
Introduction to Detection Theory

Reading:

• Ch. 3 in Kay-II.

• Notes by Prof. Don Johnson on detection theory,
see http://www.ece.rice.edu/~dhj/courses/elec531/notes5.pdf.

• Ch. 10 in Wasserman.
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Introduction to Detection Theory (cont.)

We wish to make a decision on a signal of interest using noisy
measurements. Statistical tools enable systematic solutions
and optimal design.

Application areas include:

• Communications,

• Radar and sonar,

• Nondestructive evaluation (NDE) of materials,

• Biomedicine, etc.
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Example: Radar Detection. We wish to decide on the
presence or absence of a target.
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Introduction to Detection Theory

We assume a parametric measurement model p(x | θ) [or
p(x ; θ), which is the notation that we sometimes use in the
classical setting].

In point estimation theory, we estimated the parameter θ ∈ Θ
given the data x.

Suppose now that we choose Θ0 and Θ1 that form a partition
of the parameter space Θ:

Θ0 ∪Θ1 = Θ, Θ0 ∩Θ1 = ∅.

In detection theory, we wish to identify which hypothesis is true
(i.e. make the appropriate decision):

H0 : θ ∈ Θ0, null hypothesis

H1 : θ ∈ Θ1, alternative hypothesis.

Terminology: If θ can only take two values,

Θ = {θ0, θ1}, Θ0 = {θ0}, Θ1 = {θ1}

we say that the hypotheses are simple. Otherwise, we say that
they are composite.

Composite Hypothesis Example: H0 : θ = 0 versus H1 : θ ∈
(0,∞).
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The Decision Rule

We wish to design a decision rule (function) φ(x) : X → (0, 1):

φ(x) =
{

1, decide H1,
0, decide H0.

which partitions the data space X [i.e. the support of p(x | θ)]
into two regions:

Rule φ(x): X0 = {x : φ(x) = 0}, X1 = {x : φ(x) = 1}.

Let us define probabilities of false alarm and miss:

PFA = E x | θ[φ(X) | θ] =
∫
X1

p(x | θ) dx for θ in Θ0

PM = E x | θ[1− φ(X) | θ] = 1−
∫
X1

p(x | θ) dx

=
∫
X0

p(x | θ) dx for θ in Θ1.

Then, the probability of detection (correctly deciding H1) is

PD = 1−PM = E x | θ[φ(X) | θ] =
∫
X1

p(x | θ) dx for θ in Θ1.
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Note: PFA and PD/PM are generally functions of the parameter
θ (where θ ∈ Θ0 when computing PFA and θ ∈ Θ1 when
computing PD/PM).

More Terminology. Statisticians use the following
terminology:

• False alarm ≡ “Type I error”

• Miss ≡ “Type II error”

• Probability of detection ≡ “Power”

• Probability of false alarm ≡ “Significance level.”
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Bayesian Decision-theoretic Detection Theory

Recall (a slightly generalized version of) the posterior expected
loss:

ρ(action |x) =
∫

Θ

L(θ, action) p(θ |x) dθ

that we introduced in handout # 4 when we discussed Bayesian
decision theory. Let us now apply this theory to our easy
example discussed here: hypothesis testing, where our action
space consists of only two choices. We first assign a loss table:

decision rule φ ↓ true state → Θ1 Θ0

x ∈ X1 L(1|1) = 0 L(1|0)
x ∈ X0 L(0|1) L(0|0) = 0

with the loss function described by the quantities
L(declared | true):

• L(1 | 0) quantifies loss due to a false alarm,

• L(0 | 1) quantifies loss due to a miss,

• L(1 | 1) and L(0 | 0) (losses due to correct decisions) —
typically set to zero in real life. Here, we adopt zero losses
for correct decisions.
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Now, our posterior expected loss takes two values:

ρ0(x) =
∫

Θ1

L(0 | 1) p(θ |x) dθ

+
∫

Θ0

L(0 | 0)︸ ︷︷ ︸
0

p(θ |x) dθ

=
∫

Θ1

L(0 | 1) p(θ |x) dθ

L(0 | 1) is constant
= L(0 | 1)

∫
Θ1

p(θ |x) dθ︸ ︷︷ ︸
P [θ∈Θ1 |x]

and, similarly,

ρ1(x) =
∫

Θ0

L(1 | 0) p(θ |x) dθ

L(1 | 0) is constant
= L(1 | 0)

∫
Θ0

p(θ |x) dθ︸ ︷︷ ︸
P [θ∈Θ0 |x]

.

We define the Bayes’ decision rule as the rule that minimizes
the posterior expected loss; this rule corresponds to choosing
the data-space partitioning as follows:

X1 = {x : ρ1(x) ≤ ρ0(x)}
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or

X1 =

{
x :

P [θ∈Θ1 |x]︷ ︸︸ ︷∫
Θ1

p(θ |x) dθ∫
Θ0

p(θ |x) dθ︸ ︷︷ ︸
P [θ∈Θ0 |x]

≥ L(1 | 0)
L(0 | 1)

}
(1)

or, equivalently, upon applying the Bayes’ rule:

X1 =

{
x :

∫
Θ1

p(x | θ) π(θ) dθ∫
Θ0

p(x | θ) π(θ) dθ
≥ L(1 | 0)

L(0 | 1)

}
. (2)

0-1 loss: For L(1|0) = L(0|1) = 1, we have

decision rule φ ↓ true state → Θ1 Θ0

x ∈ X1 L(1|1) = 0 L(1|0) = 1
x ∈ X0 L(0|1) = 1 L(0|0) = 0

yielding the following Bayes’ decision rule, called the maximum
a posteriori (MAP) rule:

X1 =
{

x :
P [θ ∈ Θ1 |x]
P [θ ∈ Θ0 |x]

≥ 1
}

(3)

or, equivalently, upon applying the Bayes’ rule:

X1 =

{
x :

∫
Θ1

p(x | θ) π(θ) dθ∫
Θ0

p(x | θ) π(θ) dθ
≥ 1

}
. (4)
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Simple hypotheses. Let us specialize (1) to the case of simple
hypotheses (Θ0 = {θ0},Θ1 = {θ1}):

X1 =

{
x :

p(θ1 |x)
p(θ0 |x)︸ ︷︷ ︸

posterior-odds ratio

≥ L(1 | 0)
L(0 | 1)

}
. (5)

We can rewrite (5) using the Bayes’ rule:

X1 =

{
x :

p(x | θ1)
p(x | θ0)︸ ︷︷ ︸

likelihood ratio

≥ π0 L(1 | 0)
π1 L(0 | 1)

}
(6)

where
π0 = π(θ0), π1 = π(θ1) = 1− π0

describe the prior probability mass function (pmf) of the binary
random variable θ (recall that θ ∈ {θ0, θ1}). Hence, for binary
simple hypotheses, the prior pmf of θ is the Bernoulli pmf.
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Preposterior (Bayes) Risk

The preposterior (Bayes) risk for rule φ(x) is

E x,θ[loss] =
∫
X1

∫
Θ0

L(1 | 0) p(x | θ)π(θ) dθ dx

+
∫
X0

∫
Θ1

L(0 | 1) p(x | θ)π(θ) dθ dx.

