Introduction to Differential Equations
MATH 2400 — Fall 2014
Suggested Homework Problems

Peter R. Kramer

September 28, 2014

Problems labelled with capital letters are suggested for all; the quizzes will be chosen from these
problems and you must know how to solve these problems if you wish to perform well on the exams.
Problems labelled with Greek letters are suggested for those who wish to learn differential equations
at a somewhat deeper level or practice using Maple or other computational software; being able to
solve these problems is not necessary for success with the exams. The 10th edition problem number
is indicated after the alphabetic label. To find the solutions:

e If the problem letter is followed by a plus (+), the solution is in the accompanying solution
file.

o If the letter W followed by the 7th edition problem number is given and italicized, then the
solution can be found by following the link to the collection of 7th edition solutions, originally
developed in Prof. William Siegmann’s class.

o [f the letter V followed by the 7th edition problem number is given and italicized, then a video
solution can be found by following the link to the collection of 7th edition video solutions
prepared by Dr. David Schmidt.

e [f the problem label is followed by an italicized label of the form G#, then the solution can be
found in the solution files of Prof. Gregor Kovaci¢ (with the corresponding problem number).

Note that for any plots requested in the standard (capital letter) problems, you must understand
how to sketch the plots by hand (as in on an exam where you do not have access to Maple).



1 Introduction

1.1 Basic Mathematical Models and Direction Fields

Problems for Everyone

(A; 10th 1.1#4, 6) [VW 7th: 1.1#4,6]

Draw a direction field for each of the given differential equations. Based on the direction field,
determine the behavior of y as t — oco. If this behavior depends upon the initial value of y at ¢t = 0,
describe this dependency.

a. y =—-1-2y

b. vy =y+2

(B; 10th: 1.1#9) [W 7th: 1.1#9]
Create a differential equation of the form

dy
-J b
7 ay +

which has a solution y = 2, and for which all other solutions diverge from y = 2.

(Cs 10th: 1.1#12) [7th: 1.1#12]

Draw a direction field for the differential equation ¢y’ = —y(5 — y). Based on the direction field,
determine the behavior of y as t — oo. If this behavior depends on the initial value of y at t = 0,
describe this dependency. Note that this equation is not of the form 3’ = ay + b, and the behavior
of its solution is somewhat more complicated than for the equations in the text.

(D+; 10th: 1.1#15-20)
Below is a series of direction fields and a list of differential equations. Match each direction field
to the appropriate differential equation.

dy

a. g =2—y

b. %’:y—Q

c. ¥=yly—3)
d. %:—Q—y
e. % =—yly—3)
f. W=24y



<«p 777 ] ] ANNNNNNSNS ——~\N\\ 1777 7] ERNS
crss 777 ] AN NNNNNSNN N\ [ 2727 ] ENN~
77777 ] A ANANNNNSS ——N\\ [ 77 ] ENN~
o777 ] ] A A NNNNNNS ———~\N\\ 77 ] ENNS
o777 7] AN NNNNNNN >\ \ s 7] ENNS
O 77777 ANNNNNNSS ——\N\ V7] RN
o777 ] A A NNNNNNS N\ 7 ] NSNS
o777 7] AN NNNNNNN —~——\N\\ 17 ] NSNS
277777 ] AN NNNNNSS ———N\ 7o 7 ] NN~
NS SRRS
7S NANNNNS ————N\ SIS <~
o777 7] AN NNNNNSS N\ 727 ] NN~
o777 7] ANNNNNNNS ——~N\\ 1 77277 ] ENNS
o777 7] AANNNNNNNS ——\\ Vs 7] NSNS
wg sl 777 ] AN NNNNNSN —~————\N\ 2227 ) AN~
o777 7] ANNNNNNNS ——\\ [ 7277 ] NN~
s 77 7] AANNNNNSNS ——\\\ 777 ] ENNS
o777 7] AN NNNNNSS —~—~\N\ V7] NN~
7777 7] ANUNNNNNSS —~—N\ o7 ] NN~
fw;x-&<zz<ﬂ<<<zd,i77@_ - - Ty e
< s
NNNANNNAA A 117777778 e 7 T ANNSSSAA [
SONNNNANNA A 11777777 ——— 7 ANNSNNNNNA /7
SN 11555522 A NN
SONNNNANAA A 11777777 ——e 7 ANNSNNSNNNA f /7~
N 1177777 S NN 2
SONNNNANAAA 11777777 ——— s ANNNNSNNNA [ /7~
NN I e/l BN 2
N 177777 B A AN 2
NN g —— —
SONSNNNNAA A 17777777 = 7 PANNANNNNNA [ /7
SN 17777777 ——r 2 7 T ANNNSNSNANA [ /7~
N 1112777 e NN T2
NI 72 A NN
~ —

/////VVVV NA\A\\\\ = 7 ANNSNNNNANA o
.M77<<&AAAA¢A<A<P<>)sm< Hﬁﬁiﬂl*&??Jﬁf}wiiﬁéTiﬁ
= =
srrr 7777 AN NNNNNSNT o SNNNNAAA 1717777772
s/ 7] AN NNNNNN SNNNANAAN 17777777
7777 A ANANNNNN SNNNANANAN 117777777
AN NI
22777 ] A ANNNNNNR SNNNANAAY 117777777
o777 7] AN SONNSNNN A 117777772
7777 AN NNNNNN NONNANNAAN 117777772
o277 7] AN NN SNNNANAAY 1717777777
7777 AANNNNNNTE SNNNANAAA 117777772
o777 7] AN NN SNNNNANAA A 177777772
s 7777 AN NNNANNN SNNNANANAN 1717777777
AR RN NN 1775
s 7777 AN NNNNNNY SNNNANAA N 177777777
7777 AN NNNNNN SNNNNANAAA 117777777
A NS SN 19755552

- N
s/ A NNNNNNN SNNNANAAY 117777777
T T R e e <m77f4wv»a< A:;<w<<>;¢_

y(Hy

Write a differential

1.1 #22)[W 7th:1.1#16)

A spherical raindrop evaporates at a rate proportional to its surface area.

equation for the volume of the raindrop as a function of time.

(E; 10th

(F; 10th 1.14£24)[W 7th:1.1#17)

of

the drug enters the patient’s bloodstream at a rate of 100 C}rlrf. The drug is absorbed by the body’s
tissues or otherwise leaves the bloodstream at a rate proportional to the amount present, with a

rate constant of 0.4hr™ .

mg
cm3

A certain drug is being administered intravenously to a hospital patient. Fluid containing 5

a. Assuming the drug is always uniformly distributed throughout the bloodstream, write a
differential equation for the amount of drug present in the bloodstream at any time.

b. How much of the drug is present in the bloodstream after a long time?



1.2 Solutions to Some Differential Equations

Problems for everyone

(A5 10th: 1.2 #1)[W 7th:1.2 #1]
Solve each of the following initial value problems and plot solutions for several values of y,. Describe
how the different solutions differ from one another.

dy

dt =—-y+5 y(o):yo

b. W= —2y+5 y(0)=y,

W=—2+10 y(0) =y,

(B; 10th: 1.2#7)[W 7th:1.2#6]

Assume that a particular field mouse population obeys the following differential equation:

dp
& 0.5p — 450
dt P

a. Find the time the population goes extinct if p(0) = 850.
b. Find the time to extinction if p(0) = p, where 0 < p, < 900

c. Find the initial population p, which will become extinct in one year.



(C+; 10th: 1.2#15)
According to Newton’s Law of Cooling, the temperature, u(t) of an object satisfies the differential
equation:

du
kTeRr

where T is the constant ambient temperature and k is a positive constant. Suppose the temperature
is initially u(0) = wu,.

a. Find an expression for the temperature at any time.

b. Let 7 be the time at which the initial temperature difference u, — 1" has been reduced by half.
Find the relation between k& and 7.

