
Introduction to Deep Learning

CS468 Spring 2017

Charles Qi

What is Deep Learning?

Deep learning allows computational models that are
composed of multiple processing layers to learn
representations of data with multiple levels of abstraction.

Artificial
Intelligence

Machine
Learning

Deep
Learning

Deep Learning by Y. LeCun et al. Nature 2015

From Y. LeCun’s Slides

Image: HoG

Image: SIFT

Audio: Spectrogram

Point Cloud: PFH

From Y. LeCun’s Slides

Linear Regression
SVM
Decision Trees
Random Forest
...

Can we automatically learn “good” feature representations?

Image

Thermal Infrared

Video 3D CAD Model

Depth Scan Audio

From Y. LeCun’s Slides

From Y. LeCun’s Slides

From Y. LeCun’s Slides

From Y. LeCun’s Slides

ImageNet 1000 class image classification accuracy

Big Data + Representation Learning with Deep Nets

Acoustic Modeling

Near human-level
Text-To-Speech performance

By Google DeepMind

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Big Data + Representation Learning with Deep Nets

Neural Translation Machine
by Quac V. Le et al at Google Brain.

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Outline

● Motivation
● A Simple Neural Network
● Ideas in Deep Net Architectures
● Ideas in Deep Net Optimization
● Practicals and Resources

Outline

● Motivation
● A Simple Neural Network
● Ideas in Deep Net Architectures
● Ideas in Deep Net Optimization
● Practicals and Resources

A Simple Neural Network

Image from CS231N

Use recent three days’ average temperature to predict tomorrow’s
average temperature.

A Simple Neural Network

From CS231N

Sigmoid function

W1, b1, W2, b2, W3, b3
are network parameters
that need to be learned.

Neural Network: Forward Pass

From CS231N

x(1): 73.8

x(2): 75.8

x(3): 78.2

y’: -10.4

Neural Network: Backward Pass

73.8

75.8

78.2 Ground truth: 80.8

L2 error = (80.8 - (-10.4))^2

Update Network Parameters

Prediction: -10.4

Minimize:

Given N training pairs:

Neural Network: Backward Pass

Non-convex optimization :(

Minimize:

Given N training pairs:

Sigmoid function

Neural Network: Backward Pass

Non-convex optimization :(
Use gradient descent!

Minimize:

Given N training pairs:

Parameter update example:

A Simple Neural Network

Model:
Loss function:

Multi-Layer Perceptron (MLP)

L2 loss

Optimization: Gradient descent

Outline

● Motivation
● A Simple Neural Network
● Ideas in Deep Net Architectures
● Ideas in Deep Net Optimization
● Practicals and Resources

What people think I am doing when I
“build a deep learning model”

What I actually do...

Contents

Building blocks: fully connected, ReLU, conv, pooling, upconv,
dilated conv

Classic architectures: MLP, LeNet, AlexNet, NIN, VGG,
GoogleNet, ResNet, FCN

Multi-Layer Perceptron

http://playground.tensorflow.org/
Fully Connected

Non-linear Op

http://playground.tensorflow.org/
http://playground.tensorflow.org/

Fully Connected

From LeCun’s Slides

● The first learning machine: the
Perceptron Built at Cornell in 1960

● The Perceptron was a (binary) linear
classifier on top of a simple feature
extractor

From CS231N

Non-linear Op

Sigmoid

Tanh

From CS231N

Major drawbacks: Sigmoids saturate and kill gradients

Non-linear Op

ReLU (Rectified Linear Unit)

A plot from Krizhevsky et al. paper
indicating the 6x improvement in
convergence with the ReLU unit
compared to the tanh unit.

Other Non-linear Op:

Leaky ReLU,

MaxOut From CS231N

+ Cheaper (linear) compared with Sigmoids (exp)
+ No gradient saturation, faster in convergence
- “Dead” neurons if learning rate set too high

Convolutional Neural Network : LeNet (1998 by LeCun et al.) Fully Connected

Non-linear Op

Convolution

Pooling

One of the first successful
applications of CNN.

(pooling)

Convolution

Slide from LeCun

Fully Connected NN in high dimension

Shared Weights & Convolutions:
Exploiting Stationarity

Convolution

From CS231N

Stride 1 Stride 2

Pad 1
Stride 2

From vdumoulin/conv_arithmetic

Pad 1
Stride 1

Convolution

Pad 1
Stride 2

5x5 RGB Image
5x5x3 array

3x3 kernel, 2 output
channels, pad 1, stride 2

weights: 2x3x3x3 array
bias: 2x1 array

Output
3x3x2 array

H’ = (H - K)/stride_H + 1
= (7-3)/2 + 1 = 3

From CS231N

Pooling

Discarding pooling layers has been found to be important in training good generative models,
such as variational autoencoders (VAEs) or generative adversarial networks (GANs).
It seems likely that future architectures will feature very few to no pooling layers.

