event Engine Integration
	DDS as a Web Service
	DDS In depth
	Agenda	
	Do-yourself Message-Centric System
	Middleware-based Message-Centric Systems (JMS)
	Do-yourself Data-Centric System
	Middleware-based Data-Centric Systems (DDS)
	DDS Data-Centric Model
	DDS Global Data
	DDS Global Data: Domains
	Example: Publication
	Example: Subscription
	How to Get Data? (Listener-Based)
	How to Get Data? (WaitSet-Based)
	Listeners, Conditions & WaitSets
	Status Changes
	Listeners, Conditions and Statuses
	Listeners & Condition duality
	Hands-on Example (C++)
	Components/Mechanics of the GDS
	Components/Mechanics of the GDS
	Designing a Data-Centric System
	Global Data Space / Global State
	Domain and Domain Participants
	Domain and Domain Participants
	Topics & Datatypes, Keys & Subjects
	QoS: Ownership
	QoS: Ownership Strength
	Configure the Cache Management
	QoS: History – Last x or All
	QoS: Lifespan
	Content-Based Filtering
	Subscriptions: By Topic, Subject, Content
	QoS: TIME_BASED_FILTER
	Configure the Protocol
	Tunable Reliability Protocol
	Configure Notifications, Fault Detection & Management
	QoS: Deadline
	QoS: Liveliness – �Type and Duration
	Putting it All Together
	Application Example: �Financial Trading
	Summary
	Questions