How do we choose the rule φ(x) that minimizes the preposterior
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risk? ∫
X1

∫
Θ0

L(1 | 0) p(x | θ)π(θ) dθ dx

+
∫
X0

∫
Θ1

L(0 | 1) p(x | θ)π(θ) dθ dx

=
∫
X1

∫
Θ0

L(1 | 0) p(x | θ)π(θ) dθ dx

−
∫
X1

∫
Θ1

L(0 | 1) p(x | θ)π(θ) dθ dx

+
∫
X0

∫
Θ1

L(0 | 1) p(x | θ)π(θ) dθ dx

+
∫
X1

∫
Θ1

L(0 | 1) p(x | θ)π(θ) dθ dx

= const︸ ︷︷ ︸
not dependent on φ(x)

+
∫
X1

{
L(1 | 0) ·

∫
Θ0

p(x | θ)π(θ) dθ

−L(0 | 1) ·
∫

Θ1

p(x | θ)π(θ) dθ
}

dx

implying that X1 should be chosen as{
X1 : L(1 | 0)·

∫
Θ0

p(x | θ)π(θ) dθ−L(0 | 1)·
∫

Θ1

p(x | θ)π(θ) < 0
}
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which, as expected, is the same as (2), since

minimizing the posterior expected loss

⇐⇒ minimizing the preposterior risk for every x

as showed earlier in handout # 4.

0-1 loss: For the 0-1 loss, i.e. L(1|0) = L(0|1) = 1, the
preposterior (Bayes) risk for rule φ(x) is

E x,θ[loss] =
∫
X1

∫
Θ0

p(x | θ)π(θ) dθ dx

+
∫
X0

∫
Θ1

p(x | θ)π(θ) dθ dx (7)

which is simply the average error probability, with averaging
performed over the joint probability density or mass function
(pdf/pmf) or the data x and parameters θ.
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Bayesian Decision-theoretic Detection for
Simple Hypotheses

The Bayes’ decision rule for simple hypotheses is (6):

Λ(x)︸ ︷︷ ︸
likelihood ratio

=
p(x | θ1)
p(x | θ0)

H1

≷
π0 L(1|0)
π1 L(0|1)

≡ τ (8)

see also Ch. 3.7 in Kay-II. (Recall that Λ(x) is the sufficient
statistic for the detection problem, see p. 37 in handout # 1.)
Equivalently,

log Λ(x) = log[p(x | θ1)]− log[p(x | θ0)]
H1

≷ log τ ≡ τ ′.

Minimum Average Error Probability Detection: In the
familiar 0-1 loss case where L(1|0) = L(0|1) = 1, we know
that the preposterior (Bayes) risk is equal to the average error
probability, see (7). This average error probability greatly
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simplifies in the simple hypothesis testing case:

av. error probability =
∫
X1

L(1 | 0)︸ ︷︷ ︸
1

p(x | θ0)π0 dx

+
∫
X0

L(0 | 1)︸ ︷︷ ︸
1

p(x | θ1)π1 dx

= π0 ·
∫
X1

p(x | θ0) dx︸ ︷︷ ︸
PFA

+π1 ·
∫
X0

p(x | θ1) dx︸ ︷︷ ︸
PM

where, as before, the averaging is performed over the joint
pdf/pmf of the data x and parameters θ, and

π0 = π(θ0), π1 = π(θ1) = 1− π0 (the Bernoulli pmf).

In this case, our Bayes’ decision rule simplifies to the MAP rule
(as expected, see (5) and Ch. 3.6 in Kay-II):

p(θ1 |x)
p(θ0 |x)︸ ︷︷ ︸

posterior-odds ratio

H1

≷ 1 (9)

or, equivalently, upon applying the Bayes’ rule:

p(x | θ1)
p(x | θ0)︸ ︷︷ ︸

likelihood ratio

H1

≷
π0

π1
. (10)
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which is the same as

• (4), upon substituting the Bernoulli pmf as the prior pmf for
θ and

• (8), upon substituting L(1|0) = L(0|1) = 1.
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Bayesian Decision-theoretic Detection Theory:
Handling Nuisance Parameters

We apply the same approach as before — integrate the nuisance
parameters (ϕ, say) out!

Therefore, (1) still holds for testing

H0 : θ ∈ Θ0 versus

H1 : θ ∈ Θ1

but pθ |x(θ |x) is computed as follows:

pθ |x(θ |x) =
∫

pθ,ϕ |x(θ, ϕ |x) dϕ

and, therefore,

∫
Θ1

p(θ |x)︷ ︸︸ ︷∫
pθ,ϕ |x(θ, ϕ |x) dϕ dθ∫

Θ0

∫
pθ,ϕ |x(θ, ϕ |x) dϕ︸ ︷︷ ︸

p(θ |x)

dθ

H1

≷
L(1 | 0)
L(0 | 1)

(11)
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or, equivalently, upon applying the Bayes’ rule:∫
Θ1

∫
px | θ,ϕ(x | θ, ϕ) πθ,ϕ(θ, ϕ) dϕ dθ∫

Θ0

∫
px | θ,ϕ(x | θ, ϕ) πθ,ϕ(θ, ϕ) dϕ dθ

H1

≷
L(1 | 0)
L(0 | 1)

. (12)

Now, if θ and ϕ are independent a priori, i.e.

