Introduction to Deep Learning

CS468 Spring 2017
Charles Qi

What is Deep Learning?

Deep learning allows computational models that are
composed of multiple processing layers to learn
representations of data with multiple levels of abstraction.

Deep Learning by Y. LeCun et al. Nature 2015

Machine
Learning

The traditional model of pattern recognition (since the late 50's)
» Fixed/engineered features (or fixed kernel) + trainable classifier

hand-crafted “Simple” Trainable
Feature Extractor Classifier

From Y. LeCun’s Slides

e ¥

v\

1
5
p S
3
4
o
#
¥

N aw:

= L
¥ so00|
. i
. it .
i g, -
taam
> » | 1000
A >| 7 | ¥
Z .
\ »y| 7| %
0 1 2 3 4 5 6 7
s = 714 = + block 2 normalisation

Image: HoG

v

\4

o | 1 A x|+
ARV

T Scale
® (next
T A A7 octave)
Y t » «
A R
8 F e | i i
=l BV » x
-
Scale
(first
o s N R oY il %4 octave)
S o e = </

- = -1 >
Image gradients Keypoint descriptor Difference of
Gaussian Gaussian (DOG)

Image: SIFT Point Cloud: PFH

AP

Linear Regression
SVM

Decision Trees
Random Forest

‘JODEJ),X; ainjeaq ‘

N
y=sign z Wl.Fi(X)—l—b
=1

o~

3D CAD Model

Thermal Infrared Depth Scan Audio

Can we automatically learn “good” feature representations?

The traditional model of pattern recognition (since the late 50's)
» Fixed/engineered features (or fixed kernel) + trainable classifier

hand-crafted “Simple” Trainable

—_—b ———

Feature Extractor Classifier

End-to-end learning / Feature learning / Deep learning
» Trainable features (or kernel) + trainable classifier

Trainable Trainable
—_— —_—

Feature Extractor Classifier

From Y. LeCun’s Slides

Modern architecture for pattern recognition
» Speech recognition: early 90's — 2011

I"W

4

¥

— Mix of Gaussians

W}q»ﬂm — Mrcc

fixed

unsupervised

» Object Recognition: 2006 - 2012

Classifier —

\ 4

supervised

>IFT — K-means »l Pooling ¢ Classifier —
HoG Sparse Coding J
fixed unsupervised supervised
Low-level Mid-level
Features Features

From Y. LeCun’s Slides

Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Feature
Extractor

Feature - Mid-Level
Extractor Features

From Y. LeCun’s Slides

@ 1t's deep if it has more than one stage of non-linear feature transformation

Low-Level| |Mid-Level| |High-Level|] | Trainable
Feature Feature Feature Classifier

A
A
A

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
From Y. LeCun’s Slides

ImageNet 1000 class image classification accuracy

2010 2011 2012 2013 2014 Human ArXiv 2015
Feature _
engineering Deep learning

Big Data + Representation Learning with Deep Nets

WaveNet: A/Generative Model for Raw Audio

By Google DeepMind

Ot @ @ © 0 999000 OS©O© OO

W i & B B B e Acoustic Modeling

Layer ¥ ¥ W

. S Near human-level
S Text-To-Speech performance

mt @ © 0000000000000 O

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Big Data + Representation Learning with Deep Nets

Neural Translation Machine
by Quac V. Le et al at Google Brain.

perfect translation

6
1 1 l
5] —
Encoder & |72 & || 62 |72 @ || & |72 & [——2| & >
= 4 —_—
3 -
4 phrase-based (PBMT)
S 3
K
[Z]
g 2
=
1
0
English English English Spanish French Chinese
Decoder do —_— d; —_— dz - d > > > > > >
Spanish French Chinese English English English

Translation model

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Outline

Motivation

A Simple Neural Network

|deas in Deep Net Architectures
ldeas in Deep Net Optimization
Practicals and Resources

Outline

Motivation

A Simple Neural Network
ldeas in Deep Net Architectures
ldeas in Deep Net Optimization
Practicals and Resources

A Simple Neural Network

Use recent three days’ average temperature to predict tomorrow’s
average temperature.