(D; 10th: 1.2#14)[W 7th: 1.2 #12]
Radium-226 has a half life of 1620 years. Find the time period during which a given amount of this
material is reduced by one quarter.

(E+; 10th: 1.2#17)
Consider an electric circuit containing a capacitor, resistor and battery; The charge Q(t) on the
capacitor satisfies the following differential equation:

Q | Q
RE 5*‘/
R,C,VeR

where R represents the resistance, C' is the capacitance, and V is the constant voltage provided by
the battery.

a. If Q(0) =0, find Q(t) at any time ¢ and sketch a graph of @ vs. t.
b. Find the limiting value @, that Q(t) approaches after a long time (i.e. take lim;_,o Q(t))

c. Suppose that Q(t1) = Qr and that at time ¢ = ¢; the battery is removed and the circuit is
closed again. Find Q(t) for ¢ > ¢; and sketch its graph.



More challenging problems

(a5 10th: 1.2 #3)[W 7th:1.2 #3)]

Consider the differential equation:

2 b
7 ay +

a. Solve the differential equation
b. Sketch the solution for several different initial conditions.
c. Describe how the solutions change under the following circumstances:

(a) a increases.
(b) b increases.

(c) Both a and b increase, however the ration 2 stays constant.



1.3 Classification of Differential Equations

Problems for everyone

(A 10th: 1.3#1,2,6) [V 7th: 1.3#1,2,6]
In each of the following differential equations, determine its order and state whether the equation
is linear or non-linear (in y).

a. t2%+t%+2y:sint
2
b. (1+y2)%—|—t%+y:et

&y t‘fl—? + (cos? t)y = t3

C.W

(B; 10th: 1.3#11) [VW 7th: 1.3#11]
Verify that each of the functions y1(t) = v/ and ya(t) = 1 is a solution to the differential equation
2t2y" + 3ty —y = 0.

2 First Order Differential Equations

2.1 Linear Equations; Method of Integrating Factors

Problems for everyone

(A; 10th: 2.142,4,7) [W 7th: 2.1#2,4; G#3)]

Find the general solution of the following differential equations:

a. y — 2y = t2e?
b. ¢ + (1/t)y =3cos2t, t>0

c. y + 2ty = 2te

(B; 10th: 2.1#18,20) [W 7th: 2.1#18,20]
Find the solution of the following initial value problems:

a. ty' + 2y =sint, y(r/2)=1, t>0

b. ty + (t+1)y=t y(In2)=1, ¢t>0



(C; 10th: 2.1#22) [V 7th: 2.1#22]

(a) Draw a direction field for the given differential equation. How do solutions appear to behave as
t becomes large? Does the behavior depend on the choice of initial value a? Let ag be the value of
a for which the transition from one type of behavior to another occurs. Estimate the value of ag.
(b) Solve the initial value problem and find the critical value ag exactly.

(c) Describe the behavior of the solution corresponding to the initial value of ag.

2/ —y=e’3 y(0)=a
(D; 10th: 2.1#30)[W 7th: 2.1#28]
Find the value of yy for which the solution of the initial value problem

Yy —y=1+3sint, y(0)=yo

remains finite as t — oo.

More challenging problems

(a5 10th: 2.1#28)[W Tth: 2.1#26]
Consider the initial value problem

2 1
T+ Zy=1—=t 0) =
y+3y 5t y(0) = o

Find the value of yy for which the solution touches, but does not cross, the t-axis.

(B; 10th: 2.1#35)[W 7th: 2.1#32]

Construct a first order linear differential equation whose solutions have the required behavior as
t — oo. Then solve your equation and confirm that the solutions do indeed have the specified
property: All solutions are asymptotic to the line y =3 -t as t — oco.



2.2 Separable Equations

Problems for everyone

(A 10th: 2.2#2) [W 7th: 2.2#2]
Solve the given differential equation

y'=a?[y(1+2%)

(B; 10th: 2.2#11,14,15) [W 7th: 2.2#11,1/,15)

a. Find the solution of the given initial value problem in explicit form.
b. Plot the graph of the solution (optional).

c. For those labeled with “determine interval,” determine the interval over which the solution is
defined. (For the others you probably would need numerical assistance, and those interested
should pursue it, but this skill will not be assessed on exams.)

a. vdr+ye "dy=0, y0)=1
b. 3 = zy3(1 + x2)_1/2, y(0) =1 (determine interval)

c. ¥y =2z/(1+2y), y(2)=0 (determine interval)

(C; 10th: 2.2#22) [VW Tth: 2.2#22]
Solve the initial value problem

y' =32"/(3y> —4), y(1)=0

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a vertical
tangent.

More challenging problems

(a; 10th: 2.2424)[V 7th: 2.2#24]
Solve the initial value problem

Y =(2-e)/(B+2), y(0)=0

and determine where the solution attains its maximum value.



(B; 10th: 2.2#30)
Consider the equation

dy y—dx
LA 1
dx x—y (1)
(a)Show that Eq.(1) can be rewritten as
dy _ (y/x) —4
A 2
dr = 1- (y/2) ®

thus Eq.(1) is homogeneous.

(b)Introduce a new dependent variable v so that v = y/x, or y = zv(z). Express dy/dz in terms
of z,v,and dv/dz.

(c)Replace y and dy/dz in Eq.(2) by the expressions from part (b) that involve v and dv/dz. Show
that the resulting differential equation is

n v v—4
v+r— =
dx 1—w

or

Observe that Eq.(3) is separable.

(d) Solve Eq.(3), obtaining v implicitly in terms of x.

(e) Find the solution of Eq.(1) by replacing v by y/x in the solution in part(d).

(f) Draw a direction field and some integral curves for Eq.(1). Recall that the right side of Eq.(1)
actually depends only on the ratio y/z. This means that integral curves have he same slope at all
points on any given straight line through the origin, although the slope changes from one line to
another. Therefore the direction field and the integral curves are symmetric with respect to the
origin. Is this symmetry property evident from your plot?

2.3 Modeling with First Order Equations
Problems for everyone

(A 10th: 2.3#3) [V Tth: 2.3#3]

A tank originally contains 100 gal of fresh water. Then water containing % b of salt per gallon is
poured into the tank at a rate of 2gal/min, and the mixture is allowed to leave at the same rate.
After 10 min the process is stopped, and fresh water is poured into the tank at a rate of 2gal/min,
with he mixture again leaving at the same rate. Find the amount of salt in the tank at the end of
an additional 10 min.

10



(B; 10th: 2.3#9) [W 7th: 2.3#9)]

A certain college graduate borrows $8000 to buy a car. The lender charges interest at an annual
rate of 10%. Assuming that interest is compounded continuously and that the borrower makes
payments continuously at a constant annual rate k, determine the payment rate k that is required
to pay off the loan in 3 years. Also determine how much interest is paid during the 3-year period.

(C; 10th: 2.3#16) [W 7th: 2.3#18]

Newton’s law of cooling states that the temperature of an object changes at a rate proportional to
the difference between its temperature and that of its surroundings. Suppose that the temperature
of a cup of coffee obeys Newton’s law of cooling. If the coffee has a temperature of 200°F when
freshly poured, and 1 min later has cooled to 190°F in a room at 70°F’, determine when the coffee
reaches a temperature of 150°F.

(Dj; 10th: 2.3#19) [W 7th: 2.3#20]

Consider a lake of constant volume V' containing at time ¢ an amount Q(t¢) of pollutant, evenly
distributed throughout the lake with a concentration c(t), where ¢(t) = Q(t)/V. Assume that water
containing a concentration k of pollutant enters the lake at a rate r, and that water leaves the lake
at the same rate. Suppose that pollutants are also added directly to the lake at a constant rate P.
Note that the given assumptions neglect a number of factors that may, in some cases, be important—
for example, the water added or lost by precipitation, absorption, and evaporation; the stratifying
effect of temperature differences in a deep lake; the tendency of irregularities in the coastline to
produce sheltered bays; and the fact that pollutants are not deposited evenly throughout the lake
but(usually) at isolated points around its periphery. The results below must be interpreted in the
light of neglect of such factors as these.