πθ,ϕ(θ, ϕ) = πθ(θ) · πϕ(ϕ) (13)

then (12) can be rewritten as

∫
Θ1

πθ(θ)

p(x |θ)︷ ︸︸ ︷∫
px | θ,ϕ(x | θ, ϕ) πϕ(ϕ) dϕ dθ∫

Θ0
πθ(θ)

∫
px | θ,ϕ(x | θ, ϕ) πϕ(ϕ)︸ ︷︷ ︸

p(x |θ)

dϕ dθ

H1

≷
L(1 | 0)
L(0 | 1)

. (14)

Simple hypotheses and independent priors for θ and ϕ: Let
us specialize (11) to the simple hypotheses (Θ0 = {θ0},Θ1 =
{θ1}): ∫

pθ,ϕ |x(θ1, ϕ |x) dϕ∫
pθ,ϕ |x(θ0, ϕ |x) dϕ

H1

≷
L(1 | 0)
L(0 | 1)

. (15)

Now, if θ and ϕ are independent a priori, i.e. (13) holds, then
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we can rewrite (14) [or (15) using the Bayes’ rule]:

∫
px | θ,ϕ(x | θ1, ϕ) πϕ(ϕ) dϕ∫
px | θ,ϕ(x | θ0, ϕ) πϕ(ϕ) dϕ︸ ︷︷ ︸

integrated likelihood ratio

=

same as (6)︷ ︸︸ ︷
p(x | θ1)
p(x | θ0)

H1

≷
π0 L(1 | 0)
π1 L(0 | 1)

(16)

where
π0 = πθ(θ0), π1 = πθ(θ1) = 1− π0.

EE 527, Detection and Estimation Theory, # 5 19



Chernoff Bound on Average Error Probability
for Simple Hypotheses

Recall that minimizing the average error probability

av. error probability =
∫
X1

∫
Θ0

p(x | θ)π(θ) dθ dx

+
∫
X0

∫
Θ1

p(x | θ)π(θ) dθ dx

leads to the MAP decision rule:

X ?
1 =

{
x :
∫

Θ0

p(x | θ) π(θ) dθ −
∫

Θ1

p(x | θ) π(θ) dθ < 0
}

.

In many applications, we may not be able to obtain a
simple closed-form expression for the minimum average error
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probability, but we can bound it as follows:

min av. error probability =
∫
X?

1

∫
Θ0

p(x | θ)π(θ) dθ dx

+
∫
X?

0

∫
Θ1

p(x | θ)π(θ) dθ dx

using
the def.
of X?

1=
∫

X︸︷︷︸
data space

min
{∫

Θ0

p(x | θ)π(θ) dθ,

∫
Θ1

p(x | θ)π(θ) dθ)
}

dx

≤
∫
X

[ 4
= q0(x)︷ ︸︸ ︷∫

Θ0

p(x | θ)π(θ) dθ
]λ [ 4

= q1(x)︷ ︸︸ ︷∫
Θ1

p(x | θ)π(θ) dθ
]1−λ

dx

=
∫
X

[q0(x)]λ [q1(x)]1−λ dx

which is the Chernoff bound on the minimum average error
probability. Here, we have used the fact that

min{a, b} ≤ aλ b1−λ, for 0 ≤ λ ≤ 1, a, b ≥ 0.

When

x =


x1

x2
...

xN
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with

• x1, x2, . . . xN conditionally independent, identically
distributed (i.i.d.) given θ and

• simple hypotheses (i.e. Θ0 = {θ0},Θ1 = {θ1})

then

q0(x) = p(x | θ0) · π0 = π0

N∏
n=1

p(xn | θ0)

q1(x) = p(x | θ1) · π1 = π1

N∏
n=1

p(xn | θ1)

yielding

Chernoff bound for N conditionally i.i.d. measurements (given θ) and simple hyp.

=
∫ [

π0

N∏
n=1

p(xn | θ0)
]λ [

π1

N∏
n=1

p(xn | θ1)
]1−λ

dx

= πλ
0 π1−λ

1 ·
N∏

n=1

{∫
[p(xn | θ0)]λ [p(xn | θ1)]1−λ dxn

}
= πλ

0 π1−λ
1 ·

{∫
[p(x1 | θ0)]λ [p(x1 | θ1)]1−λ dx1

}N
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or, in other words,

1
N
· log(min av. error probability) ≤ log(πλ

0 π1−λ
1 )

+ log
∫

[p(x1 | θ0)]λ [p(x1 | θ1)]1−λ dx1, ∀λ ∈ [0, 1].

If π0 = π1 = 1/2 (which is almost always the case of interest
when evaluating average error probabilities), we can say that,
as N →∞,

min av. error probability
for N cond. i.i.d. measurements (given θ) and simple hypotheses

→

f(N) · exp
(
−N ·

{
− min

λ∈[0,1]
log
∫

[p(x1 | θ0)]λ [p(x1 | θ1)]1−λ
}

︸ ︷︷ ︸
Chernoff information for a single observation

)

where f(N) is a slowly-varying function compared with the
exponential term:

lim
N→∞

log f(N)
N

= 0.

Note that the Chernoff information in the exponent term of
the above expression quantifies the asymptotic behavior of the
minimum average error probability.

We now give a useful result, taken from
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K. Fukunaga, Introduction to Statistical Pattern Recognition,
2nd ed., San Diego, CA: Academic Press, 1990

for evaluating a class of Chernoff bounds.

Lemma 1. Consider p1(x) = N (µ1,Σ1) and p2(x) =
N (µ2,Σ2). Then∫

[p1(x)]λ · [p2(x)]1−λ dx = exp[−g(λ)]

where

g(λ) =
λ (1− λ)

2
· (µ2 − µ1)

T [λΣ1 + (1− λ)Σ2]−1(µ2 − µ1)

+1
2 log

[|λΣ1 + (1− λ)Σ2|
|Σ1|λ · |Σ2|1−λ

]
.
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Probabilities of False Alarm (P FA) and
Detection (P D) for Simple Hypotheses
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PFA = P [
Λ(x)︷ ︸︸ ︷

test statistic > τ︸ ︷︷ ︸
X∈X1

| θ = θ0]

PD = P [test statistic > τ︸ ︷︷ ︸
X∈X0

| θ = θ1].

Comments:

(i) As the region X1 shrinks (i.e. τ ↗ ∞), both of the above
probabilities shrink towards zero.
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(ii) As the region X1 grows (i.e. τ ↘ 0), both of these
probabilities grow towards unity.

(iii) Observations (i) and (ii) do not imply equality between
PFA and PD; in most cases, as R1 grows, PD grows more
rapidly than PFA (i.e. we better be right more often than we
are wrong).