:
va

J;
&

34
e l
‘ ‘ output layer

hidden layer 1 hidden layer 2

W\
N
’%’r}
®

)

input layer

Sigmoid function f

A Simple Neural Network ﬂ»

4
\
»

Q
)

(N
e e

‘ y I W1, b1, W2, b2, W3, b3
. output layer)) -))

are network parameters
that need to be learned.

0
0\@ ‘\t/‘
N
}A’r'}‘{\‘

input layer

hidden layer 1 hidden layer 2

forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3x1)

hl f(np.dot (W1, x) + bl) # calculate first hidden layer activations (4x1)
h2 f(np.dot (W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot (W3, h2) + b3 # output neuron (1x1)

From CS231N

Neural Network: Forward Pass

x(1): 73.8
7 N ’.
x(2): 75.8 | - . y’:-10.4
x(3): 78.2 output layer
input layer

hidden layer 1 hidden layer 2

y' = Wsf(Waf(Wiz 4 b1) + ba) + b3)

Neural Network: Backward Pass

&
e (TSNS
75.8 w‘ézw Prediction: -10.4
SIS
18.2 ‘\“'//A ‘ output layer Ground truth: 80.8

input layer
hidden layer 1 hidden layer 2

N 2 orror = (80.8 - (10.4)"2

Update Network Parameters

Minimize: L(z,y; W,b) = 32 (Waf(Waf(Wiz; + by) 4 ba) + bs) — ;)2

Given N training pairs: {z;, y; fll

Neural Network: Backward Pass

Minimize: L(x,y; W, b) = Z,ﬁil(ng(ng(Wﬁi + b1) + ba) + b3) — y;)?

Given N training pairs: {z;, y; f-il

Sigmoid function .| '

Non-convex optimization :(/‘j/jfj

Neural Network: Backward Pass

Minimize: L(z,y; W,b) = 32 (Waf(Waf(Wiz; + by) + ba) + bs) — y;)?

Given N training pairs: {z;, y; é\le

Non-convex optimization :(
Use gradient descent!

Parameter update example:

W3 =Ws3 — 775%3

A Simple Neural Network

X
A

L
\‘:’A : output layer

input layer
hidden layer 1 hidden layer 2

Model: Multi-Layer Perceptron (MLP) y = Ws f(Waf(Wiz + bi) + by) + bs)
Loss function: L2loss (y,y) = (v —y')?

Optimization: Gradientdescent W = W — ndk

Outline

Motivation

A Simple Neural Network

Ideas in Deep Net Architectures
ldeas in Deep Net Optimization
Practicals and Resources

What people think | am doing when | What | actually do...
“build a deep learning model”

Contents

fully connected, RelLU, conv, pooling, upconv,
dilated conv

Classic architectures: MLP, LeNet, AlexNet, NIN, VGG,
GoogleNet, ResNet, FCN

Multi-Layer Perceptron

http://playground.tensorflow.org/

Fully Connected
INPUT + — 3 HIDDEN LAYERS OUTPUT
. Which properties Test loss 0.012
N O n _I | n ea r O p ::;goi:’;vant to £ o 7 o o8 Training loss 0.003 \
8 neurons 5 neurons 3 neurons [

i

O
S i
. output layer

hidden layer 1 hidden layer 2 N\ &5
(

GON,
oe
UK
}»’4 X

X
()
X
2

Colors shows
data, neuron and !
weight values. 7 2 1

input layer

[Show testdata [] Discretize output

This is the outout

http://playground.tensorflow.org/
http://playground.tensorflow.org/

The first learning machine: the
Perceptron Built at Cornell in 1960

The Perceptron was a (binary) linear

classifier on top of a simple feature

extractor N

y=sign z Wl-Fi(X)+b
i=1

impulses carried
toward cell body

' branches
\ of axon

impulses carried
away from cell body

axon

terminals

10}0e11X] 34n)e3

L0 wo

>@ synapse
axon from a neuron
WoTo

cell body

Z’wﬂ:i + b

f (Z w;; + b)

output axon

activation
function

Sigmoid
ox)=1/(1 +e™)

e i PR

O~

(X

1.0F

L/ Tanh

0.5 'l‘l

..........

tanh(x) = 20(2x) — 1

..........