(a) If at time ¢ = 0 the concentration of pollutant is cg, find an expression for the concentration
c¢(t) at any time. What is the limiting concentration as t — 0o?

(b) If the addition of pollutants to the lake is terminated (kK = 0 and P = 0 for ¢ > 0), determine
the time interval T that must elapse before the concentration of pollutants is reduced to 50% of its
original value; to 10% of its original value.

(c) Table 2.2.3 on page 64 (Reproduced below) contains date for several of the Great Lakes. Using
these data, determine from part(b) the time 7' necessary to reduce the contamination of each of
these lakes to 10% of the original value.

Lake V (km3 x 103)  1(km?/year)

Superior 12.2 65.2
Michigan 4.9 158
Erie 0.46 175
Ontario 1.6 209

11



More challenging problems

(a*; 10th: 2.3#14)
Suppose that a certain population has a growth rate that varies with time and that this population
satisfies the differential equation

dy/dt = (0.5 + sint)y/5 (4)

(a) If y(0) = 1, find (or estimate) the time 7 at which the population has doubled. Choose other
initial conditions and determine whether the doubling time 7 depends on the initial population.
(b) Suppose that the growth rate is replaced by its average value 1/10. Determine the doubling
time 7 in this case.

(c) Suppose that the term sint in the differential equation is replaced by sin 27¢; that is, variation
in the growth rate has a substantially higher frequency. What effect does this have on the doubling
time 77

(d) Plot the solutions obtained in parts (a),(b),and (c) on a single set of axes.

2.5 Automonous Equations and Population Dynamics

Problems for everyone

(A 10th: 2.5#2,3) [W 7th: 2.5#2 and V Tth: 2.5#3]

Problem a and b involve equations of the form dy/dt = f(y). In each problem sketch the graph of
f(y) versus y, determine the critical (equilibrium) points, and classify each one as asymptotically
stable or unstable. Draw the phase line, and sketch several graphs of solutions in the ty—plane.

a. dy/dt =ay+by?, a>0, b>0, —00<yy<o0

b. dy/dt =y(y —1)(y —2), 4o >0

12



(B; 10th: 2.5#7) [W 7th: 2.5#7|

Semistable Equilibrium Solutions. Sometimes a constant equilibrium solution has the property
that solutions lying on one side of the equilibrium solution tend to approach it, whereas solutions
lying on the other side depart from it (See figure 2.5.9). In this case the equilibrium solution is
said to be semistable.

(a) Consider the equation
dy/dt = k(1 —y)*, (i)

where k is a positive constant. Show that y = 1 is the only critical point, with the corresponding
equilibrium solution ¢(t) = 1.

(b) Sketch f(y) versus y. Show that y is increasing as a function of ¢ for y < 1 and also for y > 1.
The phase line has upward-pointing arrows both below and above y = 1. Thus solutions below
the equilibrium solution approach it, and those above it grow father away. Therefore ¢(t) = 1 is
semistable.

(c) Solve Eq.(i) subject to the initial condition y(0) = yo and confirm the conclusions reached in
part (b).

(C; 10th: 2.5#8,9) [W 7th: 2.5#8,9]

The following 2 problems involve equations of the form dy/dt = f(y). In each problem sketch
the graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one as
asymptotically stable, unstable or semistable (see Problem 7). Draw the phase line, and sketch
several graphs of solutions in the ty—plane.

a. dy/dt = —k(y—1)2, k>0, —oo<yy<o0

b. dy/dt = y*(y?> — 1), —oc0 <y <

13



(Dj; 10th: 2.5#22) [W 7th: 2.5#20]

Suppose that a given population can be divided into two parts: those who have a given disease
and can infect others, and those who do not have it but are susceptible, Let = be the proportion of
susceptible individuals and y the proportion of infectious individuals; then x +y = 1. Assume that
the disease spreads by contact between sick and well members of the population and that the rate
of spread dy/dt is proportional to the number of such contacts. Further, assume that members of
both groups move about freely among each other, so the number of contacts is proportional to the
product of  and y. Since x = 1 — y, we obtain the initial value problem

dy/dt = ay(1 —y), y(0)=uyo, (i)

where « is a positive proportionality factor, and g, is the initial proportion of infectious individu-
als.

(a) Find the equilibrium points for the differential equation (i) and determine whether each is
asymptotically stable, semistable, or unstable.

(b) Solve the initial value problem (i) and verify that the conclusions you reached in part (a) are
correct. Show that y(t) — 1 as t — oo, which means that ultimately the disease spreads through
the entire population.

More challenging problems

(a5 10th: 2.5#18) [V 7th: 2.5#18)]

A pond forms as water collects in a conical depression of radius a and depth h. Suppose that water
flows in at a constant rate k and is lost through evaporation at a rate proportional to the surface
area.

(a) Show that the volume V' (¢) of water in the pond at time ¢ satisfies the differential equation

dV/dt =k — a7r(3a/7rh)2/3V2/3, (7)

where « is the coefficient of evaporation.
(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically stable?
(c) Find a condition that must be satisfied if the pond is not to overflow.

14



3 Second Order Linear Equations

3.1 Homogeneous Equations with Constant Coefficients

Problems for everyone

(Aj; 10th: 3.1 #1, 5 ,7)[W 7th: 3.1#1,7 and G#20)]
Find the general solution to the following differential equations:

a. vy +2y —3y=0
b. " +5y =0
c. ¥ =9y +9y=0
(B; 10th: 3.1 #9, 11, 12)[V 7h: 2.149 and W 7th: 3.1#11,12]

Find the specific solution to the following initial value problems. Sketch a simple graph of the
solution and determine the behavior for large t.

a. ¥y +y —2y=0  y(0)=1;%(0)=1
b. 6y =5y +y=0  y(0)=4;4'(0)=0
c. " +3y' =0 y(0)=-24(0) =3

(C; 10th: 3.1 #17)[VW Tth: 3.1#17]
Find a differential equation whose general solution is given by the following:

y=cre* +coe™

(Dj; 10th: 3.1 #20)[W 7th: 3.1#20]
Find the solution to the initial value problem:

20" =3y +y=0 y(0)=2 ¢ (0)=<

After finding the solution, determine the maximum value of the solution and find the point where
the solution is zero.

(E; 10th: 3.1 #21)[VW 7th: 3.1#21]
Solve the following initial value problem and then determine the value for a for which the solution
approaches 0 as t — co.

y' =y —2y=0 y(0)=0a,y(0) =2

15



3.2 Solutions of Linear Homogenous Equations; the Wronskian
Problems for everyone

(A 10th: 3.2#3)[W 7th: 3.2#3]
Find the Wronskian of the following pair of functions:

2t

yr=e 2 yy=te

(B; 10th: 3.24£22)[W 7th: 3.2#21]
Find a fundamental set of solutions, y;(t) and ys(t) for the following differential equation:

y// + y/ _ 2y —0
which satisfies the initial conditions:

y(0)=1 4(0)=0
¥2(0) =0 5(0) =1
(This is an illustration of Theorem 3.2.5 (in the 10th edition).)
(C; 10th: 3.24£26)[V 7th: 3.2#25]

Verify that the given functions y; and y, are indeed solutions to the given differential equation,
and determine whether they constitute a fundamental set of solutions,

2y —w(e+2y +(@+2y =0 x>0 yi(z) =z ya(z) =z

More challenging problems

(a5 10th: 3.2#11, 12)[W 7th: 3.2#11 and V 7th: 3.2#12]

For each of the following differential equations determine the longest interval over which the initial
value problem is guaranteed to have a twice differentiable solution, (Do not attempt to find the
solutions. )

a (- 3)y" +ay +(nlaly =0 y(1)=0; y(1)=1
b. (. =2)y" +y + (x —2)(tanz)y =0 y(3)=1; ¢'(3)=2

(B3 10th: 3.2#17)[VW Tth: 3.2#18)]
If the Wronskian of f and g is 3e* and if f(t) = €', find g(t).

