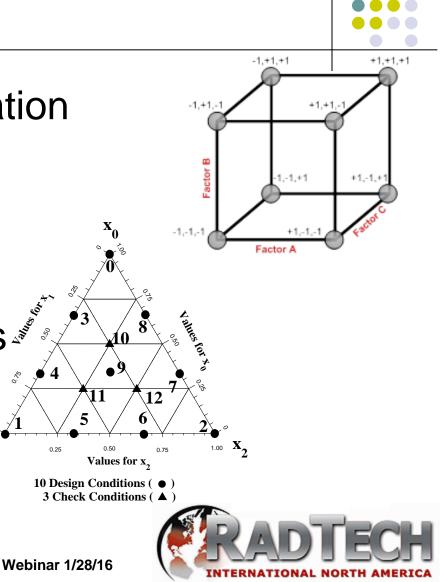
Introduction to Design of Experiments for UV/EB Scientists and Engineers

Allan Guymon Chemical and Biochemical Engineering <u>Allan-Guymon@uiowa.edu</u>

(319)335-5015

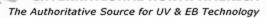

January 28, 2016

Outline

- Introduction and Motivation
- Steps in DOE
- DOE Basics
- Screening Designs
- Model Building Designs
- Mixture Designs

The Authoritative Source for UV & EB Technology

Design of Experiments Webinar 1/28/16


X₁

(Statistical) Design of Experiments- DOE

Careful and efficient plan for data collection and analysis to test hypotheses – maximize information with fewest experiments

Intentions

- Product/ Process Improvement
- Lower Product Variability
- Improve Process Robustness
- Expand Scientific Knowledge

Inside

The New

Advantages of DOE

- Can simultaneously consider many factors (independent variables) and their interactions*
 - Identify significant factors and interactions within limits of experimental error
 - Find factor values to optimize a response (dependent variable)
 - Give direction for a specific response
 - Find best overall conditions for several responses
- * Factor produces a different response when a second factor is changed.

DOE Background

- Jacques Hadamard (1865 1963)
 - Mathematician
 - Discovered Independent Matrices
- Sir Ronald Fisher (1890 1962)
 - Statistician and Geneticist
 - Applied Hadamard's Matrices to Develop Multilevel Full Factorial Designs



Foundation of Experimental Designs

- All data can be modeled to a mathematical relationship (e.g. a line or a polynomial)
- DOE helps in choosing experimental factor values that provide optimal information per point.
- Ideally, factor response relationships are simple, but often higher degree polynomials must be used to obtain accurate approximations.

Model Building

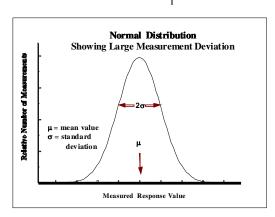
Using DOE techniques, coefficients of the polynomial can be estimated.

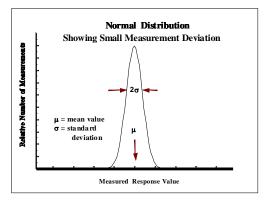
 $\mathsf{R} = \mathsf{b}_0 + \mathsf{b}_1 \mathsf{x}_1 + \mathsf{b}_2 \mathsf{x}_2 + \mathsf{b}_3 \mathsf{x}_1 \mathsf{x}_2 + \dots$

- The magnitude of the coefficients are used to determine which factors and/or interactions are important.
- Models are only accurate using factor space established in DOE.

Steps Involved in an Experimental Design

- 1. Do your homework.
- 2. Define problem statement (quantitatively).
- 3. Establish experimental objectives.
- 4. Select responses and expected ranges.
- 5. Select factors and levels.
- 6. Determine resources (use only 35% in first DOE)
- 7. Select design type and analysis strategy.
- 8. Randomize experimental runs.
- 9. Conduct experiments.
- 10. DOE Analysis.
- 11. Make conclusions and predictions.
- 12. Set up new DOE if needed.





