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Preface

This book is intended to be suggest a revision of the way in which the first
course in differential equations is delivered to students, normally in their second
year of university. This course has traditionally grown as an offshoot of the calculus
courses taught in the first year, where students often learn some techniques and
tricks for solving specific problems, e.g., for computing specific derivatives and
integrals. This is not an entirely unreasonable thing to do, since it is difficult to
imagine being able to practice mathematics without being able to handle calculus
with some of the basic special functions one encounters in a first course.1 Moreover,
a first calculus course often comes complete with many insights into the meaning
of, and uses of, differentiation and integration. However, this “techniques and
tricks” method becomes less valuable for ordinary differential equations. The fact
is that there are very few differential equations that can be solved, and those that
can be solved only succumb after quite a lot of work.2 Thus, while I do believe it is
essential to be able to solve a number of differential equations “by inspection”—and
I expect students taking the course for which this is the text to be able to do
this—the proliferation of computer packages to carry out efficiently and effectively
the tedious computations typically learnt in a differential equations course makes
one reconsider why we teach students multiple ways to solve the same small set
of differential equations. This text is the result of my own reconsideration of the
traditional first course in differential equations.

As an instructor, the question becomes, “If I do not teach all of the usual
techniques and tricks for solving differential equations, what do I replace it with?”
My choices for answers to this question are the following.
1. Make sure students know that differential equations arise naturally in a wide variety

of fields, including the sciences, engineering, and the social sciences. This is done by
starting the text with a long list of examples of models involving differential
equations. For some of these, we are able to provide a pretty complete rationale
for where the equations come from, and in some cases we can make predictions
based on our human experience about how solutions of these differential equa-
tions may behave. However, in some cases we are merely able to describe in
plain English what the equations represent, and then just write them down. But,

1That being said, the following conversation happens in most courses I teach:

Me: Oh no, an integral! Class, how do we solve integrals?
Class: Google! Wolfram Alpha!
Me: Correct!

2And so we have. . .

Me: Oh no, a differential equation! Class, how do we solve differential equations?
Class: Google! Wolfram Alpha!
Me: Correct!
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at the end of the day, we produce a long list of differential equations of various
kinds. Thus we do not restrict ourselves to modelling involving simple dif-
ferential equations, but also provide some impossibly complicated differential
equations so that the subject is not oversimplified.
And this leads to the following choice.

2. Make sure students know what a differential equation is. A differential equation
is normally written as just that: an equation. The problem with this is that
equations are not really mathematically useful. When one writes down an
equation with an unknown, this is something to be solved, not something to be
understood. Thus we demur from just writing differential equations, and define
them initially as maps whose properties can be enumerated and understood.
In treating differential equations in this way, it is seen that there is a common
starting point for all differential equations, and that the ones that we learn how
to solve are very special and degenerate in some way.

3. Appreciate how to use a computer when working with differential equations. Because
there are so few differential equations that can be solved analytically, and also
because the analytical solution procedures are often extremely tedious to apply,
one may wish to have at hand computer methods for working with differential
equations. Computer packages come in two basic flavours, which give, along
with some examples of these.

I. Computer algebra systems: A computer algebra system can typically find an-
alytic solutions to differential equations, when these can be easily found.
For example, any decent computer algebra system can solve any differen-
tial equation we solve using the methods in this book. Some examples of
commonly-used computer algebra systems are:
(a) Maple®: http://www.maplesoft.com/
(b) Mathematica®: http://www.wolfram.com/mathematica/
(c) Maxima®: http://maxima.sourceforge.net/
(d) SageMath®: http://www.sagemath.org/

II. Numerical computation packages: Even if one cannot use a computer alge-
bra system to obtain analytic solutions to differential equations, one can
often use algorithms that approximate differential equations and produce
numerical solutions. This is very often the only thing one is interested in
in hardcore applications of differential equations, even in cases where ana-
lytical solutions are possible. Some examples of commonly used numerical
computation packages are:
(a) Maple®: http://www.maplesoft.com/
(b) Mathematica®: http://www.wolfram.com/mathematica/
(c) Matlab®: http://www.mathworks.com/
(d) Octave®: https://www.gnu.org/software/octave/
(e) Scilab®: http://www.scilab.org/

http://www.maplesoft.com/
http://www.wolfram.com/mathematica/
http://maxima.sourceforge.net/
http://www.sagemath.org/
http://www.maplesoft.com/
http://www.wolfram.com/mathematica/
http://www.mathworks.com/
https://www.gnu.org/software/octave/
http://www.scilab.org/
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As can be seen, it is often (but not always) the case that a computer algebra
system offers the facility to do numerical computations with differential
equations, along with that for doing symbolic computations.

The above list is by no means an exhaustive accounting of what is available,
and for a more complete (but still not complete) list, please visit the appropriate
Wikipedia® pages:

https://en.wikipedia.org/wiki/List_of_computer_algebra_systems

https://en.wikipedia.org/wiki/List_of_numerical_analysis_software

We wish to emphasise that we do not go deeply at all into numerical analysis
in this text. Indeed, we use computer packages as a tool, and one must be
aware—as when using any tool—of its limitations. However, from a pragmatic
point of view, computer packages in the present day are so sophisticated that
one typically must go very deeply to see why they might break, and to do so is
well beyond our present scope.

4. Understand the character of solutions, rather than just producing their closed-form
expressions. While there is something gratifying in being able to go through a
long involved process, and arrive at a correct solution to a differential equation,
it is far more interesting and useful to be able to understand (a) why the solution
process works and (b) what is the character of the solution one obtained. Thus,
while we do consider some of the standard methods for solving differential
equations, we do not either start or stop there.

5. Introduce transform methods for differential equations, since these are very powerful.
However, we do not wish to introduce transform methods as providing an
algorithmic procedure for solving (in practice, only very simple) differential
equations. What we wish to do is illustrate, in as general a way as possible
in an introductory text, the raison d’être for transform methods, which is that
they turn differential equations into algebraic equations, maybe only partially
so. Thus we introduce a variety of transforms used in a variety of problems.
This is Version 1 of these notes, so please indicate errors or suggestions for

improvements.

Andrew D. Lewis Kingston, Ontario, Canada

https://en.wikipedia.org/wiki/List_of_computer_algebra_systems
https://en.wikipedia.org/wiki/List_of_numerical_analysis_software
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Chapter 1

What are differential equations?

In this chapter we provide what we hope is a substantial backdrop and moti-
vation for the study of differential equations. We do this first, in Section 1.1, by
considering an array of physical systems that are modelled by differential equa-
tions. While we provide a diverse collection of such motivating examples, the fact
of the matter is that this is a pitifully small sampling of the ways in which differential
equations arise in modelling. Nonetheless, we hope that we can justify a broad and
vague assertion like, “Differential equations are endemic in mathematical models
of the physical world.”

As we shall see in Section 1.3, differential equations come in various flavours.
The two main branches in the classification tree for differential equations are “or-
dinary differential equations” and “partial differential equations.” In these notes
we will primarily consider short twigs coming off each of these two branches, cor-
responding to “linear” differential equations. However, it is extremely important
to realise that, while linear differential equations are of fundamental importance in
the general theory, many, many differential equations encountered in practice are
not linear. Thus a good understanding of just what a linear differential equation is
is essential.

In the final section of this chapter, we consider two important questions: (1) do
differential equations possess solutions? (2) if a differential equation possesses a
solution, is it unique? We shall see that the answer to both questions is generally,
“No,” but that under very weak hypotheses this answer is, “Yes,” at least for
ordinary differential equations. (These questions for partial differential equations
are far more sinister, at least if one wishes to pursue any degree of generality.)

We also provide, in Section 1.2, an overview of the mathematical background
we will use. Most of this will have been acquired by a typical second-year student,
although perhaps not with the degree of notational precision we require. There is
also likely to be a few topics that are not a part of the standard background of a
second-year student, and so some parts of this section may be new.

Contents

1.1 How do differential equations arise in mathematical modelling? . . . . . . . . . 4
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4 1 What are differential equations?

Section 1.1

How do differential equations arise in mathematical modelling?

It is possible to approach the subject of differential equations from a purely
mathematical point of view. And, indeed, even if one is interested in only apply-
ing the theory of differential equations in specific areas, a good knowledge of this
mathematical subject is necessary. However, a primary reason for the importance
of differential equations in mathematics is that they arise so naturally and broadly
in areas of application, ranging from engineering, physics, economics, and biology,
to name a few. Indeed, it may not be inaccurate to say that differential equations
provide the most important (but definitely not the only) conduit from develop-
ments in mathematics to applications. In this section, we illustrate this with an
array of examples.

Caveat We mainly shall not be precise in this section with things like whether
functions are continuous, differentiable, etc.. In the remainder of the text we shall
be more careful about these things. •

1.1.1 Mass-spring-damper systems

Let us start by considering a single mass connected to the ground by a spring and
a damper, as in Figure 1.1. The mass has mass m, the spring is a linear spring with

m

k d

y(t)

Figure 1.1 A simplified model of a car suspension

a restoring force proportional to the change in length from its equilibrium—i.e., the
spring force is −k∆, k ≥ 0, where ∆ is the change in length— and the damper is also
linear with a restoring force proportional of the velocity at which the damper is
contracted–i.e., the damper force is −d∆̇, d ≥ 0, where “ ˙ ” means “derivative with
respect to time. This may be thought of as a simple model for a car suspension.

We shall derive an equation that governs the vertical motion of the mass as a
function of time. We let y(t) be the vertical displacement of the mass, with the
assumption that y = 0 corresponds to the undeflected position of the spring. We
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suppose that we have a gravitational force acting “downwards” in the diagram
and with a gravitational constant ag. One then performs a force balance, setting
vertical forces equal to the mass times the acceleration:

−dẏ(t) − ky(t) −mag = mÿ(t) ⇐⇒ mÿ(t) + dẏ(t) + ky(t) = −mag. (1.1)

Note that this is an equation with single independent variable t (time) and single
dependent variable y (vertical displacement). Moreover, the equation us not an
algebraic equation for y as a function of t, since derivatives of y with respect to t
arise.

During the course of these notes, we shall learn how to exactly solve a differential
equation like this. But before we do so, let us see if we can, based on our common
sense, deduce what sort of behaviour a system like this should exhibit. First let’s
determine the equilibrium of the system, since it is not when y = 0, because of the
gravitational force. Indeed, as equilibrium the mass should not be in motion and
so we ought to have ẏ = 0 and ÿ = 0. In this case, y = −

mag

k . Now let’s think about
what happens when d = 0. What we expect here is that the mass will oscillate
in the vertical direction around the equilibrium. Moreover, we may expect that
as k becomes relatively larger, the frequency of oscillations will increase. Now,
adding the damping constant d > 0, perhaps our intuition is not quite so reliable a
means of deducing what is going on here. But what happens is this: the damper
dissipates energy. This causes the oscillations to decay to zero as t→∞. Moreover,
if d gets relatively large, it actually happens that the oscillations do not occur, and
the mass just moves towards its equilibrium. These are things we will investigate
systematically.

Next let us complicate matters a little, and consider two interconnected masses
as in Figure 1.2. In this case, to simplify things we interconnect the masses only

m m
k k k

x1 x2

Figure 1.2 Interconnected masses

with springs. As in the figure, we let x1 and x2 denote the positions of the masses,
assuming that all springs are uncompressed with x1 = x2 = 0. In this case, the force
balance equations for the two masses give the equations

−kx1(t) − k(x1(t) − x2(t)) = mẍ1(t), ⇐⇒ mẍ1(t) + 2kx1(t) − x2(t) = 0,
−kx2(t) − k(x2(t) − x1(t)) = mẍ2(t), ⇐⇒ mẍ2(t) + 2kx2(t) − x1(t) = 0.
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Let us express this using matrix/vector notation:

m
[
1 0
0 1

] [
ẍ1(t)
ẍ2(t)

]
+ k

[
2 −1
−1 2

] [
x1(t)
x2(t)

]
=

[
0
0

]
.

If we introduce the notation

M = m
[
1 0
0 1

]
, K = k

[
2 −1
−1 2

]
, x(t) =

[
x1(t)
x2(t)

]
,

then we can further write this as

Mẍ(t) + Kx(t) = 0. (1.2)

Note that this is an equation with single independent variable t (time) and two
dependent variables x1 and x2, or equivalently a vector dependent variable (x1, x2) ∈
R2 (horizontal displacements). As was the case with the single mass, the key point
is that the equation involves derivatives of the dependent variables with respect to
the independent variable.

In the text, we will see how to analyse such equations as this. Let us say a few
words about the most interesting features of how this system behaves. There are
two interesting classes of behaviours, one occurring when x1(t) = x2(t) (the masses
move together) and one occurring when x1(t) = −x2(t) (the masses move exactly
opposite one another). These “modes” of the system are important, as we shall
see that every solution is a linear combination of these two. This has to do with
fundamental properties of systems of this general type.

1.1.2 The motion of a simple pendulum

Let us consider the motion of a pendulum as depicted in Figure 1.3. We suppose

θ

ℓ

Figure 1.3 A simple pendulum

that we have a mass m attached to a rod of length ` whose mass we consider to
be negligible compared to m. We have a gravitational force with gravitational
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constant ag that acts downward in the figure. Summing moments about the pivot
point gives

−mag` sinθ(t) = m`2θ̈(t) ⇐⇒ θ̈(t) +
ag

`
sinθ(t) = 0. (1.3)

This is an equation in a single independent variable t (time) and a single depen-
dent variable θ (pendulum angle), and again is an equation in derivatives of the
dependent variable with respect to the independent variable.

We shall not learn how to solve this equation in this text, although a “closed-form
solution” is possible with a suitably flexible notion of “closed-form.” However,
problems such as this one call into question the value of having a closed-form solu-
tion. What is, perhaps, a more useful way to understand the behaviour of a simple
pendulum is to try some sort of approximation. We shall make an approximation
near the two equilibria of the pendulum, corresponding to θ = 0 (the “down”
equilibrium) and θ = π (the “up” equilibrium). To make the approximation, we
note that, for φ near zero,

sinφ ≈ φ,
sin(π + φ) = sinπ cosφ + cosπ sinφ ≈ −φ.

Therefore, the equation governing the behaviour of the simple pendulum are
approximated near θ = 0 (say θ = 0 + φ) by

φ̈(t) +
ag

`
φ(t) = 0.

We shall see during the course of our studies that a general solution to these
equations takes the form

φ(t) = φ(0) cos(ωφ(t)) +
φ̇(0)
ω

sin(ωφ(t)),

where ω =
√

ag/`. Thus, if the approximation is valid, this suggests that the
motion of the simple pendulum, for small angles, consists of periodic motions
with frequency ω. It turns out that this behaviour is indeed close to that of the
genuine pendulum equations. To be precise, the motion of the pendulum for small
angles is indeed periodic, and as the angle gets smaller, the frequency approaches
ω. However, the motion is not sinusoidal. Moreover, the period gets larger for
larger amplitude motions.

A very large amplitude motion would be when θ starts atπ. If we take θ = π+φ
then the governing equation is approximately

φ̈(t) −
ag

`
φ(t) = 0.
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We shall see that a general solution to these equations takes the form

φ(t) = φ(0) cosh(ωφ(t)) +
φ̇(0)
ω

sinh(ωφ(t)), (1.4)

whereω =
√

ag/`. (Here cosh and sinh are the hyperbolic cosine and sine functions,
defined by

cosh(x) = 1
2 (ex + e−x), sinh(x) = 1

2 (ex
− e−x).)

For most values of φ̇(0) and φ̇(0), the solutions of this equation diverge to ∞
as t → ∞. Of course, as φ gets large, this approximation becomes unreliable.
Nonetheless, the behaviour observed for small times agrees with what we think the
dynamics ought to be: since the “up” equilibrium is unstable, trajectories generally
move away from this equilibrium. Note, however, that there are a small number
of the solutions (1.4) that do not diverge to ∞, but approach φ = 0 as t → ∞,
namely those for which φ(0) = −

φ̇(0)
ω . In terms of the physics of the pendulum,

these solutions correspond to the motions of the pendulum where the pendulum
swings with just enough energy to approach the upright equilibrium as t→∞.

1.1.3 Bessel’s equation

We shall not motivate here precisely how the equation we consider in this
section arises in practice. We shall be content with the following description: If
one tries to solve the potential equation (1.19) in two-dimensions and in polar
coordinates, then one arrives at the equation

r2∂
2y
∂r2 + r

∂y
∂r

+ (r2
− α2)y = 0, (1.5)

forα ∈ R (actually, in the particular case of the potential equation, α is a nonnegative
integer). This equation, for example, describes the radial displacement in a drum
when it has been struck. The equation is known as Bessel’s equation.

We note that Bessel’s equation has one independent variable r, one dependent
variable y, and is an equation in the derivatives of the dependent variable with
respect to the independent variable.

1.1.4 RLC circuits

Next let us consider differential equations such as arise in circuits comprised of
ideal resistors, inductors, and capacitors. Let us define these terms. We will use
“E,” “I,” and “q” to denote voltage, current, and charge, respectively.
1. A resistor is a device across which the voltage drop is proportional to the current

through the device. The constant of proportionality is the resistance R: E = RI.
2. An inductor is a device across which the voltage drop is proportional to the time

rate of change of current through the device. The constant of proportionality is
the inductance L: E = LdI

dt .
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3. A capacitor is a device across which the voltage drop is proportional to the
charge in the device. The constant of proportionality is the 1

C with C being the
capacitance: E = 1

Cq.
The three devices are typically given the symbols as in Figure 1.4. The physical

I(t) E = RI

Resistor

I(t) E = LdI
dt

Inductor

q(t) E = 1
C q

Capacitor

Figure 1.4 Electrical devices

laws governing the behaviour of ideal circuits are:

1. the current I is related to the charge q by I =
dq
dt ;

2. Kirchhoff’s voltage law states that the sum of voltage drops around a closed
loop must be zero;

3. Kirchhoff’s current law states that the sum of the currents entering a node must
be zero.

Given a collection of such devices arranged in some way—i.e., a “circuit”—along
with voltage and/or current sources, we can imagine that governing equations for
the behaviour of the circuit can be deduced. In Figure 1.5 we have a particularly

−
E

+

R

L

C

Figure 1.5 A series RLC circuit

simple configuration. The voltage drop around the circuit must be zero which
gives the governing equations

E(t) = RI(t) + Lİ(t) + 1
Cq(t) =⇒ Lq̈(t) + Rq̇(t) + 1

Cq(t) = E(t)
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where E(t) is an external voltage source. This may also be written as a current
equation by merely differentiating:

LÏ(t) + Rİ(t) + 1
C I(t) = Ė(t). (1.6)

In either case, we have an equation in a single independent variable (time) and a
single dependent variable (charge or current). The equations involve, of course,
derivatives of the dependent variable with respect to the dependent variable.

We comment here on similarity with the equation (1.6) with the equation (1.1)
describing the motion of a damped mass/spring system are worth remarking upon.
The capacitor plays the rôle of a spring (stores energy), the resistor plays the rôle
of a damper (dissipates energy), and the inductor plays the rôle of a mass (it
energy is obtained from “motion” in the circuit). This gives rise to an important
“electro-mechanical analogy” in the modelling of physical systems.

1.1.5 Tank systems

Here we consider two tanks with fluid in a configuration shown in Figure 1.6.
Here are the variables and parameters:

a1

a2

A1

A2

Fin

Fout,1

Fout,2

Figure 1.6 Mass balance in coupled tank flow

Fin volume flow into tank 1
Fout,j volume flow out of tank j, j ∈ {1, 2}
A j cross-sectional area of tank j, j ∈ {1, 2}
a j cross-sectional area of orifice j, j ∈ {1, 2}
h j height of water in tank j, j ∈ {1, 2}
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Let us state the rules we shall use to deduce the behaviour of the system, assuming
that the fluid is “incompressible” so the mass of a given volume of fluid will be
constant:
1. according to Bernoulli’s Law, the velocity of the fluid exiting a small orifice at

the bottom of a tank with level h is
√

2agh, where ag is the acceleration due to
gravity;

2. the volume of rate of fluid flow passing through an orifice with constant cross-
sectional area A with velocity v (assumed to be constant across the cross-section)
is Av;

3. the rate of change of volume in a tank with constant cross-sectional area A and
fluid height h is Adh

dt .
We can thus form the balance equations for each tank by setting the rate of

change of volume in the tank equal to the volume flow in minus the volume flow
out:

A1ḣ1(t) = Fin(t) − Fout,1 = Fin(t) −
√

2a1h1(t),

A2ḣ2(t) = Fout,1(t) − Fout,2 =
√

2a1h1(t) −
√

2a2h2(t).
(1.7)

The equations governing the behaviour of the system have one independent vari-
able t (time) and two dependent variables h1 and h2, or a single vector variable
(h1, h2) ∈ R2 (the heights of fluid in the tanks). As with all of our examples, the
equations involve the derivatives of the dependent variables with respect to the
independent variable.

1.1.6 Population models

An important area of application of differential equations is in biological sci-
ences, in areas such as epidemiology and population dynamics. We shall consider
here two simple models of population dynamics as an illustration.

First let us consider a population that we model as a scalar variable p ∈ R. First
we consider a situation where the rate of population growth is proportional to p for
small values of p, but then diminishes as we approach some “limiting population
size, p0, representing the fact that there may be limited resources. This can be
represented by a model like

ṗ(t) = kp(t)
(
1 −

p(t)
p0

)
. (1.8)

This is often referred to as the logistical model of population dynamics. This is
an equation with a single independent variable t (time) and a single dependent
variable p (population).

While we will not explicitly examine this equation in this text, the reader may
relatively easily verify the following behaviour, under the natural assumption that
k > 0.
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1. There is an equilibrium at p = 0 that is not stable. That is, for small positive
populations, the rate of population change is positive.

2. There is an equilibrium at p = p0 that is stable. That is, for populations less than
the limiting population p0, the rate of population change is positive.
Let us now consider two populations a and b, with a representing the population

of a prey species and b representing the population of a predator species. The
following assumptions are made:
1. prey population increases exponentially in the absence of predation;
2. predators die off exponentially in the absence of predation;
3. predator growth and prey death due to predation is proportional to the rate of

predation;
4. the rate of predation is proportional to the encounters between predators and

prey, and encounters themselves are proportional to the populations.
Putting all of this together, the behaviour of the prey population a can be modelled
by

ȧ(t) = αa(t) − βa(t)b(t)

and the behaviour of the predator population can be modelled by

ḃ(t) = δa(t)b(t) − γb(t).

We should combine these equations:

ȧ(t) = αa(t) − βa(t)b(t),

ḃ(t) = δa(t)b(t) − γb(t).
(1.9)

These equations have a single independent variable t (time) and two dependent
variables a and b, or equivalently a single vector variable (a, b) ∈ R2. This model is
called the Lotka–Volterra predator-prey model.

We shall not in this text undertake a detailed analysis of this equation. However,
a motivated reader can easily find many sources where this model is discussed in
great depth and detail.

1.1.7 Economics models

Another area where differential equations are useful is in social sciences, and
especially economics. We consider an example of this, known as the Rapoport
production and exchange model.

The setup is this. Individuals A and B produce goods that we measure by scalar
variables a, b ∈ R. The individuals A and B trade, each trying to maximise their
“happiness,” typically referred to as “utility.”1 We denote by p the proportion of

1In philosophy, the notion of “utility” as a measure of general happiness dates, in its most
explicit form, to Thomas Hobbes (1588–1679) and John Locke (1632–1704). While early versions of
utilitarianism were based in religion, John Stuart Mill (1806–1873) developed a powerful secular
utilitarian ethic, which itself led to the secular philosophy of Jeremy Bentham (1748–1832).
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goods produced and retained, and by q the proportion of goods produced and
traded: thus p + q = 1. The assumptions made by Rapoport are these:
1. people are lazy, so the act of production is a loss of utility;
2. people are gauche, so possessing something produced is a gain in utility;
3. the loss of utility due to the agonies of production are proportional to the

amount produced;
4. while there is no cap in a person’s desire to acquire crap, the utility they gain

from acquiring crap diminishes, the more crap they have;
5. the rate at which A or B makes product a and b is proportional to the rate at

which utility increases with respect to a and b.
With all this as backdrop, let us introduce something meaningful. First of all, let
us give the utility functions for A and B:

UA(a, b) = log(1 + pa + qb) − rAa, UB(a, b) = log(1 + qa + pb) − rBb.

If one examines these expressions, one can see that they capture in form and shape
the characteristics of individuals A and B described above. Of course, many other
forms are also viable candidates.

Now, according to condition 5, the equations that govern the amounts a and b
are:

ȧ(t) = cA

(
p

1 + pa(t) + qb(t)
− rAa(t)

)
,

ḃ(t) = cB

(
p

1 + pa(t) + qb(t)
− rBb(t)

)
.

(1.10)

These equations have a single independent variable t (time), and two dependent
variables a and b, or equivalently one vector variable (a, b) ∈ R2 (production).
The equation is one that involves the derivatives of the dependent variables with
respect to the independent variable.

An indepth analysis of these equations is not something we will undertake here.

1.1.8 Euler–Lagrange equations

We consider here the following problem. Suppose we are given y1, y2 ∈ R and
x1, x2 ∈ R with x1 < x2. Denote by

Γ(y1, y2, x1, x2)
= {γ : [x1, x2]→ R | γ is twice continuously differentiable γ(x1) = y1, γ(x2) = y2}

the set of all twice continuously differentiable functions with value y1 at the left
endpoint and y2 at the right endpoint, as in Figure 1.7. Suppose that we have
a function L : [x1, x2] × R2

→ R that we call the Lagrangian. Associated to this
Lagrangian and a function γ ∈ Γ(y1, y2, x1, x2) we have an associated cost

CL(γ) =

∫ x2

x1

L(x, γ(x), γ′(x)) dx.
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x

y

[ ]

Figure 1.7 Candidate curves in an optimisation problem

The objective is to find γ that minimises CL(γ). That is, we seek γ∗ ∈ Γ(y1, y2, x1, x2)
such that

CL(γ∗) ≤ CL(γ), γ ∈ Γ(y1, y2, x1, x2).

Such a function γ∗ is a minimiser for the Lagrangian L. One can show, without
much difficulty, but using methods from the calculus of variations that are a little
far afield for us at the moment, that if γ∗ is given by γ∗(x) = y(x) is a minimiser for
L, then it necessarily satisfies the equation

d
dt

(
∂L
∂y′

)
−
∂L
∂y

= 0,

which are the Euler–Lagrange equations for this problem. We give the equations
in their traditional form, although this form is genuinely confusing. Let us be a
little more explicit about what the equations mean. By an application of the Chain
Rule, the Euler–Lagrange equations can be written as

∂2L
∂y′∂y′

y′′(x) +
∂2L
∂y′∂y

y′(x) −
∂L
∂y

= 0. (1.11)

Note that this is an equation in the single independent variable x and the single de-
pendent variable y. Again, it is an equation involving derivatives of the dependent
variable with respect to the independent variable. However, this equation has, in
general, an important difference with some of the other equations we have seen.
To illustrate this, let us consider the Lagrangians L(x, y, y′) = y′. In this case

∂2L
∂y′∂y′

y′′(x) +
∂2L
∂y′∂y

y′(x) −
∂L
∂y

is identically zero: a circumstance unlike the equations we have encountered be-
fore.
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The Euler–Lagrange equations are important equations in physics and optimi-
sation, but to study them in any depth is not something we will be able to undertake
in this text.

1.1.9 Maxwell’s equations

Maxwell’s equations are famously important equations governing the be-
haviour of electromagnetic phenomenon. Let us introduce the physical variables
of Maxwell’s equations:

E electric field
B magnetic field
J current density
ρ charge density

The first three of these quantities are vector fields on the physical space R3. Thus
we should think of each of these physical quantities as defining a direction in
R3 and a length at each point in R3, i.e., an arrow. The charge density ρ is a
scalar-valued function on R3. Let us say a word or two about how we should
interpret these quantities. First of all, the charge density ρ is relatively easy to
understand: it prescribes the density of charge provided by subatomic particles
per unit volume as we move through physical space. The electric field indicates
how charge moves through space; at each point (x1, x2, x3) in space, it moves in the
direction of E(x1, x2, x3). Thus E(x1, x2, x3) can be thought of as a “force” acting on
a charge at the point (x1, x2, x3). The magnetic field B2 acts for magnetic field lines
rather like the electric field acts from the flow of charge: it indicates the direction of
magnetic force applied to a moving charge. The current density J gives the current,
as a vector quantity, rather in the manner of a fluid flow.

There are also some physical constants in the equations of electromagnetism.
These are the following:

ε0 permittivity of free space
µ0 permeability of free space

These constants are proportionality constants, rather in the manner of the acceler-
ation due to gravity, which we have been denoting by ag.

With this preparation, we shall produce Maxwell’s equations which indicate

2There is another quantity H that also represents the magnetic field, and is proportional to B in
a vacuum, but has a more complicated relationship within a magnetic material. Very often H is
referred to as the magnetic field, and B is called something different. But often the name “magnetic
field” is applied to B
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how these quantities interact with one another:

ε0∇ · E = ρ,

∇ · B = 0,

∇ × E = −
∂B
∂t
,

∇ × B = µ0J + µ0ε0
∂E
∂t
.

(1.12)

Let us first describe the mathematical symbols “∇·” and “∇×” that you will
learn about in a course on vector calculus. The operator ∇· is the divergence and
acts on a vector field X = (X1,X2,X3), giving a function according to the definition

∇ · X =
∂X1

∂x1
+
∂X2

∂x2
+
∂X3

∂x3
.

The precise meaning of the divergence of a vector field requires a few ways of
thinking about things that are not part of ones makeup prior to a course like
this, but basically vanishing divergence corresponds to “volume preserving.” The
operator ∇× is curl and again acts on a vector field X = (X1,X2,X3) giving another
vector field according to the definition

∇ × X =

(
∂X2

∂x3
−
∂X3

∂x2
,
∂X1

∂x3
−
∂X3

∂x1
,
∂X2

∂x1
−
∂X1

∂x2

)
.

As with divergence, a really good understanding of curl of a bit beyond us at this
point. Let us say two things: (1) ∇×X measures the “rotationality” of a vector field
X, so its vanishing somehow means it is not rotational; (2) if ∇ × X = 0, then there
exists a function f such that X = ∇ f , with ∇ f being the gradient of f :

∇ f =

(
∂ f
∂x1

,
∂ f
∂x2

,
∂ f
∂x3

)
.

What we can now see is that there are four independent variables (x1, x2, x3, t)
in Maxwell’s equations, representing spacetime, and 3 + 3 + 3 + 1 = 10 dependent
variables E, B, J, and ρ. The equations involve the partial derivatives of the
dependent variables with respect to the independent variable.

Now we can say a few words about the meaning of Maxwell’s equations. The
first equation, called Gauss’s law for electricity, says that the “expansiveness”
of the electric field is proportional to the charge density. The second equation,
called Gauss’s law for magnetism, says that the expansiveness of the magnetic
field is zero. The third equation, called Faraday’s law of induction, tells us that
a time-varying magnetic field gives rise to an electric field. Finally, the fourth
equation, called Ampére’s law, says that both a time-varying electric field and a
current density field give rise to magnetic field.

Of course, any systematic investigation of Maxwell’s equations is not something
we can undertake here, and indeed in complete generality is not possible, by any
reasonable meaning of “systematic investigation.”
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1.1.10 The Navier–Stokes equations

The Navier–Stokes equations deal with the motion of a Newtonian, viscous,
and compressible fluid. This means (1) there are viscous, i.e., friction, effects
that are accounted for, (2) the viscous stresses arise as a consequence of temporal
deformation of the fluid, (3) and the mass of fluid in a given volume is allowed
to vary. The motion of the fluid we represent by a mapping φ : R × R3

→ R3, so
that φ(t, x) indicates where the fluid particle at x ∈ R3 at time 0 resides at time t.
We shall abbreviate φt : R3

→ R3 the mapping φx(x) = φ(t, x). We shall not deal
directly with this mappingφ, but rather with its associated velocity field, by which
we mean the mapping u : R × R3

→ R3 defined by

u(t,φt(x)) =
d
dt
φt(x).