(7v; 10th: 3.2 #30)[W 7th: 3.3#16]
Find the Wronskian of two solutions of the given differential equation without solving the equation.

(cost)y” + (sint)y’ —ty =0

16



(05 10th: 3.2 #34)[W Tth: 3.53#20)|
If y1 and y2 are a fundamental set of solutions of ty” + 2y + tely = 0 and if W (y1,y2)(1) = 2, find
the value of W (y1,v2)(5).

(€5 10th: 3.2438)[VW 7th: 3.3#2/]

Prove that if y; and y» are zero at the same point in I, then they cannot be a fundamental set of

solutions on that interval.

17



3.3 Complex Roots of the Characteristic Equation
Problems for everyone

(A; 10th: 3.3#8, 10, 11)[W 7th: 5.4#8, 10, 11]

Find the general solution of the given differential equation.

a. y' —2y +6y =0
b. v +2y +2y=0

c. ¥ +6y +13y=0

(B; 10th: 3.3#18)[VW 7th: 3./#18]

Find the solution of the given initial value problem and describe the behavior of the solution for
increasing t.

y' +4y +5y=0, y(0)=1; '(0)=0

(C; 10th: 3.3# 27)[VW 7th: 8.4#27)] Show that the Wronskian of (e cos(ut), e sin(ut)) =
27t
pe

More challenging Problems

(a5 10th: 3.3#24)[W 7th: 3.4#24] Consider the initial value problem:

Su” +2u +7Tu=0, wu(0)=2, 4 (0)=1

a. Find the solution u(t) of this problem.

b. Find the smallest T" such that |u(t)| < 0.1 for all ¢ > T

(B; 10th: 3.3 #36)[G#49] Use the substitution x = Int to transform the following equation
into an equation with constant coefficients, then solve. This is an example of an Euler equation,
discussed in Problem 34 in Section 3.3 (9th edition).

2y + 4ty + 2y =0

18



3.4 Repeated Roots, Reduction of Order
Problems for everyone

(A; 10th: 3.4#1, 4)[G#33, V Tth: 3.5#1, and W Tth: 3.5#4]
Find the general solution of the differential equations:

a. y' =2y +y=0
b. 49" + 12y +9y =0
(B; 10th: 3.4#11)[W 7th: 3.5#11]
Solve the given initial value problem:
9" —12y' +4y=0 y(0)=2 ¢'(0)=-1

Sketch the graph of the solution and describe its behavior for increasing t.

(C; 10th: 3.4#16)[W Tth: 3.5#10]
Consider the following modification of the initial value problem in Example 2 of Section 3.5 (9th
edition):

1
y”—y’+1y=0 y(0)=2 ¢'(0)=0>

Find the solution as a function of b and then determine the critical value of b which separates
solutions that grow positively from those that eventually grow negatively.

More challenging Problems

(a5 10th: 3.4 #28, 30)[W 7th: 3.5#28 and G#48]
Use the method of Reduction of Order to find a second solution to the differential equation.

T

a. (x—1)y" —ay+y=0 x>0 y(z)=e

b. 2%y +xy + (22— 3)y=0 2>0 yi(z)=2""?sin(z)
(B; 10th: 3.4#37T)[W Tth: 3.5#38]
If a, b, ¢ are all positive constants show that all solutions of:

ay” +by +cy=0

approach zero as t — oo.
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3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Problems for everyone

(Aj 10th: 3.5#9,11)[VW 7th: 3.6#7 and W Tth: 3.6#9]
In each of the following problems find the general solution of the given differential equation.

a. 2y" + 3y’ +y = 1>+ 3sint

" 2, — 2 2
b. u" 4+ wju = coswt,  w* # w;

(B; 10th: 3.5#15,16,17)[G#35, W 7th: 5.641/,15]
In each of the following problems find the solution of the given initial value problem.

a Y +y —2y=2t, y(0)=0, ¢ (0)=1
b,y +4y=t"+3e", y(0)=0, ¥'(0)=2
c.y =2 +y=te'+4, y0)=1, y(0)=1

(C; 10th: 3.5#21, 23, 25)[W 7th: 3.6#19,21,23]

In each of the following problems:

(a) Determine a suitable form for a particular solution Y'(¢) if the method of undetermined coeffi-
cients is to be used.

(b) (Optional) Use a computer algebra system to find a particular solution of the given equation.

a. v + 3y = 2t* + t?e 3 £ sin 3t
b. 3" — 5y’ + 6y = €’ cos 2t + (3t + 4) sint
c. y —4y +4y = 2t% + 4te® +tsin2t

More challenging Problems

(a5 10th: 3.5#37, 39)[G#42, 41]
In each of the following problems use the factorization method of problem 3.6#33 in the 9th edition
of the textbook to solve the given differential equation.

a. 2y + 3y +y =2+ 3sint
b. v +2y =3+ 4sin2t
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3.6 Variation of Parameters

Problems for everyone

(A; 10th: 3.6#5, 6, 8)[W Tth: 3.7#5, 6, 8]
In each of the following problems find the general solution of the given differential equation.

a. ¥y’ +y=tant, 0<t<m/2
b. 3/ + 9y =9sec?3t, 0<t<m/6

c. ¥y +4y=3csc2t, 0<t<m/2

(B; 10th: 3.6#17,18)[W Tth: 3.7#17, G#57]
In each of the following problems verify that the given functions y; and ys satisfy the corresponding
homogeneous equation; then find a particular solution of the given nonhomogeneous equation.

a. 22y’ =3y + 4y =2Inz, x>0, yi(r)=2> y(r)=2"nz

1/2 1/2

b. 2%y +ay + (22 —0.25)y = 32%2sinz, x>0, yi(z)=aY2sinz, yo(z)=2""2cosz

3.7 Mechanical and Electrical Vibrations
Problems for everyone

(Aj; 10th: 3.7#2)[VW Tth: 3.8#2]
In the following problem determine wqy, R, and § so as to write the given expression in the form
u = Rcos(wpt — 9).

a. u = —cost+/3sint

(B; 10th: 3.7#6)[W 7th: 3.8#6]

A mass of 100g stretches a spring 5cm. If the mass is set in motion from its equilibrium position
with a downward velocity of 10cm/sec, and if there is no damping, determine the position u of the
mass at any time t. When does the mass first return to its equilibrium position?
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(C; 10th: 3.7#9)[W 7th: 3.8#9)]

A mass of 20g stretches a spring 5cm. Suppose that the mass is also attached to a viscous damper
with a damping constant of 400 dyne-sec/cm. If the mass is pulled down an additional 2cm and
then released, find its position v at any time ¢. Plot u versus t. Determine the quasi frequency
and the quasi period. Determine the ratio of the quasi period to the period of the corresponding
undamped motion. Also find the time 7 such that |u(t)| < 0.05cm for all ¢ > 7.

(D; 10th: 3.7#13)[W 7th: 3.8#13]
A certain vibrating system satisfies the equation uv” + vu’ +u = 0. Find the value of the damping
coefficient v for which the quasi period of the damped motion is 50% greater than the period of
the corresponding undamped motion.

(E; 10th: 3.7#17)[W Tth: 3.8#17]
A mass weighing 8 Ib stretches a spring 1.5in. The mass is also attached to a damper with coefficient
~. Determine the value of v for which the system is critically damped;be sure to give the units for ~.