Role of Error

- Noise or error is always present in any experimental design.
- If large, error can prevent any meaningful conclusions (garbage in \rightarrow garbage out)
- Random error must be minimized and systematic error eliminated as much as possible.
- If relative standard deviation (std dev/mean) is greater than about 8%, information will be difficult to obtain using DOE.

Coded Factor Values

Designs use coded values to represent factors

	Real	Factor
Photoinitiator %	Space	Space
Level 1	0.50%	-1
Level 2	1.00%	0
Level 3	1.50%	1

- In coded space, all factors have the same range, and thus the same magnitude.
- Coded space enables a better comparison of the relative importance of factors influencing the response.

DOE Lingo

- Design (layout): Complete specification of experimental test runs, including blocking, randomization, repeat tests, replication, and the assignment of factor-level combinations to experimental units.
- Factor: A controllable experimental variable that is thought to influence the response.
- Level: Specific value of a factor (i.e. -1, 0, 1 in coded space).
- Response: Outcome or result of an experiment.
- Experimental region (factor space): All possible factor-level combinations for which experimentation is possible.
- Interaction: Existence of joint factor effects in which the effect of each factor depends on the levels of the other factors.
- Confounding: One or more effects that cannot unambiguously be attributed to a single factor or interaction.
- Covariate: An uncontrollable variable that influences the response but is unaffected by any other experimental factors.
- Effect: Change in the average response between two factor-level combinations or between two experimental conditions.

Photocuring Design

- Select response(s)
 - Conversion
 - Adhesion strength
- Select factors and ranges
 - Photoinitiator concentration
 - 0.5-1.5%
 - Temperature
 - 60-80°F
 - Oligomer concentration
 - 60-80 %
 - Belt speed (light dose)
 - Phase of the moon

Run No.	Photoinitiator %	Temperature (°F)
1	0.50%	60
2	0.50%	80
3	1.50%	60
4	1.50%	80

Run No.	Photoinitiator %	Temperature (°F)
1	-1	-1
2	-1	1
3	1	-1
4	1	1

General Design Types

- Screening Designs Used to identify major factors (and interactions) important in determining a response from many possible factors.
- Model Building Designs Establish a function that estimates the effects of major factors and interactions on response.
- Simplex or Mixture Designs Variable components always sum to constant value (e.g. 1).

Common Designs

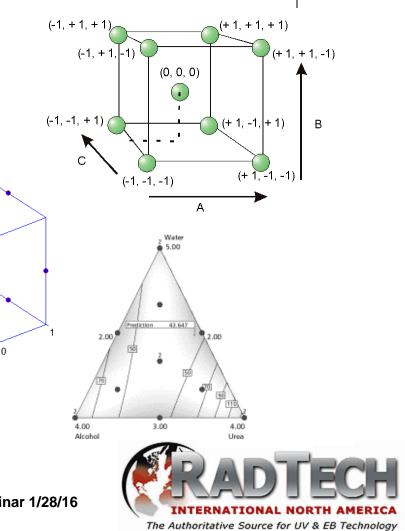
- Screening
 - Fractional Factorial
 - Plackett Burman
 - Taguchi
- Model Building
 - Full Factorial
 - Box Behnken
 - Central Composite
 - Equiradial
- Mixture Designs
 - Simplex Lattice
 - Simplex Centroid

Design of Experiments Webinar 1/28/16

0

-1 -1

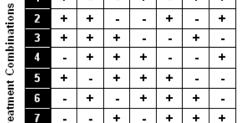
0.5


0

-0.5

0.5

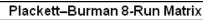
0


-0.5

Screening Designs

- Screening designs are intended to find the few significant factors from a list of many potential factors.
- The design is a typically a subset of a full factorial design.
- Use screening designs when you have many factors to consider Even when the experimental goal is to eventually fit a response surface model, the first experiment should be a screening design when there are many factors to consider.
- Interactions can be determined using some screening designs, but are typically confounded with other factors and/or interactions.
- Fractional factorial, Plackett-Burman, Taguchi

