

Introduction to Design
Considerations of DRAM
Memory Controllers

2

2

Agenda

 Self Introduction
 Overview
 Initialization, Training and DRAM PHY
 Transaction Interface
 DRAM Paging Policy and Address Mapping
 Operating Frequency and Latency
 DRAM Command and Transaction Scheduling
 DRAM Power Management
 Reliability, Availability, Serviceability Features
 Summary

3

3

Self Introduction

 Co-Author of Memory Systems: Cache, DRAM, Disk

 PhD, University of Maryland
― Memory Systems Performance Analysis

 Distinguished Engineer, Inphi Corporation
 Lead Memory Systems Architect, MetaRAM
 Lead development of multiple generations of memory

buffering devices
― Looks like memory devices to memory controller
― Looks like memory controller to memory devices

4

4

 Overview

5

5

Host (CPU), Memory Controller and Memory

 Memory Controller is a widget that supports specific
requests of the host(s) and accounts for the constraints
provided by the memory device(s)

 Provide functionally correct and reliable operations for both
host(s) and memory devices
― Then, optimize for performance and power

H
os

t

M
em

or
y

C
on

tro
lle

r

M
em

or
y

Read Addr[0x0F5ACCD0]
Write Addr[0xACC38C88]

Activate Raddr[0x0CCD4]
CAS Caddr[0x2D30]
Precharge Bank #5

Activate Raddr[0x0CCD4]
CAS Caddr[0x2D30]

Refresh Rank #3

6

6

Host (CPU), Memory Controller and Memory

 To design a good memory controller, we need to understand
― Host(s) requirements
― Host(s) to memory controller interface
― Memory device peculiarities (constraints)
― Controller to memory devices interface

H
os

t

M
em

or
y

C
on

tro
lle

r

M
em

or
y

7

7

Basic Memory Controller

 Command Queues
 Data FIFO’s
 PHY

― Fine grained AC timing control
― Trained to capture data accurately for read, launch data for write
― Adjust for temperature and voltage variance

 Memory Controller Output
― Properly Scheduled DRAM Command Sequences
― Meet all {Activate, Precharge, Refresh, read/write/ODT turnaround time}

requirements

Transaction
Q

ueue

Requestor

Requestor

Requestor

Transaction
S

cheduler

DRAM
Command
Queue(s)

D
R

A
M

C

om
m

and
S

cheduler

DRAM
Address

mapping and
Command
Translation

To DRAM
Memory
System

Refresh
scheduling

Power
Management

Read
Data FIFO

Write
Data FIFO

8

8

 Initialization, Training and DRAM PHY

9

9

PHY

 Interfaces the parallel, synchronous, digital part of memory
controller with the skewed, mesosynchronous, analog-ish
memory system

 Drive signals at the correct voltage and timing
 Capture signals at the correct voltage and timing
 Fine grained timing adjustments

― Skew, jitter, noise

 Voltage level shifters
― Noise rejection, compatibility enablement (e.g. different voltages for

different memory technologies)

10

10

RDIMM Timing and System Training

 The timing of when a DRAM device starts to drive DQ and assert ODT
depends on when it “sees” the arrival of clock at chip interface

 Read training and write leveling needed to accommodate differences:
Register tPDM, DIMM Topology, DRAM tDQSCK, system board trace
lengths

Reg

Differential DQS
DQ

Gnd/unlabeled signals

A

B
C

D

A. Connector Edge to Register Input Clock Delay
B. Register tPDM + ½ tCK
C. Clock delay from register to nearest DRAM device
D. Clock delivery difference between nearest and farthest DRAM device
E. Data trace length from nearest DRAM device to connector edge
F. Data trace length from farthest DRAM device to connector edge

Read Data Timing at DQS8/17: A + B + C + E
Read Data Timing at DQS0/9: A + B + C + D + F
Read Data Timing difference between DQS0/9 and DQS8/17 = D + F - E