(iv) However, the perfect case where our rule is always right
and never wrong (PD = 1 and PFA = 0) cannot occur when
the conditional pdfs/pmfs p(x | θ0) and p(x | θ1) overlap.

(v) Thus, to increase the detection probability PD, we must
also allow for the false-alarm probability PFA to increase.
This behavior

• represents the fundamental tradeoff in hypothesis testing
and detection theory and

• motivates us to introduce a (classical) approach to testing
simple hypotheses, pioneered by Neyman and Pearson (to
be discussed next).
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Neyman-Pearson Test for Simple Hypotheses

Setup:

• Parametric data models p(x ; θ0), p(x ; θ1),

• Simple hypothesis testing:

H0 : θ = θ0 versus

H1 : θ = θ1.

• No prior pdf/pmf on θ is available.

Goal: Design a test that maximizes the probability of detection

PD = P [X ∈ X1 ; θ = θ0]

(equivalently, minimizes the miss probability PM) under the
constraint

PFA = P [X ∈ X1 ; θ = θ0] = α′ ≤ α.

Here, we consider simple hypotheses; classical version of
testing composite hypotheses is much more complicated. The
Bayesian version of testing composite hypotheses is trivial (as
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is everything else Bayesian, at least conceptually) and we have
already seen it.

Solution. We apply the Lagrange-multiplier approach:
maximize

L = PD + λ · (PFA − α′)

=
∫
X1

p(x ; θ1) dx + λ ·
[ ∫

X1

p(x; θ0) dx− α′
]

=
∫
X1

[p(x ; θ1)− λ p(x ; θ0)] dx− λ · α′.

To maximize L, set

X1 = {x : p(x ; θ1)−λ·p(x ; θ0) > 0} =
{

x :
p(x ; θ1)
p(x ; θ0)

> λ
}

.

Again, we find the likelihood ratio:

Λ(x) =
p(x ; θ1)
p(x ; θ0)

.

Recall our constraint:∫
X1

p(x ; θ0) dx = PFA = α′ ≤ α.
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If we increase λ, PFA and PD go down. Similarly, if we decrease
λ, PFA and PD go up. Hence, to maximize PD, choose λ so
that PFA is as big as possible under the constraint.

Two useful ways for determining the threshold that
achieves a specified false-alarm rate:

• Find λ that satisfies∫
x : Λ(x)>λ

p(x ; θ0) dx = PFA = α

or,

• expressing in terms of the pdf/pmf of Λ(x) under H0:∫ ∞

λ

pΛ;θ0(l ; θ0) dl = α.

or, perhaps, in terms of a monotonic function of Λ(x), say
T (x) = monotonic function(Λ(x)).

Warning: We have been implicitly assuming that PFA is a
continuous function of λ. Some (not insightful) technical
adjustments are needed if this is not the case.

A way of handling nuisance parameters: We can utilize the
integrated (marginal) likelihood ratio (16) under the Neyman-
Pearson setup as well.
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Chernoff-Stein Lemma for Bounding the Miss
Probability in Neyman-Pearson Tests of Simple

Hypotheses

Recall the definition of the Kullback-Leibler (K-L) distance
D(p ‖ q) from one pmf (p) to another (p):

D(p ‖ q) =
∑

k

pk log
pk

qk
.

The complete proof of this lemma for the discrete (pmf) case
is given in

Additional Reading: T.M. Cover and J.A. Thomas, Elements
of Information Theory. Second ed., New York: Wiley, 2006.
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Setup for the Chernoff-Stein Lemma

• Assume that x1, x2, . . . , xN are conditionally i.i.d. given θ.

• We adopt the Neyman-Pearson framework, i.e. obtain a
decision threshold to achieve a fixed PFA. Let us study the
asymptotic PM = 1 − PD as the number of observations N
gets large.

• To keep PFA constant as N increases, we need to make our
decision threshold (γ, say) vary with N , i.e.

γ = γN(PFA)

Now, the miss probability is

PM = PM(γ) = PM

(
γN(PFA)

)
.
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Chernoff-Stein Lemma

The Chernoff-Stein lemma says:

lim
PFA→0

lim
N→∞

1
N

log PM = − D
(
p(Xn | θ0) ‖ p(Xn | θ1)

)
︸ ︷︷ ︸

K-L distance for a single observation

where the K-L distance between p(xn | θ0) and p(xn | θ1)

D
(
p(Xn | θ0) ‖ p(Xn | θ1)

)
= −E p(xn | θ0)

[
log

p(Xn | θ1)
p(Xn | θ0)

]
discrete (pmf) case

= −
∑
xn

p(xn | θ0) log
[p(xn | θ1)
p(xn | θ0)

]

does not depend on the observation index n, since xn are
conditionally i.i.d. given θ.

Equivalently, we can state that

PM
N→+∞−→ f(N) · exp

[
−N ·D

(
p(Xn | θ0) ‖ p(Xn | θ1)

)]
as PFA → 0 and N → ∞, where f(N) is a slowly-varying
function compared with the exponential term (when PFA → 0
and N →∞).
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Detection for Simple Hypotheses: Example

Known positive DC level in additive white Gaussian noise
(AWGN), Example 3.2 in Kay-II.

Consider

H0 : x[n] = w[n], n = 1, 2, . . . , N versus

H1 : x[n] = A + w[n], n = 1, 2, . . . , N

where

• A > 0 is a known constant,

• w[n] is zero-mean white Gaussian noise with known variance
σ2, i.e.

w[n] ∼ N (0, σ2).

The above hypothesis-testing formulation is EE-like: noise
versus signal plus noise. It is similar to the on-off keying
scheme in communications, which gives us an idea to
rephrase it so that it fits our formulation on p. 4 (for which
we have developed all the theory so far). Here is such an
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alternative formulation: consider a family of pdfs

p(x ; a) =
1√

(2πσ2)N
· exp

[
− 1

2 σ2

N∑
n=1

(x[n]− a)2
]

(17)

and the following (equivalent) hypotheses:

H0 : a = 0 (off) versus

H1 : a = A (on).

Then, the likelihood ratio is

Λ(x) =
p(x ; a = A)
p(x ; a = 0)

=
1/(2πσ2)N/2 · exp[− 1

2σ2

∑N
n=1(x[n]−A)2]

1/(2πσ2)N/2 · exp(− 1
2σ2

∑N
n=1 x[n]2)

.