Thus u(t, x) is the velocity of the fluid particle initially at position x at time t. In
Figure 1.8 we illustrate how one can think of the velocity field by depicting the

x Φt(x)

u(t, φt(x))

Figure 1.8 The velocity field for a fluid motion

trajectory followed by a single particle, along with the velocity of that particle at
time t.

The Navier–Stokes equations are equations for the velocity field u. The first
part of these equations is the continuity equation, which represents the law of
conservation of mass:

∂ρ

∂t
+ ∇ · (ρu) = 0. (1.13)

Here ρ is a scalar-valued function on R3 giving the mass density of the fluid
as a function on physical space. The operator “∇·” is the divergence which we
encountered in our discussion of Maxwell’s equations above. Note that when ρ
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is constant—which corresponds to incompressible flow—the continuity equation
reads

∇ · u = 0,

meaning that the velocity field preserves volume. Along with the mass conser-
vation equation, we have a force/momentum balance equation that we will not
provide any details for:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · (µ(∇u + (∇u)T) − 2
3µ(∇ · u)I) + f . (1.14)

These are the Navier–Stokes equations.
Let us first define all of the mathematical components of this equation, at least

so one can imagine writing these equations down in explicit form. The term ∇u is
the gradient or Jacobian of the velocity field, which is a 3 × 3-matrix:

∇u =



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


.

The second term in the Navier–Stokes equations is the vector obtained by multiply-
ing this matrix on the left by the vector u. The variable p is the pressure field which
is a scalar function, and ∇p represents the gradient of the pressure field, i.e., the
vector field grad p = ( ∂p

∂x1
, ∂p
∂x2
, ∂p
∂x3

). The variable µ is the viscosity, and represents
the internal forces in the fluid due to friction causes when creating strain gradients.
Of course, I is the 3×3 identity matrix. Note that the second term on the right-hand
side has the form ∇ ·M for a matrix function M. This is a vector field, called the
divergence of M. It is given explicitly by

∇ ·M =

 3∑
j=1

∂M1 j

∂x j
,

3∑
j=1

∂M2 j

∂x j
,

3∑
j=1

∂M3 j

∂x j

 .
Finally, f are body forces, e.g., gravitational effects.

The Navier–Stokes equations have four independent variables (x1, x2, x3, t) and
five dependent variables, ρ, p, and (u1,u2,u3). It is, of course, an equation in the
derivatives of the dependent variables with respect to the independent variables.

1.1.11 Heat flow due to temperature gradients

Our next modelling task is that of heat flow in a homogeneous medium. Let us
specify the physical assumptions we make.
1. For simplicity we work with a one-dimensional medium, i.e., a rod.
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2. We assume a homogeneous medium, i.e., its characteristics are constant as we
move throughout. We assume the rod to have a constant cross-sectional area A.

3. Thermal energy is given by Q = cρVu, where ρ is the mass density, V is the
volume, u is temperature, and c is the specific heat of the medium. We assume
ρ and c to be constant throughout the material.

4. We assume that rate of heat transfer from one region to another through a slice
of the rod is proportional to the temperature gradient:

q = −K
∂u
∂x
,

where q is the heat flow per unit area and x measures the distance along the
rod. This is Fourier’s law.

5. Thermal energy is conserved in each chunk of the rod.
Let us use these assumptions to derive an equation governing the temperature
distribution in a rod. Consider a chunk of the rod as shown in Figure 1.9. In the

q(a) q(b)

x

x = a x = b

Figure 1.9 A chunk of rod used in the derivation of the heat
equation

figure, the rod chunk is shown at a fixed time. The quantity q(a) denotes the rate
of heat flow at the position x = a on the rod, and q(b) denotes the rate of heat flow
at the position x = b on the rod. In terms of the quantities in Figure 1.9, Fourier’s
law reads

q(a) = −K
∂u
∂x

∣∣∣∣
a
, q(b) = K

∂u
∂x

∣∣∣∣
b

for some constant c > 0. The signs result from the fact that heat will flow in a
direction opposite the temperature gradient. If we assume that no heat escapes
from the upper and lower boundaries of the rod, then the net change in heat in the
rod chunk in a time ∆t will be

∆Q = KA∆t
(
∂u
∂x

∣∣∣∣
b
−
∂u
∂x

∣∣∣∣
a

)
, (1.15)
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With the assumptions we have made, the net change in heat in the chunk over a
time ∆t is given by

∆Q = cρA(b − a)∆t
∂u
∂t
, (1.16)

where ∂u
∂t is the average of the time rate of change of temperature throughout

the chunk and ρ is the mass density of the material. By making (b − a) and ∆t
sufficiently small, one may ensure that ∂u

∂t does not vary much through the chunk.
Equating (1.15) and (1.16) we get

cρA(b − a)∆t
∂u
∂t

= KA∆t
(
∂u
∂x

∣∣∣∣
b
−
∂u
∂x

∣∣∣∣
a

)
Now, dividing by µ∆t(b − a) and taking the limit as b − a goes to zero we get the
heat equation:

∂u
∂t

= k
∂2u
∂x2 , (1.17)

where k = K
cρ > 0 is the diffusion constant.

The heat equation has two independent variables x and t and a single dependent
variable u. It is an equation in the derivatives of the dependent variable with respect
to the independent variables. A multidimensional (in space) analogue of the heat
equation is imaginable, and takes the form

∂u
∂t

= k
(
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n

)
.

The operator in the right-hand side is of independent interest, and is known as the
Laplacian of u and given by

∆u =
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
.

With this bit of notation, the heat equation can be written as

∂u
∂t

= k∆u.

We shall subsequently look at the heat equation in some detail, and shall say
some things about the behaviour of its solutions at that time.

1.1.12 Waves in a taut string

Next we consider the small transverse vibrations of a taut string when it is
plucked, e.g., a guitar string. To derive the equations governing these transverse
vibrations, we use simple force balance on a short segment of the string. In
Figure 1.10 we depict a little segment of a string with its transverse displacement
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T

θ(b)

T

θ(a)

x = a x = b

Figure 1.10 A segment of string used in the derivation of the
wave equation

denoted u. It is assumed that the tension T in the string is independent of x and t.
This is acceptable for small string deflections. The vertical component of the force
on the string is given by

Fy = −T sin(θ(a)) + T sin(θ(b)).

Let us manipulate this until it looks like something we want. We denote the vertical
deflection of the string by u. We then have

tanθ(a) =
∂u
∂x

∣∣∣∣
a
, tanθ(b) =

∂u
∂x

∣∣∣∣
b
.

Now recall that for small angles θ we have sinθ ≈ tanθ. This then gives

Fy ≈ T
(
∂u
∂x

∣∣∣∣
b
−
∂u
∂x

∣∣∣∣
a

)
.

Now the mass of the segment of string is ρ(b − a) with ρ the length mass density
of the string, which we assume to be constant. The vertical acceleration is then
∂2u
∂t2 , which we suppose to be constant in the segment. By making the length of the
segment sufficiently small, this becomes closer to being true. An application of
force balance now gives

ρ(b − a)
∂2u
∂t2 ≈ T

(
∂u
∂x

∣∣∣∣
b
−
∂u
∂x

∣∣∣∣
a

)
.

Dividing by ρ(b − a) and letting b − a go to zero, we have the wave equation:

∂2u
∂t2 = c2∂

2u
∂x2 , (1.18)

where c =
√

T
ρ > 0 is the wave speed for the problem.

There are two independent variables x and t for the wave equation, and a
single dependent variable u. The equation itself is one involving derivatives of the
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dependent variable with respect to the independent variables. As with the heat
equation, a multidimensional (in space) analogue of the heat equation is possible,
and takes the form

∂2u
∂t2 = c2

(
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n

)
.

The operator in the right-hand side is the Laplacian which we saw with the heat
equation:

∆u =
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
.

The wave equation can be thus written as

∂2u
∂t2 = k∆u.

In the text we shall examine the wave equation in a little detail, and say some
things about the behaviour of its solutions.

1.1.13 The potential equation in electromagnetism and fluid mechanics

In this section we shall see how the Laplacian, introduced in our discussion
of the wave equation, arises in special cases of Maxwell’s and Navier–Stokes’
equations.

We first consider Maxwell’s equations of electromagnetism. We make a few
assumptions about the physics that will allow us to simplify the complicated
Maxwell’s equations.
1. We assume we are in steady-state, so the dependent variable do not depend on

time.
2. We assume that the electric field E is a potential field. This means that there

exists a function V, called the electric potential, such that E = ∇V = ( ∂V
∂x1
, ∂V
∂x2
, ∂V
∂x3

).
3. We assume that we are in free space so the charge density is zero.
The equations for the potential function are determined by Gauss’s law:

∇ · E = 0 =⇒ ∇ · ∇V = 0.

A direct computation gives

∇ · ∇V = ∆V =
∂2V
∂x2

1

+
∂2V
∂x2

2

+
∂2V
∂x2

3

. (1.19)

This is the potential equation in R3.
Next we turn to a special case of the Navier–Stokes equations, making the

following physical assumptions.
1. The flow in inviscid, so the viscosity µ vanishes.
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2. The flow in incompressible, so the divergence of the fluid velocity vanishes.
3. We assume the fluid velocity is derived from a velocity potential: u = −∇φ.
4. We suppose that body forces are potential forces, i.e., f = −∇V, e.g., gravitational

forces.
In this case, the assumptions of incompressibility and the existence of a velocity

potential give the following form of the equation of continuity:

∇ · u = 0 =⇒ ∆φ = 0.

Let us investigate the impact of this, along with the other physical assumptions, in
describing properties of the fluid flow. First of all, a direct computation gives

u · ∇u = (∇ × u) × u + grad(1
2u · u),

where a× b denotes the vector cross-product and a · b denotes the Euclidean inner
product of a, b ∈ R3. Since u = −∇φ, we calculate that ∇ × u = 0, and so the
Navier—Stokes equations read

∇

(
∂φ

∂t
+

1
2

(u · u) +
p
ρ

+ V
)

= 0.

This implies that
∂φ

∂t
+

1
2

(u · u) +
p
ρ

+ V

depends only on t. This is known as Bernoulli’s principle.
Let us indicate another way in which the Laplacian arises in fluid flow problems,

in this case with planar flow problems, i.e., that u3 = 0. We assume that the fluid
velocity (u1,u2, 0) has the special form

u1 =
∂ψ

∂x2
, u2 = −

∂ψ

∂x1

for a function ψ of (x1, x2) called the stream function. Note that the resulting fluid
velocity automatically satisfies the incompressible continuity equation:

∂u1

∂x1
+
∂u2

∂x2
=

∂2ψ

∂x1∂x2
−

∂2ψ

∂x2∂x1
= 0.

If we additionally require that ∆ψ = 0, then ∇ × u = 0. In this case, we recall from
vector calculus that u = −gradφ, i.e., the flow is a potential flow.
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1.1.14 Einstein’s field equations

In Einstein’s theory of general relativity, a spacetime is a four-dimensional
“differentiable manifold.” This means that around every point in spacetime there
is a parameterisation by R4. To keep things simple (and still representative), we
just assume that our spacetime is equal to R4. There are two physical objects
defined on spacetime, and Einstein’s field equations relate these. The first is the
stress-energy tensor T which is a symmetric 4 × 4 matrix function. This encodes
the properties of spacetime like mass and electromagnetic fields. The other object
defined on spacetime of interest is the metric tensor g, which is another symmetric
4 × 4 matrix function, this one having the property that it has one negative and
three positive eigenvalues. Physically, g determines the gravitational properties of
spacetime, as well as the space and time structure.

We definitely will not derive Einstein’s field equations, but will simply produce
them. First of all, we denote the coordinates for spacetime by (x1, x2, x3, x4); the use
of superscripts as indices is traditional in general relativity. The components of
the matrices T and g we denote by T jk and g jk, j, k ∈ {1, 2, 3, 4}. First we define the
Christoffel symbols associated with g:

γ j
kl =

1
2

4∑
m=1

g jm

(
∂gmk

∂xl
+
∂gml

∂xk
−
∂gkl

∂xm

)
,

where g jk, j, k ∈ {1, 2, 3, 4}, are the components of g−1. Next, the curvature tensor is
then defined by

R j
klm =

∂Γ j
lm

∂xk
−
∂Γ j

km

∂xl
+ Γ

j
kmΓm

lm − Γ
j
lmΓm

km,

the Ricci tensor is the 4 × 4-symmetric matrix function Ric defined by

Ric jk =

4∑
l=1

Rl
l jk, j, k ∈ {1, 2, 3, 4},

and the scalar curvature is function defined by

ρ =

4∑
j,k=1

g jk Ric jk .

Finally, we define the contravariant form of the stress-energy tensor, which is the
symmetric 4 × 4-matrix function T with components

T jk =

4∑
l,m=1

g jlgkmTlm, j, k ∈ {1, 2, 3, 4}.
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With all of this data, we can now write the Einstein field equations:

Ric − 1
2ρg + Λg =

8πG
c4 T, (1.20)

where Λ is the cosmological constant, G is the gravitational constant, and c is the
speed of light in a vacuum.

There are four independent variables in Einstein’s field equations, the coor-
dinates (x1, x2, x3, x4) for spacetime. There are nominally ten dependent variables
(the sixteen components of g taking into account symmetry). The equations are
complicated equations in the derivatives of dependent variables with respect to
the independent variables.

Of course, we will not say anything about the nature of the solutions to Einstein’s
field equations. This is the subject of deep work by many smart people.

1.1.15 The Schrödinger equation

In quantum mechanics, the Schrödinger equation governs the behaviour of a
function known as the wave function. The wave function encodes the state of
a quantum system in the form of a “probability amplitude.” These are typically
complex-valued as they come equipped with, not just an amplitude, but a phase.
This phase allows for the wave part of the particle/wave duality seen in the be-
haviour of subatomic particles. We shall not delve into the quantum mechanical
machinations required to understand where the equation comes from, but shall
merely produce the Schrödinger equation for the wave function ψ of a single par-
ticle moving in R3 in an electric field with electric potential function V:

i~
∂ψ

∂t
= −

~2

2µ
∆ψ + Vψ, (1.21)

where i =
√
−1, ~ is Planck’s constant, and µ is the effective mass of the particle.

Note that the Schrödinger equation is an equation with four independent vari-
ables, (x1, x2, x3) and t, and a single complex-valued dependent variable ψ, or
equivalently, regarding a complex number as determined by its real and imaginary
parts, two real dependent variables. Of course, the equation is one involving the
derivatives of the dependent variable with respect to the independent variables.

1.1.16 The Black–Scholes equation

The model we arrive at in this section is widely used in options trading, and
has garnered a Nobel Prize in Economics for its developers. It is also true that
the widespread misuse of this model, and models like it, combined with greed
and governments divesting themselves of regulatory responsibilities, has led to
the ruination of millions of lives. So mathematics can make a difference in peoples
lives!
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The equation we give provides the price V of an option as a function of stock
price S and time t. It also has the following parameters:

r risk-free compound interest rate
σ standard deviation of stock’s returns

We shall not describe the “derivation” of the model, but simply state the
Black–Scholes equation:

∂V
∂t

+
1
2
σ2S2∂

2V
∂S2 + rS

∂V
∂S
− rV = 0.

For this equation, there are two independent variables (t,S) and a single indepen-
dent variable V. The equation involves derivatives of the independent variable
with respect to the dependent variables.

Now you can go off into a room and run Black–Scholes simulations, and make
yourself rich!

1.1.17 Summary

In this section we have presented myriad illustrations of how equations in-
volving various numbers of independent and dependent variables, along with
derivatives of these, may arise in applications. The subject of this text is how to
solve some such equations, and how to look for the essential attributes of equations
such as these. This is the subject of “differential equations.” It is a subject that is
impossible to comprehend fully in any sort of generality, which is not unreasonable
since differential equations describe physical phenomenon that we do not expect
to be able to understand fully. Thus the subject of differential equations is a combi-
nation of looking deeply at certain special cases (particularly linear equations) and
working hard to determine characteristic behaviour of general classes of systems.

1.1.18 Notes

[Brown 2007, page 68]

Exercises

1.1.1 Think of, or Google, three models (not included in the text) where differential
equations arise in practice. In each case, do the following:
(a) indicate the independent and dependent variables;
(b) give some meaning to these variable in terms of the particular applica-

tion;
(c) provide a tiny bit of background about where the equations come from.
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Section 1.2

The mathematical background and notation required to read
this text

One of the attributes of the course for which these notes are developed is a
slightly higher level of mathematical rigour. In this section, therefore, we overview
our expectations of the background of students. We also introduce some concepts,
terminology, and notation that will arise frequently in the course of our presenta-
tion.

1.2.1 Elementary mathematical notation

We will use standard mathematical notation which we overview here for refer-
ence.

Given a set S, if x is an element of S we shall write x ∈ S. If A is a subset of S, we
shall write A ⊆ S. This allows for the possibility that A = S. If we wish to exclude
this possibility, then A is a strict subset of S and we will write A ⊂ S. If S is a set
and A ⊆ S, then S \ A is the set of elements of S that are not in A. For sets S and T,
S∪T denotes the union of S and T, i.e., the set whose elements are from either S or
T. By S ∩ T we denote the intersection of S and T, i.e., the set whose elements are
in both of S and T. For sets S and T, we denote the Cartesian product of S and T
by S × T, noting that elements of S × T take the form (x, y) for x ∈ S and y ∈ T. Of
course, we can talk about arbitrary finite unions, intersections, and products in the
same way. Thus if S1, . . . ,Sk are sets an element of the Cartesian product S1×· · ·×Sk

takes the form (x1, . . . , xk), where x j ∈ S j for j ∈ {1, . . . , k}. The empty set, i.e., the set
with no elements is denoted by ∅.

Sets will frequently be prescribed by placing restrictions on elements of another
set. Let S be a set and let P be a predicate in S. Thus P is a rule for assigning
a value of True or False to each element of S. Thus we can regard P as a map
P : S→ {True,False}. We can then define a subset of S to be the set of elements of
S to which P assigns a value True. The notation we use for this is

{x ∈ S | P(x) = True}.

For sets S and T, a function or map from S to T is a rule that assigns to each
point in S a unique point in T. The rule is typically given a name like “ f ,” and so,
given x ∈ S, f (x) ∈ T is the element assigned to x by the map f . To signify that f
is a map from S to T, we shall write f : S → T. We call S the domain of f and T
the codomain of f . Thus we shall frequently write things like, “Consider a map
f : S → T.” If f : R → S and g : S → T are maps, the composition of f and g is
the map g ◦ f : R → T defined by g ◦ f (x) = g( f (x)) for x ∈ R. If f : S → T and if
A ⊆ S, we denote by f |A the restriction of f to A, which is the same map as f , but
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only taking inputs as points in A. We say that f : S→ T is injective if f (x1) = f (x2)
for x1, x2 ∈ S, then this implies that x1 = x2. We say that f : S → T is surjective if,
given y ∈ T, there exists x ∈ S such that f (x) = y. We say that f : S→ T is bijective
if it is both injective and surjective. For a set S, the identity map on S is the map
idS : S→ S defined by idS.

By Z we denote the set of integers, with Z≥0 denoting the nonnegative integers
and Z>0 denoting the positive integers. The real numbers we denote by R, with
R≥0 denoting the nonnegative real numbers and R>0 denoting the positive real
numbers. By Rn we denote the n-fold Cartesian product of R with itself. Thus an
element of Rn has the form (x1, . . . , xn) for x j ∈ R, j ∈ {1, . . . ,n}. We will denote this
with a bold font:

x = (x1, . . . , xn).

We shall frequently consider subsets of R known as intervals. An interval is a
subset of one of the following nine forms:

(a, b) = {x ∈ R | a < x < b},
(a, b] = {x ∈ R | a < x ≤ b},
[a, b) = {x ∈ R | a ≤ x < b},
[a, b] = {x ∈ R | a ≤ x ≤ b},
(a,∞) = {x ∈ R | a < x < ∞},
[a,∞) = {x ∈ R | a ≤ x < b},
(−∞, b) = {x ∈ R | − ∞ < x < b},
(−∞, b] = {x ∈ R | − ∞ < x ≤ b},
(−∞,∞) = R.

(1.22)

Note that, for our purposes, things like [a,∞] do not make sense: ∞ is not an
element of R.

1.2.2 Complex numbers

We will work with complex numbers, and we suppose that the reader has a
passing familiarity with these. Here we shall provide the few facts that we shall
require.

1.2.2.1 Complex arithmetic We define the set C of complex numbers to be
C = R2, equipped with the following operations:
1. Addition: (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2);
2. Multiplication: (x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1);
3. Inversion: (x, y)−1 = ( x

x2+y2 ,−
y

x2+y2 ) when x2 + y2 , 0.

One can readily verify that these definitions of arithmetic have the familiar commu-
tativity, associativity, and distributivity properties of arithmetic with real numbers.
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In practice, one almost never writes a complex number as (x, y). Instead, one
denotes i = (0, 1) and notes that

(x, 0) + i(0, y) = (x, 0) + (0, 1)(0, y) = (x, 0) + (0, y) = (x, y).

Thus it is entirely reasonable to write (x, y) = x+iy, and this is the almost universally
used notation for writing a complex number. If we wish to abbreviate, a typical
complex number is often written as z = x + iy for x, y ∈ R. We call x the real part
of z, denoted by x = Re(z), and y the imaginary part of z, denoted by y = Im(z).
Note that i · i = −1 + i0, and so we have i =

√
−1. The fact that −1 does not have

a real square root is, in some sense, the whole point of using complex numbers. If
z = x + iy ∈ C, the complex conjugate of z is z = x − iy: z is the reflection of z about
the real axis as in Figure 1.11.

Re

Im

z

z

Figure 1.11 Complex conjugation

1.2.2.2 Polar representation There is an alternative means of representing a
complex number, namely the polar representation. This works as follows. Let
z = x + iy ∈ C \ {0}. Then there exists a unique r ∈ R≥0 and θ ∈ (−π, π] such that

z = r(cosθ + i sinθ),

see Figure 1.12. Specifically, r =
√

x2 + y2 and θ = atan(x, y), where atan: R2
\

{(0, 0)} → (−π, π] is the “smart” arctangent function, see Figure 1.13. For the polar
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Re

Im

z

r

θ

Figure 1.12 The polar representation of a complex number

representation, it is common to use Euler’s formula which is

eiθ = cosθ + i sinθ

for θ ∈ R.3

For our purposes, we shall just use this as a short form, but when you learn about
functions of a complex variable, you will learn about the exponential function, and

3Here’s a justification of Euler’s formula. A reader likely knows the Taylor series formula for
the exponential function:

ex =

∞∑
n=0

xn

n!
.

This formula is valid for complex numbers, and defines the complex exponential function:

ez =

∞∑
n=0

zn

n!
.

Let us work this out for z = iθ:

eiθ =

∞∑
n=0

(iθ)n

n!
=

∞∑
n=0

(iθ)2n

(2n)!
+

∞∑
n=0

(iθ)2n+1

(2n + 1)!

=

∞∑
n=0

(−1)nθ2n

(2n)!
+ i

∞∑
n=0

(−1)nθ2n+1

(2n + 1)!
= cosθ + i sinθ.
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x

y

atan(x, y) ∈ ]− π
2 ,−π] atan(x, y) ∈ ]0,−π

2 ]

atan(x, y) ∈ ]0, π
2 ]atan(x, y) ∈ ]π2 , π]

Figure 1.13 The “smart” arctangent function

then see that this is a relationship between three functions, the exponential, cosine,
and sine functions. Note that, with Euler’s formula, we write z = reiθ. One can
verify that this representation interacts in predictable ways with multiplication.
Thus, if we write z1, z2 ∈ C \ {0} as

z1 = r1eiθ1 , z2 = r2eiθ2 ,

then
z1z2 = r1r2ei(θ1+θ2).

In particular, we have the useful formula

z = reiθ =⇒ zn = rneinθ.

1.2.2.3 Roots of complex numbers Complex numbers are, in some way of
thinking about them, conjured especially because of their nice properties upon
taking roots. For example, not all real numbers have real square roots, e.g., all
negative real numbers do not have real square roots. However, given any w ∈ C,
the equation zn = w can be solved for z, and indeed has exactly n solutions. Let us
explore this.

We write w and z using polar representations:

w = ρeiφ, z = reiθ.
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The equation zn = w then reads rneinθ = ρeiφ. This has the one “obvious” solution
given by r = n

√
ρ and θ = φ/n. However, there are other solutions. Indeed, note

that, for any k ∈ Z, we have w = eiφ+2kπ. Thus we have solutions

zk = n
√
ρei(φ+2kπ)/n, k ∈ Z.

This makes it seem like there are then infinitely many solutions for zn = w. How-
ever, note that

ei(φ+2(k+n)π)/n = ei(φ+2kπ)/n+i(2π) = ei(φ+2kπ)/n, k ∈ Z.

Therefore, there are, in fact, n solutions to the equation zn = w, and these are

zk = n
√
ρei(φ+2kπ)/n, k ∈ {0, 1, . . . ,n}.

1.2.3 Polynomials

We shall suppose that the reader knows what a polynomial is, and how to find
the roots of a degree 2 polynomial using the quadratic formula. Here we shall say
a few more things about this, since part of some algorithms for solving differential
equations involves first finding the roots of a polynomial. Moreover, the nature of
the solution of the differential equation depends on the particularities of the roots.
We shall be primarily interested in polynomials with real coefficients, although we
shall see that complex numbers inevitably enter the frame, even in this case.

Let F ∈ {R,C}. A polynomial over F is a linear combination

akXk + · · · + a1X + a0

of powers of an indeterminate X,4 with coefficients a0, a0, . . . , ak ∈ F. The degree
of a polynomial is the largest k ∈ Z≥0 for which ak , 0. A polynomial of degree
k is monic if ak = 1. We denote by F[X] the set of polynomials over F. We shall
use symbols like “P” to denote polynomials. We assume the reader knows how to
multiply and add polynomials.

For us, the main feature of a polynomials is its roots. First we need to evaluate
polynomials. Let P ∈ F[X] be a degree k polynomial given by

P = akXk + · · · + aaX + a0.

Associated to P is a function P̂ : F→ F defined by, of course,

P̂(x) = akxk + · · · + a1x + a0.

A root of P is then λ ∈ F such that P̂(λ) = 0. If λ ∈ F is a root of P, then we can write

P = (X − λ)P1,

4We shall not be very precise about just what an indeterminate is; you can think of it as being a
variable.
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where P1 is a polynomial of degree k − 1. It may happen that λ is a root of P1, in
which case the same argument gives

P = (X − λ)2P2

for a polynomial P2 of degree k − 2. We can continue in this way until we arrive at
the largest m ∈ {1, . . . , k} for which

P = (X − λ)mPm

for a polynomial Pm of degree k − m for which P̂m(λ) , 0. The number m is the
multiplicity of the root λ, and we denote this by m(λ,P).

Let us consider the nature of roots of polynomials.
1. The Fundamental Theorem of Algebra says that, if P ∈ C[X], then P has a root.

If P has degree k, the number of roots can be any number in {1, . . . , k}. For
example, if λ ∈ C, the polynomial

P = (X − λ)k

has only one root, while, if λ1, . . . , λk ∈ C are distinct, then the polynomial

P = (X − λ1) · · · (X − λk)

has k roots.
2. If P ∈ R[X], then it is possible that P has no roots, e.g., P = X1 + 1. However, if

P ∈ R[X] there is the naturally associated P ∈ C[X] with the same coefficients,
keeping in mind that R ⊆ C. This polynomials will have roots, as in 1. In this
case, we say that the real polynomial P has complex roots.

3. Because of the realness of the coefficients of P ∈ R[X], the arrangement of the
roots is not arbitrary, however. For example, if λ ∈ C is a root of P, possibly
complex, then λ is also a root.5 Thus, if one lays down points in the complex
plane corresponding to the complex roots of a real polynomial, the configuration
will be symmetric about the real axis.

5This is easy to see. If λ is a root, then

akλ
k + · · · + a1λ + a0 = 0

=⇒ akλk + · · · + a1λ + a0 = 0

=⇒ akλk + · · · + a1λ + a0 = 0

=⇒ akλ
k + · · · + a1λ + a0 = 0

=⇒ akλ
k + · · · + a1λ + a0 = 0.
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4. One can compute the roots of a degree 2 polynomial using the quadratic for-
mula. There are similar formulae for polynomials of degree 3 and 4. Things
change with degree 5, however. The Abel–Ruffini Theorem tells us that there
is no formula for the roots of a degree 5 polynomial that involves addition,
subtraction, multiplication, division, and rational powers in the coefficients.
The reader is invited to enumerate the possible root configurations of a degree

5 real polynomial in Exercise 1.2.1.

1.2.4 Linear algebra

We shall make use of linear algebra in not completely trivial ways, particularly
when dealing with systems of linear ordinary differential equations. In this section
we overview the required ideas.

One of the complications of dealing with linear differential equations is that,
even if one works solely with real equations, one must work with complex solu-
tions. Thus, to have at hand a useful theory, we will need to work with vector
spaces over both the real and complex numbers. To facilitate this, we shall use
the symbol F to represent either the real or complex numbers; we shall do that by
writing things like, “let F ∈ {R,C}.”

1.2.4.1 Vector spaces and subspaces LetF ∈ {R,C}. We start by recalling that
a F-vector space is a set V equipped with two operations, vector addition and scalar
multiplication, wherein one adds elements of V and multiplies an element of V by a
scalar from F, respectively. One also posits the existence of a zero vector, typically
denote by 0, and an additive inverse −v for every v ∈ V. These operations are
required to satisfy a list of commutativity, associativity, and distributivity axioms,
and there are a host of other properties one derives from these. We suppose the
reader to have seen this sort of thing in their first course on linear algebra. A subset
U ⊆ V is a subspace if u1 + u2, au ∈ U for every u,u1,u2 ∈ U and every a ∈ F, i.e., if
U is “closed under vector addition and scalar multiplication.”

While we suppose the reader to have seen such example previously, let us give
two examples of vector spaces that represent the sorts of vector spaces we shall use
in this text.

1.2.1 Examples (Vector spaces)
1. The set Rn is a vector space with the vector space operations

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),
a(x1, . . . , xn) = (ax1, . . . , axn).

As example of a subspace of Rn is the subset

{(x1, . . . , xn) ∈ Rn
| xk+1 = · · · = xn = 0}

for some k ∈ {1, . . . ,n}.
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2. Let I be an interval, any one of the nine intervals defined in (1.22), and let
F ∈ {R;C}. For k ∈ Z≥0, we denote by Ck(I;F) the set of k-times continuously
differentiable functions from I to F. If k = 0 we adopt the convention that this
means continuous functions. We define a F-vector space structure on Ck(I;F)
by

( f + g)(x) = f (x) + g(x), (a f )(x) = a( f (x)).

Note that, because the derivative of a sum of functions is the sum of the deriva-
tives of the functions, and because the derivative of a scalar times a function is
the scalar times the derivative of the function, it follows that Ck(I;F) is indeed
a well-defined F-vector space. Note that, if k < l, then Cl(I;F) ⊆ Ck(I;F) is a
subspace. •

1.2.4.2 Linear independence and bases LetF ∈ {R,C} and let V be anF-vector
space. Let us merely enumerate the notions that will be of interest to us here.
1. A set {v1, . . . , vk} ⊆ V of vectors is linearly independent if, for c1, . . . , ck ∈ F

satisfying
c1v1 + · · · + ckvk = 0,

it must be the case that c1 = · · · = ck = 0. We suppose the reader to be intimately
familiar with the notion of linear independence.

2. For a subset {v1, . . . , vk} ⊆ V, we denote

spanF(v1, . . . , vk) = {c1v1 + · · · + ckvk | c1, . . . , ck ∈ F},

which is the span of {v1, . . . , vk}. Then this is the set of all linear combinations of
the vectors, and is the smallest subspace that contains all of the vectors.

3. A basis for V is a set {e1, . . . , en} ⊆ V that is (a) linearly independent and for
which (b) spanF(e1, . . . , en) = V. It follows, for example, that if {e1, . . . , en} is a
basis for V, then, for every v ∈ V, there exist unique c1, . . . , cn ∈ F such that

v = c1e1 + · · · + cnen.