Write Data Timing at DQS8/17: A + B + C - E
Write Data Timing at DQS0/9: A + B + C + D - F
Write Data Timing difference between DQS0/9 and DQS8/17 = D + E - F

D + F - E

D - F + E

EF

11

11

Training

 Clock/Address training
― Aligns command and address with clock at receiver

 Read Receiver Enable Training
― When to enable DQS receiver, per DIMM, per channel
― Determine effective width of read preamble

 Read DQS Training
― Place DQS strobe at center of DQ data eye

 Write Levelization
― When to launch “write data wave” to DRAM devices

 Write DQS Training
― Align DQ to DQS for each DRAM device

12

12

Write Leveling

 Write to DRAM MRS to set leveling mode
 DRAM enables special flip-flop
 Host delays DQS pulses until DQ changes to

discover clock positions

13

13

Read {DQS, Receiver Enable} Training
 DQS/DQ arrival requirements need to be discovered by

host memory controller
 Host performs read cycles with DRAM MPR enabled

― DRAM data pattern is fixed

 Host has to determine when DRAM asserts DQS pre-
amble

 Also determine DQS edge position
 Per {bit, nibble, byte} lane, per rank

CLK_
CLK

1 2 3 4 5 6 7 8 11109 12 13 14 15 16 17 180

DQ

DQS

Rd1Command

14

14

Schmoo Algorithms to Discover Center of Data Eye

 Shifting vref and timing to find the center of the data eye in
terms of timing and voltage

15

15

Host (CPU) Requirements – Transaction
Interface

16

16

What Does the Host Look Like?

 What kind of host(s) will the memory controller support?
― Server/Enterprise Processors
― Mobile Processors
― GPU/GPGPU
― FPGA
― Multiple hosts

 Workload Characteristics?
― Read/Write Ratio
― Request Rate (Bandwidth)
― Locality characteristics

● Spatial (How “close” are the addresses of the requests?)
● Temporal (How close are the requests to each other in terms of time?)

 Number of Concurrent Contexts?
 Cache Sizes?

17

17

K6 Processor to Memory Controller Bus Traces

 Quake trace shows
processing of each frame
― 50~75 ms per frame
― Or, 20~30 FPS

 Stream trace shows
memory array access
― Periods of 1:1 R/W ratio
― Periods of 2:1 R/W ratio
― Every 10 ms, array access

is interrupted by system
timer (context switch to O/S
scheduler)

18

18

Simplescalar Traces (SPEC CPU – Applu)
 Shows Memory Read,

Memory Write, Memory
Fetch Requests from
Simplescalar Simulator

 Zoomed in to show periods
of purely read access
pattern followed by write
dominant access pattern

19

19

Address Mapping

20

20

Paging Policy

C
om

m
an

d
D

ec
od

e

C
m

d/
A

dd
r R

ec
ei

ve
r Bank

Decoder

(I/O Gating, Data Mask)

C
ol

um
n

D
ec

od
er

Read & Write FIFO

Input DQ
Receiver

Output DQ
Driver

DRAM
Array

Sense
Amplifiers

R
ow

D

ec
od

er

DRAM
Array

Sense
Amplifiers

R
ow

D

ec
od

er

DRAM
Array

Sense
Amplifiers

R
ow

D

ec
od

er

Row width (8192)Row width (8192)Row width (8192)

8x IO width, 1/8 data rate
(i.e. 64bit wide, 200 MT/s)

Full IO width, full data rate
(i.e. 8 bit wide, 1600 MT/s)

Command
and

Address
input

Bank 0 Bank 1 Bank 7

 DRAM Access consist of two basic steps
― Row Access (Bank Activate)
― Column Access (read or write)

 Takes ~15 ns to open a row (destructive read), ~15 ns to
restore data to cells, ~15 ns to precharge bitline

 Once you open a row, do you keep it open for
subsequent access or do you precharge immediately?