(F; 10th: 3.7#24)[W Tth: 3.8#24)]
The position of a certain spring-mass system satisfies the initial value problem

a. 3u"+ku=0, u0)=2, (0)=v

If the period and amplitude of the resulting motion are observed to be 7w and 3, respectively, de-
termine the values of k and v.
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More challenging problems

(a5 10th: 3.7#21)[W Tth: 3.8#21]

a. For the damped oscillations described by the following equation:
u(t) = Re /2™ cos(ut — b)

show that the time between successive maxima is T = 27”

b. Show that the ratio of displacements at two succesive maxima is given by exp(yTy/2m).
Observe that this ratio does not depend on which pair of maxima is chosen. The natural
logarithm of this ratio is called the logarithmic decrement and is denoted by A.

c. Show that A = 7y/mu. Since m, p and A are quantities that can be measured easily for a
mechanical system, this result provides a convenient and practical method for determining
the damping constant, v, which is very difficult to measure directly. In particular, for the
motion of a vibrating mass in a vsicous fluid, the damping constant depends on the viscosity
of the fluid; for simple geometric shapes the form of this dependence is known, and the
preceeding relation allows the experimental determination of the viscosity. This is one of the
most accurate ways of determining the viscosity of a gas at high pressure.

(B; 10th: 3.7T#27)[W 7th: 3.8#27]

A cubic block of side length [ and mass density p per unit volume is floating in a fluid of mass
density pg per unit volume, where pg > p. If the block is slightly depressed and the released, it
oscillates in the vertical direction. assuming that the viscous damping of the fluid and the air can
be neglected, derive the differential equation of motion and determine the period of the motion.
HINT: Use Archimedes’ Principle: An object that is completely or partially submerged in a fluid
is acted upon by an upward buoyant force equal to the mass of the displaced fluid.

(7v; 10th: 3.7#28)[G#061]
The position of a certain undamped spring-mass system satisfies the initial value problem

a. v +2u=0, wu(0)=0, d'(0)=2

(a) Find the solution of this initial value problem.

(b) Plot u versus t and u versus ¢ on the same axes.

(c) Plot u’ versus u; that is, plot u(t) and u/(t) parametrically with ¢ as the parameter. This plot is
known as a phase plot, and the uu’— plane is called the phase plane. Observe that a closed curve
in the phase plane corresponds to a periodic solution u(t). What is the direction of motion on the
phase plot as t increases?
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(05 10th: 3.7#29)[G#62]
The position of a certain undamped spring-mass system satisfies the initial value problem

a. v+t +2u=0, wu0)=0, u(0)=2

(a) Find the solution of this initial value problem.

(b) Plot u versus t and u versus ¢ on the same axes.

(c) Plot ' versus w in the phase plane(see above problem ). Identify several corresponding points
on the curves in parts (b) and (c). What is the direction of motion on the phase plot as ¢ increases?

3.8 Forced Vibrations

(A; 10th: 3.8#6, 8)[W 7th: 3.9#6, 8]

A mass of bkg stretches a spring 10cm. The mass is acted upon by an external force of 10 sin(%) N
(Newtons) and moves in a medium that imparts a viscous force of 2N when the speed of the mass
is 4cm/sec. If the mass is set in motion from its equilibrium position with an initial velocity of 3
cm/sec, formulate the initial value problem describing the motion of the mass.

a. Find the solution of the initial value problem formulated above.
b. Identify the transient and steady-state portions of the solution.
c. Plot a graph of the steady state solution.

d. If the given force is replaced by a force of 2 cos(wt) of frequency w, determine the value of w
for which the amplitude of the forced response is at a maximum.

(B; 10th: 3.8#411)[W 7th: 3.9#11]

A spring is stretched 6in by a mass with a weight of 8 Ibs. The mass is attached to a dashpot
mechanism that has a damping constant of % Ib-sec/ft and is acted on by an external force of
4 cos(2t).

a. Determine the steady state response of this system. (Be careful with units.)

b. If the given mass is replaced by a mass of m, determine the value of m for which the amplitude
of the steady state response is at a maximum.
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(C; 10th: 3.8#17)[W Tth: 3.9#17]
Consider a vibrating system governed by the following initial value problem:

1
u” + ZU/ + 2u = 2 cos(wt)
w(0)=0 /(0)=2

a. Determine the steady state portion of the solution to this problem.
b. Find the amplitude A of the steady state in terms of w
c. Plot A vs. w

d. Find the maximum value of A and the frequency w for which it occurs.

5 Series Solutions of Second Order Linear Equations

5.4 Euler Equations
More challenging problems

(a5 10th: 5.4#6, 9)[G#50, 52]
Determine the general solution of the given differential equation that is valid away from the singular
point.

a. (x—1)%"+8(x— 1)y +12y=0

b. 2%y —5xy’ +9y =0

(8; 10th: 5.4414)[G#53]

Find the solution to the given initial value problem, plot a graph of the solution and describe its
behavior as t — oo.

4oy + 8y +17y =0 y(1)=2; /(1) =-3
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7 Systems of First Order Linear Equations

7.1 Introduction

Problems for everyone

(A5 10th: 7.1#2,3)[W 7th: 7.1#2,3]
In each of the following problems, transform the given equation into a system of first order equations.

a. v’ 4+ 0.5u" + 2u = 3sint

b. t2u" + tu' + (2 — 0.25)u = 0.

More challenging problems

(a5 10th: 7.1#7)[W Tth: 7.1#7]
Systems of first order equations can sometimes be transformed into a single equation of higher
order. Consider the system

x’l = —2x1 + x9, x'2 =21 — 229

(a) Solve the first equation for zo and substitute into the second equation, thereby obtaining a
second order equation for x1. Solve this equation for z; and then determine zo also.

(b) Find the solution of the given system that also satisfies the initial conditions z1(0) = 2,
x2(0) = 3.

(c) Sketch the curve, for ¢t > 0, given parametrically by the expressions for x; and z2 obtained in
part (b).

(B; 10th: T.1#14)[W 7th: 7.1#14]
Show that if aq1, a12, as1 and a9y are constants with a11 and as; not both zero, and if the functions
g1 and go are differentiable, then the initial value problem

©y = anzy 4 apre + g1(t),  x1(0)

T
€T

NO —O

Th = anz1 + agrs + go(t),  x2(0)

can be transformed into an initial value problem for a single second order equation. Can the same
procedure be carried out if aq1,...,as are functions of ¢?
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7.2 Review of Matrices

Problems for everyone

(A; 10th: 7.241)[V 7th: 7.2#1]

1 -2 0
IfA=| 3 2 -1 |and

—2 1 3

4 -2 3
B=| -1 5 0 |,find

6 1 2
(a) 2A+B (b)A-4B
(c) AB (d) BA

(B3 10th: 7.24#22)[V 7th: 7.2#22]
In the following problem, verify that the given vector satisfies the given differential equation.

SO

7.3 System of Linear Algebraic Equations; Linear Independence, Eigenvalues,
Eigenvectors

Problems for everyone

(A 10th: 7.3#16,17)[VW 7th: 7.3 #15; W Tth: 7.3 #16]
In each of the following problems find all eigenvalues and eigenvectors of the given matrix.
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More challenging problems

(a5 10th: 7.3#25)[W Tth: 7.3#24]

Find all eigenvalues and eigenvectors of the given matrix.
3 2 4

2 0 2
4 2 3

7.5 Homogeneous Linear Systems with Constant Coefficients

Problems for Everyone

(A; 10th: 7.5#3,5)[VW Tth: 7.5#3,5]
Find the general solution to the given system of differential equations and describe the behavior as
t — oo. Also plot a direction field (optional) and plot representative trajectories of the system.

(B3 10th: 7.5#16)[W 7th: 7.5#16]
Solve the given initial value problem and describe the behavior of the solution as ¢t — oc.