ALY
-10 -5

Major drawbacks: Sigmoids saturate and kill gradients

l()g /

ReLU (Rectified Linear Unit) | /
f(x) = max(0, x) :

1 " " " i i
=10 -5 5 10

+ Cheaper (linear) compared with Sigmoids (exp)
+ No gradient saturation, faster in convergence
“Dead” neurons if learning rate set too high

Other Non-linear Op:
Leaky ReLU, f&x) =T < 0)(ax) + T(x >= 0)(x)
MaxOut max(wix + by, wix + by)

Training error rate

0.254

0

Epochs
A plot from Krizhevsky et al. paper
indicating the 6x improvement in
convergence with the RelLU unit
compared to the tanh unit.

Convolutional Neural Network : LeNet (1998 by LeCun et al.) Fully Connected

Non-linear Op

C3: 1 maps 1640 10x10

S4. 1. maps 16@5x5 Convolution

C1. leature maps
INPUT
32x32 S@20x28 S2° 1. maps

6@ 14x1

Pooling

- I
| | | Full cmMm | Gausslan connections

Convolutions Subsampling Convolutions Subsampling Full connection
(pooling)

%m LeNel 5 | ggsgancn
answer: 4

T One of the first successful
applications of CNN.

A g LN

1o A)

JRIE N

ke b |

[
§
“
Dl
1
m -
0?‘
)
N
O
-
J

Wy
L)

9
0
)

§ . W
i
wi- =l 0 | N UISSE

Shared Weights & Convolutions:
Exploiting Stationarity

Fully Connected NN in high dimension il Example: 200x200 image

4 Example: 200x200 image » 400,000 hidden units with
» Fully-connected, 400,000 hidden units = 16 billion parameters 10x10 fields = 1000
» Locally-connected, 400,000 hidden units 10x10 fields = 40 params

million params » 10 feature maps of size

P Local connections capture local dependencies 200%x200. 10 filters of size
I
10x10

Slide from LeCun

Convolution

Stride 1 Stride 2

From CS231N

Pad 1
Stride 2

Pad 1
Stride 1

Convolution

w |

000 ®(

D

From CS231N

5x5 RGB Image
5x5x3 array

3x3 kernel, 2 output
channels, pad 1, stride 2
weights: 2x3x3x3 array
bias: 2x1 array

Output
3x3x2 array

H = (H - K)/stride_H + 1
=(7-3)2+1=3

Pooling layer (usually inserted in between conv layers) is
used to reduce spatial size of the input, thus reduce
number of parameters and overfitting.

224x224x64
112x112x64
ﬂ, (/4 Single depth slice
DV L]z
max pool with 2x2 filters
A SRGE 7 | 8 and stride 2 6 | 8
l 3 | 2 N 3 [
- 112 11213 |4
224 downsampling !
112 >
224 y

Discarding pooling layers has been found to be important in training good generative models,
such as variational autoencoders (VAES) or generative adversarial networks (GANSs).
It seems likely that future architectures will feature very few to no pooling layers.

From CS231N

LeNet (1998 by LeCun et al.)

Fully Connected

Non-linear Op

Convolution

Pooling

C3: 1 maps 16§ 10x10
S4. 1 maps 164055

C5. layer pq
c3 £8 layer QUTPUT

N

I
Full oomkocﬂon | Gausslan connections
Subsampling Convolutions Subsampling Full connection

C1: leature maps
INPUT
3232 6@28x28

S2 1 maps |
6@ 14x1

AlexNet (2012 by Krizhevsky et al.)