Now, take the logarithm and, after simple manipulations, reduce
our likelihood-ratio test to comparing

T (x) = x
4
=

1
N

N∑
n=1

x[n]

with a threshold γ. [Here, T (x) is a monotonic function of
Λ(x).] If T (x) > γ acceptH1 (i.e. rejectH0), otherwise accept
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H0 (well, not exactly, we will talk more about this decision on
p. 59).

The choice of γ depends on the approach that we take. For
the Bayes’ decision rule, γ is a function of π0 and π1. For
the Neyman-Pearson test, γ is chosen to achieve (control) a
desired PFA.

Bayesian decision-theoretic detection for 0-1 loss
(corresponding to minimizing the average error
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probability):

log Λ(x) = − 1
2 σ2

N∑
n=1

(x[n]−A)2 +
1

2 σ2

N∑
n=1

(x[n])2
H1

≷ log
(π0

π1

)

⇐⇒ 1
2 σ2

N∑
n=1

(x[n]− x[n]︸ ︷︷ ︸
0

+A) (x[n] + x[n]−A)
H1

≷ log
(π0

π1

)

⇐⇒ 2 A ·
( N∑

n=1

x[n]
)
−A2 N

H1

≷ 2 σ2 log
(π0

π1

)

⇐⇒
( N∑

n=1

x[n]
)
− AN

2

H1

≷
σ2

A
log
(π0

π1

)
since A > 0

and, finally, x
H1

≷
σ2

N A
· log(π0/π1) +

A

2︸ ︷︷ ︸
γ

which, for the practically most interesting case of equiprobable
hypotheses

π0 = π1 = 1
2 (18)

simplifies to
x
H1

≷
A

2︸︷︷︸
γ

known as the maximum-likelihood test (i.e. the Bayes’ decision
rule for 0-1 loss and a priori equiprobable hypotheses is defined
as the maximum-likelihood test). This maximum-likelihood
detector does not require the knowledge of the noise variance
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σ2 to declare its decision. However, the knowledge of σ2 is
key to assessing the detection performance. Interestingly, these
observations will carry over to a few maximum-likelihood tests
that we will derive in the future.

Assuming (18), we now derive the minimum average error
probability. First, note that X | a = 0 ∼ N (0, σ2/N) and
X | a = A ∼ N (A, σ2/N). Then

min av. error prob. = 1
2 P [X >

A

2
| a = 0]︸ ︷︷ ︸

PFA

+1
2 P [X <

A

2
| a = A]︸ ︷︷ ︸

PM

= 1
2 P
[ X√

σ2/N︸ ︷︷ ︸
standard
normal

random var.

>
A/2√
σ2/N

; a = 0
]

+1
2 P
[ X −A√

σ2/N︸ ︷︷ ︸
standard
normal

random var.

<
A/2−A√

σ2/N
; a = A

]

= 1
2 Q

(√N A2

4 σ2

)
︸ ︷︷ ︸

standard
normal complementary cdf

+1
2 Φ
(
−
√

N A2

4 σ2

)
︸ ︷︷ ︸

standard
normal cdf

= Q
(

1
2

√
N A2

σ2

)
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since
Φ(−x) = Q(x).

The minimum probability of error decreases monotonically with
N A2/σ2, which is known as the deflection coefficient. In this

case, the Chernoff information is equal to A2

8 σ2 (see Lemma 1):

min
λ∈[0,1]

log
{∫

[N (0, σ2/N)︸ ︷︷ ︸
p0(x)

]λ [N (A, σ2/N)︸ ︷︷ ︸
p1(x)

]1−λ dx
}

= min
λ∈[0,1]

[λ (1− λ)
2

· A
2

σ2

]
=

A2

8 σ2

and, therefore, we expect the following asymptotic behavior:

min av. error probability
N→+∞−→ f(N) ·exp

(
−N · A2

8 σ2

)
(19)

where f(N) varies slowly with N when N is large, compared
with the exponential term:

lim
N→∞

log f(N)
N

= 0.

Indeed, in our example,

Q
(√N A2

4 σ2

)
N→+∞−→ 1√

N A2

4 σ2 ·
√

2π︸ ︷︷ ︸
f(N)

· exp
(
− N A2

8 σ2

)
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where we have used the asymptotic formula

Q(x) x→+∞−→ 1
x
√

2π
· exp(−x2/2) (20)

given e.g. in equation (2.4) of Kay-II.
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Known DC Level in AWGN:
Neyman-Pearson Approach

We now derive the Neyman-Pearson test for detecting a
known DC level in AWGN. Recall that our likelihood-ratio
test compares

T (x) = x
4
=

1
N

N−1∑
n=0

x[n]

with a threshold γ.

• If T (x) > γ, decide H1 (i.e. reject H0),

• otherwise decide H0 (see also the discussion on p. 59).

Performance evaluation: Assuming (17), we have

T (x) | a ∼ N (a, σ2/N).

Therefore, T (X) | a = 0 ∼ N (0, σ2/N), implying

PFA = P [T (X) > γ ; a = 0] = Q
( γ√

σ2/N

)
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and we obtain the decision threshold as follows:

γ =

√
σ2

N
·Q−1(PFA).

Now, T (X) | a = A ∼ N (A, σ2/N), implying

PD = P (T (X) > γ | a = A) = Q
( γ −A√

σ2/N

)
= Q

(
Q−1(PFA)−

√
A2

σ2/N

)

= Q

(
Q−1(PFA)−

√√√√ NA2/σ2︸ ︷︷ ︸
4
= SNR = d2

)
.

Given the false-alarm probability PFA, the detection probability
PD depends only on the deflection coefficient:

d2 =
NA2

σ2
=
{E [T (X) | a = A]− E [T (X) | a = 0]}2

var[T (X | a = 0)]

which is also (a reasonable definition for) the signal-to-noise
ratio (SNR).
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Receiver Operating Characteristics (ROC)

PD = Q
(
Q−1(PFA)− d

)
.

Comments:

• As we raise the threshold γ, PFA goes down but so does PD.

• ROC should be above the 45◦ line — otherwise we can do
better by flipping a coin.

• Performance improves with d2.
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Typical Ways of Depicting the Detection
Performance Under the Neyman-Pearson Setup

To analyze the performance of a Neyman-Pearson detector, we
examine two relationships:

• Between PD and PFA, for a given SNR, called the receiver
operating characteristics (ROC).

• Between PD and SNR, for a given PFA.