(e ()
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(C; 10th: 7.5#24, 25[W Tth: 7.5#24,25)
In the problems below you are given the eigenvalues and eigenvectors of a matrix A. Consider the
system x’ = Ax.

a. Sketch the phase portrait for this system
b. Sketch the trajectory passing through the point (2, 3).

c. For the trajectory in (b) sketch the graph of x1 vs t and o vs t.

-1 1
rL = _17 E(l) = ( 2 ) 5 ro = _27 5(2) = (2)

-1 1
r =1, 5(1):<2); Ty = =2, 5(2):<2>

More challenging problems:

(a5 10th: 7.5#7)[W Tth: 7.5#7]
Find the general solution of the system of equations:

x' = =3 b'e
- \8 -6
Also draw a direction field and a few of the trajectories. In this problem, the coefficient matrix has

a zero eigenvalue. As a result, the pattern of trajectories is different from those in the examples in
the text.

(B; 10th: 7.5#412)[W 7th: 7.5#12]
Find the general solution to the system of equations given below:

3 2
xX=[2 0
4 2

W N
[
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7.6 Complex Eigenvalues

Problems for everyone

(Aj; 10th: 7.6# 1, 3, 4)[VW 7th: 7.6#1,3; W Tth: 7.6#4]

Express the general solutions of the systems below in terms of real valued functions. Also draw a
direction field for the system (optional) and sketch a few trajectories. Describe the behavior of
the solutions as ¢ — oo

a.
<= (3 )«
S \4 -1
b.
= (2 )«
S\l =2
c.

(B; 10th: 7.6#9)[W 7th: 7.6#9] Find the solution to the initial value problem.

(i Y ()

Describe the behavior as ¢t — oo.
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More challenging problems

(a3 10th: 7.6413,16)[W 7th: 7.6#13, 16]
In each of the problems below the matrix contains a 'tunable’ parameter «. In each problem:

a. Determine the eigenvalues as functions of the parameter .
b. Find the critical value or values of o where the qualitative nature of the phase portrait for
the system changes.

Draw a phase portrait for an « slightly below and another phase portrait for « slightly above

each critical value.
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9 Nonlinear Differential Equations and Stability

9.1 The Phase plane, Linear systems

(A5 10th: 9.1#1,5,6,7)[VW Tth: 9.1#1,5; W Tth: 9.1#6,7]
For each of the problems below:

a. Find the eigenvalues and eigenvectors.

b. Classify the critical point (0,0) as to type, and determine its stability (stable, asymptotically
stable, or unstable)

c. Sketch several trajectories of the system in the phase plane and also sketch some typical
graphs of x1 vs t.

d. (Optional) Use a computer to plot accurately the curves requested in part (c).

(a)
(3 3)x

(7)
(b)
“-(0 )=
(8)
(c)
()
9)
(d)
()=
(10)
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(B; 9th: 9.1#17)[W 7th: 9.1#17)
The equation of motion for a spring-mass system with damping is given by:

mau” 4+ yu' 4+ ku =0

with m,~y,k > 0. Write this second order equation as a system of two first order equations for
x =u,y = u'. Show that z = y = 0 is a critical point, and analyze the nature and stability of
this critical point as a function of the parameters m,~y, k. A similar analysis can be applied to the
electric circuit equation.

1 dl 1

JAy L
w  tate

9.2 Autonomous Systems and Stability
Problems for Everyone

(A 10th: 9.2 # 1,4)[VW 7th: 9.2 #1; W Tth: 9.2 #4]
In the problems below sketch the trajectory corresponding to the solution satisfying the specified
initial conditions, and indicate the direction of motion for increasing t.

n ol o W a0) =4 y(0) =2

lon
<y
8
&

Cdr— gy, i;:_b:c, z(0) = va, y(0)=0witha>0andb>0
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More Challenging problems

(a3 10th: 9.2 #11, 13)[W 7th: 9.2# 11, 13)

For each of the systems below:

a. Find all of the critical points in the system (equilibrium solutions).
b. Use a computer to draw a direction field and phase portrait of the system.
c. From the plots in part (b) determine the stability of each critical point.

d. Describe the basin of attraction for each asymptotically stable critical point.

(a)
dzx _ dy B 9 9
i x + 2zy, i Yy—x Y
(b)
dx dy
> — (9 _ 27— (4 —
5 = Craly—2), - ={@-2)y+)

9.3 Locally Linear Systems

(Aj; 10th: 9.3#2)[W 7th: 9.3#2]
Verify that (0,0) is a critical point, show that the system is almost linear, and discuss the type and
stability of the critical point by examining the corresponding linear system.

dx

d
E:—x+y+2xy, d—iz—4x—y+x2—y2
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(B; 10th: 9.3#6, 7)[W 7th: 9.53#6,7]
In the problems below do all of the following:

a. Determine all critical points of the system.
b. Find the corresponding linear system about each critical point

c. Find the eigenvalues of each linear system. What conclusions can you then draw about the
non-linear system?

d. (Optional) Draw a phase portrait of the nonlinear system to confirm your conclusions or
extend them in those cases where the linear system does not provide definite information
about the non-linear system.

(a)
dz 9 dy

2o L =3y — xy — 2%
7 A 3y —xy —2y
(b)
dx dy 2 2
R - = —
dt o T Y

More challenging problem

(o3 10th: 9.3427)[W 7th: 9.5#25]

In this problem, we demonstrate how small changes in the coefficients of a system on linear equations
can affect a critical point that is a center. Consider the system:

x'—01x
~\—-1 0

Show that the eigenvalues of this system are +i so that the critical point is a center. Now consider:

where € < 1 is arbitrarily small. Show that the eigenvalues are ¢ £ i. Thus, no matter how small
we make epsilon (# 0), the center becomes a spiral point. If € < 0 the spiral point is asymptotically
stable, but if € > 0 the point is unstable.
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9.4 Competing Species

Problems for Everyone

(A 10th: 9.4# 3, 4, 5)[W Tth: 9.4#3, 4, 5]
Each of the systems below can be interpreted as a description of the interaction of two species with
populations z and y. In each of these problems carry out the following steps:

a. (Optional) Draw a direction field and describe how solutions seem to behave. (Use Maple
for this.)

b. Find all of the critical points

c. For each critical point find the corresponding linear system. Find the eigenvalues and eigen-
vectors of the linear system, and classify each critical point as to both type and stability.

d. Sketch the trajectories in the neighborhood of each critical point.

e. (Optional) Compute and plot enough trajectories to clearly show the behavior of the solu-
tions.

f. Determine the limiting behavior of x and y as ¢ — oo and interpret the results in terms pf
the populations of the two species (e.g. coexistence, mutual extinction etc.)

(a) % =2(15—-05z—y), ¥ =y2—y—1125z)
(b) % =2(15-05z—y), % =y(0.75—y—0.125z)

(c) 4

z(1—z—vy), %:y(lf)—y—x)

36



9.5 Predator-Prey Equations

(Aj; 10th: 9.5#1,3,4)[W 7th: 9.5#1,3,4]
Each of the following systems can be interpreted as describing the interaction of two populations
with densities z and y. In each of the problems carry out the following steps:

a. (Optional) Draw a direction field and describe how the solutions seem to behave (Use Maple
for this).

b. Find all critical points.

c. For each critical point linearize and find the appropriate, approximate linear system. Find
the eigenvalues and eigenvectors of this system; classify each critical point as to type and
stability.

d. Sketch the trajectories in a neighborhood of each critical point.
e. (Optional) Draw a phase portrait of the system.

f. (Optional) Determine the limiting behavior of  and y as t — oo and interpret the results
in terms of the populations of two species.