11x11 conv, 96, /4, pool/2

' 1 192 192
5x5 conv, 256, pool/2 \ 5 @ T N N

* v "‘ S('.‘ . "‘, 77‘;: \ o - l'-,
e 3 'I 3 1\ EN R
3x3 conv, 384 N Y |

\ 4

3x3 conv, 384

\ 4
3x3 conv, 256, pool/2

\ 4

fc, 4096

\ 4
fc, 4096

\ 4

fc, 1000

o5 l

192 192

Max 128 Max
pooling pooling

48

The first work that
popularized
Convolutional Networks
in Computer Vision

What's different?

AlexNet (2012 by Krizhevsky et al.)

\
128
\n
N J‘\H \

\

jv
3
) 13

192 128 Max
pooling

=

204t 2048

What's different?

Our network takes between five and six days
to train on two GTX 580 3GB GPUs. -- Alex

e Big data: ImageNet
e GPU implementation: more than 10x speedup

e Algorithm improvement: deeper network, data
augmentation, ReLU, dropout, normalization layers efc.

Network in Network (2013 by Min Lin et al.)

56x56x128 2°6Xx5x5x128 weights 256x5x5x256 weights 256x5x5x256 weights

Network in Network (2013 by Min Lin et al.)

256x5x5x128 weights
+ 1x1 conv (256x256 weights)
56x56x128 256x5x5x128 weights + 1x1 conv (256x256 weights)
OO
OO b
---------- o
(a) Linear convolution layer (b) Mlpconv layer

1x1 convolution: MLP in each pixel’'s channels
Use very little parameters for large model capacity.

(Y CICR ANV R VAT [V- IET e WAL) The runner-up in ILSVRC 2014

3x3 ¢

D
=3

w
-
w

~ .
P ‘ o
o 10

w
>
w

,.
w

w

[
¢
W

w
>
w

w

w
*

w
x
w

3| (& [S
INEINTIN

)

N

N

N

[
*
w
0

<

SRR E T EE R

3x3 conv, 51

w
e

3x3 conv,

[~

S

o

Karen Simonyan, Andrew Zisserman: Very Deep
Convolutional Networks for Large-Scale Image Recognition.

e |ts main contribution was in showing that the depth of the
network is a critical component for good performance.

e Their final best network contains 16 CONV/FC layers and,
appealingly, features an extremely homogeneous
architecture that only performs 3x3 convolutions and 2x2
pooling from the beginning to the end.

GoogleNet (2015 by Szegedy et al.)

Filter
concatenation

%‘\

The winner in ILSVRC 2014

Its main contribution was the development of an

" Inception Module and the using Average

Pooling instead of Fully Connected layers at the
top of the ConvNet, which dramatically reduced
the number of parameters in the network (4M,
compared to AlexNet with 60M).

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

4

1x1 convolutions

—— .

Previous layer

$

3x3 max pooling

>
>

An Inception Module: a new building block..

-- edited from CS231N

Tip on ConvNets:

Usually, most computation is
spent on convolutions, while
most space is spent on fully

connected layers.

ResNet (2016 by Kaiming He et al.) The winner in ILSVRC 2015

152 layers

A
\\
22 layers 19 Iayers I

3 57 I I 8 layers 8 layers shallow

ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

o
b i
s
&F
e
s
-
€

UNTILA
DEEPER MODEL
CAME ALONG

ResNet (2016 by Kaiming He et al.)

.- - - - - - .‘U“ - - - - - -

W

1

- -

X
\ 4
weight layer
F(x) & relu identity
weight layer X

Hx)=F(x)+x

e Deeper network hard to train: Use
skip connections for residual
learning.

e Heavy use of batch normalization.
152 layers..
e No fully connected layers.

Classification:

Segmentation:

224x224

224x224

Unpooling Unpooling

Learning Deconvolution Network for
Semantic Segmentation

—.______~\Enpooﬁng

224x224

Unpooling

LM
~npooling
~

Up convolution/Convolution transpose/Deconvolution

If you know how to compute gradients in
convolution layers, you know upconv.