These are the components of v relative to this basis. The number n, if it exists, is
the same for any basis, and is the dimension of V, denoted by dimF(V). A vector
space possessing a basis in the sense we define here is finite-dimensional.6

There is a change of basis formula for the components of a vector. To set this
up, let F ∈ {R,C}, let V be an F-vector space, and let v ∈ V. Suppose that we are
given bases E= {e1, . . . , en} and E′ = {e′1, . . . , e

′

n}. We can then write

e′j =

n∑
k=1

Pkjek, j ∈ {1, . . . ,n}, (1.23)

6All vector spaces possess a basis in a more general sense that we will not discuss here. In this
more general sense, a vector space with a finite basis is finite-dimensional, and one with a basis
that is not finite is infinite-dimensional.
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for some (necessarily invertible) matrix

P =


P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
. . .

...
P1n P2n · · · Pnn

 ,
called the change of basis matrix. If we write

v = c1e1 + · · · + cnen = c′1e′1 + · · · + c′ne′n

where (c1, . . . , cn) and (c′1, . . . , c
′

n) are the components of v relative to the bases Eand
E′, then one readily determines that

c′j =

n∑
k=1

Q jkck,

where

P−1 =


Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n
...

...
. . .

...
Q1n Q2n · · · Qnn

 .
In matrix form

c′ = P−1c, (1.24)

and this is the change of basis formula.

1.2.4.3 Linear maps Let F ∈ {R,C} and let U and V be F-vector spaces. We
recall that a linear map from U to V is a map L : U→ V for which

L(u1 + u2) = L(u1) + L(u2), L(au) = aL(u)

for every u,u1,u2 ∈ U and a ∈ F. In case U = V and so L : V→ V, then we may refer
to L as a linear transformation. We denote by

image(L) = {L(u) ∈ V | u ∈ U}, ker(L) = {u ∈ U | L(u) = 0}

the image and kernel of L. By L(U; V) we denote the set of linear maps from U to V.
The set of linear maps is itself an F-vector space, with the vector space operations
defined by

(L1 + L2)(u) = L1(u) + L2(u), (aL)(u) = a(L(u)), u ∈ U,

for L,L1,L2 ∈ L(U; V) and a ∈ F.
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For the specific case of the vector spaces U = Rm and V = Rn, linear maps are
identified with matrices in a natural way. Given a matrix

A =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...
An1 An2 · · · Anm

 ,
the associated linear map is given by matrix/vector multiplication:

A(x) =

 m∑
a=1

A1axa, . . . ,
m∑

a=1

Anaxa

 .
Thus we can think of, and will think of, the set of n×m matrices as being L(Rm;Rn),
not using any special notation for these being matrices. We do have some special
notation for matrices. The n × n identity matrix, i.e., corresponding to the identity
map on Fn, is

In =


1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

 .
The transpose of the matrix A ∈ L(Rm;Rn) is the matrix AT

∈ L(Rn;Rm) given by

AT =


A11 A21 · · · An1

A12 A22 · · · An2
...

...
. . .

...
A1m A2m · · · Anm

 ,
i.e., AT is A with the columns turned into rows. A matrix A ∈ L(Rn;Rn) is symmetric
if AT = A and skew-symmetric if AT = −A.

Linear maps can be composed in the obvious way. If L ∈ L(U; V) and M ∈

L(V; W), then the composition M ◦ L is an element of L(U; W). If L ∈ L(V; V), then
we denote by Lk the k-fold composition of L with itself:

Lk = L ◦ · · · ◦ L︸    ︷︷    ︸
k times

∈ L(V; V).

There is a notion regarding linear maps and subspaces that perhaps are unfa-
miliar to readers, but which are elementary and will be useful for us.
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1.2.2 Definition Let F ∈ {R,C}, let V be an F-vector space, and let L ∈ L(V; V). A subspace
U ⊆ V is L-invariant if L(u) ∈ U for every u ∈ U. •

Note that the notion of invariant subspaces generally only makes sense for
linear transformations.

We assume the reader is familiar with matrix representations of linear maps in
bases. Let F ∈ {R,C}, let U and V be finite-dimensional F-vector spaces, and let
L ∈ L(U; V). Suppose that we have bases F= { f1, . . . , fm} for U and E= {e1, . . . , en}

for V. Then there exist unique L j
a ∈ F, a ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}, for which

L( fa) =

n∑
j=1

L jav j,

merely by properties of bases. We then define the n ×m matrix

[L]EF =


L11 L12 · · · L1m

L21 L22
. . . L2m

...
...

. . .
...

Ln1 Ln2 · · · Lnm

 ,
which is the matrix representative of L with respect to the bases Fand E.

As with the components of vectors, there is a change of basis formula for matrix
representatives of linear maps. To formulate this, we suppose that we are given
two bases F= { f1, . . . , fm} and F′ = { f ′1 , . . . , f ′m} for U, and two bases E= {e1, . . . , em}

and E′ = {e′1, . . . , e
′

n} for V. We then have two change of basis matrices Q and P that
are defined by

f ′a =

m∑
b=1

Qba fb, e′j =

m∑
k=1

Pkjek,

cf. (1.23). We then determine that

[L]E
′

F′ = P−1[L]EFQ, (1.25)

which is the change of basis formula for matrix representations. We shall have
occasion to make use of this formula in the case when U = V and F = E and
F′ = E′. In this case the change of basis formula reads

[L]E
′

E′ = P−1[L]EEP (1.26)

for a linear transformation L.
The fact that we can represent a linear transformation by a matrix in a basis

means that we can define the determinant of a linear map by using its matrix
representative. (We assume the reader is familiar with row or column expansions
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for computing determinants.) That is to say, if L ∈ L(V; V) for a finite-dimensional
vector space V, we define the determinant of L to be

det L = det[L]EE

for some basis E = {e1, . . . , en}. The formula (1.26) and familiar properties of
determinants (that we assume known) shows that the definition of determinant is
independent of basis.

There is another scalar one can associate to a linear map L ∈ L(V; V) on a finite-
dimensional vector space, and this is as follows. Again, we work with matrix
representations. The trace of an n× n matrix A is the sum of its diagonal elements:

tr(A) =

n∑
j=1

A j j.

Now, given L ∈ L(V; V), we define the trace of L by

tr(L) = tr([L]EE)

for some basis E= {e1, . . . , en} for V. As with the determinant, the change of basis
formula (1.26) allows one to show that this definition of trace does not depend on
the basis E.

1.2.4.4 Affine maps and inhomogeneous linear equations Closely related to
the notion of a linear map is the following.

1.2.3 Definition (Affine map) Let F ∈ {R,C} and let U and V be F-vector spaces. A map
A : U→ V is affine if it is given by A(u) = L(u) + v0 for L ∈ L(U; V) and v0 ∈ V. •

Our primary interest in affine maps will come from how they arise in the theory
of systems of linear algebraic equations. It will be beneficial to recall in some detail
the structure associated with such equations, as this structure repeats itself in the
theory of linear differential equations. We thus let F ∈ {R,C} and let U and V be
F-vector spaces. We let L ∈ L(U; V) and let v0 ∈ V. A linear algebraic equation is
then the equation

L(u) = v0

which is to be solved for u ∈ U. Of course,

L(u) = v0 ⇐⇒ L(u) − v0 = 0,

i.e., u solves the linear algebraic equation if and only if it is in the “kernel” of the
affine map A(u) = L(u) − v0. We denote by Sol(L, v0) ⊆ U the set of all solutions to
this equation. There are various possible scenarios that arise in the attempt to find
solutions to this equation, and we outline these in the following proposition.
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1.2.4 Proposition (Solutions to linear algebraic equations) Let F ∈ {R,C} and let U
and V be F-vector spaces. For L ∈ L(U; V) and v0 ∈ V, denote by

Sol(L,v0) = {u ∈ U | L(u) = v0}

the set of solutions to the linear algebraic equation. Then the following statements hold:
(i) (existence of solutions) Sol(L,v0) , ∅ if and only if v0 ∈ image(L);
(ii) (characterisation of all solutions when one exists) if v0 ∈ image(L), let u0 ∈

Sol(L,v0), and then

Sol(L,v0) = {u0 + u | u ∈ ker(L)};

(iii) (uniqueness of solutions) if v0 ∈ image(L), then Sol(L,v0) = {u0} (i.e., there is only
one solution) if and only if ker(L) = 0 (i.e., L is injective).

Proof (i) This follows by definition of image(L).
(ii) First, since v0 ∈ image(L), there exists u0 ∈ Sol(L, v0) by part (i).
Now let u ∈ Sol(L, v0) so that L(u) = v0. Then, since L(u0) = v0 and since L is

linear:

L(u) − L(u0) = v0 − v0 = 0 =⇒ L(u − u0) = 0
=⇒ u − u0 ∈ ker(L) =⇒ u = u0 + (u − u0)︸  ︷︷  ︸

∈ker(L)

which shows that
u ∈ {u0 + u′ | u′ ∈ ker(L)}.

Next suppose that
u ∈ {u0 + u′ | u′ ∈ ker(L)}.

Then, if u′ = u − u0 ∈ ker(L), we have

L(u) = L(u0 + u′) = L(u0) + L(u′) = L(u0) = v0,

by linearity of L.
(iii) This follows immediately by part (ii). �

We suppose that the reader has seen various ways of determining the existence
and uniqueness properties of a linear equation using matrix representatives and
row reduction, although this is a skill we will not make use of here.
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1.2.4.5 Eigenvalues and eigenvectors There are special sorts of invariant sub-
spaces that arise for linear transformations, and these are one-dimensional sub-
spaces on which the transformation acts by multiplication. To be precise, let
F ∈ {R,C}, let V be an F-vector space, and let L ∈ L(V; V) be a linear transformation.
An eigenvalue for L is λ ∈ F such that L(v) = λv for some nonzero v ∈ V. We define
the eigenspace associated to an eigenvalue λ by

W(λ,L) = {v ∈ V | L(v) = λv}.

Nonzero vectors in W(λ,L) are eigenvectors for λ. The geometric multiplicity of λ
is dimF(W(λ,L)), and is denote by mg(λ,L).

We suppose that the reader knows that eigenvalues of a linear map are exactly
the roots of the characteristic polynomial which is

PL = det(X idV −L) ∈ F[X].

This is a monic polynomial of degree n = dim(V). If λ is an eigenvalue, i.e., a root
of PL, then the algebraic multiplicity of λ is the multiplicity of λ as a root of PL, and
is denoted by ma(λ,L). We assume it known—or just simply assume it to be—that
mg(λ) ≤ ma(λ). Matters such as this will be of great concern to us when we discuss
systems of linear ordinary differential equations.

1.2.4.6 Internal and external direct sums The notion we discuss in this section
is quite simple, but may not be a part of the linear algebra background of a student
using this text.

If F ∈ {R,C} and if V j, j ∈ {1, . . . , k}, are F-vector spaces, then we can put an
F-vector space structure on the product V1 × · · · ×Vk in a more or less obvious way:

(u1, . . . ,uk) + (v1, . . . , vk) = (u1 + v1, . . . ,uk + vk), a(v1, . . . , vk) = (av1, . . . , avk),

where (u1, . . . ,uk), (v1, . . . , vk) ∈ V and a ∈ F. The resulting F-vector space is called
the direct sum, more specifically the external direct sum, of V1, . . . ,Vk, and is de-
noted by V1 ⊕ · · · ⊕ Vk. Note that, as a set, this is simply the product V1 × · · · × Vk,
but with the prescribed vector space structure.

A similar construction can be made with subspaces of a vector space. Thus we
let V be a F-vector space and let U1, . . . ,Uk be subspaces of V. We say that V is the
direct sum, more specifically the internal direct sum, of U1, . . . ,Uk is either of the
following two equivalent properties hold:
1. U1 ∩ · · · ∩ Uk = {0} and, for each v ∈ V, there exists u j ∈ U j, j ∈ {1, . . . , k}, such

that
v = u1 + · · · + uk;

2. for each v ∈ V, there exist unique u j ∈ U j, j ∈ {1, . . . , k}, such that

v = u1 + · · · + uk.

We shall seldom, perhaps never, distinguish between external and internal
direct sums, the intended usage being clear from context.
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1.2.4.7 Complexification One of the complications in linear algebra that arises
naturally when working with linear ordinary differential equations is the unavoid-
ability of complex numbers, even when all data in the equation are real. In this
section we shall see systematically how to handle the need to use complex numbers
for R-vector spaces.

We begin with a definition.

1.2.5 Definition (Complexification of a R-vector space) Let V be a R-vector space.
The complexification of V is the set V×V with the following structure as a C-vector
space:

(i) Vector addition:
(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2);

(ii) Scalar multiplication:

(a + ib) · (u, v) = (au − bv, av + bu);

(iii) additive inverse:
−(u, v) = (−u,−v);

(iv) zero vector:
0 = (0, 0).

The complexification of V, with the above C-vector space structure, we denote by
VC. •

The only slightly subtle thing here is scalar multiplication, and for this the
reader should compare the definition we give to the definition of multiplication of
complex numbers above.

The notion of complexification also extends to linear maps.

1.2.6 Definition Suppose that U and V are R-vector spaces and that L ∈ L(V; V). The
complexification of L is the linear map LC : VC

→ VC defined by

LC(u, v) = (L(u),L(v)). •

1.2.4.8 Multilinear maps Another topic that is probably new to most readers is
that of a multilinear map. This is, however, a straightforward generalisation of a
linear map.

1.2.7 Definition (Multilinear map, symmetric multilinear map) Let F ∈ {R,C} and let
U and V be F-vector spaces. For k ∈ Z>0, a k-multilinear map from U to V is a map

T : U × · · · × U︸       ︷︷       ︸
k times

→ V
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with the property that, for each j ∈ {1, . . . , k} and each u1, . . . ,u j−1,u j+1, . . . ,uk ∈ U,
the mapping

u 7→ T(u1, . . . ,u j−1,u,u j+1, . . . ,uk)

is linear. A k-multilinear map T is symmetric if, for each j1, j2 ∈ {1, . . . , k} with
j1 < j2, we have

T(u1, . . . ,u j1 , . . . ,u j2 , . . . ,uk) = T(u1, . . . ,u j2 , . . . ,u j1 , . . . ,uk)

for every u1, . . . ,uk ∈ U.
By Lk(U; V) we denote the set of k-multilinear maps from U to V, and by

Lk
sym(U; V) we denote the set of k-multilinear maps from U to V. •

Thus k-multilinear maps take k arguments, and are linear in each argument if
the remaining arguments are fixed. We shall use the special terminology bilinear
map for 2-multilinear maps. Note that a 1-multilinear map is nothing but a linear
map.

1.2.5 Calculus

It goes without saying that a basic course in differential and integral calcu-
lus is essential background for any study of differential equations. We shall as-
sume readers to be completely familiar with continuous functions, limits, ordinary
derivatives, partial derivatives, and integration with respect to a single variable.

What we consider in this section is some particular notation that we shall use.
First of all, we wish to talk about derivatives of functions of multiple variables, as
we saw in many of our examples in Section 1.1. To talk in a precise way about such
derivatives, we need to say a few words about the topology of Euclidean space Rn.
First of all, we define the Euclidean norm by

‖x‖ =

 n∑
j=1

x2
j


1/2

(1.27)

for x = (x1, . . . , xn) ∈ Rn. This gives the usual length of a vector familiar from 1-,
2-, and 3-dimensions to arbitrary numbers of dimensions. We then define the open
ball of radius r at x0 ∈ Rn by

B(r, x0) = {x ∈ Rn
| ‖x − x0‖ < r}.

In the case n = 1, the open ball is a line segment (not containing its endpoints) of
length 2r centred at x0. In the case of n = 2, the open ball is a disk (not containing
its boundary) of radius r centred at x0. In the case of n = 3, the open ball is a ball in
the colloquial sense (not including its boundary) of radius r centred at x0. We then
say that a subset U ⊆ Rn is open if, for each x ∈ U, there exists r ∈ R>0 such that
B(r, x) ⊆ U. For our purposes, the important attribute of an open set is that one can
approach any point x in U from any direction, remaining in U.
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Open sets are the natural domain of differentiable functions. We will not care-
fully provide all the subtleties concerning differentiation of functions of multiple
variables, since the subject is one with which students are supposed to have a nod-
ding acquaintance, and this nodding acquaintance is really enough for the material
we present in this text. We let U ⊆ Rn and V ⊆ Rm be open sets and let f : U → V.
Note that we can write

f (x) = ( f1(x), . . . , fm(x)),

so a V-valued function can also be thought of as m R-valued functions (with
appropriate restrictions so they lie in V). Thus, when we speak of the continuity
or differentiability of f , we mean continuity or differentiability of each of these m
functions.

A function f : U → V is continuous precisely when each of the functions
f1, . . . , fm : U → R are continuous. We shall say that f is of class Ck, k ∈ Z>0,
if all partial derivatives of f1, . . . , fm of degree k exist and are continuous. Note that,
if f is of class Ck, then it is k-times continuously differentiable, or of class Cl for
every l ∈ {1, . . . , k}. Let us organise what derivatives are, rather than just how to
compute them, which is what students likely learned in their past.

We start with the first derivative of f : U → V. In this case, being of class C1 if
the partial derivatives

∂ fa

∂x j
, a ∈ {1, . . . ,m}, j ∈ {1, . . . ,n},

exist and are continuous functions of x. We organise these derivatives into an m×n
matrix 

∂ f1

∂x1

∂ f1

∂x2
· · ·

∂ f1

∂xn
∂ f2

∂x1

∂ f2

∂x2
· · ·

∂ f2

∂xn
...

...
. . .

...
∂ fm

∂x1

∂ fm

∂x2
· · ·

∂ fm

∂xn


that we denote by Df , noting that this is a matrix-valued function of x. This is
called the Jacobian of f , but we can just think of it as being the derivative of f ,
since it encodes all partial derivatives. Being an m × n matrix, we can think of it as
being a linear map from Rn to Rm, i.e., an element of L(Rn;Rm). In summary, the
first derivative is a map

Df : U→ L(Rn;Rm).

Now what about the second derivative? In this case, f is of class C2 when the
partial derivatives

∂2 fa

∂x j∂xk
, a ∈ {1, . . . ,m}, j, k ∈ {1, . . . ,n},
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exist and are continuous. There are m × n2 possible partial derivatives, so it is
more difficult to arrange them on the page than it was for the derivative. We can
nonetheless do so by writing m matrices of second partial derivatives:

∂2 f1

∂x2
1

∂2 f1

∂x1∂x2
· · ·

∂2 f1

∂x1∂xn

∂2 f1

∂x2∂x1

∂2 f1

∂x2
2

· · ·
∂2 f1

∂x1∂xn
...

...
. . .

...
∂2 f1

∂xn∂x1

∂2 f1

∂xn∂x2
· · ·

∂2 f1

∂x2
n


, · · · ,



∂2 fm

∂x2
1

∂2 fm

∂x1∂x2
· · ·

∂2 fm

∂x1∂xn

∂2 fm

∂x2∂x1

∂2 fm

∂x2
2

· · ·
∂2 fm

∂x1∂xn
...

...
. . .

...
∂2 fm

∂xn∂x1

∂2 fm

∂xn∂x2
· · ·

∂2 fm

∂x2
n


.

Conglomerated, these form the second derivative of f . The question is, “While the
first derivative is an element of L(Rn;Rm), where does the second derivative live?”
The answer is that, just as the first derivative is a linear map from Rn to Rm, the
second derivative is to be regarded as a bilinear map from Rn

×Rn to Rm. Specifically,
the bilinear map is this one:

(v1,v2) 7→

 n∑
j,k=1

∂2 f1

∂x j∂xk
v1, jv2,k, . . . ,

n∑
j,k=1

∂2 fm

∂x j∂xk
v1, jv2,k

 ,
noting that we write

v1 = (v1,1, . . . , v1,n), v2 = (v2,1, . . . , v2,n).

Note that for f of class C2, mixed partial commute:

∂2 fa

∂x j∂xk
=

∂2 fa

∂xk∂x j
, a ∈ {1, . . . ,m}, j, k ∈ {1, . . . ,n}.

Thus the second derivative is a symmetric bilinear map. We denote the second
derivative by D2 f , noting that this is a L2

sym(Rn;Rm)-valued function of x. In sum-
mary, the second derivative is a mapping

D2 f : U→ L2
sym(Rn;Rm).

The situation with higher-order derivatives is similar, but the difference is that
trying to tabulate these derivatives on the page is difficult, and in any case pointless.
Instead, we jump right to the multilinear map version of things. Let us see how
this goes. For k ∈ Z>0, f : U→ V is of class Ck if and only all partial derivatives

∂ fa

∂x j1 · · · ∂x jk
, a ∈ {1, . . . ,m}, j1, . . . , jk ∈ {1, . . . ,n},



46 1 What are differential equations?

exist and are continuous. We represent the kth derivative as a k-multilinear map
from Rn

× · · · × Rn to Rm defined by

(v1, . . . ,vk) 7→

 n∑
j1,..., jk=1

∂ f1

∂x j1 · · · ∂x jk
v1, j1 · · · vk, jk , . . . ,

n∑
j1,..., jk=1

∂ fm

∂x j1 · · · ∂x jk
v1, j1 · · · vk, jk

 .
Again, since mixed partials commute, this is a symmetric multilinear map. Thus
the kth derivative, which we denote by Dk f , is a map

Dk f : U→ Lk
sym(Rn;Rm).

Finally, we need some notation for all derivatives of f up to order k. For this
we first denote

L≤k
sym(Rn;Rm) = L(Rn;Rm) ⊕ L2

sym(Rn;Rm) ⊕ · · · ⊕ Lk
sym(Rn;Rm).

This is the space where all derivatives up to order k of maps f : U → V take their
values. Then we define the map

D≤k f : U→ V × L≤k
sym(Rn;Rm)

x 7→ ( f (x),Df (x),D2 f (x), . . . ,Dk f (x)).

Thus D≤k f encodes all partial derivatives of f of all orders (including the zeroth-
order) up to k. This is all just organising things that are already known. However,
this organisation will be useful in Section 1.3 when we classify the various types
of differential equations.

1.2.6 Real analysis

For the most part, a background in real analysis is not required to (1) understand
the definitions and the statements of the results in the text or (2) to apply the
methods described in the text to solve particular problems. However, it is very
often (but not always) the case that proofs of results require some background
in analysis. A reader who wishes to understand these proofs should expect to
have/acquire this background in a suitable course, or do a substantial amount of
independent study. In this short section we merely list the concepts that must be
learnt to understand some of the proofs.
1. Supremum and infimum. Given a subset A ⊆ R, an upper bound for A is a number

u ∈ R such that x < u for every x ∈ A. A lower bound for A is a number l ∈ A
such that l < x for every x ∈ A. The supremum of A, denoted sup A, is the
least upper bound for A. The infimum of A, denoted inf A, is the greatest lower
bound for A.

2. Open set. We defined the notion of an open set on Page 43 above.
3. Closed set. A subset C ⊆ Rn is closed if its complement is open.
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4. Bounded set. A subset B ⊆ Rn is bounded if there exists R ∈ R>0 such that
B ⊆ B(R, 0).

5. Compact set. A subset K ⊆ Rn is compact if it is closed and bounded.7

6. Interior, closure, boundary. Let A ⊆ Rn. A point x ∈ Rn is an interior point for A
if there exists r ∈ R>0 such that B(r, x) ⊆ U. A point x ∈ Rn is a limit point for A
if, for any r ∈ R>0, B(r, x) ∩ A , ∅ and B(r, x) ∩ (Rn

\ A) , ∅. A point x ∈ Rn is a
boundary point for A if, for any r ∈ R>0, B(r, x) ∩ (Rn

\ A) , ∅. The interior of A
is the set of all interior points for A. The closure of A is the set of all limit points
for A. The boundary of A is the set of all boundary points for A.

7. Bounded function. Let A ⊆ Rn. A function f : A → Rm is bounded if there exists
M ∈ R>0 such that ‖ f (x)‖ ≤M for every x ∈ A.

8. Continuous function. Let A ⊆ Rn. A function f : A→ Rm is continuous at x0 ∈ A
if, for every ε ∈ R>0, there exists δ ∈ R>0 such that, if x ∈ A satisfies ‖x − x0‖ < δ,
then ‖ f (x) − f (x0)‖ < ε. If f is continuous at every x0 ∈ A, then we say f is
continuous.

9. Convergence of sequences in Rn. Let (x j) j∈Z>0 be a sequence in Rn. The sequence
converges to x0 if, for every ε ∈ R>0, there exists N ∈ Z>0 such that ‖x j − x0‖ < ε
for every j ≥ N.

10. Pointwise and uniform convergence of sequences of functions. Let A ⊆ Rn, let
( f j)ARm be a sequence of functions, and let f : A→ Rm.

(a) The sequence ( f j) j∈Z>0 converges pointwise to f if, for every ε ∈ R>0 and
every x ∈ A, there exists N ∈ Z>0 such that ‖ f j(x) − f (x)‖ < ε for j ≥ N.

(b) The sequence ( f j) j∈Z>0 converges uniformly to f if, for every ε ∈ R>0, there
exists N ∈ Z>0 such that ‖ f j(x) − f (x)‖ < ε for x ∈ A and j ≥ N.

11. Results on interchanging operations. If a sequence ( f j) j∈Z>0 of functions converges
(in some way) to a function f , one would like to know what attributes of the
functions f j, j ∈ Z>0, are inherited by f . Here are some facts:

(a) if each of the functions f j, j ∈ Z>0, is continuous and if ( f j) j∈Z>0 converges
uniformly to f , then f is continuous;

(b) if each of the functions f j, j ∈ Z>0, is continuously differentiable, if ( f j) j∈Z>0

converges uniformly to f , and if (Df j) j∈Z>0 converges uniformly to Df , then

Df (x) = lim
j→∞

Df j(x);

(c) if m = n = 1, if A = [a, b] is an interval, if the functions f j, j ∈ Z>0, are
continuous, and if ( f j) j∈Z>0 converges uniformly to f ¡ then∫ b

a
f (x) dx = lim

j→∞

∫ b

a
f j(x) dx.

7This definition of compactness is particular to Rn; there is an alternative definition of compact-
ness that can and should be used in more general situations. It is equivalent to the one we give here
for subsets of Rn, but is generally inequivalent to “closed and bounded.”
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In all cases, the conditions given are sufficient but not necessary.

Exercises

1.2.1 Let P ∈ R[X] have degree 5. List the possible configurations of roots of P,
treating differing multiplicities as different cases.
Hint: You should get 12 cases.

1.2.2 For the given sets of numbers, find the unique monic polynomial having
these as its roots:
(a) {−1, 2};
(b) {2 + 2i, 2 − 2i,−2};
(c) {− 1

τ }, τ ∈ R \ {0};
(d) {−a,−a, 2}, a ∈ R;
(e) {ω0(−ζ + i

√
1 − ζ2), ω0(−ζ − i

√
1 − ζ2)}, ω0, ζ ∈ R, ω0 , 0, |ζ| ≤ 1;

(f) {σ + iω, σ − iω}, σ,ω ∈ R, ω , 0.
1.2.3 Let L ∈ L(R2;R2) be defined by the 2 × 2 matrix[

0 1
−1 0

]
.

Show that L has no eigenvalues.
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Section 1.3

Classification of differential equations

In Section 1.1 we saw many examples of differential equations, and there were
many different types of differential equations represented in these examples. In
this section we provide some procedures for separating differential equations into
classes that are special. Such a process cannot be exhaustive, especially at the level
which we are able to treat the subject. Nonetheless, the classifications we provide
here give important first steps in any classification procedure, and allow us to
clearly distinguish the very few differential equations that we can treat in detail by
pointing these the special attributes of these equations.

1.3.1 Variables in differential equations

In all of the examples in Section 1.1 we pointed out the independent and
dependent variables. In this section we chat about this in a general sort of way.

The independent variables for a differential equation typically reside in an open
subset D ⊆ Rn for some n ∈ Z>0. These are the variables upon which our objects
of interest depend. In the case of n = 1, this variable is often thought of as time,
although it is also common for this single variable to be a spatial variable.

The dependent variables in a differential equation represent the quantities
whose behaviour, as functions of the independent variable, one wishes to under-
stand. We typically regard dependent variables as being in an open subset U ⊆ Rm

for some m ∈ Z>0. Very often, when one wishes to understand the behaviour of
a solution of a differential equation, one plots graphs of the dependent variables
as functions of the independent variables. For large numbers of variables, such
graphical representations become difficult, and one is forced to think abstractly to
understand the behaviour of solutions.

In cases where the number of independent variables is 1, as we mention above
this variable typically represents time or space. We shall assume, in general sit-
uations, that this variable represents time which we denote by “t.” In such cases
we represent derivatives of the dependent variables with a dot, e.g., ẋ for the first
derivative, ẍ for the second derivative, and so on. Thus

ẋ =
dx
dt
, ẍ =

d2x
dt2 .

In the case of a single independent variable which is regarded as a spatial variable,
we denote this spatial variable by “x.” Derivatives of this spatial variable we
denote by a prime, e.g., y′ is the first derivative and y′′ is the second derivative.
Thus

y′ =
dy
dx
, y′′ =

d2y
dx2 .
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When there is more than one independent variable, we will not use this notation,
and indeed it is faulty to do so; stick to the partial derivative notation in this case.
Some commonly encountered notation in this case is to use subscripts to connote
the variable with which differentiation is occurring. For example, one sees

∂2u
∂x2 = uxx,

∂u
∂t

= ut,
∂2u
∂x∂t

= uxt.

Note that this notation is never to be used when dealing specifically with a single
independent variable.

Let us adapt this subscript notation to give a general notation for derivatives.
Let D ⊆ Rn be open and denote coordinates for D by (x1, . . . , xn). As we have
seen, the kth-order partial derivatives for a function u : D → U are those partial
derivatives

∂ua

∂x j1 · · · ∂x jk
, a ∈ {1, . . . ,m}, j1, . . . , jk ∈ {1, . . . ,n}.

We can use this to motivate notation for coordinates for Lk
sym(Rn;Rm). Indeed, we

shall use
ua

j1··· jk
, a ∈ {1, . . . ,m}, j1, . . . , jk ∈ {1, . . . ,n}, (1.28)

for coordinates. Thus a k-multilinear map from Rn to Rm can be denoted by

(v1, . . . ,vk) 7→

 n∑
j1,..., jk=1

u1
j1··· jk

v1, j1 · · · vk, jk , . . . ,
n∑

j1,..., jk=1

um
j1··· jk

v1, j1 · · · vk, jk

 .
1.3.2 Differential equations and solutions

In this section we give a very general definition of what is meant by a differ-
ential equation. While the definition we give is well suited to the objectives of
classification in this section, we will not work deeply with this definition outside
this section.

First let us give this definition.

1.3.1 Definition (Differential equation) A differential equation consists of a mapping

F : D ×U × L≤k
sym(Rn;Rm)→ Rl,

where k, l,m,n ∈ Z>0, and D ⊆ Rn and U ⊆ Rm are open. We also have the following
terminology:

(i) n is the number of independent variables;
(ii) m is the number of unknowns or states;
(iii) k is the order;
(iv) l is the number of equations;
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(v) D ⊆ Rn is the domain for the differential equation;
(vi) U ⊆ Rm is the state space for the differential equation. •

To get an understanding of why the preceding definition might encode the
notion of a differential equation, let us define what we mean by a solution to a
differential equation.

1.3.2 Definition (Solution to a differential equation) Let

F : D ×U × L≤k
sym(Rn;Rm)→ Rl,

be a differential equation. A solution to the differential equation is a function
u : D′ → U of class Ck defined on an open subset D′ ⊆ D such that

F(x,u(x),Du(x), . . . ,Dku(x)) = 0, x ∈ D′. •

This definitions seem quite abstract at this point, so let us illustrate how this
works in all of our examples from Section 1.1. In doing this, we shall use the
notation (1.28) to denote coordinates for derivatives. Some of the examples are a
little tedious to write out in full detail, so we do not do so. However, we encourage
the interested reader to undertake to carry out the procedure we describe for any
of their favourite equations that we do not work out. For example, Star Wars nerds
will probably need to work out how to write Einstein’s field equations as a formal
differential equation in the sense of Definition 1.3.1.