Here are examples of the two:

see Figs. 3.8 and 3.5 in Kay-II, respectively.
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Asymptotic (as N → ∞ and P FA ↘ 0)
P D and P M for a Known DC Level in AWGN

We apply the Chernoff-Stein lemma, for which we need to
compute the following K-L distance:

D
(
p(Xn | a = 0) ‖ p(Xn | a = A)

)
= −E p(xn | a=0)

{
log
[p(Xn | a = A)
p(Xn | a = 0)

]}
where

p(xn | a = 0) = N (0, σ2)

log
[p(xn | a = A)
p(xn | a = 0)

]
= −(xn −A)2

2 σ2
+

x2
n

2 σ2
=

1
2σ2

· (2 A xn −A2).

Therefore,

D
(
p(Xn | θ0) ‖ p(Xn | θ1)

)
=

A2

2 σ2

and the Chernoff-Stein lemma predicts the following behavior
of the detection probability as N →∞ and PFA → 0:

PD ≈ 1− f(N) · exp
(
−N · A2

2 σ2

)
︸ ︷︷ ︸

≈PM
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where f(N) is a slowly-varying function of N compared with
the exponential term. In this case, the exact expression for PM

(PD) is available and consistent with the Chernoff-Stein lemma:

PM = 1−Q
(
Q−1(PFA)−

√
NA2/σ2

)
= Q

(√
NA2/σ2 −Q−1(PFA)

)
N→+∞−→ 1

[
√

NA2/σ2 −Q−1(PFA)] ·
√

2π

· exp
{
− [
√

NA2/σ2 −Q−1(PFA)]2/2
}

=
1

[
√

NA2/σ2 −Q−1(PFA)] ·
√

2π

· exp
{
−NA2/(2σ2)− [Q−1(PFA)]2/2

+Q−1(PFA)
√

NA2/σ2
}

=
1

[
√

NA2/σ2 −Q−1(PFA)] ·
√

2π

· exp
{
− [Q−1(PFA)]2/2 + Q−1(PFA)

√
NA2/σ2

}
· exp[−NA2/(2σ2)]︸ ︷︷ ︸
as predicted by the Chernoff-Stein lemma

(21)

where we have used the asymptotic formula (20). When PFA

EE 527, Detection and Estimation Theory, # 5 45



is small and N is large, the first two (green) terms in the
above expression make a slowly-varying function f(N) of N .
Note that the exponential term in (21) does not depend on
the false-alarm probability PFA (or, equivalently, on the choice
of the decision threshold). The Chernoff-Stein lemma asserts
that this is not a coincidence.

Comment. For detecting a known DC level in AWGN:

• The slope of the exponential-decay term of PM is

A2/(2σ2)

which is different from (larger than, in this case) the slope
of the exponential decay of the minimum average error
probability:

A2/(8σ2).
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Decentralized Neyman-Pearson Detection for
Simple Hypotheses

Consider a sensor-network scenario depicted by

Assumption: Observations made at N spatially distributed
sensors (nodes) follow the same marginal probabilistic model:

Hi : xn ∼ p(xn | θi)

where n = 1, 2, . . . , N and i ∈ {0, 1} for binary hypotheses.

Each node n makes a hard local decision dn based on its local
observation xn and sends it to the headquarters (fusion center),
which collects all the local decisions and makes the final global
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decision about H0 or H1. This structure is clearly suboptimal
— it is easy to construct a better decision strategy in which
each node sends its (quantized, in practice) likelihood ratio to
the fusion center, rather than the decision only. However, such
a strategy would have a higher communication (energy) cost.

We now go back to the decentralized detection problem.
Suppose that each node n makes a local decision dn ∈
{0, 1}, n = 1, 2, . . . , N and transmits it to the fusion center.
Then, the fusion center makes the global decision based on
the likelihood ratio formed from the dns. The simplest
fusion scheme is based on the assumption that the dns are
conditionally independent given θ (which may not always be
reasonable, but leads to an easy solution). We can now write

p(dn | θ1) = P dn
D,n (1− PD,n)1−dn︸ ︷︷ ︸

Bernoulli pmf

where PD,n is the nth sensor’s local detection probability.
Similarly,

p(dn | θ0) = P dn
FA,n (1− PFA,n)1−dn︸ ︷︷ ︸

Bernoulli pmf

where PFA,n is the nth sensor’s local detection false-alarm
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probability. Now,

log Λ(d) =
N∑

n=1

log
[p(dn | θ1)

p(dn | θ0

]

=
N∑

n=1

log
[ P dn

D,n (1− PD,n)1−dn

P dn
FA,n (1− PFA,n)1−dn

] H1

≷ log τ.

To further simplify the exposition, we assume that all sensors
have identical performance:

PD,n = PD, PFA,n = PFA.

Define the number of sensors having dn = 1:

u1 =
N∑

n=1

dn

Then, the log-likelihood ratio becomes

log Λ(d) = u1 log
( PD

PFA

)
+ (N − u1) log

( 1− PD

1− PFA

) H1

≷ log τ

or

u1 log
[PD · (1− PFA)
PFA · (1− PD)

] H1

≷ log τ + N log
(1− PFA

1− PD

)
. (22)
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Clearly, each node’s local decision dn is meaningful only if
PD > PFA, which implies

PD · (1− PFA)
PFA · (1− PD)

> 1

the logarithm of which is therefore positive, and the decision
rule (22) further simplifies to

u1

H1

≷ τ ′.

The Neyman-Person performance analysis of this detector
is easy: the random variable U1 is binomial given θ (i.e.
conditional on the hypothesis) and, therefore,

P [U1 = u1] =
(

N

u1

)
pu1 (1− p)N−u1

where p = PFA under H0 and p = PD under H1. Hence, the
“global” false-alarm probability is

PFA,global = P [U1 > τ ′ | θ0] =
N∑

u1=dτ ′e

(
N

u1

)
·Pu1

FA ·(1−PFA)N−u1.

Clearly, PFA,global will be a discontinuous function of τ ′ and
therefore, we should choose our PFA,global specification from
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the available discrete choices. But, if none of the candidate
choices is acceptable, this means that our current system does
not satisfy the requirements and a remedial action is needed,
e.g. increasing the quantity (N) or improving the quality of
sensors (through changing PD and PFA), or both.
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Testing Multiple Hypotheses

Suppose now that we choose Θ0,Θ1, . . . ,ΘM−1 that form a
partition of the parameter space Θ:

Θ0 ∪Θ1 ∪ · · · ∪ΘM−1 = Θ, Θi ∩Θj = ∅ ∀i 6= j.