Up convolution/Convolution transpose/Deconvolution

11

12

X
11 12 13 14
21 122 23 24
31 132 33 34
41 142 43 44

w
11 12 13
21 122 23
31 32 33

21

22

Y11 = W11T11 + W12T12 + W13T13 + W21T21 + W22Z22 + W23T23 + W31T31 + W32T32 + W33T33

81‘11

"2

oL dy;;

OL Oy

ayzg 0x11

~ Oy11 Oz14

oL

= W11
Oy11

Up convolution/Convolution transpose/Deconvolution

X

\")"}
11 12 13 14 e P y
21 122 23 24 P P 11 \
31 132 33 34 2122 >
31 32 33
41 42 43 44

Y11 = W11T11 + W12T12 + W13T13 + W21T21 + W22T22 + W23T23 + W31T31 + W32X32 + W33T33

Y12 = W11T12 + W12213 + W13L14 + W21L22 + Wo2X23 + W23L24 + W31L32 + W32L33 + W33L34

0L Byij oL
53312 Z Z 52%3 0x12 ayll 2 Oy12 Oyre 1

Upconvolution/Convolution transpose/Deconvolution

Convolution with stride =>
Upconvolution with input upsampling

See https://github.com/vdumoulin/conv_arithmetic for examples

https://github.com/vdumoulin/conv_arithmetic

Fully convolutional network (FCN) variations

Output scores Output scores
HxWxN HxWxN

\ upsample /

upconv

v\ Skip links

\
|
I
I

conv

Input image Input image
HxWx3 HxWx3

Output scores
HxWxN

dilated
conv

Input image
HxWx3

Dilated/Atrous Convolution

Issues with convolution in dense prediction (image segmentation)
e Use small kernels
o Receptive field grows linearly with #layers: 1*(k-1)+k
e Use large kernels
o loss of resolution

Dilated convolutions support exponentially expanding
receptive fields without losing resolution or coverage.

— Receptive field: 3 H [Receptive field: 7

T T

L1: dilation=1 L2: dilation=2 L2: dilation=4

(a) (b (©
Fig from ICLR 16 paper by Yu and Koltun.

dilation=2

Baseline: conv + FC Dilated conv

Outline

Motivation

A Simple Neural Network

|deas in Deep Net Architectures
Ideas in Deep Net Optimization
Practicals and Resources

Optimization

Basics: Gradient descent, SGD, mini-batch SGD, Momentum,
Adam, learning rate decay

Other Ingredients: Data augmentation, Regularization,
Dropout, Xavier initialization, Batch normalization

NN Optimization:
Back Propagation [Hinton et al. 1985]
Gradient Descent with Chain Rule Rebranded.

c d Compare outputs with correct
answer to get error derivatives
n=1z) % _, _
Output units () (1) ’ ' l » yi=t
4= 2 Wi Yk N
ke H2 = i
az oy, 0z

0

= Wy
=f(z d a0z,
Hidden units H2 () Ve =1 Yé 1eout %

4= Wiy
,,zm o IE _9E dy,
GZk ay,, OZk £= 2 E
; 4 =1(z) YW kenz2 %%
Hidden units H1 () Yy =1
dE _ aE oy,
Z; = W X; T o
i= 2 az, ay; az
i € Input

Input units () () L)

Fig from Deep Learning by LeCun,
Bengio and Hinton. Nature 2015

SGD, Momentum, RMSProp, Adagrad, Adam

e Batch gradient descent (GD):
o Update weights once after looking at all the training data.

e Stochastic gradient descent (SGD):
o Update weights for each sample.

e Mini-batch SGD:
o Update weights after looking at every “mini batch” of data, say 128 samples.

Let x be the weight/parameters, dx be the gradient of x. In mini-batch, dx is the average within a batch.
SGD (the vanilla update)

x += - learning rate * dx

where learning_rate is a hyperparameter - a fixed constant.