1.3.3 Examples (Differential equations and solutions)
1. For the mass-spring-damper equation we derived in (1.1), we have n = 1, m = 1,

l = 1, and k = 2. We take D = R and U = R for concreteness. Thus we consider
all possible times and vertical displacements in the description of the system;
this is something that one generally chooses with the specific instantiation of
the problem. We use the coordinate t for independent variable time, y for
the unknown vertical displacement. Then we have coordinates yt and ytt for
derivatives. We then have

F : R × R × L≤2
sym(R;R)→ R

defined by
F(t, y, yt, ytt) = mytt + dyt + ky + mag.

A solution to this equation is then a mapping y : T→ Rdefined on some interval
T′ ⊆ R that satisfies

F
(
t, y(t),

dy
dt

(t),
d2y
dt2 (t)

)
= m

d2y
dt2 (t) + d

dy
dt

(t) + ky(t) + mag = 0.

This, of course, is exactly the equation (1.1).
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2. For the coupled mass-spring-damper equation of (1.2), we have n = 1, m = 2,
k = 2, and l = 2. We again take D = R and U = R for concreteness, and we use
t as the independent variable time, x1 and x2 as the states, the displacements of
the masses, and we denote the coordinates for the derivatives by

x1,t, x2,t, x1,tt, x2,tt.

The map
F : R × R × L≤2

sym(R2;R2)→ R2

for this differential equation is then

F(t, x1, x2, x1,t, x2,t, x1,tt, x2,tt) = (mx1,tt + 2kx1 − kx2,mx2,tt − kx1 + 2kx2),

and a solution x : T→ R2 satisfies the equation

F
(
t, x1(t), x2(t),

dx1

dt
(t),

dx2

dt
(t),

d2x1

dt2 (t),
d2x2

dt2 (t)
)

=

(
m

d2x1

dt2 (t) + 2kx1(t) − kx2(t),m
d2x2

dt2 (t) − kx1(t) + 2kx2(t)
)

= (0, 0).

These equations are, of course, simply the equations (1.2) written in a different
form. We can unify the two forms of the equations a little more by writing

F(t, x, xt, xtt) = Mxtt + Kx,

where xt = (x1,t, x2,t) and xtt = (x1,tt, x2,tt).
3. For the simple pendulum equation of (1.3), we leave the working out of this as

a differential equation and the conditions for a solution as Exercise 1.3.1.
4. For Bessel’s equation (1.5), we leave the working out of this as a differential

equation and the conditions for a solution as Exercise 1.3.2.
5. For the equation (1.6) governing the current in a series RLC circuit, we leave the

working out of this as a differential equation and the conditions for a solution
as Exercise 1.3.3.

6. For the tank equations of (1.7), we leave the working out of this as a differential
equation and the conditions for a solution as Exercise 1.3.4.

7. For the logistical model (1.8) of a population, we leave the working out of this
as a differential equation and the conditions for a solution as Exercise 1.3.5.

8. For the Lotka–Volterra predator prey model of (1.9), we leave the working out of
this as a differential equation and the conditions for a solution as Exercise 1.3.6.

9. For the Rapoport production and exchange model of (1.10), we leave the work-
ing out of this as a differential equation and the conditions for a solution as
Exercise 1.3.7.
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10. The Euler–Lagrange equations of (1.11) have n = 1, m = 1, k = 2, and l = 1. We
take D = [x1, x2] (let’s overlook, for the moment, the fact that this D is not open)
and U = R, and use x as the independent variable, y as the unknown, and yx

and yxx as variables for the required derivatives. The Lagrangian L is then a
function of x, y, and yx. The differential equation is then prescribed by the map

F : [x1, x2] × R × L≤2
sym(R;R)→ R

given by

F(x, y, yx, yxx) =
∂2L
∂y2

x
yxx +

∂2L
∂yx∂y

yx −
∂L
∂y
.

A solution to these equations is then a function y : [x1, x2]→ R satisfying

F
(
x, y(x),

dy
dx

(x),
d2y
dx2 (x)

)
=
∂2L
∂y2

x

d2y
dx2 (x) +

∂2L
∂yx∂y

dy
dx

(x) −
∂L
∂y

= 0,

which is exactly the Euler–Lagrange equation.
11. In Maxwell’s equations (1.12), we have n = 4, m = 10, k = 1, and l = 1+1+3+3 =

8. To write the function F defining Maxwell’s equations is tedious because of the
largish number of variables. For example, if we include all required derivatives,
the number of arguments for F in this case is 4 + 10 + 40 = 54.

12. For the Navier–Stokes equations (1.14), along with the equations of continu-
ity (1.13), we have n = 4, m = 5, k = 1, and l = 3 + 1 = 4. In this case, the number
of variables is manageable, but the equations themselves are quite lengthy and
complicated. Thus we do not go through the details of writing down F in this
case.

13. For the heat equation (1.17), we have n = 2, m = 1, k = 2, and l = 1. For the
domain D, we will suppose that we are working with a rod of length ` and that
we consider positive times. Thus we take D = [0, `] × R≥0 (sweeping under the
rug the fact that D is not open). We also take U = R. We denote the independent
time/space variables as (x, t), the unknown temperature as u, and the required
derivatives are

ux, ut, uxx, uxt, utt,

keeping in mind that utx = uxt by symmetry of derivatives. The map

F : [0, `] × R≥0 × R × L≤2
sym(R2;R)→ R

is given by
F(x, t,u,ux,ut,uxx,uxt,uxx) = ut − kuxx.

A solution is then a function u : [0, `] × R≥0 → R satisfying

F
(
x, t,u(x, t),

∂u
∂x

(x, t),
∂u
∂t

(x, t),
∂2u
∂x2 (x, t),

∂2u
∂x∂t

(x, t),
∂2u
∂t2 (x, t)

)
=
∂u
∂t

(x, t) − k
∂2u
∂x2 (x, t) = 0,
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which is just the heat equation, of course.
14. For the wave equation (1.18), we leave the working out of this as a differential

equation and the conditions for a solution as Exercise 1.3.8.
15. For the potential equation (1.19), we leave the working out of this as a differ-

ential equation and the conditions for a solution as Exercise 1.3.9.
16. For the Einstein field equations (1.20), we have n = 4, m = 10, k = 2 (can you

work out why?), and l = 10. These equations are extremely complicated to
write as a differential equation as per Definition 1.3.1, and so we do not do
this here. For example, the number of arguments of F in this case would be
4 + 10 + 40 + 100 = 154!

17. Finally, we consider the Schrödinger equation (1.21). For this equation we
have n = 4, m = 2, k = 2, and l = 2. Here, for simplicity, we take D = R4

and U = C ' R2. We use coordinates (x1, x2, x3, t) the independent variables,
(ψ1, ψ2) for the unknown real and imaginary parts of the wave function, and
the required derivatives are

ψ1,x1 , ψ1,x2 , ψ1,x3 , ψ1,t, ψ2,x1 , ψ2,x2 , ψ2,x3 , ψ2,t,

ψ1,x1x1 , ψ1,x1x2 , ψ1,x1x3 , ψ1,x1t, ψ1,x2x2 , ψ1,x2x3 , ψ1,x2t, ψ1,x3x3 , ψ1,x3t, ψ1,tt,

ψ2,x1x1 , ψ2,x1x2 , ψ2,x1x3 , ψ2,x1t, ψ2,x2x2 , ψ2,x2x3 , ψ2,x2t, ψ2,x3x3 , ψ2,x3t, ψ2,tt.

The map
F : R4

× R2
× L≤2

sym(R4;R2)→ R

defining the Schrödinger equation is

F(x1, x2, x3, t, ψ1, ψ2, ψ1,x1 , ψ1,x2 , ψ1,x3 , ψ1,t, ψ2,x1 , ψ2,x2 , ψ2,x3 , ψ2,t,

ψ1,x1x1 , ψ1,x1x2 , ψ1,x1x3 , ψ1,x1t, ψ1,x2x2 , ψ1,x2x3 , ψ1,x2t, ψ1,x3x3 , ψ1,x3t, ψ1,tt,

ψ2,x1x1 , ψ2,x1x2 , ψ2,x1x3 , ψ2,x1t, ψ2,x2x2 , ψ2,x2x3 , ψ2,x2t, ψ2,x3x3 , ψ2,x3t, ψ2,tt)

= (~ψ2,t+
~2

2µ (ψ1,x1x1+ψ1,x2x2+ψ1,x3,x3)−Vψ1,−~ψ1,t+
~2

2µ (ψ2,x1x1+ψ2,x2x2+ψ2,x3,x3)−Vψ2).

A solution is then a map ψ : D′ → R2 defined on some open set D′ ⊆ R4 that
satisfies the equation (with the tedious arguments abbreviated)

F
(
x, t,ψ(x),

∂ψ

∂x
,
∂2ψ

∂x2

)
=

(
~
∂ψ2

∂t
+ ~2

2µ

(
∂2ψ1

∂x2
1

+
∂2ψ1

∂x2
2

+
∂2ψ1

∂x2
3

)
− Vψ1,

−~
∂ψ1

∂t
+ ~2

2µ

(
∂2ψ2

∂x2
1

+
∂2ψ2

∂x2
2

+
∂2ψ2

∂x2
3

)
− Vψ2

)
.

One can check that, indeed, these are the Schrödinger equations, broken into
their real and imaginary parts. •



1.3 Classification of differential equations 55

Since this is likely to be a student’s first encounter with the subject of differential
equations, the preceding way of doing things may seem excessively complicated.
Indeed, we went through a lot of trouble to just write down equations that were
comparatively easy to write down in our modelling exercises of Section 1.1. The
benefits of our work will now be seen. Since we know what a differential equation
is (it is the map F), we can speak intelligently about its attributes. And it is this that
we now do.

1.3.3 Ordinary differential equations

We begin with a consideration of differential equations with a single indepen-
dent variable, which we will think of as representing time. The states or unknowns
we will represent by x ∈ U ⊆ Rm. Because of the simplicity of the single inde-
pendent variable, we can make a more concrete representation for the derivatives.
Specifically, we will denote the coordinates for the derivatives up to order k by

(x(1), . . . , x(k)) ∈ L≤k
sym(R;Rn).

Thus x( j) represents the jth derivative with respect to time (this is not uncommon
notation, the only difference here is we are thinking of this as being a coordinate
rather than an actual derivative).

1.3.4 Remark (Simplification of derivatives with one independent variable) Now,
we make a few observations to make things even more concrete:
1. because the domain is 1-dimensional, every multilinear map from R to Rm is

symmetric;

2. we have a natural isomorphism of the vector spaces Lk(R;Rm) with Rm by
assigning to the k-multilinear map T ∈ Lk(R;Rm) the element vT ∈ Rm given by

vT = T(1, . . . , 1).

The punchline of the preceding is that we can think of

Lk
sym(R;Rm) ' Rm =⇒ L≤k

sym(R;Rm) ' Rm
⊕ · · · ⊕ Rm︸           ︷︷           ︸
k+1 times

.

While we will continue to write things using the notation on the left of these iso-
morphisms, we shall, when convenient, use the isomorphisms to simplify things. •

1.3.3.1 General ordinary differential equations With the preceding notation,
we have the following definition.
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1.3.5 Definition (Ordinary differential equation) An ordinary differential equation is
a differential equation F subject to the following conditions:

(i) there is one independent variable, i.e., n = 1;
(ii) the independent variable takes values in an interval T ⊆ R called the time-

domain;
(iii) the state space is an open subset U ⊆ Rm;
(iv) there are the same number of equations as states, i.e., l = m;
(v) if the order of the differential equation is k, for each

(t, x, x(1), . . . , x(k−1)) ∈ R ×U × L≤k
sym(R;Rm)

the equation
F(t, x, x(1), . . . , x(k−1), x(k)) = 0

can be uniquely solved to give

x(k) = F̂(t, x, x(1), . . . , x(k−1)).

We call F̂ : T×U×L≤k−1
sym (R;Rm)→ Rm the right-hand side for the ordinary differential

equation. •

We can give an alternative characterisation for solutions for ordinary differential
equations.

1.3.6 Proposition (Solutions to ordinary differential equations) Let F be an ordinary
differential equation with time-domain T, state space U ⊆ Rm, and right-hand side F̂. Then
the following statements are equivalent for a Ck map ξ : T′ → U defined on a subinterval
T′ ⊆ T:

(i) ξ is a solution for F;
(ii) ξ satisfies the equation

dkξ
dtk

(t) = F̂
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ
dtk

(t)
)
.

Proof First suppose that ξ is a solution for F. Then

F
(
t, ξ(t),

dξ
dt

(t), . . . ,
dkξ
dtk

(t)
)

= 0.

The property (v) of Definition 1.3.5, we immediately have

dkξ
dtk

(t) = F̂
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ
dtk

(t)
)
.
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Next suppose that ξ satisfies the preceding equation. Fix t ∈ T and consider the
equation

F
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ
dtk

(t), x(k)

)
= 0.

By property (v) of Definition 1.3.5, there exists a unique x(k)
∈ Rm that solves this

equation and, moreover,

x(k) = F̂
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ
dtk

(t)
)
.

This means, however, that

x(k) =
dkξ
dtk

(t).

Thus

F
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ
dtk

(t),
dkξ
dtk

(t)
)

= 0,

i.e., ξ is a solution for F. �

This last condition in Definition 1.3.5 is one that very often arises naturally
when looking at specific differential equations. To see how this arises, let us
consider the examples of Section 1.1 with one independent variable, and see how
their right-hand sides are naturally defined.

1.3.7 Examples (Ordinary differential equations)
1. For the mass-spring-damper equation we derived in (1.1), we can use our

ordinary differential equation specific notation to write

F(t, y, y(1), y(2)) = my(2) + dy(1) + ky + mag.

Note that this is indeed an ordinary differential equation since (1) n = 1, (2) l =
m = 1, and (3) we can solve the equation

F(t, y, y(1), y(2)) = 0

for y(2) as
y(2) = 1

m (−dy(1)
− ky −mag).

Thus the right-hand side is

F̂(t, y, y(1)) = 1
m (−dy(1)

− ky −mag).

As per Proposition 1.3.6, a solution to the differential equation then satisfies

ÿ(t) = 1
m (−dẏ(t) − ky(t) −mag),

as expected.
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2. For the coupled mass-spring-damper equation of (1.2), the differential equation
can be conveniently expressed as

F(t, x, x(1), x(2)) = Mx(2) + Kx.

This is an ordinary differential equation since (1) n = 1, (2) l = m = 2, and (3) we
can solve the equation

F(t, x, x(1), x(2)) = 0

for x(2) as
x(2) = −M−1Kx.

Thus the right-hand side of this ordinary differential equation is

F̂(t, x, x(1)) = −M−1Kx.

As per Proposition 1.3.6, a solution satisfies

ẍ(t) = −M−1Kx(t),

which is simply our original equation, rewritten.
3. For the simple pendulum equation of (1.3), we leave the working out of the

right-hand side and corresponding conditions for solutions as Exercise 1.3.10.
4. For Bessel’s equation (1.5), we leave the working out of the right-hand side and

corresponding conditions for solutions as Exercise 1.3.11.
5. For the current in a series RLC circuit of (1.6), we leave the working out of the

right-hand side and corresponding conditions for solutions as Exercise 1.3.12.
6. For the tank flow model of (1.7), we leave the working out of the right-hand

side and corresponding conditions for solutions as Exercise 1.3.13.
7. For the logistical model population of (1.8), we leave the working out of the

right-hand side and corresponding conditions for solutions as Exercise 1.3.14.
8. For the Lotka–Volterra predator prey model of (1.9), we leave the working

out of the right-hand side and corresponding conditions for solutions as Exer-
cise 1.3.15.

9. For the Rapoport production and exchange model of (1.10), we leave the work-
ing out of the right-hand side and corresponding conditions for solutions as
Exercise 1.3.16.

10. Our final example, that of the Euler–Lagrange equations, shows that one must
sometimes take care with what is and is not an ordinary differential equation.
We let x denote the single independent variable, y the unknown, and we follow
our ordinary differential equation notation and denote derivatives by y(1) and
y(2). The Lagrangian is then a function of x, y, and y(1), and the Euler–Lagrange
equations are differential equations prescribed by

F(x, y, y(1), y(2)) =
∂2L

∂y(1)∂y(1)
y(2) +

∂2L
∂y(1)∂y

y(1)
−
∂L
∂y
.
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This differential equation is an ordinary differential equation if and only if

∂2L
∂y(1)∂y(1)

is non-zero for every (x, y, y(1)). This is true, for example, if

L(x, y, y(1)) = (y(1))2.

It is not true, for example, when

L(x, y, y(1)) = f (x, y)

for any function of (x, y) or when

L(x, y, y(1)) = y(1).

Thus we cannot say that the Euler–Lagrange equations are ordinary differential
equations, in general, but must examine particular Lagrangians. •

Note that an ordinary differential equation F determines uniquely its right-
hand side F̂, but that it is possible that two different ordinary differential equations
can give rise to the same right-hand side. To resolve this ambiguity, we make the
following definition.

1.3.8 Definition (Normalised ordinary differential equation) An ordinary differential
equation

F : T ×U × L≤k
sym(R;Rm)→ Rm

with right-hand side
F̂ : T ×U × L≤k−1

sym (R;Rm)→ Rm

is normalised if

F(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1))

for all
(t, x, x(1), . . . , x(k)) ∈ T ×U × L≤k

sym(R;Rm). •

If F is an ordinary differential equation that is not normalised, we can alway
replace it with an ordinary differential equation F∗ that is normalised, according to
the formula

F∗(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1)).

Moreover, by Proposition 1.3.6, t 7→ ξ(t) is a solution for F if and only if it is a
solution for F∗. In short, we can without loss of generality assume that an ordinary
differential equation is normalised. That being said, we will only rarely make this
assumption.

Now that we have defined what we mean, in general terms, by an ordinary
differential equation, let us examine certain special kinds of such equations.

We begin with a general and common sort of simplification that can be made
with the general definition.
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1.3.9 Definition (Autonomous ordinary differential equation) An ordinary differential
equation

F : T ×U × L≤k
sym(R;Rm)→ Rm

is autonomous if there exists F0 : U × L≤k
sym(R;Rm)→ Rm so that

F(t, x, x(1), . . . , x(k)) = F0(x, x(1), . . . , x(k))

for every (t, x, x(1), . . . , x(k)) ∈ T×U×L≤k
sym(R;Rm). An ordinary differential equation

that is not autonomous is nonautonomous. •

Simply put, an autonomous ordinary differential equation is independent of
time.

One can equivalently characterise the notion of autonomous in terms of right-
hand sides.

1.3.10 Proposition (Right-hand sides of autonomous ordinary differential equa-
tions) If an ordinary differential equation

F : T ×U × L≤k
sym(R;Rm)→ Rm

with right-hand side
F̂ : T ×U × L≤k−1

sym (R;Rm)→ Rm

is autonomous, then there exists

F̂0 : U × L≤k−1
sym (R;Rm)→ Rm

such that
F̂(t, x, x(1), . . . , x(k−1)) = F̂0(x, x(1), . . . , x(k−1)).

for every (t, x, x(1), . . . , x(k−1)) ∈ T ×U × L≤k−1
sym (R;Rm).

Proof Suppose that F is autonomous. Let

(x, x(1), . . . , x(k−1)) ∈ U × L≤k−1
sym (R;Rm)

and let t1, t2 ∈ T. Then there exists a unique x(k)
1 , x

(k)
2 ∈ Lk

sym(R;Rm) such that

F(ta, x, x(1), . . . , x(k−1), x(k)
a ) = 0.

Moreover, since F is autonomous, we conclude that x(k)
1 = x(k)

2 . We also have

x(k)
a = F̂(ta, x, x(1), . . . , x(k−1)), a ∈ {1, 2},

and so
F̂(t1, x, x(1), . . . , x(k−1)) = F̂(t2, x, x(1), . . . , x(k−1)).

Thus F̂ is independent of t, which is the assertion of the proposition. �

It is easy to see that the converse of the preceding proposition is not generally
true. This is because, while a differential equation uniquely determines its right-
hand side, a right-hand side does not uniquely determine a differential equation.
This is pursued in Exercise 1.3.20.
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1.3.3.2 Linear ordinary differential equations Next we turn to a very impor-
tant class of ordinary differential equations, namely those that are linear.

1.3.11 Definition (Linear ordinary differential equation) Let

F : T × Rm
⊕ L≤k

sym(R;Rm)→ Rm

be an ordinary differential equation with state space U = Rm. The ordinary differ-
ential equation F is:

(i) linear if, for each t ∈ T, the map

Ft : Rm
⊕ L≤k

sym(R;Rm)→ Rm

(x, x(1), . . . , x(k)) 7→ F(t, x, x(1), . . . , x(k))

is affine;
(ii) linear homogeneous if, for each t ∈ T, the map Ft is linear;
(iii) linear inhomogeneous if it is linear but not linear homogeneous. •

Before we get to examples, let us characterise linearity in terms of the right-hand
side of the ordinary differential equation.

1.3.12 Proposition (Right-hand sides of linear ordinary differential equations) Let

F : T × Rm
⊕ L≤k

sym(R;Rm)→ Rm

be an ordinary differential equation with right-hand side

F̂ : T × Rm
⊕ L≤k−1

sym (R;Rm)→ Rm

The following statements hold:
(i) if F is linear, then, for each t ∈ T, the map

F̂t : Rm
⊕ L≤k−1

sym (R;Rm)→ Rm

(x, x(1), . . . , x(k−1)) 7→ F̂(t, x, x(1), . . . , x(k−1))

is affine;

(ii) if F is linear homogeneous, then, for each t ∈ T, the map F̂t is linear;

(iii) if F is linear inhomogeneous, then, for each t ∈ T, the map F̂t is affine but not linear.

Proof (i) Fix t ∈ T. Since Ft is affine, there exists L0,t ∈ L(Rm;Rm),

L j,t ∈ L(L j
sym(R;Rm);Rm), j ∈ {1, . . . , k},

and bt ∈ Rm such that

Ft(x, x(1), . . . , x(k)) = Lk,t(x(k)) + · · · + L1,t(x(1)) + L0,t(x) + bt. (1.29)
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Keeping in mind Remark 1.3.4, we have

L j
sym(R;Rm) ' L(Rm;Rm), j ∈ {1, . . . ,m},

and so we can use this identification to think of x( j), j ∈ {1, . . . ,m}, as being in
Rm and the linear maps L j,t as being elements of L(Rm;Rm). We will denote by
A j,t ∈ L(Rm;Rm) the corresponding linear maps, so equation (1.29) reads

Ft(x, x(1), . . . , x(k)) = Ak,t(x(k)) + · · · + A1,t(x(1)) + A0,t(x) + bt.

Since F is an ordinary differential equation, Ak,t must be invertible, and we must
also have

F̂t(x, x(1), . . . , x(k−1)) = −A−1
k,t
◦A0,t(x)−A−1

k,t
◦A1,t(x(1))− · · · −A−1

k,t
◦Ak−1,t(x(k−1))−A−1

k,t (bt).

This gives the desired conclusion that F̂t is affine.
(ii) This follows from the calculations of part (i), but with bt = 0.
(iii) This follows from parts (i) and (ii). �

As with Proposition 1.3.10, the converses to the statements in the preceding
result are generally false, and the reader can explore this in Exercise 1.3.21.

The proof of the proposition reveals the form for linear ordinary differential
equations, and we reproduce this here outside the proof for emphasis. To wit, a
differential equation

F : T × Rm
⊕ L≤k

sym(R;Rm)→ Rm

is linear if and only if there exist maps

A j : T→ L(Rm;Rm), j ∈ {0, 1, . . . , k},

and b : T→ Rm such that

F(t, x, x(1), . . . , x(k)) = Ak(t)(x(k)) + · · · + A1(t)(x(1)) + A0(t)(x) + b(t). (1.30)

The right-hand side is then

−A−1
k (t) ◦ A0(t)(x) − A−1

k (t) ◦ A1(t)(x(1)) − · · · − A−1
k (t) ◦ Ak−1(t)(x(k−1)) − A−1

k (t)(b(t)).

Solutions to this ordinary differential equation are then functions t 7→ x(t) satisfying

dkx
dtk

(t) = −A−1
k (t) ◦ A0(t)(x(t)) − A−1

k (t) ◦ A1(t)
(

dk−1x
dt

(t)
)
− . . .

− A−1
k (t) ◦ Ak−1(t)

(dx
dt

(t)
)
− A−1

k (t)(b(t)).

We shall study equations like this in great detail subsequently, particularly in the
case when the linear maps A0,A1, . . . ,Ak are independent of t. Indeed, equations
like this have a particular name.
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1.3.13 Definition (Constant coefficient linear ordinary differential equation) A linear
ordinary differential equation given by (1.30) is a constant coefficient linear ordi-
nary differential equation if the functions A0,A1, . . . ,Ak are independent of t. •

Let us consider the examples of Section 1.1 in terms of their linearity.

1.3.14 Examples (Linear ordinary differential equations (or not))
1. The mass-spring-damper equation we derived in (1.1) is an autonomous linear

constant coefficient inhomogeneous ordinary differential equation. According
to the notation of (1.30), we have

A2 = m, A1 = d, A0 = k, b = −mag.

2. The coupled mass-spring-damper equation of (1.2) is an autonomous linear
constant coefficient homogeneous ordinary differential equations. According
to the notation of (1.30), we have

A2 =

[
m 0
0 m

]
, A1 = 0, A0 =

[
2k −k
−k 2k

]
, b = 0.

3. For the simple pendulum equation of (1.3), we leave the working out of its
attributes as Exercise 1.3.22.

4. For Bessel’s equation (1.3), we leave the working out of its attributes as Exer-
cise 1.3.22.

5. For the current in a series RLC circuit of simple pendulum equation of (1.6), we
leave the working out of its attributes as Exercise 1.3.22.

6. For the tank flow model of (1.7), we leave the working out of its attributes as
Exercise 1.3.22.

7. For the logistical population model of (1.8), we leave the working out of its
attributes as Exercise 1.3.22.

8. For the Lotka–Volterra predator prey model of (1.9), we leave the working out
of its attributes as Exercise 1.3.22.

9. For the Rapoport production and exchange model of (1.10), we leave the work-
ing out of its attributes as Exercise 1.3.22. •

1.3.4 Partial differential equations

In the preceding section we called differential equations with one independent
variable, and satisfying a certain nondegeneracy condition, “ordinary differential
equations.” The other kind of differential equations are what we define next.

To do so, we introduce some useful general notation for the various variables
and for the derivative coordinates. Independent variables will be denoted by
x and states or unknowns by u. Then the list of the coordinates representing the
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derivatives up to order k of the dependent variables with respect to the independent
variables will be denoted by

(u,u(1), . . . ,u(k)) ∈ U × L≤k
sym(Rn;Rm).

Note that, in the general case when n > 1, the simplifications of Remark 1.3.4 do
not apply, and each of the derivative variables lives in a different space.

1.3.4.1 General partial differential equations We begin with the definition.

1.3.15 Definition (Partial differential equation) A partial differential equation is a dif-
ferential equation

F : D ×U × L≤k
sym(Rn;Rm)→ Rl

with the following properties:
(i) n > 1;
(ii) there exists (x,u,u(1), . . . ,u(k−1)) ∈ D×U × L≤k−1

sym (Rn;Rm) such that the function

u(k)
7→ F(x,u,u(1), . . . ,u(k−1),u(k))

is not constant. •

The second condition merits explanation. It serves a similar function to the
nondegeneracy condition (v) of Definition 1.3.5 for ordinary differential equation.
In the case of ordinary differential equations, we wished to be able to solve for the
highest-order derivative. For partial differential equations, this is asking too much
as it is typically not the case that the entire highest-order derivative can be solved for.
However, the condition we give is that F should not be everywhere independent
of the highest-order derivative. This is a condition that, while technically required
for a sensible notion of order for a partial differential equation, is always met in
practice.

There is not much to say about general partial differential equations. All of the
examples of Section 1.1 that have more than one independent variable are partial
differential equations as per Definition 1.3.15. The dichotomy into autonomous
and nonautonomous equations is not so interesting for partial differential equa-
tions, so we do not give the definition here, although it is possible to do so. We also
comment that there is no natural notion of a right-hand side for a partial differential
equation as there is for an ordinary differential equation.

Thus we begin our specialisation of partial differential equations with various
flavours of linearity.

1.3.4.2 Linear and quasilinear partial differential equations Let us provide
the appropriate definitions of linearity for partial differential equations.
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1.3.16 Definition (Linear partial differential equation) Let

F : D × Rm
⊕ L≤k

sym(Rn;Rm)→ Rl

be a partial differential equation with state space U = Rm. The partial differential
equation F is:

(i) linear if, for each x ∈ D, the map

Fx : Rm
⊕ L≤k

sym(Rn;Rm)→ Rl

(u,u(1), . . . ,u(k)) 7→ F(x,u,u(1), . . . ,u(k))

is affine;
(ii) linear homogeneous if, for each x ∈ D, the map Fx is linear;
(iii) linear inhomogeneous if it is linear but not linear homogeneous. •

1.3.17 Definition (Quasilinear partial differential equation) A partial differential equa-
tion

F : D ×U × L≤k
sym(Rn;Rm)→ Rl

is quasilinear if, for each

(x,u,u(1), . . . ,u(k−1)) ∈ D ×U × L≤k−1
sym (Rn;Rm),

the map
u(k)
7→ F(x,u,u(1), . . . ,u(k))

is affine. •

We can immediately deduce from the definitions the following forms for the
various flavours of linear and quasilinear partial differential equations.

1.3.18 Proposition (Linear partial differential equations) Let

F : D × Rm
⊕ L≤k

sym(Rn;Rm)→ Rl

be a partial differential equation with state space U = Rm. Then the following statements
hold:

(i) F is linear if and only if there exist maps

Aj : D→ L(Lj
sym(Rn;Rm);Rl), j ∈ {0, 1, . . . ,k},

and b : D→ Rl, with Ak not identically zero, such that

F(x,u,u(1), . . . ,u(k)) = Ak(x)(u(k)) + · · · + A1(x)(u(1)) + A0(x)(u) + b(x); (1.31)

(ii) F is linear homogeneous if and only if it has the form from part (i) with b(x) = 0 for
every x ∈ D;

(iii) F is linear inhomogeneous if and only if it has the form from part (i) with b(x) , 0
for some x ∈ D.
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1.3.19 Proposition (Quasilinear partial differential equations) A partial differential equa-
tion

F : D ×U × L≤k
sym(Rn;Rm)→ Rl

is quasilinear if and only if there exist maps

A1 : D × L≤k−1
sym (Rn;Rm)→ L(Lk

sym(Rn;Rm);Rl), A0 : D × L≤k−1
sym (Rn;Rm)→ Rl,

with A1 not identically zero, such that

F(x,u,u(1), . . . ,u(k)) = A1(x,u,u(1), . . . ,u(k−1))(u(k)) + A0(x,u,u(1), . . . ,u(k−1)).

The notion of having constant coefficients that we encountered for ordinary
differential equations also makes sense for partial differential equations.

1.3.20 Definition (Constant coefficient linear partial differential equation) A linear
partial differential equation given by (1.31) is a constant coefficient linear partial
differential equation if the functions A0,A1, . . . ,Ak are constant. •

We leave to the reader in Exercise 1.3.24 the pleasure of classifying the example
partial differential equations of Section 1.1.

1.3.4.3 Elliptic, hyperbolic, and parabolic second-order linear partial dif-
ferential equations Many of the partial differential equations that arise from
physics are linear second-order equations with a single unknown, and there are
various classifications that can be applied to such equations that bear on the at-
tributes of the solutions to these equations.

Let us write the general form of such a differential equation. In doing so, let
us remind ourselves what our derivative notation means in this case. We will deal
with derivatives of a single variable of at most second-order, so the first derivative
u(1) represents a vector of partial derivatives

u(1) = (ux1 , . . . ,uxn)

and u(2) represents a matrix of partial derivatives

u(2) =


ux1x1 ux1x2 · · · ux1xn

ux2x1 ux2x2 · · · ux2xn
...