21

21

Paging Policy – Figuring it out

 For DRAM devices where tRP = tRCD , open page hit percentage has
to be greater than 50% for open page to be better than close page

Open page – page hit latency = tCL

Open page – page miss (bank conflict) latency = tCL + tRP + tRCD

Close page – read latency = tRCD + tCL

Let A = the percentage of open page hits and
 (1 - A) = percentage of page misses (bank conflict)

For open page to be better than close page

A * tCL + (1 – A) * tCL + tRP + tRCD < tRCD + tCL

A * tCL + tCL + tRP + tRCD – A * tCL – A *tRP – A * tRCD < tRCD + tCL

tRP < A *tRP – A * tRCD

tRP / (tRP + tRCD) < A

22

22

Open Page for Single Threaded Apps

Application

Regions of
memory

Row (page) size

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Row 1
Row 0

Col 0 Col 7 Col 15
 Keep pages open for repeated access
 Ideal for single threaded applications
 Take advantage of inherent locality
 One row access, multiple column accesses

23

23

Closed Page for Multi-Threads

App 0

Row (page) size

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Row 1
Row 0

Col 0 Col 7 Col 15

App 1

App 2

 One (or few) column access per row access
 Open page for single access, then close immediately
 Better for (highly) multi-threaded applications

24

24

Side Effects of Large Caches

App 0

Row (page) size

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Row 1
Row 0

Col 0 Col 7 Col 15

App 1

App 2

 Modern processors have large caches
 Writes are often cached for performance reasons
 Dirty write evictions have poor temporal locality with DRAM pages

open for read

25

25

Paging Policy

 Low core count (Desktop/Mobile) memory controller
― Open page is good

 High core count Server memory controller
― Close (or two accesses per page, then close) page is better
― Increasing core count and cache sizes decrease locality seen at

memory controller interface

 Comes down to this . . .
― How many “regions” of memory will be accessed simultaneously?
― How many DRAM banks do you have in the system?
― If “region count” >> DRAM banks, then close page is better
― If “region count” << DRAM banks, then open page is better

26

26

Address Mapping

 Why spend so much time on Paging Policy?
― Paging policy dictates how banks indices should be allocated
― Expandability versus parallelism influence rank indices placement
― May wish to permute bank and rank indices to avoid collisions of

stride accesses

 Optimize to take advantage of DRAM memory system
structure(s)
― Exploit parallelism
― Avoid structural hazards

 Quite a bit to think about in the simple Physical to DRAM
address mapping

Physical Address DRAM Address

0xC0F1E780

CS 2
Bank 4

Row 0x094C
Col 0x104

27

27

Address Mapping
Covered in detail in Ch13 of Cache, DRAM, Disk

28

28

Operating Frequency and Latency

29

29

Gearbox Logic
 Host CPU’s typically operate at high frequencies

― E.g. 3+ GHz

 DRAM operates at somewhat lower base frequencies
― E.g. (1067 MHz) 2133 MT/s

 Gearbox logic interfaces with multiple clock domains, moving
command/data between them

 Lowest memory access latency or optimal bandwidth depends
on ratio of CPU frequency to DRAM operating frequency

 If designing to support multi-frequency Host/DRAM, need to find
harmonic frequencies or design gear box

 Need to stage logic carefully to minimize latency
 One alternative – use low base frequency and group schedule

multiple DRAM command per “cycle”
― E.g. FBDIMM

30

30

Frequency Dependence of Memory Access Latency

Opteron Processor
Core

L1
Cache

L2 Cache

clock domain crossing

System
Request
Queue

crossbarMemory
Controller

DDRx
PHY

D
R

A
M

 M
od

ul
es

D
R

A
M

 M
od

ul
es

L1 Access Miss

H
yp

er
tra

ns
po

rt

L2 Request
L2 Tag Check

Addr to NB
L2 Data

Route/Mux/
Ecc

W L1 D$ &
FWD

Clk boundary
SRQ

ADDR Decode

crossbar
Coherency

check
Memory

Controller
DDRx PHY

DRAM access
DDRx PHY
NB route

Clk boundary
CPU route
mux/ECC

W L1 D$ &
FWD

1
2
3
4
5

6

7

8

9

10

11
12
13
14

15

16

17

L2
Access
Latency

L2 Miss
Latency

1

2

3

4

5

6

7

8
910

11

12

13

14

15

16
17

DRAM Access
Latency

31

31

High Datarate and Low Latency

 Operating at highest datarate of given controller typically
means lowest latency
― Latency through controller in number of cycles