From CS231N

Pooling layer (usually inserted in between conv layers) is
used to reduce spatial size of the input, thus reduce
number of parameters and overfitting.

LeNet (1998 by LeCun et al.) Fully Connected

Non-linear Op

Convolution

Pooling

(pooling)

AlexNet (2012 by Krizhevsky et al.)

What’s different?

The first work that
popularized
Convolutional Networks
in Computer Vision

AlexNet (2012 by Krizhevsky et al.)

What’s different?

● Big data: ImageNet
● GPU implementation: more than 10x speedup
● Algorithm improvement: deeper network, data

augmentation, ReLU, dropout, normalization layers etc.

Our network takes between five and six days
to train on two GTX 580 3GB GPUs. -- Alex

Network in Network (2013 by Min Lin et al.)

56x56x128 256x5x5x128 weights 256x5x5x256 weights 256x5x5x256 weights

Network in Network (2013 by Min Lin et al.)

1x1 convolution: MLP in each pixel’s channels
Use very little parameters for large model capacity.

56x56x128 256x5x5x128 weights

256x5x5x128 weights
+ 1x1 conv (256x256 weights)
+ 1x1 conv (256x256 weights)

VGG (2014 by Simonyan and Zisserman)

Karen Simonyan, Andrew Zisserman: Very Deep
Convolutional Networks for Large-Scale Image Recognition.

● Its main contribution was in showing that the depth of the
network is a critical component for good performance.

● Their final best network contains 16 CONV/FC layers and,
appealingly, features an extremely homogeneous
architecture that only performs 3x3 convolutions and 2x2
pooling from the beginning to the end.

-- quoted from CS231N

The runner-up in ILSVRC 2014

GoogleNet (2015 by Szegedy et al.)

An Inception Module: a new building block..

Its main contribution was the development of an
Inception Module and the using Average
Pooling instead of Fully Connected layers at the
top of the ConvNet, which dramatically reduced
the number of parameters in the network (4M,
compared to AlexNet with 60M).

-- edited from CS231N

Tip on ConvNets:
Usually, most computation is
spent on convolutions, while
most space is spent on fully
connected layers.

The winner in ILSVRC 2014

ResNet (2016 by Kaiming He et al.) The winner in ILSVRC 2015

ResNet (2016 by Kaiming He et al.)

● Deeper network hard to train: Use
skip connections for residual
learning.

● Heavy use of batch normalization.

● No fully connected layers.
152 layers..

dog

Classification:

Segmentation:

Learning Deconvolution Network for
Semantic Segmentation

Up convolution/Convolution transpose/Deconvolution

If you know how to compute gradients in
convolution layers, you know upconv.

Up convolution/Convolution transpose/Deconvolution

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

11 12

21 22

11 12 13

21 22 23

31 32 33

x w y

Up convolution/Convolution transpose/Deconvolution

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

11 12

21 22

11 12 13

21 22 23

31 32 33

x w y

Convolution with stride =>
Upconvolution with input upsampling

Upconvolution/Convolution transpose/Deconvolution

See https://github.com/vdumoulin/conv_arithmetic for examples

https://github.com/vdumoulin/conv_arithmetic

Dilated Convolution

Fully convolutional network (FCN) variations

Input image
HxWx3

dilated
conv

Output scores
HxWxN

conv

upconv

Input image
HxWx3

Output scores
HxWxN

Skip links

Input image
HxWx3

Output scores
HxWxN

conv

upsample

Dilated/Atrous Convolution

Issues with convolution in dense prediction (image segmentation)
● Use small kernels

○ Receptive field grows linearly with #layers: l∗(k−1)+k
● Use large kernels

○ loss of resolution

Dilated convolutions support exponentially expanding
receptive fields without losing resolution or coverage.

Fig from ICLR 16 paper by Yu and Koltun.

L1: dilation=1 L2: dilation=2 L2: dilation=4

dilation=2

Receptive field: 3 Receptive field: 7 Receptive field: 15

Fig from ICLR 16 paper by Yu and Koltun.

Dilated/Atrous Convolution

Baseline: conv + FC Dilated conv

Outline

● Motivation
● A Simple Neural Network
● Ideas in Deep Net Architectures
● Ideas in Deep Net Optimization
● Practicals and Resources

Optimization

Basics: Gradient descent, SGD, mini-batch SGD, Momentum,
Adam, learning rate decay

Other Ingredients: Data augmentation, Regularization,
Dropout, Xavier initialization, Batch normalization

NN Optimization:
Back Propagation [Hinton et al. 1985]
Gradient Descent with Chain Rule Rebranded.

Fig from Deep Learning by LeCun,
Bengio and Hinton. Nature 2015

SGD, Momentum, RMSProp, Adagrad, Adam

● Batch gradient descent (GD):
○ Update weights once after looking at all the training data.

● Stochastic gradient descent (SGD):
○ Update weights for each sample.

● Mini-batch SGD:
○ Update weights after looking at every “mini batch” of data, say 128 samples.