...
. . .

...
uxnx1 uxnx2 · · · uxnxn

 ,
keeping in mind that this matrix will be symmetric. With this in mind, a general
linear second-order partial differential equation will have the form

F(x,u,u(1),u(2)) =

n∑
j,k=1

A jk(x)ux jxk +

n∑
j=1

a j(x)ux j + b(x) (1.32)
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for functions
A : D→ L(Rn;Rn), a : D→ Rn, b : D→ R.

We can, without loss of generality, suppose that A(x) is a symmetric matrix for
all x ∈ D.8 In this case, we know that the eigenvalues of A are real, allowing the
following definition.

1.3.21 Definition (Elliptic, hyperbolic, parabolic) Let

F : D × R ⊕ L≤2
sym(Rn;R)→ R

be a second-order linear partial differential equation, and so given by (1.32). Then
F is:

(i) elliptic at x ∈ D if all eigenvalues of A(x) are positive;
(ii) hyperbolic at x ∈ D if all eigenvalues of A(x) are nonzero;
(iii) parabolic at x ∈ D if all eigenvalues of A(x) are nonnegative, and at least one

of them is zero. •

Note that if F has constant coefficients, then the notion of being in one of
the three cases of elliptic, hyperbolic, or parabolic does not depend on x ∈ D.
Generally, however, it will. Thus the notions are most frequently applied in the
constant coefficient case. Let us consider examples that we have seen thus far, and
see where they sit relative to the elliptic/hyperbolic/parabolic classification.

1.3.22 Examples (Elliptic, hyperbolic, and parabolic partial differential equations)
1. The standard example of an elliptic partial differential equation is the potential

equation, or Laplace’s equation. The domain D ⊆ Rn is normally thought of as

8Indeed, suppose that A is not symmetric. Then write A as a sum of a symmetric and skew-
symmetric matrix:

A = 1
2 (A + AT)︸      ︷︷      ︸

A+

+ 1
2 (A − AT)︸      ︷︷      ︸

A−

,

with A+ being symmetric and A− being skew-symmetric. Then we have

n∑
j,k=1

A−jkux jxk = −

n∑
j,k=1

A−kjux jxk = −

n∑
j,k=1

A−kjuxkx j = −

n∑
j,k=1

A−jkux jxk ,

and so we conclude that
n∑

j,k=1

A−jkux jxk = 0,

and so
n∑

j,k=1

A jkux jxk =

n∑
j,k=1

A+
jkux jxk ,

giving our claim that we can assume that A is symmetric.
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being “space” in this case, so we denote coordinates for D by (x1, . . . , xn). Then
the differential equation is given by

F(x,u,u(1),u(2)) = ux1x1 + · · · + uxnxn .

Thus u : D′ → R is a solution if it satisfies

∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
= 0.

We saw examples of how this equation arises in applications in Section 1.1.13.
Note that, in this case,

A =


1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

 ,
so all eigenvalues are 1, i.e., are positive. This ensures that F in this case is
indeed elliptic.

2. The standard example of an hyperbolic partial differential equation is the wave
equation. In this case, the domain D is normally thought of as encoding time and
space, and so we denote coordinates by (x1, . . . , xn, t). The differential equation
is given by

F((t, x),u,u(1),u(2)) = −utt + ux1x1 + · · · + uxnxn .

Solutions u thus satisfy the equation

∂2u
∂t2 =

∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
.

We saw that in Section 1.1.12 that the wave equation arises in the model of the
transverse vibrations of a taut string. In this case we have

A =


−1 1 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...
. . .

...
0 0 0 · · · 1

 ,
and so the eigenvalues are−1, 1, . . . , 1, showing that this is indeed an hyperbolic
equation.

3. The usual example of a parabolic equation is the heat equation, which we
saw modelled the temperature distribution in a rod in Section 1.1.11. In this
case, like the wave equation, the domain D is coordinatised by time and space:
(1, x1, . . . , xn). The differential equation is

F((t, x),u,u(1),u(2)) = −ut + ux1x1 + · · · + ux2x2 .
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Solutions u : D′ → R satisfy

∂u
∂t

=
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
.

In this case

A =


0 1 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1

 ,
and so the eigenvalues are 0, 1, . . . , 1, showing that this is indeed a parabolic
equation. •

In the text we shall come back to these three equations, and when we are able
to solve them shall comment on their general characteristics.

1.3.5 How to think about differential equations

A reader having read and understood the content of this section will have an
excellent understanding of what a differential equation is, and some of the special
classes of differential equations. The reader will now embark on actually solving
some differential equations (after a brief diversion in Section 1.4 on the important
matter of existence and uniqueness of solutions). Before doing so, it is worth
putting this process of solving differential equations into a general context.

First of all, let us state very clearly: if you reach into the bag of differential equations
and pull one out, it is extremely unlikely you will be able to solve it. This is rather
like what a student has already encountered in their study of differentiation and
integration; one has at hand a small but important collection of functions that
one can actually differentiate or integrate, and these are to be regarded as isolated
and valuable gems. But this does raise the question of what one can do with a
differential equation pulled at random from the bag of differential equations.

Let us explore this a little.
1. Analysis: Even if one cannot explicitly solve a given differential equation, there

are still sometimes things that can be done to get some insight into its behaviour.
Let us consider some of the things one might try to do.

(a) Understand steady-state behaviour: In some equations one has time t as the,
or one of the, independent variables. In such cases, it is often of interest to
understand the behaviour of solutions as t→∞. This behaviour is known
as steady-state behaviour. Sometimes the steady-state behaviour is not
interesting, as in “blows up to infinity.” But sometimes this behaviour is
all one really wants, and sometimes it can even be determined. We shall
see some instances of this sort of investigation in the text.
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(b) Approximating solutions: Sometimes in a differential equation there are
effects that are dominant, and the remaining effects can be regarded as
“perturbations” of these dominant effects. If the dominant part of the
equations are something that one can understand, one can hope (pray,
really) that the perturbations do not materially affect the dominant be-
haviour. In practice, methods like this should be used with great care,
since the “perturbations,” while small, may have significant impact on the
character of solutions, particularly for long times in cases where time is
one of the independent variables. However, there are cases where “pertur-
bation theory” can be applied to give useful conclusions. However, this is
not something we will get deeply into in any sort of general way.

(c) Equilibria and their stability: A special case of the preceding idea of ap-
proximation involves the study of equilibria. This is most easily discussed
by reference to ordinary differential equations, but the basic ideas can be
adapted by a flexible mind to partial differential equations. Suppose that
we have an ordinary differential equation

F : T ×U × L≤k
sym(R;Rm)→ Rm.

An equilibrium is a point x0 ∈ U for which

F(t, x, 0, . . . , 0) = 0, t ∈ T.

Note that the constant function t 7→ x0 is then a solution of this differential
equation. The fact that it is constant is what leads to its being called an
“equilibrium.” One can then consider the stability of this equilibrium,
which loosely means the matter of whether solutions starting near x0 (i) re-
main near x0, (ii) approach x0 as t → ∞, or (iii) diverge away from x0. We
shall be precise about this in the text in various situations.

2. Numerical solution: One can attempt to use a computer to solve the differential
equation. For most ordinary differential equations, there are reliable methods
for solving them numerically. The situation with partial differential equations
is quite different, and significant science has been, is, and will be dedicated
to numerical techniques for solving partial differential equations. In the text
we will talk a little about using numerical methods to solve ordinary differen-
tial equations, and will give the reader some opportunity to use the standard
package Matlab® for plotting numerical solutions to differential equations.
A matter related to what one can do with a differential is the manner in which

one can think of a solution, since it is solutions in which we are interested. No
matter what else you do, here is how you should not think about solutions:

Be a grown up about what a solution is: A solution to a differential
equation, or any equation for that matter, is not a formula that you write
on the page as the byproduct of some algorithmic procedure. This way of
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thinking about “solution” should remain in high school, which is where it was
unfortunately taught to you.

So. . . how should you think about what a solution is?
For ordinary differential equations, a profitable way to think about it is to think

about curves, since a solution is indeed a curve t 7→ x(t). Let us focus on first-order
ordinary differential equations.9 In this case, ẋ(t) is the tangent vector to this curve,
and so the equation

ẋ(t) = F̂(t, x(t))

should be thought of as prescribing the tangent vectors to solution curves. What
becomes important, then is the vector F̂(t, x) one assigns to the point (t, x).

Let us be explicit about this in an example.

1.3.23 Example (Differential equations and vector fields) We consider the autonomous
first-order ordinary differential equation in two unknowns defined by

F̂(t, (x1, x2)) = F̂0(x1, x2) = (x2,−x1 + 1
2x2(1 − x2

1)).

Thus solutions are defined by the equations

ẋ1(t) = x2(t),

ẋ2(t) = − x1(t) + 1
2x2(t)(1 − x1(t)2).

In Figure 1.14 we plot the vector field. Thus, at each point (x1, x2) ∈ R2 we draw an
arrow in the direction of

F0(x1, x2) = (x2,−x1 + 1
2x2(1 − x2

1)).

A solution to the differential equation will then be a curve t 7→ (x1(t), x2(t)) whose
tangent vector at (x1(t), x2(t)) points in the direction of F0(x1(t), x2(t)). In Figure 1.15
we show a few such solution curves; these are known in the business as integral
curves.

It is also not uncommon to look at plots of x1(t) and x2(t) as functions of t. In
Figure 1.16 we show such plots starting at a fixed point (x1(0), x2(0)) at t = 0.10

We hope that a reader will find looking at pictures like this, particularly Fig-
ure 1.15, more insightful than looking at some formula for the solution, produced
as a byproduct of some algorithmic procedure. Also, for this equation, there is no
algorithmic procedure for determining the solutions. . . but the pictures can still be
produced and offer insight. •

9We shall see that a kth-order ordinary differential equation can always be converted into a first-
order ordinary differential equation, so the assumption of the equation being first-order is made
without loss of generality.

10As one varies (x1(0), x2(0)), one also varies these plots, and this is something we will consider
in Section 1.4.
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Figure 1.14 A vector field in R2

For partial differential equations, solutions are no longer curves, i.e., vector
functions of a single independent variable, but it is still worthwhile to think about,
and represent where possible, a solution as a graph of a function of the independent
variables.

Exercises

1.3.1 Work out Example 1.3.3–3. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

1.3.2 Work out Example 1.3.3–4. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.
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Figure 1.15 A few solution curves for the vector field of Fig-
ure 1.14
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Figure 1.16 Plots of the solutions as functions of time

1.3.3 Work out Example 1.3.3–5. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

1.3.4 Work out Example 1.3.3–6. Thus:
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(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

1.3.5 Work out Example 1.3.3–7. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

1.3.6 Work out Example 1.3.3–8. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

1.3.7 Work out Example 1.3.3–9. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

1.3.8 Work out Example 1.3.3–14. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

1.3.9 Work out Example 1.3.3–15. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

1.3.10 Work out Example 1.3.7–3. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
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(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 1.3.6.

1.3.11 Work out Example 1.3.7–4. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 1.3.6.

1.3.12 Work out Example 1.3.7–5. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 1.3.6.

1.3.13 Work out Example 1.3.7–6. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 1.3.6.

1.3.14 Work out Example 1.3.7–7. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 1.3.6.

1.3.15 Work out Example 1.3.7–8. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 1.3.6.

1.3.16 Work out Example 1.3.7–9. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 1.3.6.

1.3.17 For each of the following ordinary differential equations F, determine their
right-hand sides:
(a) F(t, x, x(1), x(2)) = 3(1 + t2)x(2);
(b) F(t, (x1, x2), (x(1)

1 , x
(1)
2 )) = (x(1)

2 + 2x1 − x2,−x(1)
1 − x2

1);
(c) F(t, x, x(1), x(2), x(3)) = −x(3) + t(x(1))2 + sin(x);
(d) F(t, (x1, x2), (x(1)

1 , x
(1)
2 )) = (−x(1)

1 + x(1)
2 + x2

1 − x2, 2x(1)
1 + 2x(1)

2 + cos(x2) − x1);
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(e) F(t, x, x(1)) = x(1) + a(t)x.

1.3.18 For each of the following right-hand sides F̂, determine the associated
normalised ordinary differential equation F:

(a) F̂(t, x, x(1)) = 0;
(b) F̂(t, (x1, x2)) = (−x2

1,−2x2 + x2);

(c) F̂(t, x, x(1), x(2)) = t(x(1))2 + sin(x);
(d) F̂(t, (x1, x2)) = (1

4 (x1 + 2x2
1 − 2x2 − cos(x2)), 1

4 (x1 − 2x2
1 + 2x2 − cos(x2)));

(e) F̂(t, x) = −a(t)x.

In the next exercise we shall show how autonomous ordinary differential equa-
tions are special in terms of their solutions. In order for the exercise to make sense,
we require the existence and uniqueness theorem we state below, Theorem 1.4.8.

1.3.19 Let
F : T ×U × L≤k

sym(R;Rm)→ Rm

be an autonomous ordinary differential equation satisfying the conditions
of Theorem 1.4.8(ii), let

(x0, x
(1)
0 , . . . , x

(k−1)
0 ) ∈ U × L≤k−1

sym (R;Rm),

and let t1, t2 ∈ T. Let ξ1 : T→ U and ξ2 : T→ U be solutions for F satisfying

ξ1(t1) = ξ2(t2) = x0,
d jξ1

dt j (t1) =
d jξ2

dt j (t2) = x( j)
0 , j ∈ {1, . . . , k − 1}.

Answer the following questions.
(a) Show that ξ2(t) = ξ1(t + t1 − t2) for all t ∈ T for which ξ(t) is defined and

for which t + t1 − t2 ∈ T.
(b) Assuming that T = R and that all solutions are defined for all time for

simplicity, express your conclusion from part (a) as a condition on the
flow ΦF.

1.3.20 Let us consider the following two differential equations:

F1 : R × R × L≤1
sym(R;R)→ R

(t, x, x(1)) 7→ x(1),

F2 : R × R × L≤1
sym(R;R)→ R

(t, x, x(1)) 7→ (1 + t2)x(1).

Answer the following questions.
(a) Show that both F1 and F1 are ordinary differential equations, and deter-

mine the right-hand sides F̂1 and F̂2.
(b) Show that both F̂1 and F̂2 are independent of t.
(c) Which of F1 and F2 is autonomous?
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1.3.21 Let us consider the following two differential equations:

F1 : R × R × L≤1
sym(R;R)→ R

(t, x, x(1)) 7→ x(1),

F2 : R × R × L≤1
sym(R;R)→ R

(t, x, x(1)) 7→ (1 + x2)x(1).

Answer the following questions.
(a) Show that both F1 and F1 are ordinary differential equations, and deter-

mine the right-hand sides F̂1 and F̂2.
(b) Show that both F̂1 and F̂2 are linear.
(c) Which of F1 and F2 is linear?

1.3.22 Consider the ordinary differential equations of Examples 1.3.3–3 to 9.
(a) Which of the equations is autonomous?
(b) Which of the equations is linear?
(c) Which of the equations is linear and homogeneous?
(d) Which of the equations is linear and inhomogeneous?
(e) Which of the equations is a linear constant coefficient equation?

1.3.23 Let
F : T ×U × L≤k

sym(R;Rn)→ Rm

be an ordinary differential equation with right-hand side F̂. As usual, let t
be the independent variable and x the state, with x( j)

∈ L j
sym(R;Rm) being the

coordinate for the jth derivative. As per Remark 1.3.4, we can think of x( j)

as being an element of Rm.
We will associate to F a first-order ordinary differential equation F1 with

time domain T and state space

U1 = U × Rm
× · · · × Rm︸           ︷︷           ︸
k−1 times

.

To do so, answer the following questions.
(a) Denote coordinates for the state space U1 by y0, y1, · · · , yk−1, and relate

these to (x, x(1), . . . , x(k−1)) by

y0 = x, y j = x( j), j ∈ {1, . . . , k − 1}.

If t 7→ x(t) is a solution for F, write down the corresponding differential
equations that must be satisfied by (y0, y1, . . . , yk−1).
Hint: For each j ∈ {0, 1, . . . ,k − 1}, write down ẏj(t), and express the result in
terms of the coordinates for U1.

(b) What is the right-hand side F̂1 corresponding to the equations you de-
rived in part (a)?
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(c) Write down a first-order ordinary differential equation F1 with time
domain T and state space U1 whose right-hand side is the function F̂1

you determined in part (b).
(d) State precisely the relationship between solutions for F and solutions for

F1, and show that if solutions for F1 are of class C1, then solutions for F
are of class Ck.

(e) Show that F1 is can be taken to be linear if F is linear, and show that F1

is homogeneous if and only if F is, in this case.
1.3.24 For the partial differential equations of Examples 1.3.3–11 to 17, de-

termine whether they are (a) linear homogeneous, (b) linear inhomoge-
neous, (c) quasilinear, and/or (d) has constant coefficients.

The next exercise concerns itself with the so-called method of characteristics for
simple second-order linear partial differential equations. Although the presenta-
tion is for a simple class of equations, the language and methodology we introduce
is readily generalised. The class of differential equations we consider are given by

F : D × R ⊕ L≤2
sym(R2;R)→ R

(x, y,u,u(1),u(2)) 7→ auxx + 2bux,y + duyy + dux + euy + f u
(1.33)

for functions a, b, c, d, e, f , g : D→ R defined on an open subset D of R2. The symbol
for the equation is the C-valued function

σ(F) : D × R2
→ C

(x, y, ξ, η) 7→ −aξ2
− 2bξη − cη2 + idξ + ieη + f ,

defined by “substituting” iξ for ∂u
∂x and iη for ∂u

∂y . The principal symbol σ0(F) is the
quadratic part of the symbol

σ0(F)(x, y, ξ, η) = −aξ2
− 2bξη − cη2.

Consider a curve in D defined by φ(x, y) = 0. The curve is a characteristic if

σ0(F)
(
x, y,

∂φ

∂x
,
∂φ

∂y

)
= 0.

It turns out that it is possible for a solution of a partial differential equation to have
points of discontinuity, but one may determine that these are necessarily located
along characteristic curves.

The above development outlines why the symmetric matrix[
a b
b c

]
is useful in determining some properties of a partial differential equation of the
form (1.33).
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1.3.25 In the preceding, suppose that a, b, and c are constant, and define the
function fa,b,c : R2

→ R by

fa,b,c(ξ, η) = aξ2 + 2bξη + cη2,

and answer the following questions.
(a) Show that when b2

− ac = 0 the following statements hold:
(a) the curve fa,b,c(x, y) = 1 is a parabola for a > 0;
(b) through each point inR2 there passes a single characteristic for (1.33).
Show that the heat equation falls into this category.

(c) Show that when b2
− ac > 0 the following statements hold:

(a) the curve fa,b,c(x, y) = 1 is an hyperbola for a > 0;
(b) through each point in R2 there passes two characteristics for (1.33).
Show that the wave equation falls into this category.

(c) Show that when b2
− ac < 0 the following statements hold:

(a) the curve fa,b,c(x, y) = 1 is an ellipse for a > 0;
(b) the differential equation (1.33) possesses no characteristics curves.
Show that the potential equation falls into this category.
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Section 1.4

The question of existence and uniqueness of solutions

This chapter, up to this point, has been a bit chatty, with some nice examples,
some arcane definitions and some quite obvious results. In this section we pro-
duce a few important results, especially for ordinary differential equations. The
results are concerned with two important questions: (1) does a given differential
equation possess solutions; (2) how many solutions does a differential equation
possess? In mathematics, questions like this are known as questions of “exis-
tence and uniqueness” (think about similar sorts of questions for linear algebraic
equations, as discussed in Section 1.2.4.)

1.4.1 Existence and uniqueness of solutions for ordinary differential
equations

We begin our discussion by looking at the situation for ordinary differential
equations, where a fairly complete story can be told. We shall begin by framing the
sort of questions and answers we might expect by looking at some examples. Then
we state the principal existence and uniqueness theorems for solutions of ordinary
differential equations. We close the section by considering how all solutions of an
ordinary differential equation “fit together.”

1.4.1.1 Examples motivating existence and uniqueness of solutions for or-
dinary differential equations Our first three examples make use of the fact that,
when a differential has a right-hand side that is independent of the unknown, then
solutions are obtained by integration.

1.4.1 Example (An ordinary differential equation with no solutions (sometimes))
We consider the scalar nonautonomous first-order differential equation with time-
domain R and with right-hand side

F̂(t, x) =

t−1, t , 0,
0, t = 0.

A solution to this differential equation satisfies

ẋ(t) = f (t),

where

f (t) =

t−1, t , 0,
0, t = 0.
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Since we ask that a solution be a C1-function, the Fundamental Theorem of Calculus
gives that a solution should satisfy

x(t) = x(t0) +

∫ t

t0

f (τ) dτ.

We claim that, if t0t ≤ 0 and if t , t0, then the integral does not exist. Indeed, if
t0t ≤ 0, then one of the following four instances must hold: (1) t = 0; (2) t0 = 0;
(3) t < 0 < t0; (4) t0 < 0 < t. In all four of these instances, the integral will not
exist since the function f (t) = t−1 is not integrable about 0. Thus this differential
equation only can be solved when t and t0 are both on the same side of 0. •

1.4.2 Example (An ordinary differential equation with no solutions (all the time))
This example is beyond the abilities of a typical student taking a first course in
differential equations, but we present it because it shows something interesting.

We let f : R → R be a function with the properties that (1) f takes values in
[0, 1] and (2) the integral of the restriction of f to any interval does not exist. Such
a function is not likely to come readily to hand, but they do exist; this is the part of
this example that is beyond most students using this as a course text.

In any case, given such an f , we define a scalar autonomous ordinary differential
equation with right-hand side F̂(t, x) = f (t). As in Example 1.4.1, a solution of this
differential equation is given by

x(t) = x(t0) +

∫ t

t0

f (τ) dτ.

In this case, because no matter how we choose t and t0, the integral of f |[t0, t] (or
f |[t, t0] if t < t0) does not exist, and so a solution cannot exist for any choice of t and
t0. •

1.4.3 Example (Uniqueness of solutions is not the right thing to ask for) Let us
now let f : R → R be a continuous function, which implies that the integral of
f |[a, b] exists for any a < b. As in our preceding two examples, we consider a
differential equation with right-hand side F(t, x) = f (t). And, as with the preceding
two examples, solutions to this differential equation satisfy

x(t) = x(t0) +

∫ t

t0

f (τ) dτ.

In this case, the integral exists for any t0 and t, and this shows that this differential
equation has many solutions. But what we notice is that, once we fix an initial time
t0 and an initial value x(t0) at this time, then the solution does become unique. •
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1.4.4 Example (Solutions, when they exist, may have a limited domain of defini-
tion) The next example we consider shows that, even for seemingly well-behaved
right-hand sides, solutions to differential equations will not be defined for all time.
We consider a scalar autonomous ordinary differential equation with right-hand
side F̂(t, x) = x2. Thus solutions satisfy the equation

ẋ(t) = x(t)2.

This equation can be easily solved (we shall see how to solve a class of equations
including this one in Section 2.1) to give

x(t) =

0, x(t0) = 0,
x(t0)

x(t0)(t0−t)+1 , x(t0) , 0.

(Alternatively, one can just verify by substitution that this is a solution of the
differential equation and satisfies “x(t0) = x(t0).”) Let us assume that x(t0) , 0. One
can see that the solution in this case is only defined for

x(t0)(t0 − t) + 1 , 0 ⇐⇒ t , t0 +
1

x(t0)
, t∗.

From this we conclude the following about solutions:
1. if x(t0) > 0, then limt↓−∞ x(t) = 0 and limt↑t∗ x(t) = ∞;
2. if x(t0) < 0, then limt↓t∗ x(t) = −∞ and limt↑∞ x(t) = 0.
The essential point is that although (1) solutions exist for any initial time t0 and
any initial value x(t0) at that time and (2) the differential equation is defined for all
times (and indeed is independent of time), solutions with initial values different
from 0 will not exist for all times. •

1.4.5 Example (Solutions may not be unique even when things seem nice) We con-
sider the scalar autonomous differential equation with right-hand side F̂(t, x) = x1/3.
We will show that there are infinitely many solutions t 7→ x(t) satisfying the equa-
tion

ẋ(t) = x(t)1/3

with x(0) = 0. One can use the techniques of Section 2.1 to obtain the solution
t 7→ x0(t) given by

x0(t) =
(2
3

t
)3/2

.

However, x1(t) = 0 is also clearly a solution. Indeed, there is a family of solutions
of the form

x(t) =


x0(t + t−), t ∈ (−∞,−t−],
0, t ∈ (−t−, t+),
x0(t − t+), t ∈ [t+,∞),

where t−, t+ ∈ R>0. •
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From the preceding examples, we draw the following conclusions about the
questions of existence and uniqueness of solutions to ordinary differential equa-
tions.
1. From Examples 1.4.1 and 1.4.2 we conclude that we must prescribe some

conditions on the right-hand side of F̂ of an ordinary differential equation if we
are to expect solutions to exist. This is hardly a surprise, of course. However,
just what are the right conditions is something that took smart people some
time to figure out, cf. the proof of Theorem 1.4.8 below.

2. Example 1.4.3 shows that in the case when we have solutions, we will have
lots of them, so ordinary differential equations should not be expected to have
unique solutions. However, in the example we saw that perhaps the matter of
uniqueness can be resolved by asking that the unknown x take on a prescribed
value at a prescribed time t0. This is altogether akin to constants of integration
disappearing when fixed upper and lower limits for the integral are chosen.

3. Example 1.4.4 shows that, even when solutions exist for all initial times and
values of the unknown at these times, and even when the differential equation
is autonomous, it can arise that solutions only exist locally in time, i.e., solutions
cannot be defined for all times. It turns out that this is just a fact of life when
dealing with differential equations.

4. Finally, Example 1.4.5 shows that, even when the differential equation is au-
tonomous with a continuous right-hand side, it can happen that multiple, in-
deed infinitely many, solutions pass through the same initial value for the
unknown at the same time. This is a quite undesirable state of affairs, and
can be hypothesised away easily by conditions that are nearly always met in
practice.
With an excellent understanding of the context of the existence and uniqueness

problem bestowed upon us by these motivational examples, we can now state
precisely with the problem is, and provide some notation for stating the main
theorem.

Let us first state precisely the problem for whose solutions we consider existence
and uniqueness.

1.4.6 Definition (Initial value problem) Let

F : T ×U→ Rm

be an ordinary differential equation with right-hand side F̂. Let t0 ∈ T and x0 ∈ U.
A map ξ : T′ → U is a solution for F with initial value x0 at t0 if it satisfies the
following conditions:

(i) T′ ⊆ T is an interval;
(ii) ξ is of class C1;

(iii) ξ̇(t) = F̂(t, ξ(t)) for all t ∈ T′;
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(iv) ξ(t0) = x0.
In this case, we say that ξ is a solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0. •

1.4.1.2 Principal existence and uniqueness theorems for ordinary differen-
tial equations In order to state an appropriate existence and uniqueness theo-
rem, we need to define the following attribute of map between Euclidean spaces.

1.4.7 Definition (Lipschitz map) Let U ⊆ Rn be an open set.
(i) A map f : U→ Rm is Lipschitz if there exists L ∈ R>0 such that

‖ f (x) − f (y)‖ ≤ L‖x − y‖, x, y ∈ U.

(ii) A map f : U → Rm is locally Lipschitz if, for each x ∈ U, there exists r ∈ R>0

such that f |B(r, x) is Lipschitz. •

One can show that if a map f : U → Rm is differentiable, then it is locally
Lipschitz, so this provides for us a wealth of functions that are locally Lipschitz.

Finally, we can state the main existence and uniqueness theorem for solutions
to initial value problems. Because of Exercise 1.3.23, it is sufficient to consider
first-order ordinary differential equations.

1.4.8 Theorem (Existence and uniqueness of solutions for ordinary differential
equations) Let U ⊆ Rm be open, let T ⊆ R be an interval, and let F be a first-order
ordinary differential equation with right-hand side

F̂ : T ×U→ Rm.

We have the following two statements.
(i) Existence for continuous ordinary differential equations. Suppose that F satis-

fies the following conditions:

(a) the map t 7→ F̂(t, x) is continuous for each x ∈ U;

(b) the map x 7→ F̂(t, x) is continuous for each t ∈ T;
(c) for each x ∈ U, there exists r ∈ R>0 and a continuous function g: T → R≥0

such that
‖̂F(t,y)‖ ≤ g(t), (t,y) ∈ T × B(r, x).

Then, for each (t0, x0) ∈ T ×U, there exists a subinterval T′ ⊆ T, relatively open in
T and with t0 ∈ intT(T′), and a solution ξ : T′ → U for F such that ξ(t0) = x0.

(ii) Uniqueness for Lipschitz ordinary differential equations. Suppose that F satis-
fies the following conditions:

(a) the map t 7→ F̂(t, x) is continuous for each x ∈ U;
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(b) the map x 7→ F̂(t, x) is locally Lipschitz for each t ∈ T;
(c) for each x ∈ U, there exist r ∈ R>0 and continuous functions g,L: T → R≥0

such that
‖̂F(t,y)‖ ≤ g(t), (t,y) ∈ T × B(r, x), (1.34)

and

‖̂F(t,y1) − F̂(t,y2)‖ ≤ L(t)‖y1 − y2‖, t ∈ T, y1,y2 ∈ B(r, x). (1.35)

Then, for each (t0, x0) ∈ T × U, there exists a subinterval T′ ⊆ T, relatively open
in T and with t0 ∈ intT(T′), and a solution ξ : T′ → U for F such that ξ(t0) = x0.
Moreover, if T′′ is another such interval and η : T′′ → U is another such solution,
then η(t) = ξ(t) for all t ∈ T′′ ∩ T′.

Before we embark on a proof of this theorem, let us make a few comments.
The nature of our assumptions concerning the explicit dependence of a differential
equation on time is far stronger than is required. Indeed, in many applications,
the assumption of continuous dependence on time does not hold, e.g., when there
is “switching.” With this in mind, we will provide two versions of proofs of the
theorem. First we will sketch a proof of part (ii) of the theorem, since the main ideas
can be mainly understood by a typical student using this as a course text. (There
is no such “simple” proof of part (i).) Then we provide a full proof of the theorem,
but in a context more general than the theorem statement (the precise hypotheses
are given in the proof). We make no attempt in the proof to develop the machinery
of the proof. We do this not so it can be learnt as part of an introductory course,
but rather so ambitious students can see what is involved and get an appreciation
for how much they have yet to learn at this point in their lives.

A sketch of a proof of part (ii) The basic idea of the proof is that, by the Fundamen-
tal Theorem of Calculus, the function t 7→ ξ(t) satisfies the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0

if and only if

ξ(t) = x0 +

∫ t

t0

F̂(s, ξ(s)) ds. (1.36)

We iteratively construct a solution to this last equation. Thus we construct a
sequence of functions (ξ j) j∈Z>0 that converges, in some sense, to a limit function,
and the limit function satisfies the equation (1.36).

We first define ξ1(t) = x0, i.e., ξ1 is a constant function. Then we define

ξ2(t) = x0 +

∫
t0

F̂(s, ξ0(s)) ds.
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We then proceed recursively. Thus, if we have defined ξ1, . . . , ξ j, we define ξ j+1 by

ξ j+1(t) = x0 +

∫ t

t0

F̂(s, ξ j(s)) ds.

The objective is to show that this sequence converges. We do this by showing that,
for t’s sufficiently near t0, the points ξ j(t) get closer and closer together as j → ∞.
To see how this might work, let us estimate the distance between ξ j(t) and ξ j+1(t).
We have

‖ξ j+1(t) − ξ(t)‖ =

∥∥∥∥∥∥x0 +

∫
t0

F̂(s, ξ j(s)) ds −
(
x0 +

∫ t

t0

F̂(s, ξ j−1(s)) ds
)∥∥∥∥∥∥

≤

∫ t

t0

‖̂F(s, ξ j(s)) − F̂(s, ξ j−1(s))‖ds. (1.37)

We can see how assumption (1.35) now becomes useful, since it is easy to see that
this assumption gives (skipping some easy details)

‖ξ j+1(t) − ξ(t)‖ ≤
∫ t

t0

L(s)‖ξ j(s) − ξ j−1(s)‖ds

for some continuous function L : T → R≥0, provided that ξ j(t) can be made to be
close enough to x0 for all j ∈ Z>0 and all t. The way we do this is as follows. We
first choose r ∈ R>0 such that B(r, x0) ⊆ U. We then choose some λ ∈ (0, 1) (matters
not which). Then we choose T > t0 small enough that∫ T

t0

g(s) < r,
∫ T

t0

L(s) ds <
λ
2r
.