 LRDIMM (added buffering) @ 1066 MT/s had lower latency
than RDIMM @ 800 MT/s

units

Memory DIMM Type

Datarate 800 1066 1333 MT/s

Sandra Latency 92 96 90 85 ns

Assignment (Int BW) 6 6 7.8 9.7 GB/s

Scaling (Int BW) 6 5.8 7.8 9.7 GB/s

Addition (Int BW) 5.9 5.9 7.8 9.7 GB/s

Triad (Int BW) 6 5.8 7.8 9.6 GB/s

800

dataConfiguration

RDIMM LRDIMM

32

32

 DRAM Command and Transaction Scheduling

33

33

Transaction and DRAM Command Scheduling I
 No single, optimal solution for all applications can satisfy

conflicting requirements
 Considerations

― Process (thread) Priority
― Transaction Type
― Fairness

● Guarantee against starvation
― DRAM Structure

 Example
A. High Priority Thread Read
B. Low Priority Thread Instruction Fetch
C. I/O Read

 What if
― Scheduling “A” causes bank conflict, while “B” does not?
― I/O read has been bypassed for 1 us

Transaction
S

cheduling

D
R

A
M

S

cheduling

D
R

A
M

C

om
m

and
Q

ueues

D
R

A
M

R

efresh
FCFS? Deterministic?

34

34

Transaction and DRAM Command Scheduling II

 Different controllers make different trade offs
 Optimize for the resource that is more constrained
 If (DRAM Bandwidth > Data bandwidth), focus on Transaction

scheduling (simple DRAM command scheduler)
 If (Transaction Bandwidth > Data Bandwidth), focus on DRAM

command scheduling (keep DRAM wires busy)

D
R

AM

C
om

m
and

Arbiter
Refresh

management

Physical to
DRAM

Address
Translation

R
equestor

transaction
queue

Data Error
checking

Data parity
generation

D
ata FIFO

PH
Y

Error
Handler

Power
management

command
queues

DRAM
Bandwidth

Data
Bandwidth

35

35

DRAM Command Scheduling - Constraints

 DRAM Timing Parameter Constraints
― tCAS, tCWL,tRCD, tCCD, tRP, tWR, tWTR, tRTP, etc.

 DRAM Power Constraints
― tRRD, tFAW, etc.

 Bus Turnaround Times (Shared Resource Constraints)
― “rank-to-rank switching time”

Diagram illustrates 1333 MT/s operation with CL9 DRAM devices

CLK_
CLK

IMB0-to-DRAM Cmd

MC-to-IMB Cmd

IMB0-to-DRAM Data

IMB0-to-DRAM DQS

MC Data

MC DQS

DIMM0 DRAM1 Rtt

DIMM0 DRAM0 Rtt

IMB0-to-MC-DQ Rtt

IMB1-to-MC-DQ Rtt

1 2 3 4 5 6 7 8 11109 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28270

RttNom

RttWr

RttWr

RttNom

Wr0

Wr0Rd1

Rd1

RttNom

RttNom

A B C D E F

GA

Host channel
Addr/Cmd

clock domain

MB-to-DRAM
clock domain

MB-to-Host
Data Bus

Clock Domain

36

36

DRAM Command Queue Structure and Scheduling

 Simulation of queue structure and scheduling algorithm

37

37

Queuing Delays

 Lot of queuing in memory system
 Queuing delays add significant to latency for high sustained

bandwidth
 “better” memory system also depends on expected

sustainable bandwidth utilization

0 200 400 600 800

1

100

10000

1e+06

1e+08

N
u
m

b
e
r
o
f
A

c
ce

s
se

s
a
t
G
iv

e
n
 L

at
e
n
c
y
 V

a
lu

e

Memory Access Latency (ns)