(a)

dx dy
— =x(1.5-0. — =y(—0.
o z(1.5 — 0.5y) o y(—0.5 + z)
(b)
dx dy
Y 21— 0.5z —0. Y (025 + 0.
o z(1 — 0.5z — 0.5y) 7 y(—0.25 + 0.5x)
()
dx dy
— =z(1.125 — 2 — 0. — =y(—1
— 2(1.125 — z — 0.5y) o y(—1+x)
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More challenging problems:

(a; 10th: 9.5 #8)[W Tth: 9.5#8]

a. Find the period of oscillations for the predator and prey populations. using the approximation
below which is valid for small oscillations:

r=S+5K cos(vact + ¢)
Yo

y = St ik sin(vact + ¢)
a o«

Note that the period is independent of the amplitude of the oscillations.

b. For the solution to the nonlinear solution in (2) shown in Figure 9.5.3 (Boyce and DiPrima
9th: p. 532) estimate the period as well as possible. Is the result the same as the linear
approximation above?

c. Calculate other solutions to (2), that is solutions satisfying other initial conditions, and de-
termine their periods. Are the periods the same for all initial conditions?
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10 Partial Differential Equations and Fourier Series

10.1 Two-Point Boundary Value Problems

Problems for everyone

(A 10th: 10.1#2,7)[W 7th: 10.1#2 and VW Tth: 10.1#7]
In the following problems, either solve the given boundary value problem or else show that it has
no solution.

a.y'+2y=0, Y 0)=1  y(m)=0
b. y’ 4+ 4y = cosz, y(0) =0, y(m) = 0.

(MEMO: Solution for 10.1#2 is incorrect.)

(B; 10th: 10.1#14,19)[VW 7th: 10.1#11 and W 7th: 10.1#16]
In the following problems find the eigenvalues and eigenfunctions of the given boundary value prob-
lem. Assume that all eigenvalues are real.

a. ¥ + Ay =0, y(0) =0, y'(m) =0

b. y" — Ay =0, y(0) =0, y'(L)=0

10.2 Fourier Series

Problems for everyone

(A; 10th: 10.2#10)[W 7th: 10.2#10]

z+1, -1 <z <0,
Iff(z) = [{ and if f(z +2) = f(z), find a formula for f(z) in the
x, 0<x <1,

interval 1 < x < 2; in the interval 8 < x < 9.

(B; 10th: 10.2#13,14,16)[W 7th: 10.2#13, VW Tth: 10.2#14, G #70, V Tth: 10.2#16]
In each of the following problems,

(a) Sketch the graph of the given function for three periods;

(b) Find the Fourier series corresponding to the given function:
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a. f(z)=—x —L<z<I flx+2L) = f(x)

. 1, —L<z<0, of

- flz) = 0. 0<z<l, flz+2L) = f(x).
41, -1 <z <0,

c. f(z)= flz+2) = f(x).
1—ux, 0<z <1,

(C; 10th: 10.2#19,22)[VW 7th: 10.2#19, W 7th: 10.2#22)

In the following problems:

(a) Sketch the graph of the given function for three periods.

(b) Find the Fourier series for the given function.

(c) (Optional) Plot s,,(z) versus x for m = 5,10, and 20.

(d) (Optional) Describe how the Fourier series seems to be converging.

-1, —2<z <0, A
a. f(z) = g 0<ao<o. fle+4) = f(z).
b B z+ 2, —-2<z<0, o=
D=1 0 ewe, JEEH=I@

10.3 The Fourier Convergence Theorem

Problems for everyone

(A 10th: 10.3#2,4,5)[VW 7th: 10.3#2,5, G#7/]

In the following problems assume that the given function is periodically extended outside the
original interval.

(a) Find the Fourier series for the extended function.

(b) Sketch the graph of the function to which the series converges for three periods.

0, —r<z<0,
a. f(z) =
x, 0<x<m,
b. f(z)=1-2? -1<z<1
0, —rm<z<-—7/2,
c. f(z)=1¢ 1, /2 <z < T2,
0, /2 <x<m,
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Challenge Problem

(a; 10th: 10.3#410)[W 7th: 10.3#10)]

In the following problem, assume that the given function is periodically extended outside the original
interval.

(a) Find the Fourier series for the extended function.

(b) Let en(z) = f(x) — sp(z). Find the least upper bound or the maximum value (if it exists) of
len(z)] for n = 10, 20, and 40.

(c) If possible, find the smallest n for which |e,(x)| < 0.01 for all z.

Fla+4) = f(a).

x4+ 2, —2<x<0,
f(z) =
2 —2x, 0<z <2,
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10.4 Even and Odd Functions
Problems for everyone

(A 10th: 10.44#1,2)[V 7th: 10.4#1,2]
In the following problems, determine whether the given function is even,odd or neither.

a. 13 — 2
b. 23 —2x+1

(B; 10th: 10.4#7)[VW Tth: 10.4#7]
In the following problem, a function f is given on an interval of length L. In each case sketch the
graphs of the even and odd extensions of f of period 2L

x, 0<z <2,
flx) =
1, 2<x <3,

(C; 10th: 10.4%£15,21)[VW 7th: 10.4#15,21]
In the following problems, find the required Fourier series for the given function, and sketch the
graph of the function to which the series converges over three periods.

a. f(x) = N cosine series, period 4
0, 1<z <2,

b. f(z) =L — =, 0<z<L; cosine series, period 2L

(D; 10th: 10.4#23)[W 7th: 10.4#23]
In the following problem:
(a) Find the cosine series of period 47 for the function:

z, O<z<m,
-

0, T<zx<?2m,
(b) Sketch the graph of the function to which the series converges for three periods.
(c) (Optional) Plot one or more partial sums of the series.
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(E; 10th: 10.4427)[W 7th: 10.4#27)

In the following problem, the function f(x) = 3 — z is given on the interval 0 < x < 3.

(a) Sketch the graphs of the even extension g(z) and the odd extension h(x) of the given function
of period 2L over three periods.

(b) Find the Fourier cosine and sine series for the given function.

(c) (Optional) Plot a few partial sums of each series.

(d) (Optional) For each series investigate the dependence on the number of terms in the partial
sum of the maximum error on [0, L].

More challenging problems

(a5 9th: 10.4#38)[W Tth: 10.4#38]

Let f be extended into (L,2L) in an arbitrary manner. Then extend the resulting function
into (—2L,0) as an odd function and elsewhere as a periodic function of period 4L (see Figure
10.4.6 (9th edition)). Show that this function has a Fourier sine series in terms of the functions
sin(nmz/2L),n =1,2,3... that is,

f(z) = Z by, sin(nmz/2L),
n=1

where

1 2L
b, = — () sin(nmx/2L)dx
L 0

This series converges to the original function on (0, L).

(8; 10th: 10.4439)[W 7th: 10.4#39]

Let f first be extended into (L,2L) so that it is symmetric about x = L; that is, so as to satisfy
fQ2L — z) = f(z) for 0 < x < L. Let the resulting function be extended into (—2L,0) as an odd
function and elsewhere (see Figure 10.4.7 (9th edition)) as a periodic function of period 4L. Show
that this function has a Fourier series in tof the functions sin(rxz/2L), sin(3nx/2L), sin(5mx/2L)...;
that is,

B > . (2n—1)mz
f(z) = ;:1 by, sin 5T
where
2 (f (2n — 1)z
Y = — in ~———"—dx. 11
b L/o f(z)sin 5T dx (11)

This series converges to the original function on (0, L].

43



10.5 Separation of Variables, Heat Conduction in a Rod
Problems for everyone

(A 10th: 10.5#2, 5)[VW 7th: 10.5#2 and W Tth: 10.5#5]

Determine whether the following partial differential equations can be solved using the method of
separation of variables. If separation of variables works, find the two resulting ordinary differential
equations which must be solved.

a. tug, +axur =0

b. Uzy + ( + Y)Uyy =0

(B; 10th: 10.5#8)[W 7th: 10.5#8)]
Find the solution to the following heat conduction problem:

Uge = 4duy, O0<ax <2, t>0

uw(0,t) =0 u(2,t)=0 wu(z,0)= 2sin(%) — sin(7wx) 4 4sin(27z)

(C; 10th: 10.5#9)[VW 7th: 10.5#9]

Consider heat conduction in a rod of 40 cm length whose ends are maintained at 0°C' for all £ > 0.
Find an expression for the temperature u(z,t) at any time if the initial temperature distribution
is u(z,0) = 50 for 0 < = < 40. Suppose further that a? = 1.