Let x be the weight/parameters, dx be the gradient of x. In mini-batch, dx is the average within a batch.

SGD (the vanilla update)

From CS231Nwhere learning_rate is a hyperparameter - a fixed constant.

SGD, Momentum, RMSProp, Adagrad, Adam

Initializing the parameters with random numbers
is equivalent to setting a particle with zero initial
velocity at some location.

The optimization process can then be seen as
equivalent to the process of simulating the
parameter vector (i.e. a particle) as rolling on
the landscape.

Momentum:

From CS231N

SGD, Momentum, RMSProp, Adagrad, Adam

Adagrad by Duchi et al.:

Per-parameter adaptive learning rate methods

weights with high gradients =>
effective learning rate reduced

RMSProp by Hinton:
Use moving average to reduce
Adagrad’s aggressive, monotonically
decreasing learning rate

Adam by Kingma et al.:

Use smoothed version of gradients
compared with RMSProp. Default
optimizer (along with Momentum).

From CS231N

Annealing the learning rate (the dark art...)

From Martin Gorner

Annealing the learning rate (the dark art...)

From Martin Gorner

Annealing the learning rate (the dark art...)

● Stairstep decay: Reduce the learning rate by some factor
every few epochs. E.g. half the learning rate every 10
epochs.

● Exponential decay: learning_rate = initial_lr * exp(-kt)
where t is current step.

● “On-demand” decay: Reduce the learning rate when error
plateaus

Optimization

Basics: Gradient descent, SGD, mini-batch SGD, Momentum,
Adam, learning rate decay

Other Ingredients: Data augmentation, Regularization,
Dropout, Xavier initialization, Batch normalization

Dealing with Overfitting: Data Augmentation

Flipping, random crop, random translation, color/brightness change, adding noise...

Pictures from CS231N

Dealing with Overfitting: Regularization, Dropout

L1/L2 regularization on weights: limit the network capacity by encouraging
distributed and sparse weights. When combining L1 and L2 regularization, it’s called
elastic net regularization:

Dropout by Srivastava et al.:
During testing there is no dropout applied,
with the interpretation of evaluating an averaged
prediction across the exponentially-sized
ensemble of all sub-networks.

Applying dropout
during training

Xavier and MSR Initialization

Problem with random Gaussian initialization: the distribution
of the outputs has a variance that grows with the number of
inputs => Exploding/diminishing output in very deep network.

W = 0.01* np.random.randn(D,H)

w = np.random.randn(n) / sqrt(n).

w = np.random.randn(n) * sqrt(2/n).

Data “whitening”

From Martin Gorner

Data “whitening”

From Martin Gorner

Batch Normalization

From Martin Gorner

Batch Normalization

From Martin Gorner

Batch Normalization

From Martin Gorner

Outline

● Motivation
● A Simple Neural Network
● Ideas in Deep Net Architectures
● Ideas in Deep Net Optimization
● Practicals and Resources

Image from Martin Gorner

Data Collecting, Cleaning, Preprocessing > 50%
time

“OS” of Machine/Deep Learning
Caffe, Theano, Torch, Tensorflow, Pytorch, MXNET, …
Matlab in the earlier days. Python and C++ is the popular

choice now.

Deep network debugging, Visualizations

Resources

Stanford CS231N: Convolutional Neural Networks for Visual Recognition

Stanford CS224N: Natural Language Processing with Deep Learning

Berkeley CS294: Deep Reinforcement Learning

Learning Tensorflow and deep learning, without a PhD

Udacity and Coursera classes on Deep Learning

Book by Goodfellow, Bengio and Courville: http://www.deeplearningbook.org/

Talk by LeCun 2013: http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf

Talk by Hinton, Bengio, LeCun 2015:
https://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

http://cs231n.stanford.edu/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://rll.berkeley.edu/deeprlcourse/
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://www.udacity.com/course/deep-learning--ud730
https://www.coursera.org/learn/neural-networks
https://www.udacity.com/course/deep-learning--ud730
http://www.deeplearningbook.org/
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
https://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf
https://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

What’s not covered...

Sequential Models (RNN, LSTM, GRU)

Deep Reinforcement Learning

3D Deep Learning (MVCNN, 3D CNN, Spectral CNN, NN on Point Sets)

Generative and Unsupervised Models (AE, VAE, GAN etc.)

Theories in Deep Learning

...

Summary

● Why Deep Learning

● A Simple Neural Network
○ Model, Loss and Optimization

● Ideas in deep net architectures
○ Building blocks: FC, ReLU, conv, pooling, unpooling, upconv, dilated conv
○ Classics: MLP, LeNet, AlexNet, NIN, VGG, GoogleNet, ResNet

● Ideas in deep net optimization
○ Basics: GD, SGD, mini-batch SGD, Momentum, Adam, learning rate decay
○ Other Ingredients: Data augmentation, Regularization, Dropout, Batch

normalization

● Practicals and Resources