CPRH179.art

38

38

DRAM Power Management
Relationship of Power, Latency and Bandwidth

39

39

Abstract Illustration of DRAM Power

 Substantial portion of power is standby (DLL/receiver) power

C
ur

re
nt

Time

1
2

activate

activate

read read read read

prec

Standby
(Input receivers, counter, DLL)

C
ur

re
nt

Time

40

40

DRAM Power

 In large (capacity) server memory systems, substantial
amounts of power consumed by DRAM devices in
standby
― Active DLL, input receivers, FIFO
― Algorithms designed to minimize standby power

 Mobile systems, substantial amount of power consumed
by refresh activity, even during self-refresh
― Partial array self-refresh

41

41

Reducing System Power with Race to Sleep
 Hurry up and sleep power management algorithm
 If application is neither latency critical nor bandwidth critical,

queue up read/write requests, then perform burst read/write,
interleaved with “idle” in self-refresh states
― Need to understand system-level QoS (e.g. bounded latency)

guarantees
 Example:

― 20% bandwidth utilization ~= 1 command, turn into
― 20 us in ~100% bandwidth, ~60 us in self refresh

 Eliminates
― DLL/receiver power from DRAM during “idle” periods
― Memory controller interface power (controller interface also powers

down)
 Sounds good, but some systems and events have latency

guarantees that must be met
― Self-refresh exit times may be too long – need careful analysis and

management

42

42

0 0.5 1 1.5 2 2.5 3

C6

C3

C0

Idle Power (Watts)

C
-S

ta
te

Idle Power

32GB LRDIMM 1333

32GB LRDIMM 1066

32GB LRDIMM 800

32GB RDIMM 1066

32GB RDIMM 800

16 GB LRDIMM 1333

16GB LRDIMM 1066

16GB LRDIMM 800

16GB RDIMM 1066

16GB RDIMM 800

43

43

Latency vs. Bandwidth vs. Power Curves

 Idle (unloaded) latency also depends on power state
 There are multiple curves, one for each power

management scheme, for a given memory system
 Should have Latency vs. Bandwidth vs. Power “surfaces”

as opposed to just curves

Sustained Bandwidth

Av
er

ag
e

Ac
ce

ss
 L

at
en

cy

44

44

 Reliability, Availability, Serviceability

45

45

DRAM RAS

 Signaling Exception
― Something went bad, how is it handled?

 Protecting Command Transport
― Command and Address Parity

 Protecting Data Transport
― CRC

 Protecting Data Storage
― ECC
― Chipkill
― Scrubbing

46

46

Signaling Exception in Memory Systems
 Existing DRAM memory systems are non-intelligent entities

― Host controller responsible for maintaining coherency, consistency
and correctness

 No mechanism from DRAM to generate “back pressure”
― CellularRAM is an exception
― LPDDR2-NVM uses DNV signal

 Future memory systems such as HMC may use transaction
based protocol
― More efficient handling of errors and exceptions
― Not available in present systems
― May incur additional latency penalty

 Existing high end servers utilize exception handling for error
recovery
― Instant (nanosecond scale) response to “alert”
― Command Parity Error and CRC Error

 Also, event_n signal maybe used to handle slower events
― Slow (microsecond scale) to respond to event_n trigger
― E.g. Thermal trigger (CLTT)

47

47

Exception Handling for High Speed Memory Systems

 High data rate controllers need deep pipelines to schedule
commands

 Upon exception - need to stall long pipeline, clean up and
restart
― Large performance hit at high frequencies

 More common – keep track of “replay pipeline”, then
restart from point of fault

cmd

data

cmd

data

cmd

data

cmd

data

cmd

data

cmd

data

cmd

data

cmd

data

cmd

data

cmd

data

cmd

data

cmd

data

Past (i.e. PC100 SDRAM)