SGD, Momentum, RMSProp, Adagrad, Adam

Momentum:

Momentum update

v =mu * v - learning rate * dx # integrate velocity

X += v # integrate position

Initializing the parameters with random numbers
is equivalent to setting a particle with zero initial
velocity at some location.

The optimization process can then be seen as
equivalent to the process of simulating the
parameter vector (i.e. a particle) as rolling on
the landscape.

Momentum update

momentum

step
actual step

>

gradient
step

From CS231N

SGD, Momentum, RMSProp, Adagrad, Adam

Per-parameter adaptive learning rate methods

Adagrad by Duchi et al.:

cache += dx**2

X += - learning rate * dx / (np.sqrt(cache) + eps)

RMSProp by Hinton:

cache = decay rate * cache + (1 - decay rate) * dx**2

X += - learning rate * dx / (np.sqrt(cache) + eps)

Adam by Kingma et al.:

m = betal*m + (l-betal)*dx

v = beta2*v + (l-beta2)*(dx**2)
X

+= - learning rate * m / (np.sqrt(v) + eps)

weights with high gradients =>
effective learning rate reduced

Use moving average to reduce
Adagrad'’s aggressive, monotonically
decreasing learning rate

Use smoothed version of gradients
compared with RMSProp. Default
optimizer (along with Momentum).

Annealing the learning rate (the dark art...)

1.00

0.99

0.98

0.97

0.96

0.95

0.94 .

I

0

J

2000

Accuracy

— training accuracy
- test accuracy

4000 6000 8000 10000

Leorning rate 0003

20

| H,JM,”UI”WI 1

10

5

Cross entropy loss

— training loss
- test loss

11

0
0 2000 4000 6000 8000 10000

From Martin Gorner

Annealing the learning rate (the dark art...)

Accuracy Cross entropy loss

1.00
— training loss

0.99 - test loss

15

0.98

0.97 10

!
M

0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

el

0.96

0.95

— training accuracy
- test accuracy

Leorning rote 0003 ot stort +hen Ar ; tiadlly +o 0.000/
EO0AN 1114719 (2 érl opp/nj 6xp0r7€// / /vFrgm el e

Annealing the learning rate (the dark art...)

e Stairstep decay: Reduce the learning rate by some factor
every few epochs. E.g. half the learning rate every 10
epochs.

e Exponential decay: learning_rate = initial_Ir * exp(-kt)
where t is current step.

e “On-demand” decay: Reduce the learning rate when error
plateaus

Optimization

Other Ingredients: Data augmentation, Regularization,
Dropout, Xavier initialization, Batch normalization

Dealing with Overfitting: Data Augmentation

Flipping, random crop, random translation, color/brightness change, adding noise...

Pictures from CS231N

Dealing with Overfitting: Regularization, Dropout

L1/L2 regularization on weights: limit the network capacity by encouraging
distributed and sparse weights. When combining L1 and L2 regularization, it's called
elastic net regularization: ﬂl | W | +/12W2

Dropout by Srivastava et al.:

During testing there is no dropout applied,

with the interpretation of evaluating an averaged
prediction across the exponentially-sized
ensemble of all sub-networks.

TRAINING EVALVATION
/)A/%P:0.75 %]K/éé/):/

Cross entropy loss Cross entropy loss
20 20

— training loss — training loss
- test loss - test loss

15 Applying dropout

during training

>

e VOl) St

10

S

w

|
|
0 L T IO N 1P B 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Xavier and MSR Initialization
W = 0.01* np.random.randn(D,H)

Problem with random Gaussian initialization: the distribution
of the outputs has a variance that grows with the number of
inputs => Exploding/diminishing output in very deep network.

w = np.random.randn(n) / sgrt(n).

w = np.random.randn(n) * sqrt(2/n).

Data “whitening”

20 I 2 .
[1]
— B oeDo
15 15 o
) @
@ o @
10 Q 1 °,
[an
il
5 0.5
_/\/\———"\
0 0

Data: large values, different scales, skewed, correlated

From Martin Gorner
e

Data “whitening”

1 — A 1 ®
B [X J
0.5 0.5 pece
o o0
@ @
0 Q@ 0 T i) 2
o
-0.5 05 e o oo -
o0 @
o o
-1 -1

Subtract queroge
Livide b)/ std dev

From Martin Gorner

Modified data: centered around zero, rescaled...