(Dj; 10th: 10.5#18)[W 7th: 10.5#18]

Let a metallic rod 20cm long be heated to a uniform temperature of 100°C. Suppose that at
t = 0 the ends of the bar are plunged into an ice bath at 0°C' and thereafter maintained at that
temperature, but no heat is allowed to escape along the lateral surface of the bar. Find an expression
for the temperature at any point in the bar at any later time. Determine the temperature of the
center of the bar at time ¢t = 30 sec if the bar is made of:

a. silver (a? = 1.71 em?/sec)
b. aluminum (a? = 0.86 em?/sec)

c. cast iron (a? = 0.12 em?/sec)
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More challenging problems:

(o3 10th: 10.5413)[W 7th: 10.5#183]

Consider the rod in part C. For t = 5 and x = 20 determine how many terms m are needed to
find the solution correct to three decimal places. A reasonable way to do this is find m such that
adding one more term does not change the first three decimal places for the approximate solution
of u(20,5). Repeat for t = 20 and ¢ = 80. Form a conclusion about the speed of convergence of the
series for u(z,t).

(8; 10th: 10.54£14)[W 7th: 10.5#1]

For the same rod as in part C.

a. Plot u versus z for t = [5, 10, 20, 40, 100, 200]. Put all of the graphs on the same set of axes
and thereby obtain a picture of the way that the temperature distribution changes with time.

b. Plot u versus t for z = [5, 10, 15, 20].
¢. Draw a three dimensional plot of u versus both x and ¢.

d. How long (approximately) does it take for the whole rod to cool off to a temperature of no
more than 1°C.

(v; 10th: 10.5420)[W 7th: 10.5#20]

In solving differential equations the computations can almost always by simplified by the use of

dimensionless variables. Show that if the dimensionless variable: § = 7 is introduced, the heat

conduction equation becomes:
%u  L?0u
— =——, 0<¢é<1 t>0
082 a? ot ¢ ’

Since L?/a? has the units of time, it is convenient to use this quantity to define a dimensionless
time variable 7 = (a?/L?)t. Then show that the heat condution equation reduces to

%u  Ou
— = — 1 .
92 = ar’ 0<e<l, 7>0

(05 10th: 10.5#22)[W 7th: 10.5#22]
The heat conduction equation in two space dimensions is:

o2 (tUgy + Uyy) = Us

Assuming that u(z,y,t) = X(2)Y (y)T'(t), find the ordinary differential equations which are satis-
fied by these component functions.
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10.6 Other Heat Conduction Problems
Problems for everyone

(Aj 10th: 10.6#12)[G#90]
Consider a uniform rod of length, L with an initial temperature given by u(z,0 = sin(rz/L), 0 <
x < L. Assume that both sides of the bar are insulated.

a. Find the temperature, u(z,t)
b. What is the steady-state temperature as ¢t — co?

c. (Optional) Let a? =1 and L = 40 plot u versus x for several values of ¢. Also plot u versus
t for several values of .

d. (Optional) Describe briefly how the temperature in the rod changes as time progresses.

(B; 10th: 10.6#415)[W 7th: 10.6#15)
Consider a uniform bar of length L having an initial temperature distribution given by f(z), 0 <

x < L. Assume that the temperature at £ = 0 is held at 0°C while the end z = L is insulated so
that no heat passes through it,

a. Show that the fundamental solutions of this partial differential equation and boundary value
problem are given by:

_ —(@2n-1)?72a?/4L%t M
up(z,t) =e s1n(< o7

b. (Optional) Find a formal series expansion for the temperature:

u(z,t) = Z Cnin, (2, 1)
n=1

that also satisfies the given initial condition. (HINT: even though the fundamental solution
only involves odd sines, it is still possible to represent f with a Fourier series only using these
functions. See Problem 3 of Section 10.4.)
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More challenging problems

(a5 10th: 10.641,4,7)[V 7th: 10.6#1; W Tth: 10.6#4,7]
Find the steady-state solution to the heat conduction problem u; = a?u,, that satisfies the given
set of boundary conditions:

a. u(0,t) =10 w(50,t) =40
b. uy(0,t) =0 w(L,t)=T

c. ug(0,t) —u(0,t) =0 w(L,t)=T

(B3 10th: 10.6#9)[G#89; V Tth: 10.6#9]

Let an aluminum rod of length 20cm be initially at the uniform temperature of 25°C'. suppose that
at time ¢ = 0, the end = = 0 is cooled to 0°C while the end x = 20 is heated to 60°C and both are
thereafter maintained at those temperatures.

a. Find the temperature distribution in the rod at any time, t.

b. Plot the initial temperature distribution, the final, steady state distribution and the distri-
bution at two representative intermediate times on the same set of axes.

c. Plot wvst for x =5, =10,z = 15.

d. Determine how much time must elapse before the temperature at z = 5 comes within 1% of
its steady state value.
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10.7 The Wave Equation: Vibrations of an Elastic String
Problems for everyone

(A 10th: 10.7#1)[W Tth: 10.7#1]
Consider an elastic string of length L whose ends are held fixed. The string is set in motion with
no initial velocity from an initial position u(z,0) = f(x), where

2z <
f(:l:) = {QIZL—:L‘)
L

S 8
IN A
IS -
IN
&

(12)

Let L =10 and a = 1 in parts (b) through (d).

a. Find the displacement of the string, u(z,t).

Optional) Plot u(z,t) versus x, 0 < x < 10 for several values of ¢, 0 < ¢ < 20.

(
(
(Optional) Construct an animation of the solution for at least one period.
(

)

Optional) Plot u(z,t) versus t for several values of x.
)
)

Optional) Describe the motion of the string in a few sentences.

(B; 10th: 10.7#5)[W 7th: 10.7#5]
Consider an elastic string of length L whose ends are held fixed. The string is set in motion from
its equilibrium position with an initial velocity u:(z,0) = g(x), where

2x 0
g(x) {QL(L z)

|t~ H
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h

(13)

Let L =10 and a = 1 in parts (b) through (d).

a. Find the displacement of the string, u(x,t).
(Optional) Plot u(x,t) versus z, 0 < z < 10 for several values of ¢, 0 < ¢ < 20.
(Optional) Plot u(x,t) versus t for several values of x.

( )
( )

Optional) Construct an animation of the solution for at least one period.

®

Optoinal) Describe the motion of the string in a few sentences.
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(C; 10th: 10.7#21)[W 7th: 10.7#22]
The motion of a circular elastic membrane such as a drumhead, is governed by the two dimensional
wave equation in polar coordinates:

1 1 _9
Upp + Sl + T2 Uoe = “un

Assuming that u(r,0,t) = R(r)O(0)T(t) find ordinary differential equations satisfied by R, © and
T.

More challenging problems

(a5 10th: 10.7#9)[W 7th: 10.7#9]

If an elastic string is free at one end, the boundary condition to be satisfied there is: u, = 0. Find
the displacement of u(z,t) in an elastic string of length L, fixed at x = 0 and free at x = L, set
in motion with no initial velocity from the initial position u(x,0) = f(x) where f(z) is a known
function.

HINT: show the fundamental solution to this problem satisfying everything except the inhomoge-
nous initial condition is given by:

up(x,t) = sin(Apx) cos(Apat)
(2n— )7

Ap =
2L

ne{l,2,3,...}

Compare this problem with Problem B of the previous subsection. Pay special attention to the
extension of the initial data outside the original interval (0, L).
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