Such a T exists since the functions

t 7→
∫ t

t0

g(s) ds, t 7→
∫ t

t0

L(s) ds

are continuous (in fact, differentiable) and by our assumption (1.34). It is then
straightforward (using the triangle inequality) to show that∥∥∥∥∥∥

∫ t

t0

F̂(s, ξ j(s)) ds − x0

∥∥∥∥∥∥ < r

and ∫ t

t0

‖̂F(s, ξ j(s)) − F̂(s, ξ j−1(s))‖ds < λ

for all t ∈ [t0,T] and j ∈ Z>0. This shows two things:
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1. as long as we choose r and T as above, the functions ξ j take values in B(r, x0) for
all t ∈ [t0,T] (i.e., these functions do not blow up as either t or j increase);

2. given aλ ∈ (0, 1), as long as we choose r and T as above, by our calculation (1.37),
we have that, for each j ∈ Z>0 and each t ∈ [t0,T],

‖ξ j+1(t) − ξ j(t)‖ < λ sup{‖ξ j(s) − ξ j−1(s)‖ | s ∈ [t0,T]}.

This last observation can be applied recursively as follows:

‖ξ2(t) − ξ1(t)‖ < λ sup{‖ξ1(s) − ξ0(s)‖ | s ∈ [t0,T]},
=⇒ ‖ξ3(t) − ξ2(t)‖ < λ sup{‖ξ2(s) − ξ1(s)‖ | s ∈ [t0,T]}

< λ2 sup{‖ξ1(s) − ξ0(s)‖ | s ∈ [t0,T]},
...

=⇒ ‖ξ j+1(t) − ξ j(t)‖ < λ
j sup{‖ξ1(s) − ξ0(s)‖ | s ∈ [t0,T]}

...

Therefore, by making j large, ‖ξ j+1(t) − ξ j(t)‖ can be made small, uniformly in
t ∈ [t0,T]. One can readily make oneself believe that this means that the sequence
(ξ j) converges to a function ξ : [t0,T]→ B(r, x0). It does, but more is true. One can
also fairly easily show that the resulting limit function satisfies (1.36), and so solves
the initial value problem. �

Complete proof of Theorem 1.4.8 As mentioned above, we prove a result with
weaker hypotheses on time-dependence than those of the theorem statement, and
with correspondingly modified conclusions. The precise hypotheses we use are:

Part (i) we suppose that (a) t 7→ F̂(t, x) is locally integrable for every x ∈ U, (b) x 7→
F̂(t, x) is continuous for every t ∈ T, and (c) for every compact set K ⊆ U, there
exists a locally integrable function g : T→ R≥0 such that

‖̂F(t, x)‖ ≤ g(t), (t, x) ∈ T × K;

Part (ii) we suppose that (a) t 7→ F̂(t, x) is locally integrable for every x ∈ U,
(b) x 7→ F̂(t, x) is locally Lipschitz for every t ∈ T, and (c) for every compact set
K ⊆ U, there exists locally integrable functions g,L : T→ R≥0 such that

‖̂F(t, x)‖ ≤ g(t), (t, x) ∈ T × K;

and
‖̂F(t, x) − F̂(t, y)‖ ≤ L(t)‖x − y‖, t ∈ T, x, y ∈ K.

The conclusions must then be slightly modified, since a solution will no longer be
of class C1. Instead a solution will have a property known as “absolute continu-
ity.” This is precisely the property that a function be the indefinite integral of an
integrable function. Such solutions will have the property that the equation

ξ̇(t) = F̂(t, ξ(t))
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does not hold for every t, but for “almost every” t, this being made precise using
Lebesgue measure, which we will not talk about.

(i) Let us first prove a lemma.

1 Lemma For a continuous map ξ : T→ U, the function t 7→ F̂(t, ξ(t)) is locally integrable.

Proof First of all, let us show that t 7→ F̂(t, ξ(t)) is measurable. It suffices to prove
this when T is compact, so we make this assumption. Since ξ is continuous, there
exists a sequence (ξ j) j∈Z>0 of piecewise constant functions converging uniformly to
ξ.missing stuff That is, for each j ∈ Z>0 there exists a partition (T j,1, . . . ,T j,k j) of T
such that ξ j(t) = x j,l for some x j,l ∈ Rm when t ∈ T j,l for l ∈ {1, . . . , k j}. Then

F̂(t ξ j(t)) =

k j∑
l=1

F̂(t, x j,l)χT j,l ,

where χA denotes the characteristic function of a subset A of a set S, and so t 7→
F̂(t, ξ j(t)) is measurable. Now, by continuity of x 7→ F̂(t, x),

lim
j→∞

F̂(t, ξ j(t)) = F̂(t, ξ(t))

and measurability of t 7→ F̂(t, ξ(t)) follows since the pointwise limit of measurable
functions is measurablemissing stuff .

Now let t, t0 ∈ T and suppose that t > t0. Then, by continuity of ξ, there exists a
compact set K ⊆ U such that ξ(s) ∈ K for every s ∈ [t0, t0 + t]. By assumption, there
exists a locally integrable function g : T → R≥0 such that ‖̂F(s, x)‖ ≤ g(s) for every
(s, x) ∈ T × K. Therefore,∫ t

t0

‖̂F(s, ξ(s))‖ds ≤
∫ t

t0

g(s) ds < ∞.

The same statement holds if t < t0, flipping the limits of integration, and this gives
the desired local integrability. H

Let r ∈ R>0 be chosen so that B(r, x0) ⊆ U. By assumption, there exists a locally
integrable g : T→ R≥0 such that ‖̂F(t, x)‖ ≤ g(t) for every (t, x) ∈ T × B(r, x0). Then,
since g is locally integrable, the function G+ : [t0,∞) ∩ T→ R defined by

G+(t) =

∫ t

t0

g(s) ds (1.38)

is continuous.
Let us suppose that t0 , supT so that there exists b ∈ R>0 such that [t0, t0+b] ⊆ T.

Thus, since g is nonnegative, there exists T+ ∈ R>0 such that [t0, t0 + T+] ⊆ T and
such that

G+(t) =

∫ t

t0

g(s) ds < r, t ∈ [t0, t0 + T+].
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For the remainder of the proof, we consider r and T+ to be chosen as above.
Let C0([t0, t0 + T+];Rm) be the Banach space of continuous Rm-valued functions

on [t0, t0 + T+] equipped with the norm

‖ξ‖∞ = sup{‖ξ(t)‖ | t ∈ [t0, t0 + T+]}

(see missing stuff ). Let ξ0 ∈ C0([t0, t0 +T+];Rm) be defined by ξ0(t) = x0. Let B+(r, ξ0)
be the closed ball of radius r and centre ξ0 in C0([t0, t0 + T+];Rm). For α ∈ (0,T+], let
us define ξα ∈ B+(r, ξ0) by

ξα(t) =

x0, t ∈ [t0, t0 + α],

x0 +
∫ t

t0
F̂(s, ξα(s − α)) ds, t ∈ (t0 + α, t0 + T+].

It is not clear that this definition makes sense, so let us verify how it does. We
fix α ∈ (0,T+]. If t ∈ [t0, t0 + α], then the meaning of ξα(t) is unambiguous. If
t ∈ (t0 + α, t0 + 2α] ∩ [t0, t0 + T+], then ξα(t) is determined from the already known
value of ξα on [t0, t0 + α]. Similarly, if t ∈ (t0 + 2α, t0 + 3α]∩ [t0, t0 + T+], then ξα(t) is
determined from the already known value of ξα on [t0, t0 + 2α]. In a finite number
of such steps, one determines ξα on [t0, t0 + T+]. We now show that ξα ∈ B+(r, ξ0).
If t ∈ [t0, t0 + α], then ‖ξα(t) − x0‖ = 0. If t ∈ (t0 + α, t0 + 2α], then

‖ξα(t) − x0‖ =

∥∥∥∥∥∥
∫ t0+α

t0

0 ds +

∫ t

t0+α

F̂(s, x0) ds

∥∥∥∥∥∥
≤

∫ t0+α

t0

0 ds +

∫ t

t0+α

‖̂F(s, x0)‖ds ≤
∫ t

t0

g(s) ds < r.

By induction, if t ∈ (t0 + (k − 1)α, t0 + kα], then

‖ξα(t) − x0‖ ≤

k−2∑
j=0

∫ t0+( j+1)α

t0+ jα
g(s) ds +

∫ t

t0+(k−1)α
g(s) ds ≤ r,

giving ξα ∈ B+(r, ξ0), as desired.
We claim that the family (ξα)α∈(0,T+] is equicontinuous, i.e., for each ε ∈ R>0 there

exists δ ∈ R>0 such that

|t1 − t2| < δ =⇒ ‖ξα(t1) − ξα(t2)‖ < ε

for all α ∈ (0,T+]. So let ε ∈ R>0 and note that the function G+ : [t0, t0 + T+] → R
defined by (1.38) is continuous, and so uniformly continuous, its domain being
compact. Therefore, there exists δ ∈ R>0 such that

|t1 − t2| < δ =⇒ |G+(t1) − G+(t2)| < ε.
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Let δ be so chosen. Then, if |t1 − t2| < δ with t1 > t2,

‖ξα(t1) − ξα(t2)‖ =

∥∥∥∥∥∥
∫ t1

t0

F̂(s, ξα(t − α)) ds −
∫ t2

t0

F̂(s, ξα(t − α)) ds

∥∥∥∥∥∥
≤

∫ t1

t2

‖̂F(s, ξα(t − α))‖ds ≤
∫ t1

t2

g(s) ds = G+(t1) − G+(t2) < ε,

as desired.
Thus we have an equicontinuous family (ξα)α∈(0,T+] contained in the bounded

set B+(r, ξ0). Consider then the sequence (ξT+/ j) j∈Z>0 contained in this family.
By the Arzelà–Ascoli Theoremmissing stuff and the Bolzano–Weierstrass Theo-
remmissing stuff there exists an increasing sequence ( jk)k∈Z>0 such that the sequence
(ξT+/ jk)k∈Z>0 converges in C0([t0, t0 + T+];Rm), i.e., converges uniformly. Let us de-
note the limit by ξ+ ∈ B+(r, ξ0). It remains to show that the ξ+ is a solution for
F satisfying ξ+(t0) = x0. For this, an application of the Dominated Convergence
Theoremmissing stuff , continuity of F̂ in the second argument, and equicontinuity
of (ξα)α∈(0,T+] gives

ξ+(t) = lim
k→∞

ξT+/ jk(t) = x0 + lim
jk→∞

∫ t

t0

F̂(s, ξT+/ jk(s − T+/ jk)) ds

= x0 +

∫
t0

F̂(s, lim
α→0

ξα(s − α)) ds = x0 +

∫ t

t0

F̂(s, ξ+(s)) ds.

Therefore, by the lemma above, ξ+ is absolutely continuous and

ξ̇+(t) = F̂(t, ξ+(t))

for almost every t ∈ [t0, t0 + T+]. Thus ξ+ is a solution for F. Obviously ξ+(t0) = x0.
Next suppose that t0 , infT. Then there exists a ∈ R>0 such that [t0 − a, t0] ⊆ T.

As above, we let r ∈ R>0 be such that B(r, x0) ⊆ U. Define G− : (−∞, t0] ∩ T→ R by

G−(t) =

∫ t0

t
g(s) ds

so that G− is continuous. Since g is nonnegative, there exists T− ∈ R>0 such that
[t0, t0 − T−] ⊆ T and such that

G−(t) =

∫ t0

t
g(s) ds < r, t ∈ [t0 − T−, t0].

Now, with r and T− thusly defined, we can proceed as above to show the existence
of a solution ξ− : [t0 − T−, t0]→ U for F such that ξ−(t0) = x0.

The proof of this part of the theorem is complete if we define T′ and ξ as follows.
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1. int(T) = ∅: The interval T′ = {t0} and the trivial solution ξ0(t) = x0 satisfies the
conclusions of the theorem.

2. t0 , supT and t0 = infT: The interval T′ = [t0, t0 + T+) and the solution ξ = ξ+

as defined above satisfy the conclusions of the theorem.
3. t0 = supT and t0 , infT: The interval T′ = [t0 − T−, t0) and the solution ξ = ξ−

as defined above satisfy the conclusions of the theorem.
4. t0 , supT and t0 , infT: The interval T′ = (t0 − T−, t0 + T+) and the solution

ξ(t) =

ξ−(t), t ∈ (t0 − T−, t0],
ξ+(t), t ∈ (t0, t0 + T+]

satisfy the conclusions of the theorem.
(ii) Note that the existence statement follows from part (i) since the hypotheses

of part (ii) imply those of part (i). However, we shall reprove this via an argument
that also ensures uniqueness.

Let r ∈ R>0 be such that B(r, x0) ⊆ U. As in the proof of part (i), there exists a
locally integrable g : T→ R≥0 such that

‖̂F(t, x)‖ ≤ g(t), (t, x) ∈ T × B(r, x0).

By hypothesis, there exists a locally integrable L : T→ R≥0 such that

‖̂F(t, x) − F̂(t, y)‖ ≤ L(t)‖x − y‖

for all t ∈ T and x, y ∈ B(r, x0). Let us choose λ ∈ (0, 1).
We first consider the case where t0 , supT so that there exists b ∈ R>0 such that

[t0, t0 + b] ⊆ T. Define G+, `+ : [t0,∞) ∩ T→ R by

G+(t) =

∫ t

t0

g(s) ds, `+(t) =

∫ t

t0

L(s) ds.

Since g and L are nonnegative, we can choose T+ ∈ R>0 such that

G+(t) =

∫ t

t0

g(s) ds ≤ r, `+(t) =

∫ t

t0

L(s) ds < λ

for t ∈ [t0, t0 + T+].
As in the proof of part (i), let ξ0 be the trivial function t 7→ x0, t ∈ [t0, t0 + T+],

and let B+(r, ξ0) be the ball of radius r and centre ξ0 in C0([t0, t0 + T+];Rm). Define
F+ : B+(r, ξ0)→ C0([t0, t0 + T+];Rm) by

F+(ξ)(t) = x0 +

∫ t

t0

F̂(s, ξ(s)) ds.
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By the lemma from the proof of part (i), s 7→ F̂(s, ξ(s)) is locally integrable, showing
that F+ is well-defined and that F+(ξ) is absolutely continuous.

We claim that F+(B+(r, ξ0)) ⊆ B+(r, ξ0). Suppose that ξ ∈ B+(r, ξ0) so that

‖ξ(t) − x0‖ ≤ r, t ∈ [t0, t0 + T+].

Then, for t ∈ [t0, t0 + T+],

‖F+(ξ)(t) − x0‖ =

∥∥∥∥∥∥
∫ t

t0

F̂(s, ξ(s)) ds

∥∥∥∥∥∥ ≤
∫ t

t0

‖̂F(s, ξ(s))‖ds ≤
∫ t

t0

g(s) ds ≤ r,

as desired.
We claim that F+|B+(r, ξ0) is a contraction mapping. That is, we claim that there

exists ρ ∈ [0, 1) such that

‖F+(ξ) − F+(η)‖∞ ≤ ρ‖ξ − η‖∞

for every ξ,η ∈ B+(r, ξ0). Indeed, let ξ,η ∈ B+(r, ξ0) and compute, for t ∈ [t0, t0 + T+],

‖F+(ξ)(t) − F+(η)(t)‖ =

∥∥∥∥∥∥
∫ t

t0

F̂(s, ξ(s)) ds −
∫ t

t0

F̂(s,η(s))

∥∥∥∥∥∥
≤

∫ t

t0

‖̂F(s, ξ(s)) − F̂(s,η(s))‖ds

≤

∫ t

t0

L(s)‖ξ(s) − η(s)‖ds ≤ `+(t)‖ξ − η‖∞ ≤ λ‖ξ − η‖∞, (1.39)

since ξ(s),η(s) ∈ B(r, x0) for every s ∈ [t0, t0 + T+]. This proves that F+|B+(r, ξ0) is a
contraction mapping.

By the Contraction Mapping Theoremmissing stuff there exists a unique fixed
point for F+ which we denote by ξ+. Thus

ξ+(t) = F+(ξ+)(t) = x0 +

∫ t

t0

F̂(s, ξ+(s)) ds.

Differentiating the first and last expressions with respect to t shows that ξ+ is a
solution for F.

Now we consider the case when t0 , infT so there exists a ∈ R>0 such that
[t0 − a, t0] ⊆ T. We proceed as above, cf. the corresponding part of the proof of
part (i), to provide T− ∈ R>0 such that

G−(t) ,
∫ t0

t
g(s) ds < r, `−(t) ,

∫ t0

t
L(s) ds < λ
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for t ∈ [t0 − T−, t0]. We then define B−(r, ξ0) as the ball of radius r and centre ξ0 in
C0([t0 − T−, t0];Rm) and define F− : B−(r, x0)→ C0([t0 − T−, t0];Rm) by

F−(ξ)(t) = x0 +

∫ t

t0

F̂(s, ξ(s)) ds.

We show, as above, that F−(B−(r, ξ0)) ⊆ B−(r, ξ0) and that F−|B−(r, ξ0) is a contraction
mapping, so possessing a unique fixed point ξ−. This fixed point is a solution for
F, as above.

We can then define an interval T′ and a solution ξ for F as at the end of the
proof of part (i). We now prove uniqueness of this solution on T′. Suppose that
η : T′ → U is another solution satisfying η(t0) = x0. Then

η̇(t) = F̂(t,η(t)), t ∈ T′.

Therefore, by the Fundamental Theorem of Calculus,

η(t) = η(t0) +

∫ t

t0

η̇(s) ds = x0 +

∫ t

t0

F̂(s,η(s))

for t ≥ t0 and

η(t) = η(t0) +

∫ t

t0

η̇(s) ds = x0 +

∫ t

t0

F̂(s,η(s))

for t ≤ t0. It then follows that η|[t0,∞)∩T′ is a fixed point for F+ and η|(−∞, t0]∩T′
is a fixed point for F−. Therefore, η agrees with ξ on T′ by the uniqueness part of
the Contraction Mapping Theorem.

Now suppose that T′′ ⊆ R is some other interval containing t0 and that η : T′′ →
U is a solution for F satisfying η(t0) = x0. Suppose that ξ(t) , η(t) for some
t ∈ T′′ ∩ T′. Suppose that t < t0. Let

t1 = inf{t ∈ [t0,∞) ∩ T′′ ∩ T′ | ξ(t) , η(t)}.

Then ξ(t) = η(t) for t ∈ [t0, t1). Continuity of solutions implies that ξ(t1) = η(t1).
Denote x1 = ξ(t1). Note that both ξ and η are solutions for F satisfying ξ(t1) =
η(t1) = x1. By our above arguments for existence and uniqueness, there exists
T+ ∈ R>0 and a unique solution ζ on [t1, t1 + T+] satisfying ζ(t1) = x1. Thus ξ and
η must agree with ζ on [t1, t1 + T+] contradicting the definition of t1. A similar
argument leads to a similar contradiction when we assume that ξ and η disagree
at some t ∈ T′′ ∩ T′ with t < t0. �

The matter of checking the conditions of Theorem 1.4.8 is normally quite
straightforward, particularly since if we know that a function is differentiable,
then it is locally Lipschitz. Indeed, let us encode in the following result a situation
where the hypotheses of Theorem 1.4.8 are easily verified.
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1.4.9 Corollary (An existence and uniqueness result that is easy to apply) Let U ⊆
Rm be open, let T ⊆ R be an interval, and let F be a first-order ordinary differential equation
with right-hand side

F̂ : T ×U→ Rm.

If F̂ is of class C1 on T × U, then, for each (t0, x0) ∈ T × U, there exists a subinterval
T′ ⊆ T, relatively open in T and with t0 ∈ intT(T′), and a solution ξ : T′ → U for F such
that ξ(t0) = x0. Moreover, if T′′ is another such interval and η : T′′ → U is another such
solution, then η(t) = ξ(t) for all t ∈ T′′ ∩ T′.

We ask the reader to check that the hypotheses of Theorem 1.4.8 are satisfied for
the examples of Section 1.1 as Exercise 1.4.3. In Exercise 1.4.4 we ask the reader to
show which hypotheses of Theorem 1.4.8 are violated for the examples we gave
at the beginning of this section.

1.4.1.3 Flows for ordinary differential equations With the above notions of
existence and uniqueness of solutions for initial value problems, in this section we
give some notation that ties together all solutions to all initial value problems. In
doing this, we naturally run up against the question of how solutions to initial
value problems depend on initial conditions. We shall at various points in the
text run into situations where this sort of dependence is important, so the results
in this section, while a bit technical, are certainly an essential part of any deep
understanding of ordinary differential equations.

First we introduce the notation.

1.4.10 Definition (Interval of existence, domain of solutions) Let F be an ordinary
differential equation with right-hand side

F̂ : T ×U→ Rn,

and assume that F satisfies the conditions of Theorem 1.4.8(ii) for existence and
uniqueness of solutions for initial value problems.

(i) For (t0, x0) ∈ T ×U, denote

JF(t0, x0) = ∪{J ⊆ T | J is an interval and there is a solution
ξ : J→ U for F satisfying ξ(t0) = x0}.

The interval JF(t0, x0) is the interval of existence for the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0.

(ii) The domain of solutions for F is

DF = {(t, t0, x0) ∈ T × T ×U | t ∈ JF(t0, x0)}. •

We shall carefully enumerate various properties of intervals of existence and
domains of solutions, but to do this let us first introduce a very useful bit of
notation.
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1.4.11 Definition (Flow of an ordinary differential equation) Let F be an ordinary dif-
ferential equation with right-hand side

F̂ : T ×U→ Rn,

and assume that F satisfies the conditions of Theorem 1.4.8(ii) for existence and
uniqueness of solutions for initial value problems. The flow of F is the map
ΦF : DF → U defined by asking that ΦF(t, t0, x0) is the solution, evaluated at t, of the
initial value problem

dξ
dτ

(τ) = F̂(τ, ξ(τ)), ξ(t0) = x0. •

The definition, phrased differently, says that

d
dt

ΦF(t, t0, x0) = F̂(t, t0, x0), ΦF(t0, t0, x0) = x0.

For t, t0 ∈ T, it is sometimes convenient to denote

DF(t, t0) = {x ∈ U | (t, t0, x) ∈ DF},

and then
ΦF

t,t0
: DF(t, t0)→ U

x 7→ ΦF(t, t0, x).

Along similar lines, for t0 ∈ T, we denote

DF(t0) = {(t, x) ∈ T ×U | (t, t0, x) ∈ DF},

and then
ΦF(t0) : DF(t0)→ U

(t, x) 7→ ΦF(t, t0, x).

Let us enumerate some of the more elementary properties of the flow.

1.4.12 Proposition (Elementary properties of flow) Let F be an ordinary differential equa-
tion with right-hand side

F̂ : T ×U→ Rn,

and assume that F satisfies the conditions of Theorem 1.4.8(ii) for existence and uniqueness
of solutions for initial value problems. Then the following statements hold:

(i) for each (t0, x0) ∈ T ×U, (t0, t0, x0) ∈ DF and ΦF(t0, t0, x0) = x0;
(ii) if (t2, t1, x) ∈ DF, then (t3, t2,ΦF(t2, t1, x)) ∈ DF if and only if (t3, t1, x) ∈ DF and, if

this holds, then
ΦF(t3, t1, x) = ΦF(t3, t2,Φ

F(t2, t1, x)).

(iii) if (t2, t1, x) ∈ DF, then (t1, t2,ΦF(t2, t1, x)) ∈ DF and ΦF(t1, t2,ΦF(t2, t1, x)) = x.
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Proof (i) This is part of the definition of the flow.
(ii) Suppose that t2 ≥ t1 and t3 ≥ t2.
First suppose that (t2, t1, x) ∈ DF and (t3, t2,ΦF(t2, t1, x)) ∈ DF. We then have

solutions ξ1 : [t1, t2]→ U and ξ2 : [t2, t3]→ U to the initial value problems

ξ̇1(t) = F̂(t, ξ1(t)), ξ1(t1) = x,

and
ξ̇2(t) = F̂(t, ξ2(t)), ξ2(t2) = ΦF(t2, t1, x),

respectively. Then define ξ : [t1, t3]→ U by

ξ(t) =

ξ1(t), t ∈ [t1, t2],
ξ2(t), t ∈ [t2, t3].

It is clear, then, that
ξ̇(t) = F̂(t, ξ(t)), ξ(t1) = x.

It is then also clear that

ξ(t3) = ΦF(t3, t2,Φ
F(t2, t1, x))

and that ξ(t3) = ΦF(t3, t1, x). This gives (t3, t1, x) ∈ DF.
Now suppose that (t2, t1, x) ∈ DF and (t3, t1, x) ∈ DF. Let ξ1 : [t1, t2] → U and

ξ3 : [t1, t3]→ U be the solutions to the initial value problems

ξ̇1(t) = F̂(t, ξ1(t)), ξ1(t1) = x,

and
ξ̇3(t) = F̂(t, ξ3(t)), ξ3(t1) = x,

respectively. Then, by uniqueness of solutions, the curve ξ2 : [t2, t3]→ U give by

ξ2(t) = ξ1(t) = ξ3(t)

satisfies the initial value problem

ξ̇2(t) = F̂(t, ξ2(t)), ξ2(t2) = ξ1(t2) = ΦF(t2, t1, x),

and so (t3, t2,ΦF(t2, t1, x)) ∈ DF.
The assertion that

ΦF(t3, t1, x) = ΦF(t3, t2,Φ
F(t2, t1, x))

follows from uniqueness of solutions.
In the cases that (1) t1 ≥ t2 and t3 ≤ t2, (2) t2 ≤ t1 and t3 ≥ t2, and (3) t3 ≤ t2 and

t2 ≤ t1, similarly styled arguments can be made, appropriately fussing with going
in “different directions” in cases (1) and (2).

(iii) This is a special case of (ii), using (i). �
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Useful mnemonics associated with parts (i)–(iii) are:

ΦF
t0,t0

= idU, (ΦF
t2,t1

)−1 = ΦF
t1,t2
, ΦF

t3,t2
◦ΦF

t2,t1
= ΦF

t3,t1
.

However, these really are just mnemonics, since they do not account carefully for
the domains of the mappings being used.

1.4.13 Theorem (Properties of flow) Let F be an ordinary differential equation with right-hand
side

F̂ : T ×U→ Rn,

and assume that F satisfies the conditions of Theorem 1.4.8(ii) for existence and uniqueness
of solutions for initial value problems. Then the following statements hold:

(i) for (t0, x0) ∈ T ×U, JF(t0, x0) is an interval that is a relatively open subset of T;
(ii) for (t0, x0) ∈ T ×U, the curve

γ(t0,x0) : JF(t0, x0)→ U

t 7→ ΦF(t, t0, x0)

is well-defined and continuously differentiable;
(iii) for t, t0 ∈ T, DF(t, t0) , ∅, DF(t, t0) is open in U;
(iv) for t, t0 ∈ T for which DF(t, t0) , ∅, DF(t, t0) is open and ΦF

t,t0
is a locally bi-Lipschitz

homeomorphism onto its image.
(v) for t0 ∈ T, DF(t0) is relatively open in T ×U;
(vi) for t0 ∈ T, the map

ΦF(t0) : DF(t0)→ U

(t, x) 7→ ΦF(t, t0, x)

is well-defined and continuous;
(vii) DF is relatively open in T × T ×U;
(viii) the map

ΦF : DF → U

is continuous;
(ix) for (t0, x0) ∈ T ×U and for ε ∈ R>0, there exists r, α ∈ R>0 such that

sup JF(t, x) > sup JF(t0, x0) − ε, inf JF(t, x) < inf JF(t0, x0) + ε

for all (t, x) ∈ (t0 − α, t0 + α) ∩ TB(r, x0).

Proof As with our proof of Theorem 1.4.8(ii), we prove a result with weaker
hypotheses on time-dependence than those of the theorem statement. The precise
hypotheses we use are: (a) t 7→ F̂(t, x) is locally integrable for every x ∈ U, (b) x 7→
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F̂(t, x) is locally Lipschitz for every t ∈ T, and (c) for every compact set K ⊆ U, there
exists locally integrable functions g,L : T→ R≥0 such that

‖̂F(t, x)‖ ≤ g(t), (t, x) ∈ T × K;

and
‖̂F(t, x) − F̂(t, y)‖ ≤ L(t)‖x − y‖, t ∈ T, x, y ∈ K.

Note that the conclusion of part (ii) must then be modified to assert that γ(t0,x0) is
locally absolutely continuous.

(i) Since JF(t0, x0) is a union of intervals, each of which contains t0, it follows
that it is itself an interval. To show that it is an open subset of T, we show that, if
t ∈ JF(t0, x0), there exists ε ∈ R>0 such that

(−ε, ε) ∩ T ⊆ JF(t0, x0).

First let us consider the case when t is not an endpoint of T, in the event that T
contains one or both of its endpoints. In this case, by definition of JF(t0, x0), there
is an open interval J ⊆ T containing t0 and t, and a solution ξ : J → U of the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0.

In particular, there exists ε ∈ R>0 such that (−ε, ε) ⊆ J ⊆ JF(t0, x0), which gives the
desired conclusion in this case.

Next suppose that t is the right endpoint of T, which we assume is contained
in T, of course. In this case, by definition of JF(t0, x0), there is an interval J ⊆ T
containing t0 and t, and a solution ξ : J→ U of the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0.

In this case, there exists ε ∈ R>0 such that

(−ε, ε) ∩ T = (−ε, t] ⊆ JF(t0, x0),

which gives the desired conclusion in this case.
A similar argument gives the desired conclusion when t is the left endpoint of

T.
(ii) That γ(t0,x0) is defined in JF(t0, x0) was proved as part of the preceding part of

the proof. The assertion that γ(t0,x0) is locally absolutely continuous follows from
Theorem 1.4.8(ii).

We shall prove the assertions (iii)–(vi) of the theorem together, first by proving
that these conditions hold locally, and then giving an extension argument to give
the global version of the statement.

Let us first prove a few technical lemmata that will be useful to us.
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1 Lemma Let T be an interval, and let α, β, ξ : T→ R, and t0 ∈ T be such that
(i) α is continuous,
(ii) β is nonnegative-valued and locally integrable,
(iii) ξ is nonnegative-valued and continuous, and

(iv) ξ(t) ≤ α(t) +

∫ t

t0

β(s)ξ(s) ds for all t ∈ T ∩ [t0,∞).

Then

ξ(t) ≤ α(t) +

∫ t

t0

α(s)β(s)e
∫ t

s β(τ) dτ ds, t ∈ T ∩ [t0,∞).

Moreover, if α is additionally nondecreasing, then we have

ξ(t) ≤ α(t)e
∫ t

t0
β(s) ds

, t ∈ T ∩ [t0,∞).

Proof Define

η(s) = e−
∫ s

t0
β(τ) dτ

∫ s

t0

β(τ)ξ(τ) dτ

and calculate, for almost every s ∈ [t0, t],

dη
ds

(s) = − β(s)e−
∫ s

t0
β(τ) dτ

∫ s

t0

β(τ)ξ(τ) dτ + β(s)ξ(s)e−
∫ s

t0
β(τ) dτ

= β(s)e−
∫ s

t0
β(τ) dτ

(
ξ(s) −

∫ s

t0

β(τ)ξ(τ) dτ
)

≤ α(s)β(s)e−
∫ s

t0
β(τ) dτ

,

using the hypotheses of the lemma. Therefore,

η(t) ≤
∫ t

t0

α(s)β(s)e−
∫ s

t0
β(τ) dτds.