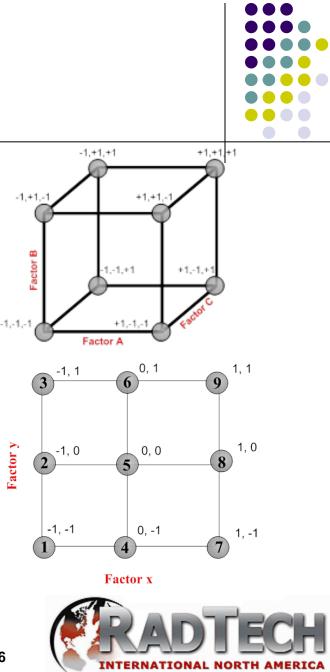
+


+

+

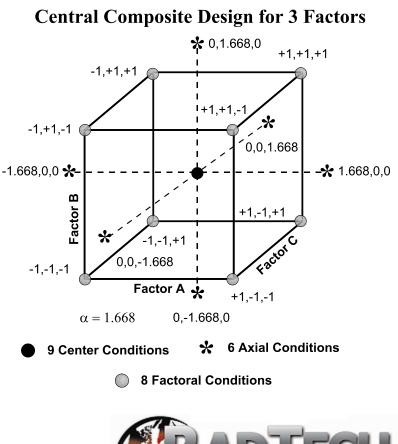
+

+



Full Factorial

- Responses involve k factors.
- Each factor has L levels. Total test conditions = L^k
- No confounding of factors or interactions.
- Two level designs used to determine which of many factors are important.
- High level designs (L>2) are used to study a few important factors and develop response models.
- Maximum number of experiments.



The Authoritative Source for UV & EB Technolog

Central Composite Design

- Sequential Design
 - 2 Level Factorial (Linear)
 - Center Points
 - Axial Points
- If linear model is not adequate, axial points are added to build non-linear model.

The Authoritative Source for UV & EB Technology

Equiradial Design

- All exterior points on circle or sphere.
 - Pentagonal
 - Hexagonal
 - Octagonal
 - Decagonal
 - Icosahedral

Hexagonal Design v		Test Design Matrix in Coded Variable Space		
	Test Condition	X	У	
$(-0.5, \sqrt{3}/2)$ (0.5, $\sqrt{3}/2$)	1	0.5	V3/ 2	
	2	1	0	
(-1, 0) = (-1,	3	0.5	-V3/2	
	X 4	-0.5	- 1/3/2	
	5	-1	0	
	6	-0.5	V3/2	
	7	0	0	
$(-0.5, -\sqrt{3}/2)$ (0.5, $-\sqrt{3}/2$)	8	0	0	
	9	0	0	
Figure shows y y coded plane groups	10	0	0	
Figure shows x-y coded plane space.	11	0	0	

Numbers in gray circles are test conditions.