We wish to distinguish among M > 2 hypotheses, i.e. identify
which hypothesis is true:

H0 : θ ∈ Θ0 versus

H1 : θ ∈ Θ1 versus

... versus

HM−1 : θ ∈ ΘM−1

and, consequently, our action space consists of M choices. We
design a decision rule φ : X → (0, 1, . . . ,M − 1):

φ(x) =


0, decide H0,
1, decide H1,
...
M − 1, decide HM−1

where φ partitions the data space X [i.e. the support of p(x | θ)]
into M regions:

Rule φ: X0 = {x : φ(x) = 0}, . . . ,XM−1 = {x : φ(x) = M−1}.
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We specify the loss function using L(i |m), where, typically,
the losses due to correct decisions are set to zero:

L(i | i) = 0, i = 0, 1, . . . ,M − 1.

Here, we adopt zero losses for correct decisions. Now, our
posterior expected loss takes M values:

ρm(x) =
M−1∑
i=0

∫
Θi

L(m | i) p(θ |x) dθ

=
M−1∑
i=0

L(m | i)
∫

Θi

p(θ |x) dθ, m = 0, 1, . . . ,M − 1.

Then, the Bayes’ decision rule φ? is defined via the following
data-space partitioning:

X ?
m = {x : ρm(x) = min

0≤l≤M−1
ρl(x)}, m = 0, 1, . . . ,M − 1

or, equivalently, upon applying the Bayes’ rule

X ?
m =

{
x : m = arg min

0≤l≤M−1

M−1∑
i=0

∫
Θi

L(l | i) p(x | θ) π(θ) dθ
}

=
{

x : m = arg min
0≤l≤M−1

M−1∑
i=0

L(l | i)
∫

Θi

p(x | θ) π(θ) dθ
}

.
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The preposterior (Bayes) risk for rule φ(x) is

E x,θ[loss] =
M−1∑
m=0

M−1∑
i=0

∫
Xm

∫
Θi

L(m | i) p(x | θ)π(θ) dθ dx

=
M−1∑
m=0

∫
Xm

M−1∑
i=0

L(m | i)
∫

Θi

p(x | θ)π(θ) dθ︸ ︷︷ ︸
hm(θ)

dx.

Then, for an arbitrary hm(x),

[M−1∑
m=0

∫
Xm

hm(x) dx
]
−
[M−1∑

m=0

∫
Xm

?
hm(x) dx

]
≥ 0

which verifies that the Bayes’ decision rule φ? minimizes the
preposterior (Bayes) risk.
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Special Case: L(i | i) = 0 and L(m | i) = 1 for i 6= m (0-1
loss), implying that ρm(x) can be written as

ρm(x) =
M−1∑

i=0, i 6=m

∫
Θi

p(θ |x) dθ

= const︸ ︷︷ ︸
not a function of m

−
∫

Θm

p(θ |x) dθ

and

X ?
m =

{
x : m = arg max

0≤l≤M−1

∫
Θl

p(θ |x) dθ
}

=
{

x : m = arg max
0≤l≤M−1

P [θ ∈ Θl |x]
}

(23)

which is the MAP rule, as expected.

Simple hypotheses: Let us specialize (23) to simple
hypotheses (Θm = {θm}, m = 0, 1, . . . ,M − 1):

X ?
m =

{
x : m = arg max

0≤l≤M−1
p(θl |x)

}
or, equivalently,

X ?
m =

{
x : m = arg max

0≤l≤M−1
[πl p(x | θl)]

}
, m = 0, 1, . . . ,M−1
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where
π0 = π(θ0), . . . , πM−1 = π(θM−1)

define the prior pmf of the M -ary discrete random variable θ
(recall that θ ∈ {θ0, θ1, . . . , θM−1}). If πi, i = 0, 1, . . . ,M − 1
are all equal:

π0 = π1 = · · · = πM−1 =
1
M

the resulting test

X ?
m =

{
x : m = arg max

0≤l≤M−1

[ 1
M

p(x | θl)
] }

=
{

x : m = arg max
0≤l≤M−1

p(x | θl)︸ ︷︷ ︸
likelihood

}
(24)

is the maximum-likelihood test; this name is easy to justify after
inspecting (24) and noting that the computation of the optimal
decision region X ?

m requires the maximization of the likelihood
p(x | θ) with respect to the parameter θ ∈ {θ0, θ1, . . . , θM−1}.
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Summary: Bayesian Decision Approach versus
Neyman-Pearson Approach

• The Neyman-Pearson approach appears particularly suitable
for applications where the null hypothesis can be formulated
as absence of signal or perhaps, absence of statistical
difference between two data sets (treatment versus placebo,
say).

• In the Neyman-Pearson approach, the null hypothesis is
treated very differently from the alternative. (If the null
hypothesis is true, we wish to control the false-alarm rate,
which is different from our desire to maximize the probability
of detection when the alternative is true). Consequently, our
decisions should also be treated differently. If the likelihood
ratio is large enough, we decide to accept H1 (or reject
H0). However, if the likelihood ratio is not large enough,
we decide not to reject H0 because, in this case, it may be
that either

(i) H0 is true or
(ii) H0 is false but the test has low detection probability

(power) (e.g. because the signal level is small compared
with noise or we collected too small number of
observations).
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• The Bayesian decision framework is suitable for
communications applications as it can easily handle multiple
hypotheses (unlike the Neyman-Pearson framework).

− 0-1 loss: In communications applications, we typically
select a 0-1 loss, implying that all hypotheses are treated
equally (i.e. we could change the roles of null and
alternative hypotheses without any problems). Therefore,
interpretations of our decisions are also straightforward.
Furthermore, in this case, the Bayes’ decision rule is
also optimal in terms of minimizing the average error
probability, which is one of the most popular performance
criteria in communications.
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P Values

Reporting “accept H0” or “accept H1” is not very informative.
Instead, we could vary PFA and examine how our report would
change.

Generally, if H1 is accepted for a certain specified PFA, it will
be accepted for P ′

FA > PFA. Therefore, there exists a smallest
PFA at which H1 is accepted. This motivates the introduction
of the p value.

To be more precise (and be able to handle composite
hypotheses), here is a definition of a size of a hypothesis
test.