Using the definition of η we then have∫ t

t0

β(s)ξ(s) ds ≤
∫ t

t0

α(s)β(s)e
∫ t

t0
β(s) dse−

∫ s
t0
β(τ) dτ ds

=

∫ t

t0

α(s)β(s)e
∫ t

s β(τ) dτds,

which immediately gives the first conclusion of the lemma.
For the second, we first note that, for almost every s ∈ [t0, t],

d
ds

e
∫ t

s β(τ) dτ = −β(s)e
∫ t

s β(τ) dτ.
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Then ∫ t

t0

β(s)e
∫ t

s β(τ) dτds = −e
∫ t

s β(τ) dτ
∣∣∣s=t

s=t0
= e

∫ t
t0
β(τ) dτ

− 1.

Then we use the first part of the lemma and the additional assumption on α:

ξ(t) ≤ α(t) +

∫ t

t0

α(s)β(s)e
∫ t

s β(τ) dτds

≤ α(t) + α(t)
(∫ t

t0

eβ(s)ds
− 1

)
,

and the lemma follows. H

Now we give the initial part of the local version of the theorem.

2 Lemma Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn,

and assume that F satisfies the conditions of Theorem 1.4.8(ii) for existence and uniqueness
of solutions for initial value problems. Then, for each (t0, x0) ∈ T×U, there exists r, α ∈ R>0

such that (t, t0, x) ∈ DF for each x ∈ B(r, x0) and t ∈ (t0 − α, t0 + α) ∩ T. Moreover,
(i) the map

B(r, x0) 3 x 7→ ΦF
t,t0

(x) ∈ Rm

is Lipschitz for every t ∈ (t0 − α, t0 + α) ∩ T;
(ii) the map

(t0 − α, t0 + α) ∩ T × B(r, x0) 3 (t, x) 7→ ΦF(t, t0, x)

is continuous.

Proof First let r′ ∈ R>0 be such that B(r′, x0) ⊆ U and let r = r′
2 . As in the proof of

Theorem 1.4.8(ii), there exist locally integrable g,L : T→ R≥0 such that

‖̂F(t, x)‖ ≤ g(t), (t, x) ∈ T × B(r′, x0).

and
‖̂F(t, x1) − F̂(t, x2)‖ ≤ L(t)‖x1 − x2‖

for all t ∈ T and x1, x2 ∈ B(r′, x0). Let us choose λ ∈ (0, 1). As in the proof of
Theorem 1.4.8(ii), there exists α ∈ R>0 such that∣∣∣∣∣∣

∫ t

t0

g(s) ds

∣∣∣∣∣∣ ≤ r,

∣∣∣∣∣∣
∫ t

t0

L(s) ds

∣∣∣∣∣∣ < λ, t ∈ [t0 − α, t0 + α].

If x ∈ B(r, x0), then B(r, x) ⊆ B(r′, x0). Therefore,

‖̂F(t, y)‖ ≤ g(t), (t, y) ∈ T × B(r, x).
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and
‖̂F(t, y1) − F̂(t, y2)‖ ≤ L(t)‖y1 − y2‖

for all t ∈ T and y1, y2 ∈ B(r, x). If ξ1 ∈ C0([t0 − α, t0 + α];Rm) is the constant
function ξ0(t) = x0, then the arguments from the proof of Theorem 1.4.8(ii) allow
us to conclude that there is a solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

in B(r, ξ0) ⊆ C0([t0 − α, t0 + α];Rm). This is the existence assertion of the lemma.
(i) Let x1, x2 ∈ B(r, x0) and let t ∈ [t0 − α, t0 + α]. Then

ΦF(t, t0, x1) = x1 +

∫ t

t0

F̂(s,ΦF(s, t0, x1)) ds, ΦF(t, t0, x2) = x2 +

∫ t

t0

F̂(s,ΦF(s, t0, x2)) ds,

for all t ∈ [t0 − α, t0 + α]. Therefore,

‖ΦF(t, t0, x1) −ΦF(t, t0, x2)‖ ≤ ‖x1 − x2‖ +

∫ t

t0

‖̂F(s,ΦF(s, t0, x1)) − F̂(s,ΦF(s, t0, x2))‖ds

≤ ‖x1 − x2‖ +

∫ t

t0

L(s)‖ΦF(s, t0, x1) −ΦF(s, t0, x2)‖ds

≤ ‖x1 − x2‖e
∫ t

t0
L(s) ds

≤ ‖x1 − x2‖eλ.

This shows that ΦF
t,t0
|B(r, x0) is Lipschitz, as claimed, when t ≥ t0. A similar compu-

tation gives the analogous conclusion when t ≤ t0.
(ii) Let t1, t2 ∈ (t0 − α, t0 + α) ∩ T be such that t1 ≤ t2. Just as above, we have

‖ΦF(t1, t0, x1) −ΦF(t2, t0, x)‖ ≤ ‖x1 − x2‖

+

∫ t1

t0

‖̂F(s,ΦF(s, t0, x1)) − F̂(s,ΦF(s, t0, x2))‖ds +

∫ t2

t1

‖̂F(s, t0,Φ
F(s, t0, x2))‖ds.

Let ε ∈ R>0. By Lemma 1 from the proof of Theorem 1.4.8, there exists δ1 ∈ R>0

sufficiently small that, if |t2 − t1| < δ1, then∫ t2

t1

‖̂F(s, t0,Φ
F(s, t0, x2))‖ds <

ε
2
.

Since ΦF
t1,t0

is continuous, let δ2 ∈ R>0 be sufficiently small that, if ‖x1 − x2‖ < δ1,
then

‖x1 − x2‖ +

∫ t1

t0

‖̂F(s,ΦF(s, t0, x1)) − F̂(s,ΦF(s, t0, x2))‖ds <
ε
2
.

Then, if |t1 − t2| < δ1 and ‖x1 − x2‖ < δ2,

‖ΦF(t1, t0, x1) −ΦF(t2, t0, x2)‖ < ε,

giving the desired conclusion. H

The next lemma is a refinement of the preceding one, giving the local version
of the theorem statement.



102 1 What are differential equations?

3 Lemma Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn,

and assume that F satisfies the conditions of Theorem 1.4.8(ii) for existence and uniqueness
of solutions for initial value problems. Then, for each (t0, x0) ∈ T×U, there exists r, α ∈ R>0

such that
(i) (t, t0, x) ∈ DF for each x ∈ B(r, x0) and t ∈ (t0 − α, t0 + α) ∩ T,
(ii) the map

(t0 − α, t0 + α) × B(r, x0) 3 (t, x) 7→ ΦF(t, t0, x)

is continuous, and
(iii) the map

B(r, x0) 3 x 7→ ΦF
t,t0

(x) ∈ Rm

is a bi-Lipschitz homeomorphism onto its image for every t ∈ (t0 − α, t0 + α) ∩ T.

Proof Let r′, α′ be as in Lemma 2 and let r ∈ (0, r′] and α ∈ (0, α′] be such that

ΦF
t,t0

(x) ∈ B(r′, x0), x ∈ B(r, x0), t ∈ [t0 − α, t0 + α],

this being possible by Lemma 2(ii). Let t ∈ (t0 − α, t0 + α) ∩ T and denote

V = ΦF
t,t0

(B(r, x0)) ⊆ B(r′, x0).

Let x ∈ B(r, x0). Since y , ΦF
t,t0

(x) ∈ B(r′, x0) and t ∈ [t0 − α′, t0 + α′] ∩ T, there
exists ρ ∈ R>0 such that, if y′ ∈ B(ρ, y), then (t0, t, y′) ∈ DF. Moreover, since ΦF

t0,t is
continuous (indeed, Lipschitz, with Lipschitz constant eλ, with λ as in the proof of
Lemma 2) and ΦF

t0,t(y) = x, we may choose ρ sufficiently small that ΦF
t0,t(y′) ∈ B(r, x0)

if y′ ∈ B(ρ, y). By Lemma 2, ΦF
t0,t|B(ρ, y) is Lipschitz with Lipschitz constant eλ.

Thus there is a neighbourhood of x on which the restriction of ΦF
t t0 is invertible,

Lipschitz, and with a Lipschitz inverse. H

We now need to show that the theorem holds globally. To this end, let (t0, x0) ∈
T × U and denote by J+(t0, x0) ⊆ T the set of b > t0 such that, for each b′ ∈ [t0, b),
there exists a relatively open interval J ⊆ T and a r ∈ R>0 such that
1. b′ ∈ J,
2. J × {t0} × B(r, x0) ⊆ DF,
3. J × B(r, x0) 3 (t, x) 7→ ΦF(t, t0, x) ∈ U is continuous, and
4. for each t ∈ J, B(r, x0) 3 x 7→ ΦF(t, t0, x) is a locally bi-Lipschitz homeomorphism

onto its image.
By Lemma 3, J+(t0, x0) , ∅. We then consider two cases.

The first case is J+(t0, x0) ∩ [t0,∞) = T ∩ [t0,∞). In this case, for each t ∈ T with
t ≥ t0, there exists a relatively open interval J ⊆ T and r ∈ R>0 such that
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1. t ∈ J,
2. J × {t0} × B(r, x0) ⊆ DF,
3. J × B(r, x0) 3 (τ, x) 7→ ΦF(τ, t0, x) ∈ U is continuous, and
4. for each τ ∈ J, B(r, x0) 3 x 7→ ΦF(τ, t0, x) is a locally bi-Lipschitz homeomorphism

onto its image.
The second case is J+(t0, x0) ∩ [t0,∞) ⊂ T ∩ [t0,∞). In this case we let t1 =

sup J+(t0, x0) and note that t1 , supT. We claim that t1 ∈ JF(t0, x0). Were this not the
case, then we must have b , sup JF(t0, x0) < t1. Since b ∈ J+(t0, x0), there must be a
relatively open interval J ⊆ T containing b such that t ∈ JF(t0, x0) for all t ∈ J. But,
since there are t’s in J larger than b, this contradicts the definition of JF(t0, x0), and
so we conclude that t1 ∈ JF(t0, x0). Let us denote x1 = ΦF(t1, t0, x0). By Lemma 3,
there exists α1, r1 ∈ R>0 such that (t, t1, x) ∈ DF for every t ∈ (t1 − α1, t1 + α1) and
x ∈ B(r1, x1), and such that the map

(t1 − α1, t1 + α1) × B(r1, x1) 3 (t, x) 7→ ΦF(t, t1, x)

is continuous, and the map

B(r1, x1) 3 x 7→ ΦF(t, t1, x)

is a locally bi-Lipschitz homeomorphism onto its image for every t ∈ (t1−α1, t1+α1).
Since t 7→ ΦF(t, t0, x0) is continuous and ΦF(t1, t0, x0) = x1, let δ ∈ R>0 be such that
δ < α1

2 and ΦF(t, t0, x0) ∈ B(r1/4, x1) for t ∈ (t1 − δ, t1). Now let τ1 ∈ (t1 − δ, t1) and, by
our hypotheses on t1, there exists an open interval J and r′1 ∈ R>0 such that
1. τ1 ∈ J,
2. J × {t0} × B(r′1, x0) ⊆ DF,
3. J × B(r′1, x0) 3 (τ, x) 7→ ΦF(τ, t0, x) ∈ U is continuous, and
4. for each τ ∈ J, B(r′1, x0) 3 x 7→ ΦF(τ, t0, x) is a locally bi-Lipschitz homeomor-

phism onto its image.
We also choose J and r′1 sufficiently small that

{ΦF(t, t0, x) | t ∈ J, x ∈ B(r′1, x0)} ⊆ B(r1/2, x1).

Now we claim that

(τ1 − α1, τ1 + α1) × {t0} × B(r′1, x0) ⊆ DF.

We first show that
[τ1, τ1 + α1) × {t0} × B(r′1, x0) ⊆ DF. (1.40)

Indeed, we have (τ1, t0, x) ∈ DF for every x ∈ B(r′1, x0) since τ1 ∈ J. By definition of
J, ΦF(τ1, t0, x) ∈ B(r1/2, x1). By definition of τ1, t1 − τ1 < δ <

α1
2 . Then, by definition

of α1 and r1,
(t1, τ1,Φ

F(τ1, t0, x)) ∈ DF
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for every x ∈ B(r′1, x0). From this we conclude that (t1, t0, x) ∈ DF for every x ∈
B(r′1, x0). Now, since

t ∈ [τ1, τ1 + α1) =⇒ t ∈ (t1 − α1, t1 + α1),

we have (t, t1,ΦF(t, t1, x)) ∈ DF for every t ∈ (τ1 − α1, τ1 + α1) and x ∈ B(r′1, x0). Since

ΦF(t, t1,Φ
F(t1, t0, x)) = ΦF(t, t0, x),

we conclude (1.40). A similar but less complicated argument gives

(τ1 − α1, τ1) × {t0} × B(r′1, x0) ⊆ DF.

Now we claim that the map

(τ1 − α1, τ1 + α1) × B(r′1, x0) 3 (t, x) 7→ ΦF(t, t0, x)

is continuous. This map is continuous at

(t, x) ∈ (τ1 − α1, τ1] × B(r′1, x0)

by definition of τ1. For t ∈ (τ1, τ1 + α1) we have

ΦF(t, t0, x) = ΦF(t, τ1,Φ
F(τ1, t0, x)),

and continuity in this case follows since compositions of continuous maps are
continuous.

Next we claim that the map

B(r′1, x0) 3 x 7→ ΦF(t, t0, x)

is a locally bi-Lipschitz homeomorphism onto its image for every t ∈ (τ1−α1, τ1+α1).
By definition of τ1, the map

ΦF
t,t0

: B(r′1, x0)→ B(r1/2, x1)

is a locally bi-Lipschitz homeomorphism onto its image for t ∈ (τ1−α1, τ1]. We also
have that

ΦF
t,τ1

: B(r1, x1)→ U

is a locally bi-Lipschitz homeomorphism onto its image for t ∈ (τ1, τ1+α1). Since the
composition of locally bi-Lipschitz homeomorphisms onto their image is a locally
bi-Lipschitz homeomorphisms onto its image, our assertion follows.

By our above arguments, we have an open interval J′ and r′1 ∈ R>0 such that
1. t1 ∈ J′,
2. J′ × {t0} × B(r′1, x0) ⊆ DF,
3. J′ × B(r′1, x0) 3 (t, x) 7→ ΦF(t, t0, x) ∈ U is continuous, and
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4. for each t ∈ J′, B(r′1, x0) 3 x 7→ ΦF(t, t0, x) is a locally bi-Lipschitz homeomor-
phism onto its image.

This contradicts the fact that t1 = sup J+(t0, x0) and so the condition

J+(t0, x0) ∩ [t0,∞) ⊂ T ∩ [t0,∞)

cannot obtain.
One similarly shows that it must be the case that J−(t0, x0)∩(−∞, t0] = T∩(−∞, t0]¡

where J−(t0, x0) has the obvious definition.
Finally, we note that ΦF

t,t0
injective by uniqueness of solutions for F. Now, as-

sertions (i)–(vi) of the theorem now follow since the notions of “continuous” and
“locally bi-Lipschitz homeomorphism” can be tested locally, i.e., in a neighbour-
hood of any point.

We shall prove assertions (vii) and (viii) together. We let (t1, t0, x0) ∈ DF. As
above, there exists r1, α1 ∈ R>0 such that

(t1 − α1, t1 + α1) ∩ T × {t0} × B(r1, x0) ⊆ DF,

and the map (t, x) 7→ ΦF(t, t0, x0) is continuous on this domain. We claim that the
map

(t, x) 7→ ΦF(t0, t, x) (1.41)

is continuous for (t, x) nearby (t0, x0). To see this, we proceed rather as in the proof
of Theorem 1.4.8, using the Contraction Mapping Theorem.

Let r ∈ R>0 be such that there exists a locally integrable g : T→ R≥0 such that

‖̂F(t, x)‖ ≤ g(t), (t, x) ∈ T × B(r, x0),

and also there exists a locally integrable L : T→ R≥0 such that

‖̂F(t, x) − F̂(t, y)‖ ≤ L(t)‖x − y‖

for all t ∈ T and x, y ∈ B(r, x0). Let us choose λ ∈ (0, 1). Let us suppose that t ≤ t0.
Define G−, `− : (−∞, t0] ∩ T→ R by

G−(t) =

∫ t0

t
g(s) ds, `+(t) =

∫ t0

t
L(s) ds.

Since g and L are nonnegative, we can choose T− ∈ R>0 such that

G−(t) =

∫ t0

t
g(s) ds ≤

r
2
, `−(t) =

∫ t0

t
L(s) ds < λ

for t ∈ [t0−T−, t0]. For x ∈ B(r/2, x0), let ξ0 be the trivial function t 7→ x, t ∈ [t0−T−, t0],
and let B−(r, ξ0) be the ball of radius r and centre ξ0 in C0([t0 − T−, t0];Rm). Define
F− : B−(r, ξ0)→ C0([t0 − T−, t0];Rm) by

F−(ξ)(t) = x +

∫ t0

t
F̂(s, ξ(s)) ds.
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By the lemma from the proof of Theorem 1.4.8, s 7→ F̂(s, ξ(s)) is locally integrable,
showing that F− is well-defined and that F−(ξ) is absolutely continuous.

We claim that F−(B−(r, ξ0)) ⊆ B−(r, ξ0). Suppose that ξ ∈ B−(r, ξ0) so that

‖ξ(t) − x0‖ ≤ r, t ∈ [t0 − T−, t0].

Then, for t ∈ [t0 − T−, t0],

‖F−(ξ)(t) − x0‖ ≤ ‖x − x0‖ +

∥∥∥∥∥∥
∫ t0

t
F̂(s, ξ(s)) ds

∥∥∥∥∥∥
≤

r
2

+

∫ t0

t
‖̂F(s, ξ(s))‖ds ≤

r
2

+

∫ t0

t
g(s) ds ≤ r,

as desired.
We claim that F−|B−(r, ξ0) is a contraction mapping. That is, we claim that there

exists ρ ∈ [0, 1) such that

‖F−(ξ) − F−(η)‖∞ ≤ ρ‖ξ − η‖∞

for every ξ,η ∈ B−(r, ξ0). Indeed, let ξ,η ∈ B−(r, ξ0) and compute, for t ∈ [t0−T−, t0],

‖F−(ξ)(t) − F−(η)(t)‖ =

∥∥∥∥∥∥
∫ t0

t
F̂(s, ξ(s)) ds −

∫ t0

t
F̂(s,η(s))

∥∥∥∥∥∥
≤

∫ t0

t
‖̂F(s, ξ(s)) − F̂(s,η(s))‖ds

≤

∫ t0

t
L(s)‖ξ(s) − η(s)‖ds ≤ `−(t)‖ξ − η‖∞ ≤ λ‖ξ − η‖∞, (1.42)

since ξ(s),η(s) ∈ B(r, x0) for every s ∈ [t0, t0 + T+]. This proves that F−|B−(r, ξ0) is a
contraction mapping.

By the Contraction Mapping Theoremmissing stuff there exists a unique fixed
point for F− which we denote by ξ−. Thus

ξ−(t) = F−(ξ+)(t) = x +

∫ t0

t
F̂(s, ξ−(s)) ds.

Differentiating the first and last expressions with respect to t shows that ξ+ is a
solution for F, and we moreover have ξ(t0) = x. This show that, if x ∈ B(r/2, x0)
and t ∈ [t0 − T−, t0], then we have ΦF(t0, t, x) ∈ B(r, x0) and

ΦF(t0, t, x) = x +

∫ t0

t
F̂(s,ΦF(t0, s, x) ds.
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A similar argument, of course, can be fabricated for t ≥ t0, and we conclude that
there exists α0 ∈ R>0 and r0 ∈ R>0 such that

ΦF(t0, t, x) ∈ B(r1, x0), (t, x) ∈ (t0 − α0, t0 + α0) ∩ T × B(r0, x0).

Finally, we show that the map (1.41) is continuous on (t0−α0, t0+α0)∩T×B(r0, x0).
Note that, as in the proof of Lemma 2 above and assuming that τ2 ≥ τ1,

‖ΦF(t0, τ1, x1) −ΦF(t0, τ2, x2)‖ ≤ ‖x1 − x2‖

+

∫ t0

τ2

‖̂F(s,ΦF(t0, s, x1)) − F̂(s,ΦF(t0, s, x2))‖ds +

∫ τ2

τ1

‖̂F(s,ΦF(t0, s, x1))‖ds.

Let ε ∈ R>0. By Lemma 1 from the proof of Theorem 1.4.8, there exists δ1 ∈ R>0

sufficiently small that, if |τ2 − τ1| < δ1, then∫ τ2

τ1

‖̂F(s,ΦF(t0, s, x2))‖ds <
ε
2
.

Since ΦF
t0,τ2

is continuous, let δ2 ∈ R>0 be sufficiently small that, if ‖x1 − x2‖ < δ2,
then

‖x1 − x2‖ +

∫ t0

τ2

‖̂F(s,ΦF(t0, s, x1)) − F̂(s,ΦF(t0, s, x2))‖ds <
ε
2
.

Then, if |t1 − t2| < δ1 and ‖x1 − x2‖ < δ2,

‖ΦF(t0, τ1, x1) −ΦF(t0, τ2, x2)‖ < ε,

given the desired continuity.
Finally, if (t′, t′0, x) ∈ (t − α, t + α) ∩ T × (t0 − α0, t0 + α0) ∩ T × B(r0, x0), then

ΦF(t′, t0,Φ
F(t0, t′0, x)) = ΦF(t′, t′0, x),

which shows both that DF is open and that ΦF is continuous, since the composition
of continuous mappings is continuous.

(ix) Let T+ = sup JF(t0, x0). Then (T+ − ε, t0, x0) ∈ DF. Since DF is open, there
exists r ∈ R>0 such that

{T+ −
ε
2 } × (t0 − α, t0 + α) ∩ T × B(r, x0) ⊆ DF.

In other words, [t0,T+ −
ε
2 ] ⊆ JF(t, x) for every (t, x) ∈ (t0 − α, t0 + α) ∩ T × B(r, x0).

Thus, for such (t, x),

sup JF(t, x) ≥ T− − ε
2 > T− − ε = sup JF(t0, x0) − ε,

as claimed. A similar argument holds for the left endpoint of intervals of conver-
gence. �
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1.4.2 Existence and uniqueness of solutions for partial differential
equations. . . NOT!!

The questions of existence and uniqueness of solutions for partial differential
equations is far more difficult than for ordinary differential equations. Situations
range from relatively simple cases where one can prove existence and uniqueness
directly by writing down solutions, to equations where proving an existence and
uniqueness result becomes a triumph of analysis, resulting in a paper in the Annals
of Mathematics. Thus it is not possible to have a comprehensive discussion of
a theory of existence and uniqueness for general partial differential equations.
Instead we content ourselves with some mostly vague observations about the
nature of the problem.

First we note that all of the examples of Section 1.4.1 can be turned into partial
differential equations is an entirely artificial way, merely by artificially adding an
extra independent variable. This is not an interesting thing to do, except that it
ensures that all of the conclusions 1–4 enumerated after these examples equally
apply to partial differential equations.

Let us list some of the difficulties that arise in arriving at existence and unique-
ness theorems for partial differential equations.
1. For ordinary differential equations, we saw that appropriate combinations of

continuity, boundedness, and Lipschitz hypotheses ensured existence, and of-
ten uniqueness, of solutions. For partial differential equations, this is no longer
true. A partial differential equation with lots of nice properties can fail to have
any solutions. Moreover, this failure of solutions to exist can arise in various
ways. So any attempt at a general theorem is dead from the start, and one must
make assumptions on the sort of partial differential equation for solutions to
even exist, cf. the discussion of elliptic, hyperbolic, and parabolic equations in
Section 1.3.4.

2. For ordinary differential equations, we saw that to uniquely prescribe a solution
one must specify an initial value of the state at some time to arrive at an initial
value problem. For partial differential equations, this process is more difficult.
Typically one must specify values of the solution along some surface or some
such thing. This is known as prescribing “Cauchy data.” However, the type of
Cauchy data that is to be specified is not as easy a matter to understand as for or-
dinary differential equations. For many problems arising from physics, e.g., the
heat, wave, and potential equations, the “natural” prescriptions of values for
the solution and/or its derivatives at “boundaries” of the domain is often cor-
rect, as we shall see when we study these problems subsequently.missing stuff
However, these partial differential equations are “nice.” In general, finding the
analogue of initial conditions for ordinary differential equations is quite hard
for partial differential equations.

3. The properties of a solution of an ordinary differential equation as it depends on
the independent variable are quite easy: it is of class C1. For partial differential
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equations, finding the right attributes for a solution beforehand is often crucial
to proving existence and uniqueness theorems for an equation.
We shall say nothing more about the subject of existence and uniqueness theo-

rems for partial differential equations, except to say this:
Go to
http://www.claymath.org/millennium-problems/navier-stokes-equation

to win $1,000,000! •

Exercises

1.4.1 Which of the following maps are locally Lipschitz?
(a) f : R→ R

x 7→
√
|x|;

(b) f : R>0 → R

x 7→
√
|x|;

(c) f : R→ R
x 7→ |x|;

(d) f : [0, π]→ R
x 7→ sin(x);

(e) f : R>0 → R
x 7→ x−1.

1.4.2 For the ordinary differential equations F with right-hand sides F̂ as given,
determine which, if either, of the parts of Theorem 1.4.8 apply, and indicate
what conclusions, if any, you can make about existence and uniqueness of
solutions for F. Here are the right-hand sides:

(a) F̂ : R × R→ R

(t, x) 7→
√

tx;

(b) F̂ : R>0 × R→ R

(t, x) 7→
x
t

;

(c) F̂ : R × [0, 1]→ R

(t, x) 7→

1, x ∈ [0, 1
2 ],

−1, x ∈ ( 1
2 , 1];

(d) F̂ : R × R→ R
(t, x) 7→ |xt|;

(e) F̂ : R × R→ R
(t, x) 7→ x2.

http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
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1.4.3 For the ordinary differential equations of Examples 1.3.3–1 to 9, show that
the hypotheses of Theorem 1.4.8 hold, and so these equations possess unique
solutions, at least for small times around any initial time.

1.4.4 In each of Examples 1.4.1–1.4.5, state the hypotheses of Theorem 1.4.8 that
are violated by the example.

1.4.5 Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and suppose that, for each x0 ∈ U, there exist M, r ∈ R>0 such that∣∣∣∣∣∣∣∂F̂ j

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤M, j, k ∈ {1, . . . ,n}, (t, x) ∈ T × B(r, x0).

Show that

pderivtΦF(t0, t, x) +

n∑
j=1

F̂ j(t, x)
∂
∂x j

ΦF(t0, t, x) = 0.



Chapter 2

Scalar ordinary differential equations

In this chapter, we begin our studies in earnest, doing what one does with
differential equations: where possible, solve them and/or understand the nature of
their solutions or sets of solutions. We shall study ordinary differential equations
with a single state and arbitrary order. Thus, in the notation of Section 1.3.3, we
consider an ordinary differential equation with time domain T ⊆ R, state space
U ⊆ R, and with right-hand side

F̂ : T ×U × L≤k−1
sym (R;R)→ R

that gives an equation

dkξ

dtk
(t) = F̂

(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ

dtk−1
(t)

)
that must be satisfied by solutions t 7→ ξ(t).

There is not much one can say in any generality about such an equation, except
to say that we can use Theorem 1.4.8 to assert the existence and uniqueness of
solutions, at least for small times (making use of Exercise 1.3.23). Thus we focus
in this chapter on special equations for which one can say something useful. In
Section 2.1 we consider a very special class of first-order equations which can,
in some sense, be solved. In Sections 2.2 and 2.3 we consider linear differential
equations, first homogeneous equations then inhomogeneous equations.
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Section 2.1

Separable first-order scalar equations

In this short section we consider a very special class of first-order scalar differen-
tial equation, one that can sometimes be solved explicitly. The following definition
encodes what we are after.

2.1.1 Definition (Separable scalar differential equation) A differential equation F : T×
U × L1

sym(R;R)→ R is separable if it has the form

F(t, x, x(1)) = f1(x)x(1)
− f0(t). •

We note that a separable differential equation is an ordinary differential equation
if and only if f1(x) is nonzero for every x ∈ U, because in this case we can solve for
x(1) for a given (t, x) ∈ T ×U by

x(1) =
f0(t)
f1(x)

= F̂(t, x).

Note that t 7→ x(t) is a solution to a separable differential equation if

f1(x(t))
dx
dt

(t) = f0(t), x(t0) = t0

for some (t0, x0) ∈ T×U. There is a naı̈ve way to “solve” such as equation. First do
some (a priori meaningless) manipulations:

f1(x)
dx
dt

= f0(t) =⇒

∫ x(t)

x0

f1(ξ) dξ =

∫ t

t0

f0(τ) dτ.

If F1 and F0 are antiderivatives of f1 and f0, respectively, we have

F1(x(t)) − F1(x0) = F0(t) − F0(t0).

This is an equation that you pray you can solve for x(t).
This naı̈ve procedure does, in fact, work, as the following result indicates.

2.1.2 Proposition (Solutions for separable differential equations) Let T ⊆ R be a time-
domain, let U ⊆ R be an open set, let f0 : T→ R and f1 : U→ R be continuous functions
for which f1(x) , 0 for every x ∈ U. Let F0 and F1 be antiderivatives of f0 and f1,
respectively. Let (t0, x0) ∈ T ×U. Then the following statements hold:

(i) if T′ ⊆ T is a subinterval containing t0 and if a class C1-function ξ : T′ → U satisfies

F1(ξ(t)) − F1(x0) = F0(t) − F0(t0), t ∈ T′,
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then ξ is a solution to the separable ordinary differential equation

F(t, x, x(1)) = f1(x)x(1)
− f0(t)

satisfying the initial condition ξ(t0) = x0;
(ii) if there exists a subinterval T′ ⊆ T and a solution ξ : T′ → U to F satisfying

ξ(t0) = x0, then

F1(ξ(t)) − F1(x0) = F0(t) − F0(t0), t ∈ T′.

Proof (i) Let us define
G : T ×U→ R

by
G(t, x) = F1(x) − F1(x0) − F0(t) + F0(t0),

noting that G(t, ξ(t)) = 0. Note that G is of class C1 and that

∂G
∂x

(t, ξ(t)) , 0, t ∈ T′

Thus, by the Implicit Function Theorem,missing stuff there exists a relatively open
interval T′t ⊆ T′ containing t and a unique map ξt : T → U of class C1 such that
ξt(t) = ξ(t) and that G(τ, ξt(τ)) = 0 for all τ ∈ T′t. Therefore, by the Chain Rule,

0 =
d

dτ
G(τ, ξt(τ)) =

d
dτ

(F1(ξt(τ)) − F1(x0) − F0(τ) + F0(t0)) = f1(ξt(τ))ξ̇t(τ) − f0(τ),

giving ξt as a solution to F.
It remains to show that ξ(τ) = ξt(τ) for every t ∈ T′ and every τ ∈ T′t. Let

T′′ ⊂ T′ be the largest subinterval such that ξ(τ) = ξt(τ) for every t ∈ T′′ and every
τ ∈ T′t. We claim that T′′ = T′. We need only show that T′ ⊆ T′′. Let t ∈ T′. By
construction, we have ξt(t) = ξ(t). Note that, for every τ ∈ T′t we have G(τ, ξ(τ)) = 0.
Moreover, ξ|T′t is of class C1. Thus the uniqueness part of the Implicit Function
Theorem gives ξt(τ) = ξ(τ) for all τ ∈ T′t. Therefore, t ∈ T′′. From this we conclude
that, indeed ξ(τ) = ξt(τ) for every τ ∈ T′t, and this shows that ξ is a solution for F,
since ξt is a solution for F.

(ii) We have, for all t ∈ T′,

f1(ξ(t))ξ̇(t) − f0(t) = 0

=⇒
d
dt

(F1(ξ(t)) − F0(t)) = 0

=⇒ F1(ξ(t)) − F1(x0) − F0(t) + F0(t0)

since ξ is continuous, and using the Fundamental Theorem of Calculus. �

Now let us look at some examples.
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2.1.3 Examples (Separable ordinary differential equations)
1. Consider the ordinary differential equation

F(t, x, x(1)) = x(1)
− ax

for a ∈ R, which is defined for (t, x) ∈ R ×R, i.e., T = R and U = R. Solutions of
this differential equation satisfy

ẋ(t) = ax(t).