Future (i.e. 3.2 Gb/s DDR4)

Data Burst DurationCAS Latency

Data
Burst

Duration

CAS Latency

48

48

Alert_n Signal Usage in DDR4

 Wired-Or signal from many devices
― Which command or data faulted?
― Multiple nanoseconds of “uncertainty window”

 Halt and restart from point of (address) fault
― Controller to read error log via MPR mechanism

 Force sequential re-execution of DRAM command stream
from point of address fault

 Alert_n may also signal DRAM write CRC error
― Faulting data may also require replay of command sequence to

avoid ordering violation

49

49

Address/Command Parity Error Log Register

 Parity error log register consists of four 8-bit wide registers
 Need 4 Control word writes -> DRAM MRS to transfer log

50

50

Exception Signaling Alternative: DNV Signal Usage in
LPDDR2-NVM

 LPDDR2-NVM device drives data status with data
― Good data
― Retry immediately
― Wait a while before retry

 Minimizes impact on low latency (DRAM) command
scheduling pipeline
― Data returned to requestor with additional status information
― Does not have to immediately retry or reissue command

 May be used for LPDDR2-NVM
― Not supported by LPDDR2-DRAM devices

51

51

Cyclic Redundant Code (CRC)
 Protects against transmission errors (signaling fault)
 Detect any number of errors, adjacent or not
 Optional Write CRC for DDR4

― Assume read data protected during transport by ECC/Chipkill
― If enabled: Memory controller computes CRC based on data and

sends along with transmitted data
― Increases burst length from 8 to 10
― DRAM device looks at data and computes CRC for comparison

against CRC received along with data
― If computed CRC differ from CRC received along with Data, signal

data fault via Alert_n
― In case of CRC error, re-transmission is typically the solution

 High speed memory system solutions use CRC to protect
packet transport
― Fully Buffered DIMMs
― Hybrid Memory Cube

52

52

SECDED ECC

 Single Error Correct, Double Error Detect (SECDED)
 Typically used to protect against storage errors
 Detect and correct 1 (or more, in case of Chipkill ECC) of

adjacent error bit(s)
 Check bits are computed by memory controller, sent along with

data and stored with data.
 Memory device(s) - no knowledge or understanding of ECC.
 Upon memory access, data and check bits are retrieved together
 Memory controller re-computes check bits based on returned data
 If re-computed check bits differ from retrieved check bits, error

has occurred.
 Difference vector used to distinguish between correctable single

bit error or uncorrectable multi-bit error

53

53

x4 Chipkill Example

1. Each symbol is 16 bits, 4 bit width
2. 4 consecutive data phases
 Chipkill symbol size is 16 (16-bit) symbols
 Two (16-bit) check symbols
 Failure of asingle symbol can be detected and corrected
 Failure of second symbol (chipkill + SEU) may have small coverage

gap
― e.g. Intel Seaburg chipset (5400) capable of detection of 99.986% of all single

bit failures that occur in addition to a x8 device failure.

x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4x4 x4

72b data bus

Ti
m

e 1 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1
1 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1

1 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1
1 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1 1 11 11 11 1 1 11 1 1 11 1

Phase 0
Phase 1
Phase 2
Phase 3

12

54

54

Scrubbing

 “Scrub out” SEU-induced soft errors
 Prevent build-up of multi-bit errors
 Demand Scrubbing

― ECC error? Write back data to location of error so you don’t get
the bad bit again

― Did the error bit go away?

 Patrol Scrubbing
― Constant, background read of data to ensure single bit errors

are “scrubbed” out of memory device
― Minimizes chance that single bit errors will exist if and when

chipkill/component failure occurs
― Hardware injected DRAM read commands that walk through

physical memory once every XX hours

55

55

 Summary

56

56

Summary

 Memory controllers are the glue that binds memory
devices to host logic

 Many different varieties to support wide ranging set of
requirements

 Attempted herein to describe
― Commonalities where they exist
― Design points or design choices depending on requirements