Definition 1. The size of a hypothesis test described by

Rule φ: X0 = {x : φ(x) = 0}, X1 = {x : φ(x) = 1}.

is defined as follows:

α = max
θ∈Θ0

P [x ∈ X1 | θ] = max possible PFA.

A hypothesis test is said to have level α if its size is less than
or equal to α. Therefore, a level-α test is guaranteed to have
a false-alarm probability less than or equal to α.
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Definition 2. Consider a Neyman-Pearson-type setup where
our test

Rule φα: X0,α = {x : φ(x) = 0}, X1,α = {x : φ(x) = 1}.
(25)

achieves a specified size α, meaning that,

α = max possible PFA

= max
θ∈Θ0

P [x ∈ X1,α | θ] (composite hypotheses)

or, in the simple-hypothesis case (Θ0 = {θ0},Θ1 = {θ1}):

α =
PFA︷ ︸︸ ︷

P [x ∈ X1,α | θ = θ0] (simple hypotheses).

We suppose that, for every α ∈ (0, 1), we have a size-α test
with decision regions (25). Then, the p value for this test is
the smallest level α at which we can declare H1:

p value = inf{α : x ∈ X1,α}.

Informally, the p value is a measure of evidence for supporting
H1. For example, p values less than 0.01 are considered very
strong evidence supporting H1.

There are a lot of warnings (and misconceptions) regarding p
values. Here are the most important ones.
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Warning: A large p value is not strong evidence in favor of
H0; a large p value can occur for two reasons:

(i) H0 is true or

(ii) H0 is false but the test has low detection probability
(power).

Warning: Do not confuse the p value with

P [H0 | data] = P [θ ∈ Θ0 |x]

which is used in Bayesian inference. The p value is not the
probability that H0 is true.

Theorem 1. Suppose that we have a size-α test of the form

declare H1 if and only if T (x) ≥ cα.

Then, the p value for this test is

p value = max
θ∈Θ0

P [T (X) ≥ T (x) | θ]

where x is the observed value of X. For Θ0 = {θ0}:

p value = P [T (X) ≥ T (x) | θ = θ0].
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In words, Theorem 1 states that

The p value is the probability that, under H0, a random
data realization X is observed yielding a value of the test
statistic T (X) that is greater than or equal to what has
actually been observed (i.e. T (x)).

Note: This interpretation requires that we allow the experiment
to be repeated many times. This is what Bayesians criticize by
saying that “data that have never been observed are used for
inference.”

Theorem 2. If the test statistics has a continuous
distribution, then, under H0 : θ = θ0, the p value has a
uniform(0, 1) distribution. Therefore, if we declare H1 (reject
H0) when the p value is less than or equal to α, the probability
of false alarm is α.

In other words, if H0 is true, the p value is like a random
draw from an uniform(0, 1) distribution. If H1 is true and if we
repeat the experiment many times, the random p values will
concentrate closer to zero.
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Multiple Testing

We may conduct many hypothesis tests in some applications,
e.g.

• bioinformatics and

• sensor networks.

Here, we perform many (typically binary) tests (one test per
node in a sensor network, say). This is different from testing
multiple hypotheses that we considered on pp. 54–58, where
we performed a single test of multiple hypotheses. For a
sensor-network related discussion on multiple testing, see

E.B. Ermis, M. Alanyali, and V. Saligrama, “Search and
discovery in an uncertain networked world,” IEEE Signal
Processing Magazine, vol. 23, pp. 107–118, Jul. 2006.

Suppose that each test is conducted with false-alarm probability
PFA = α. For example, in a sensor-network setup, each node
conducts a test based on its local data.

Although the chance of false alarm at each node is only α, the
chance of at least one falsely alarmed node is much higher,
since there are many nodes. Here, we discuss two ways to deal
with this problem.
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Consider M hypothesis tests:

H0i versus H1i, i = 1, 2, . . . ,M

and denote by p1, p2, . . . , pM the p values for these tests. Then,
the Bonferroni method does the following:

Given the p values p1, p2, . . . , pm, accept H1i if

pi <
α

M
.

Recall the union-of-events bound:

P
[ n⋃

i=1

Ai

]
≤

n∑
i=1

P [Ai].

which holds for arbitrary events Ai, i = 1, 2, . . . , n, see handout
# 2 in EE 420x notes.

Theorem 3. If we apply the Bonferroni method, the
probability of any individual false alarm is less than or equal to
α.

Proof. Denote by A the event that there is at least one false
alarm and by Ai the event that the ith node is falsely alarmed.
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Then

P{A} = P
{ M⋃

i=1

Ai

}
≤

n∑
i=1

P{Ai} =
M∑
i=1

α

M
= α.

2

Comments: Suppose now that the tests are statistically
independent and consider the smallest of the M p values.
Under H0i, pi are uniform(0, 1). Then

P{min{P1, P2, . . . , PM} > x}
∣∣∣ assuming H0i

i = 1, 2, . . . ,M

= (1− x)M

yielding the “proper” p value to be attached to
min{p1, p2, . . . , pm} as

1− (1−min{p1, p2, . . . , pM})M (26)

and if min{p1, p2, . . . , pM} is small and M not too large, (26)
will be close to m min{p1, p2, . . . , pM}.

False Discovery Rate: Sometimes it is reasonable to control
false discovery rate (FDR), which we introduce below.

Suppose that we accept H1i for all i for which

pi < threshold τ
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and let m0 + m1 = m be
number of true H0i hypotheses + number of true H1i

hypotheses = total number of hypotheses (nodes, say).

# of different outcomes H0 not rejected H1 declared total
H0 true U V m0

H1 true T S m1

total m−R R m

Define the false discovery proportion (FDP) as

FDP =
{

V/R, R > 0,
0, R = 0

which is simply the proportion of incorrect H1 decisions. Now,
define

FDR = E [FDP].
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The Benjamini-Hochberg (BH) Method

(i) Denote the ordered p values by p(1) < p(2) < · · · p(m).

(ii) Define

li =
i α

Cm m
and R = max{i : p(i) < li}

where Cm is defined to be 1 if the p values are
independent and Cm =

∑m
i=1(1/i) otherwise.

(iii) Define the BH rejection threshold τ = p(R).

(iv) Accept all H1i for which p(i) ≤ τ .

Theorem 4. (formulated and proved by Benjamini and
Hochberg) If the above BH method is applied, then, regardless
of how many null hypotheses are true and regardless of the
distribution of the p values when the null hypothesis is false,

FDR = E [FDP] ≤ m0

m
α ≤ α.
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