Design of Experiments Webinar 1/28/16

11

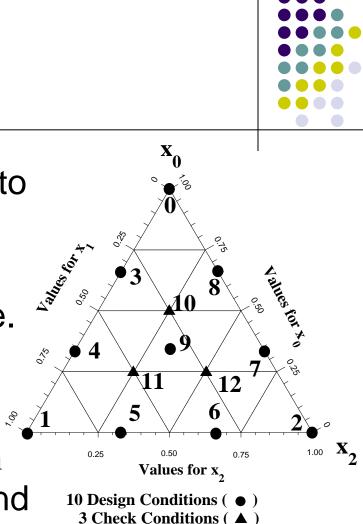
12

 $\sqrt{3}/2$

 $-\sqrt{3}/2$

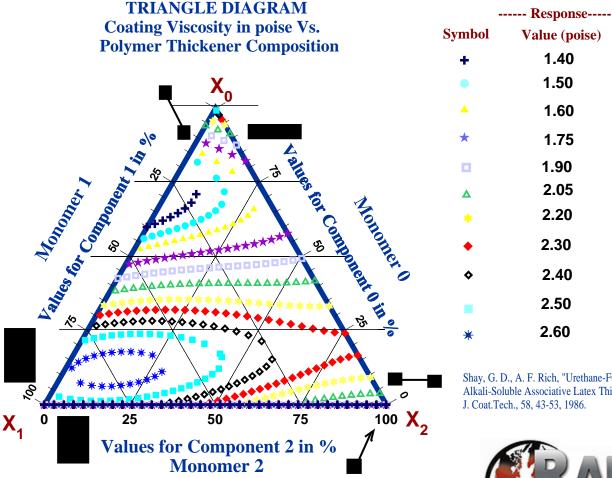
 $-\sqrt{3}/2$

 $\sqrt{3}/2$


0

0

Mixture Designs


- Components must always sum to same amount.
- Three component designs are shown on an equilateral triangle.
- Four components designs are shown on a tetrahedron.
- Cubic model for 3 and 4 x₁
 components only requires 10 and 14 experiments respectively.

Simplex Lattice Mixture Design

Design of Experiments Webinar 1/28/16

Shay, G. D., A. F. Rich, "Urethane-Functional Alkali-Soluble Associative Latex Thickners." J. Coat.Tech., 58, 43-53, 1986.

1.40 1.50

1.60

1.75

1.90

2.05

2.20

2.30

2.40

2.50

2.60

Response Surface Analysis

- A response surface model can be used to optimize responses based on specified criteria.
- DOE software provides easily produced graphs and analysis.
- Software programs include:
 - **Design Ease/Expert**
 - Mini-tab
 - JMP and other statistics packages.

Design of Experiments Webinar 1/28/16

R = f(x, y)50 0.8 0.75 0.70.65 0.6 0.55 0.175 0/85 0.50.9 400.8 0.9 0.95 0\8 0.65 0.6 0.95 30 0.85 0.75 0,00 0.85 0.65\0.75 0.820-МЗ 0.850.85 0.5 0.55 0.65 0.20.40.50.10.3М

RESPONSE SURFACE CONTOUR PLOT

The Authoritative Source for UV & EB Technology

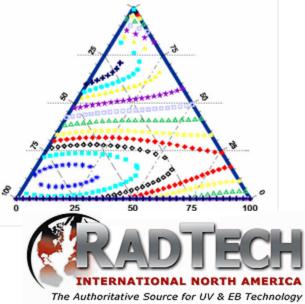
Summary

- Design of Experiments is a valuable tool to maximize the amount of information with a minimal number of experiments.
- While numerous DOE frameworks exist, all operate using similar principles.
- Use sequential series of experiments
 - Screening Design
 - Model Building Design
 - Confirmation Runs

Short Course at Radtech 2016

- Design of Experiments for UV/EB Formulation Scientists
- Monday, May 16th 6:30 9:00 pm
- Tuesday, May 17th noon 2:00 pm
- Enrollment capped at 30 attendees
- DOE designs, analysis, and background will covered in much greater detail
- Demonstration of software
- Hands on activities (and prizes!).
- Register at <u>www.radtech.org</u>

Design of Experiments – A Two Day In House Short Course (with Roger Hester)


- In-depth instruction regarding background, motivation, and details of experimental design
- Attendees set up a DOE which will be evaluated by the instructors
- Three hands-on DOE labs
- Software demonstration and training
- Statistics tutorial
- 1.5 CEU credits from University of lowa

Contact Allan at <u>allan-guymon@uiowa.edu</u> or (319) 335-5015 for more details.

Design of Experiments Webinar 1/28/16

Comments from previous attendees include:

- The instructors did a very good job in presenting the material.
- I would recommend this course as essential for any DOE user.
- Very engaging instructors; held my interest throughout.
- As exciting as DOE can be!
- The most useful DOE course I have taken (this is my third or fourth).