Batch Normalization

\ / "logit" = u/e(jAv"ed sum + bids

>\~ | Compute average and Center and re-scale logits
variance on mini-batch before the activation function
(decorrelate ? no, too complex)

\ /
\Q/

~ &L — AUGpatch (33)
stdevpgien () + €

From Martin Gorner

Batch Normalization
"Zoj/'*" - M/é{jA?“é&(sum + bios

\ / \
>(\” | Compute average and Center and re-scale logits | ~,~\~
variance on mini-batch before the activation function -
(decorrelate ? no, too complex)
~_ T — aUGpatch (T)
stdevpgien () + € .

per NEeNr o1

[

Add learnable scale and offset BN(CU) — aT + 5

for each logit so as to restore expressiveness

I\

\ /
ke
7ry A=stdev(x) and B-au9g(x) and you howe BMx) = x

From Martin Gorner

+You can go faster: use higher learning rate
+BN also regularises: lower or remove dropout

Batch Normalization

depends from:
depends from: same weights and biases, images

weights, biases, images \ / only one set of weights and biases in a mini-batch

L — avgbatch()

a;. S
stdevy,ich (m) + €
)lfu:ightgc.i
| Batch-norma, 8 | BN(CU) = ai‘\ —I— /8
activation
Jn

=> BN is differentiable relatively to weights, biases, a and 3
It can be used as a layer in the network, gradient calculations will still work

From Martin Gorner

Outline

Motivation

A Simple Neural Network

ldeas in Deep Net Architectures
|deas in Deep Net Optimization
Practicals and Resources

Data Collecting, Cleaning, Preprocessing > 50%
time

“OS” of Machine/Deep Learning

Caffe, Theano, Torch, Tensorflow, Pytorch, MXNET, ...

Matlab in the earlier days. Python and C++ is the popular
choice now.

Deep network debugging, Visualizations

Resources

Stanford CS231N: Convolutional Neural Networks for Visual Recognition

Stanford CS224N: Natural Language Processing with Deep Learning

Berkeley CS294: Deep Reinforcement Learning

Learning Tensorflow and deep learning, without a PhD

Udacity and Coursera classes on Deep Learning

Book by Goodfellow, Bengio and Courville: http://www.deeplearningbook.org/

Talk by LeCun 2013: http://www.cs.nyu.edu/"yann/talks/lecun-ranzato-icm|2013.pdf

Talk by Hinton, Bengio, LeCun 2015:
https://www.iro.umontreal.ca/“bengioy/talks/DL-Tutorial-NIPS2015.pdf

http://cs231n.stanford.edu/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://rll.berkeley.edu/deeprlcourse/
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://www.udacity.com/course/deep-learning--ud730
https://www.coursera.org/learn/neural-networks
https://www.udacity.com/course/deep-learning--ud730
http://www.deeplearningbook.org/
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
https://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf
https://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

What’s not covered...

Sequential Models (RNN, LSTM, GRU)

Deep Reinforcement Learning

3D Deep Learning (MVCNN, 3D CNN, Spectral CNN, NN on Point Sets)
Generative and Unsupervised Models (AE, VAE, GAN etc.)

Theories in Deep Learning

Summary

e Why Deep Learning

e A Simple Neural Network
o Model, Loss and Optimization

® |deas in deep net architectures
o Building blocks: FC, RelLU, conv, pooling, unpooling, upconv, dilated conv
o Classics: MLP, LeNet, AlexNet, NIN, VGG, GoogleNet, ResNet

e lIdeas in deep net optimization
o Basics: GD, SGD, mini-batch SGD, Momentum, Adam, learning rate decay
o Other Ingredients: Data augmentation, Regularization, Dropout, Batch
normalization

e Practicals and Resources