This is not immediately in the form of a separable equation, but it can be
converted into the separable equation

F̃(t, x, x(1)) =
x(1)

x
− a,

but only at the cost of limiting the state space to be Ũ = R\ {0}. But let us do this
and see what happens. We have f1(x) = x−1 and f0(t) = a and so F1(x) = ln(|x|)
and F0(t) = at. Thus, by Proposition 2.1.2, a solution t 7→ ξ(t) with values in Ũ
will satisfy

ln(|ξ(t)|) − ln(|ξ(t0)|) = a(t − t0)

⇐⇒ ln
(∣∣∣∣∣ ξ(t)
ξ(t0)

∣∣∣∣∣) = a(t − t0)

⇐⇒

∣∣∣∣∣ ξ(t)
ξ(t0)

∣∣∣∣∣ = ea(t−t0)

⇐⇒ |ξ(t)| = |ξ(t0)|ea(t−t0).

Now, since ξ must be of class C1, in particular continuous, it follows that the
sign of ξ(t) must be the same as that of ξ(t0), and so we have

ξ(t) = ξ(t0)ea(t−t0).

Note that this only applies when ξ(t0) , 0. However, if ξ(t0) = 0 then we
immediately have the solution as ξ(t) = 0 for all t.
We will encounter this differential as a special case of various other sorts of
differential equations in the sequel.

2. Next we consider the differential equation

F(t, x, x(1)) = x(1)
− x2

with (t, x) ∈ R × R that we initially investigated in Example 1.4.4. Again, this
equation is not in the form of a separable ordinary differential equation, but can
be converted into the separable equation

F̃(t, x, x(1)) =
x(1)

x2 − 1
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with f0(x) = x−2 and f1(t) = 1. Again, in making this conversion, we must
restrict our state to be in Ũ = R \ {0}. We then have

F1(x) = −x−1, F0(t) = t.

Therefore, skipping the details, a solution t 7→ ξ(t) satisfies

−
1
ξ(t)

+
1

ξ(t0)
= t − t0 =⇒ ξ(t) =

ξ(0)
ξ(t0)(t0 − t) + 1

,

just as in Example 1.4.4. As we saw in this previous example, the solution
cannot be defined on the entire time interval R. Also, we can recover the
solution with the initial condition ξ(t0) = 0 by noting that, in this case, the
solution is ξ(t) = 0.

3. Here we consider the differential equation

F(t, x, x(1)) = x(1)
− x1/3

first considered in Example 1.4.5. As with our other examples, this one is not
separable by can be converted to a separable equation on the reduced state
space U′ = R \ {0}:

F̃(t, x, x(1)) =
x(1)

x1/3 − 1.

We then have

F1(x) =
3x2/3

2
, F0(t) = t

and so solutions t 7→ ξ(t) are determined by

3ξ(t)2/3

2
−

3ξ(t0)2/3

2
= t − t0 =⇒ ξ(t) =

(2t − 2t0 + 3ξ(t0)2/3)3/2

3
√

3
.

Again, if we include the possibility that ξ(t0) = 0, we arrive at the situation
described in Example 1.4.5.

4. Finally, we consider the separable ordinary differential equation

F(t, x, x(1)) = (x4 + x2 + 1)x(1)
− e−t2

with f1(x) = x4 + x2 + 1 and f0(t) = e−t2 with (t, x) ∈ R × R. Here we have

F1(x) =
x5

5
+

x3

3
+ x, F0(t) =

√
π

2
erf(t),

where erf is the error function defined by

erf(t) =
2
√
π

∫ t

0
e−τ

2
dτ.
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Thus a solution t 7→ ξ(t) satisfies

ξ(t)5

5
+
ξ(t)3

3
+ ξ(t) −

ξ(t0)5

5
−
ξ(t0)3

3
− ξ(t0) =

√
π

2
(erf(t) − erf(t0)).

This is an implicit equation that will be unpleasant to solve. Note that one
might have five possible solutions for ξ(t) at a given time, since we have the
solution as the root of a fifth-order polynomial. •

Exercises

2.1.1 Solve the following initial value problems, taking care to provide the domain
of definition for the solution:
(a) tξ̇(t) = 2(ξ(t) − 4), ξ(1) = 5;
(b) (t2 + 1)ξ̇(t) = tξ(t), ξ(0) = 1;
(c) ξ̇(t) = ξ(t) tan(t), ξ(0) = 1;
(d) ξ̇(t) = tξ(t) + 2t + ξ(t) + 2, ξ(0) = −1.

2.1.2 Solve the following initial value problems, taking care to provide the domain
of definition for the solution:
(a) ξ̇(t) + tξ(t) = t, ξ(1) = 5;
(b) tξ̇(t) + ξ(t) = t + 1, ξ(1) = 0;
(c) ξ̇(t) + etξ(t) = et, ξ(0) = x0;
(d) (1 + t)ξ̇(t) + tan(t)ξ(t) = sec(t), ξ(π4 ) = 0.
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Section 2.2

Scalar linear homogeneous ordinary differential equations

Now we turn to scalar linear equations, looking first in this section at the
homogeneous case. That is to say, we consider differential equations with T ⊆ R
an interval, the state space U = R, and right-hand sides of the form

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x (2.1)

for functions a0, a1, . . . , ak−1 : T→ R. Thus solutions t 7→ ξ(t) satisfies

dkξ(t)
dtk

(t) + ak−1(t)
dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = 0.

In this section we shall (1) investigate the character of the solutions, (2) investigate
the set of all solutions in the general case, and (3) provide a procedure for, in
principle, solving the equations in the constant coefficient case.

2.2.1 Equations with time-varying coefficients

We start by working with the general situation where the coefficients
a0, a1, . . . , ak−1 depend on time. In this case, we will study the properties of solutions
and sets of solutions, and as well introduce an important tool, the “Wronskian,”
for dealing with linear ordinary differential equations.

2.2.1.1 Solutions and their properties We begin by listing the general prop-
erties of solutions. First let us be sure that the equations with which we are dealing
possess solutions.

2.2.1 Proposition (Local existence and uniqueness of solutions for scalar linear
homogeneous ordinary differential equations) Consider the linear homogeneous
ordinary differential equation F with right-hand side (2.1) and suppose that the functions
a0, a1, . . . , ak−1 : T→ R are continuous. Let

(t0, x0, x
(1)
0 , . . . , x

(0)
k−1) ∈ T × R ⊕ L≤k−1

sym (R;R).

Then there exists an interval T′ ⊆ T and a map ξ : T′ → R of class Ck that is a solution
for F and which satisfies

ξ(t0) = x0,
dξ
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ

dtk−1
(t)(t0) = x(k−1)

0 .

Moreover, if T̃′ ⊆ T is another subinterval and if ξ̃ : T̃′ → R is another Ck-solution for F
satisfying

ξ̃(t0) = x0,
dξ̃
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ̃

dtk−1
(t)(t0) = x(k−1)

0 ,
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then ξ̃(t) = ξ(t) for every t ∈ T̃′ ∩ T′.
Proof This is Exercise 2.2.1. �

As we have seen in Example 1.4.4, a solution to a general ordinary differential
equation will not be defined for all times inT, even for seemingly “nice” differential
equations. One might then wonder whether linear ordinary differential equations
are sufficiently nice to permit solutions defined for all time. This is, indeed, the
case.

2.2.2 Proposition (Global existence of solutions for scalar linear homogeneous
ordinary differential equations) Consider the linear homogeneous ordinary differential
equation F with right-hand side (2.1) and suppose that the functions a0, a1, . . . , ak−1 : T→
R are continuous. If ξ : T′ → R is a solution for F, then there exists a solution ξ : T→ R
for which ξ|T′ = ξ.

Proof Note that, as per Exercise 1.3.23, we can convert the differential equation
F into a first-order differential equation linear homogeneous differential equation
with states (x, x(1), . . . , x(k−1)). Thus the result will follow from the analogous result
for first-order systems of equations, and this is stated and proved as Proposi-
tion 3.2.5. �

Now that we know the domain of definition of a scalar linear homogeneous
ordinary differential equation, we can talk in a reasonable manner about the set of
all solutions of such equations, as the structure of these is what is most interesting
about the equations. Thus we consider a scalar linear homogeneous ordinary
differential equation

F : T × R ⊕ L≤k−1
sym (R;R)→ R

with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

where a0, a1, . . . , ak−1 : T→ R are continuous. Let us denote by

Sol(F) =
{
ξ ∈ Ck(T;R)

∣∣∣∣
ξ satisfies

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = 0
}

the set of solutions for F. The following result is then the main structural result for
the class of differential equations we are considering in this section. We recall from
Example 1.2.1–1 that Ck(T;R) is a R-vector space.
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2.2.3 Theorem (Vector space structure of sets of solutions) Consider the linear ho-
mogeneous ordinary differential equation F with right-hand side (2.1) and suppose that
the functions a0, a1, . . . , ak−1 : T → R are continuous. Then Sol(F) is a k-dimensional
subspace of Ck(T;R).

Proof We first show that Sol(F) is a subspace. Let ξ, ξ1.ξ2 ∈ Sol(F) and α ∈ R. Then
we immediately have

dk(ξ1 + ξ2)
dtk

(t) + ak−1(t)
dk−1)ξ1 + ξ2

dtk−1
(t) + · · · + a1(t)

d(ξ1 + ξ2)
dt

(t) + a0(t)(ξ1 + ξ2)(t)

=
dkξ1

dtk
(t) + ak−1(t)

dk−1ξ1

dtk−1
(t) + · · · + a1(t)

dξ1

dt
(t) + a0(t)ξ1(t)

+
dkξ2

dtk
(t) + ak−1(t)

dk−1ξ2

dtk−1
(t) + · · · + a1(t)

dξ2

dt
(t) + a0(t)ξ2(t) = 0 + 0 = 0

and

dk(αξ)
dtk

(t) + ak−1(t)
dk−1(αξ)

dtk−1
(t) + · · · + a1(t)

d(αξ)
dt

(t) + a0(t)(αξ)(t)

= α

(
dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t)
)

= 0,

using linearity of differentiation.
Next we prove that the dimension of Sol(F) is k. We shall do this by showing

that, for a given t0 ∈ T, the map

σt0 : Sol(F)→ Rk

ξ 7→

(
ξ(t0),

dξ
dt

(t0), . . . ,
dk−1ξ

dtk−1
(t0)

)
is an isomorphism of R-vector spaces. Since the map is surjective by the existence
part of Proposition 2.2.1, it suffices to show that it is an injective linear map.
Linearity of σt0 is immediate since the identities(

(ξ1 + ξ2)(t0),
d(ξ1 + ξ2)

dt
(t0), . . . ,

dk−1(ξ1 + ξ2)
dtk−1

(t0)
)

=

(
ξ1(t0),

dξ1

dt
(t0), . . . ,

dk−1ξ1

dtk−1
(t0)

)
+

(
ξ2(t0),

dξ2

dt
(t0), . . . ,

dk−1ξ2

dtk−1
(t0)

)
,

by definition of the vector space structure for Sol(F). To show that σt0 is injective,
it suffices so show that, if σt0(ξ) = 0, then ξ is the zero vector in Sol(F),1 i.e., that

1This relies on the fact, presumably familiar to you from your first linear algebra course, that a
linear map is injective L if and only if ker(L) = {0}.
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ξ(t) = 0 for all t ∈ T. So, suppose that σt0(ξ) = 0. Then

ξ(t0) = 0,
dξ
dt

(t0) = 0, . . . ,
dk−1ξ

dtk−1
(t0) = 0.

Consider the function ζ : T→ R given by ζ(t) = 0 for all t ∈ T. Then ζ ∈ Sol(F) and

ζ(t0) = 0,
dζ
dt

(t0) = 0, . . . ,
dk−1ζ

dtk−1
(t0) = 0.

Therefore, by Proposition 2.2.1, ξ = ζ, giving the theorem. �

Being a finite-dimensionalR-vector space, the set Sol(F) of solutions to the scalar
linear homogeneous differential equation F is capable of possessing a basis. One
has a special name for a basis of Sol(F), i.e., a set of k linearly independent solutions
for F.

2.2.4 Definition (Fundamental set of solutions) Consider the linear homogeneous
ordinary differential equation F with right-hand side (2.1) and suppose that the
functions a0, a1, . . . , ak−1 : T → R are continuous. A set {ξ1, . . . , ξk} of linearly inde-
pendent elements of Sol(F) is a fundamental set of solutions for F. •

There is not much more one can say easily, in general, about scalar linear
homogeneous ordinary differential equations with coefficients that depend on time.
There is, however, one case where they can be solved “explicitly,” and this is when
k = 1.

2.2.5 Example (Degree one scalar linear homogeneous equations) The differential
equation we consider here is given by

F : T × R ⊕ L1
sym(R;R)→ R

(t, x, x(1)) 7→ x(1) + a(t)x,

for a continuous function a : T→ R. Thus a solution t 7→ ξ(t) satisfies

ξ̇(t) = −a(t)ξ(t).

Note that F is equivalent to the separable equation

F̃(t, x, x(1)) =
x(1)

x
+ a(t)

with f1(x) = x−1 and f0(t) = −a(t). Thus we can apply the methods of Section 2.1 to
solve this equation; indeed, note that Example 2.1.3–1 is a special case that we have
already treated in this manner. Let t0 ∈ T and x0 ∈ R. We have the antiderivatives

F1(x) = ln(|x|) − ln(|x0|), F0(t) = −

∫ t

t0

a(τ) dτ.
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In the same manner as Example 2.1.3–1, we conclude that

ξ(t) = ξ(t0)e−
∫ t

t0
a(τ) dτ

.

Note that this solution is also valid when ξ(t0) = 0, although this is not covered by
this solution method, since we had to eliminate 0 from the state space to make the
equation a separable equation. •

2.2.1.2 The Wronskian, and its properties and uses In this section we present
a fairly simple construction that turns out to have great importance in the treatment
of linear differential equations. We first make a simple general definition that seems
to not be a priori relating to differential equations.

2.2.6 Definition (Wronskian) Let T ⊆ R be an interval and let f1, . . . , fk ∈ Ck−1(T;R) for
k ∈ Z>0. The Wronskian for the functions f1, . . . , fk is the function W( f1, . . . , fk) : T→
R defined by

W( f1, . . . , fk)(t) = det



f1(t) f2(t) · · · fk(t)
d f1

dt
(t)

d f2

dt
(t) · · ·

d fk

dt
(t)

...
...

. . .
...

dk−1 f1

dtk−1
(t)

dk−1 f2

dtk−1
(t) · · ·

dk−1 fk

dtk−1
(t)


•

An essential feature of the Wronskian is that it gives a sufficient condition
for measuring the linear independence of finite sets of functions in the space of
functions. More precisely, we have the following result, which again is not a priori
related to differential equations.

2.2.7 Proposition (The Wronskian and linear independence) Let T ⊆ R be an interval
and let f1, . . . , fk ∈ Ck−1(T;R) for k ∈ Z>0. If W(f1, . . . , fk)(t) , 0 for some t ∈ T, then the
set {f1, . . . , fk} is linearly independent in Ck−1(T;R).

Proof We prove the contrapositive, i.e., that, if the functions { f1, . . . , fk} are linearly
dependent, then W( f1, . . . , fk)(t) = 0 for all t ∈ T.

So suppose that { f1, . . . , fk} is linearly dependent, and let c1, . . . , ck ∈ R, not all
zero, be such that

c1 f1 + · · · + ck fk = 0.

Then, for any j ∈ {1, . . . , k − 1},

c1
d j f1

dt j + · · · + cn
d j fn

dt j = 0.
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Assembling these relationships for j ∈ {0, 1, . . . , k − 1} gives the single equation

f1(t) f2(t) · · · fk(t)
d f1

dt
(t)

d f2

dt
(t) · · ·

d fk

dt
(t)

...
...

. . .
...

dk−1 f1

dtk−1
(t)

dk−1 f2

dtk−1
(t) · · ·

dk−1 fk

dtk−1
(t)




c1

c2
...
ck

 =


0
0
...
0

 .

This means that the matrix on the left has a nontrivial kernel (since this kernel
contains (c1, . . . , ck)) and so must have zero determinant. �

Note that the converse of the preceding result is not generally true, as demon-
strated by the following example.

2.2.8 Example (The Wronskian is not adequate to characterise linear indepen-
dence) Let T = [−1, 1] and consider the two functions f1, f2 : [−1, 1] → R of class
C1 defined by

f1(t) = t2, f2(t) = t|t|.

We have
d f1

dt
(t) = 2t,

d f2

dt
= 2|t|

We thus have

W( f1, f2) = det
[
t2 t|t|
2t 2|t|

]
= 2t2

|t| − 2t2
|t| = 0.

However, the set { f1, f2} is linearly independent. Indeed, suppose that c1, c2 ∈ R
satisfy

c1 f1(t) + c2 f2(t) = 0, t ∈ [−1, 1].

Then, taking t = −1, we get c1 − c2 = 0 and taking t = 1 we get c1 + c2 = 0. The only
way both of these equations can be satisfied is when c1 = c2 = 0. •

Thus the Wronskian is not quite the thing for precisely characterising the linear
independence of general sets of functions. However, it is just the thing when the
set of functions under consideration are solutions to a scalar linear homogeneous
ordinary differential equation.

2.2.9 Proposition (Wronskians and linear independence in Sol(F)) Consider the linear
homogeneous ordinary differential equation F with right-hand side (2.1) and suppose that
the functions a0, a1, . . . , ak−1 : T → R are continuous. Then the following statements are
equivalent for ξ1, . . . , ξk ∈ Sol(F):

(i) {ξ1, . . . , ξk} is linearly independent;
(ii) W(ξ1, . . . , ξk)(t) , 0 for some t ∈ T;
(iii) W(ξ1, . . . , ξk)(t) , 0 for all t ∈ T.
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Proof (i) =⇒ (ii) We prove the contrapositive, i.e., we prove that, if
W(ξ1, . . . , ξk)(t) = 0 for all t ∈ T, then {ξ1, . . . , ξk} is linearly dependent.

So suppose that W(ξ1, . . . , ξk)(t) = 0 for all t ∈ T, which means that there exists
c1, . . . , ck ∈ R, not all zero, such that

ξ1(t) ξ2(t) · · · ξk(t)
dξ1

dt
(t)

dξ2

dt
(t) · · ·

dξk

dt
(t)

...
...

. . .
...

dk−1ξ1

dtk−1
(t)

dk−1ξ2

dtk−1
(t) · · ·

dk−1ξk

dtk−1
(t)




c1

c2
...
ck

 =


0
0
...
0


for all t ∈ T. If we simply expand this out, we see that it is equivalent to

c1σt(ξ1) + · · · + ckσt(ξk) = 0

for all t ∈ T, recalling the isomorphism σt : Sol(F) → Rk, defined for some t ∈ T,
from the proof of Theorem 2.2.3. Since σt is linear, this gives

σt(c1ξ1 + · · · + ckξk) = 0, t ∈ T.

Injectivity of σt then gives
c1ξ1 + · · · + ckξk = 0,

showing linear dependence of {ξ1, . . . , ξk}.
(ii) =⇒ (iii) From Proposition 2.2.7, noting that ξ1, . . . , ξk are of class Ck, and so

of class Ck−1, the assumption of (i) implies that {ξ1, . . . , ξk} is linearly independent.
Suppose now that there exists t′ ∈ T such that W(ξ1, . . . , ξk)(t′) = 0. Then there
exists c1, . . . , ck ∈ R, not all zero, such that

ξ1(t′) ξ2(t′) · · · ξk(t′)
dξ1

dt
(t′)

dξ2

dt
(t′) · · ·

dξk

dt
(t′)

...
...

. . .
...

dk−1ξ1

dtk−1
(t′)

dk−1ξ2

dtk−1
(t′) · · ·

dk−1ξk

dtk−1
(t′)




c1

c2
...
ck

 =


0
0
...
0

 . (2.2)

Now, define ξ : T→ R by
ξ = c1ξ1 + · · · + ckxik.

By Theorem 2.2.3, ξ ∈ Sol(F). Moreover, the equation (2.2) gives

ξ(t′) = 0,
dξ
dt

(t′) = 0, . . . ,
dk−1ξ

dtk
(t′) = 0.

By Proposition 2.2.1 we conclude that ξ(t) = 0 for all t ∈ T. This contradicts the
linear independence of {ξ1, . . . , ξk}.

(iii) =⇒ (i) This follows from Proposition 2.2.7, noting that ξ1, . . . , ξk are of class
Ck, and so of class Ck−1. �
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The following result gives an interesting characterisation of the Wronskian,
further illustrating the fact that, when applied to solutions of scalar linear homoge-
neous ordinary differential equations, it serves to characterise linear independence
of sets of solutions.

2.2.10 Proposition (Liouville’s formula) Consider the linear homogeneous ordinary dif-
ferential equation F with right-hand side (2.1) and suppose that the functions
a0, a1, . . . , ak−1 : T → R are continuous. If {ξ1, . . . , ξk} are linearly independent, then,
for any t0, t ∈ T,

W(ξ1, . . . , ξk)(t) = W(ξ1, . . . , ξk)(t0)e−
∫ t

t0
ak−1(τ) dτ

.

Proof This is Exercise 3.2.6, which can be proved using some attributes of systems
of linear ordinary differential equations in Section 3.2. �

One of the sort of peculiar features of the Wronskian is that it can be used to
actually write down a differential equation. While it seems, at this point, to be just
a mere trick, the next result will be important when we consider inhomogeneous
equations in Section 2.3.

2.2.11 Proposition (A Wronskian representation of a differential equation) Consider
the linear homogeneous ordinary differential equation F with right-hand side (2.1) and
suppose that the functions a0, a1, . . . , ak−1 : T → R are continuous. Let {ξ1, . . . , ξk} be a
fundamental set of solutions for F. Then, for ξ ∈ Ck(T;R),

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0ξ(t) =
W(ξ1, . . . , ξk, ξ)(t)
W(ξ1, . . . , ξk)(t)

.

In particular,

Sol(F) =

{
ξ ∈ Ck(T;R)

∣∣∣ W(ξ1, . . . , ξk, ξ)(t)
W(ξ1, . . . , ξk)(t)

= 0
}
.

Proof First of all, note by Proposition 2.2.9 that W(ξ1, . . . , ξk)(t) is never zero, so
this is valid to appear in denominators, as in the statement of the proposition.

We shall prove the last assertion first. First suppose that ξ ∈ Sol(F), then

ξ = c1ξ1 + · · · + ckξk

for some (unique) constants c1, . . . , ck ∈ R. Therefore, the functions {ξ, ξ1, . . . , ξk}

are linearly dependent, cf.

−c1ξ1 − · · · − ckξk + 1ξ = 0.
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Therefore, differentiating this equation k-times gives

ξ1(t) ξ2(t) · · · ξk(t) ξ(t)
dξ1

dt
(t)

dξ2

dt
(t) · · ·

dξk

dt
(t)

dξ
dt

(t)
...

...
. . .

...
...

dk−1ξ1

dtk−1
(t′)

dk−1ξ2

dtk−1
(t′) · · ·

dk−1ξk

dtk−1
(t′)

dk−1ξ

dtk−1
(t)

dkξ1

dtk
(t′)

dkξ2

dtk
(t′) · · ·

dkξk

dtk
(t′)

dkξ

dtk
(t)




−c1

−c2
...
−ck

1

 =


0
0
...
0
0


for all t ∈ T. From this we immediately conclude that W(ξ1, . . . , ξk, ξ)(t) = 0 for all
t ∈ T, and so

ξ ∈

{
ξ ∈ Ck(T;R)

∣∣∣ W(ξ1, . . . , ξk, ξ)(t)
W(ξ1, . . . , ξk)(t)

= 0
}
.

Now note that, if we expand the determinant W(ξ1, . . . , ξk, ξ) about the last
column, we get an expression of the form

W(ξ1, . . . , ξk, ξ)(t)

= W(ξ1, . . . , ξk)(t)
dkξ

dtk
(t) + bk−1(t)

dk−1ξ

dtk−1
(t) + · · · + b1(t)

dξ
dt

(t) + a0(t)ξ(t)

for some continuous functions a0, a1, . . . , ak−1 : T → R. By Proposition 2.2.9 it
follows that {

ξ ∈ Ck(T;R)
∣∣∣ W(ξ1, . . . , ξk, ξ)(t)

W(ξ1, . . . , ξk)(t)
= 0

}
is the set of solutions to a kth-order scalar linear homogeneous ordinary differential
equation. Moreover, since we clearly have W(ξ1, . . . , ξk, ξ j) = 0 for every j ∈
{1, . . . , k}, (it is the determinant of a (k + 1)× (k + 1) matrix with two equal columns),
it follows that {ξ1, . . . , ξk} is a fundamental set of solutions for this differential
equation. Thus we have shown that

Sol(F) =

{
ξ ∈ Ck(T;R)

∣∣∣ W(ξ1, . . . , ξk, ξ)(t)
W(ξ1, . . . , ξk)(t)

= 0
}
.

To prove the first assertion, we shall show that the set of solutions for a kth-order
scalar linear homogeneous ordinary differential equation uniquely determines its
coefficients. That is, we show that if two such equations F and G with right-hand
sides

F̂(t, x, x(1), . . . , x(k−1)) = − ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

Ĝ(t, x, x(1), . . . , x(k−1)) = − bk−1(t)x(k−1)
− · · · − b1(t)x(1)

− b0(t)x
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satisfy Sol(F) = Sol(G), then a j = b j, j ∈ {0, 1, . . . , k − 1}. Let us consider the
differential equation

H(t, x, x(1), . . . , x(k−1)) = F(t, x, x(1), . . . , x(k−1)) − G(t, x, x(1), . . . , x(k−1)).

Note that this is not necessarily a (k − 1)st-order ordinary differential equation,
since we may have ak−1 = bk−1. However, suppose that F̂ , Ĝ and let j be the
largest element of {0, 1, . . . , k − 1} such that a j , b j. Thus there exists t0 ∈ T so that
a j(t0) , b j(t0). Since a j and b j are continuous, there is an interval T′ ⊆ T around t0

such that a j(t) , b j(t) for all t ∈ T′. We then define an ordinary differential equation
H′ with right-hand side

Ĥ′ : T′ × R ⊕ Lle j−1
sym (R;R)→ R

(t, x, x(1), . . . , x( j−1)) 7→ −
a j−1(t) − b j−1(t)

a j(t) − b j(t)
x( j−1)

− · · · −
a1(t) − b1(t)
a j(t) − b j(t)

x(1)

−
a0(t) − b0(t)
a j(t) − b j(t)

x.

This jth-order ordinary differential equation has ξ1, . . . , ξk as linearly independent
solutions, and this is in contradiction with Theorem 2.2.3. Thus we must have
F̂ = Ĝ, as claimed. �

2.2.2 Equations with constant coefficients

Having said about as much as one can say, in general, about the situation with
time-varying coefficients, we now turn to the case of constant coefficient scalar
linear homogeneous ordinary differential equations. If

F : T × R ⊕ L≤k
sym(R;R)→ R

is such an equation, then its right-hand side must be given by

F̂(t, x, x(1), . . . , x(k)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x (2.3)

for a0, a1, . . . , ak−1 ∈ R. Thus a solution t 7→ ξ(t) satisfies the equation

dkξ(t)
dtk

(t) + ak−1
dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = 0. (2.4)

These equations are, of course, a special case of the equations considered in Sec-
tion 2.2.1, and so all statements made about the general case of time-varying
coefficients hold in the special case of constant coefficients. In particular, Propo-
sitions 2.2.1 and 2.2.2, and Theorem 2.2.3 hold for equations of the form (2.4).
However, for these constant coefficient equations, it is possible to explicitly de-
scribe the character of the solutions, and this is what we undertake to do.



128 2 Scalar ordinary differential equations

The trick, motivated to some extent by Example 2.1.3–1, is to assume a solution
of the form ξ(t) = aert for a, r ∈ R, and see what happens. A direct substitution into
the equation (2.4) shows that, with ξ in this assumed form,

dk(aert)
dtk

+ ak−1
dk−1(aert)

dtk−1
+ · · · + a1

d(aert)
dt

+ a0(aert) = aert(rk + ak−1rk−1 + · · · + a1r + a0).

Since we are looking for nontrivial solutions, we suppose that a , 0, in which case
ξ(t) = aert is a solution for F if and only if

rk + ak−1rk−1 + · · · + a1r + a0.

With this as backdrop, we make the following definition.

2.2.12 Definition (Characteristic polynomial of a scalar linear homogeneous differ-
ential equation with constant coefficients) Consider the linear homogeneous
ordinary differential equation F with constant coefficients and with right-hand
side (2.3). The characteristic polynomial of F is

PF = Xk + ak−1Xk−1 + · · · + a1X + a0 ∈ R[X]. •

Now we systematically develop the methodology for solving scalar linear ho-
mogeneous ordinary differential equations with constant coefficients.

2.2.2.1 Complexification of scalar linear ordinary differential equations It
turns out that to solve constant coefficient linear ordinary differential equations,
one needs to work with complex numbers. To do this systematically, we introduce
the notion of “complexification,” by which a real equation is converted into a
complex one. This is rather elementary in this setting, but will be less elementary
in Section 3.2.3. Thus it will do not harm, and maybe do some good, to treat this
systematically here.

First let us understand the notation for derivatives of C-valued functions of a
single real variable, i.e., functions of time. Let T ⊆ R be an interval and suppose
that we have a mapping ζ : T → C. Since we have C ' R2, it makes sense to say
that ζ is of class Ck for any k ∈ Z≥0: it is of class Ck if and only if both its real and
imaginary parts are of class Ck. Moreover, if we write ζ as a sum of its real and
imaginary parts, ζ(t) = ξ(t) + iη(t), then we have

dkζ

dtk
=

dkξ

dtk
+ i

dkη

dtk
.

Thus derivatives of order k are just C-valued functions of t. Thus we can follow the
same line of reasoning as Remark 1.3.4 and make the identification Lk

sym(R;C) ' C.
Here is the basic and quite elementary construction.
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2.2.13 Definition (Complexification of scalar linear ordinary differential equation)
Consider the linear homogeneous ordinary differential equation F with constant
coefficients and with right-hand side (2.3). The complexification of F is the mapping

FC : T × C ⊕ L≤k
sym(R;C)→ C

(t, z, z(1), . . . , z(k)) 7→ z(k) + ak−1z(k−1) + · · · + a1z(1) + a0z.

A solution for FC is a Ck-function ζ : T→ C that satisfies

dkζ(t)
dtk

(t) + ak−1
dk−1ζ

dtk−1
(t) + · · · + a1

dζ
dt

(t) + a0ζ(t) = 0.

By Sol(FC) we denote the set of solutions for FC. •

Everything we said in Section 2.2.1 about scalar linear homogeneous ordinary
differential equations holds in the case of the complex differential equation FC, even
when the coefficients are not constant. In particular, Propositions 2.2.1 and 2.2.2,
and Theorem 2.2.3 hold in this case to give us the basic attributes of the complex
differential equation, merely by replacing the appropriate occurrences of the sym-
bol “R” with the symbol “C.” In particular, Sol(FC) is a k-dimensional C-vector
space if F has order k.

An essential result for returning to “reality” after complexification is the fol-
lowing simple result.

2.2.14 Lemma (Real and imaginary parts of complex solutions are solutions) Con-
sider the linear homogeneous ordinary differential equation F with constant coefficients,
with right-hand side (2.3) and with complexification FC. If ζ : T→ C is a solution for FC,
then Re(ζ) and Im(ζ) are solutions for F.
Proof Since ζ is a solution for FC, we have

dkζ

dtk
(t) + ak−1

dk−1ζ

dtk−1
(t) + · · · + a1

dζ
dt

(t) + a0ζ(t) = 0.

Now we note that Re: C → R and Im: C → R are R-linear maps. Since the
coefficients a0, a1, . . . , ak−1 are real, this gives

0 = Re
(

dkζ

dtk
(t) + ak−1

dk−1ζ

dtk−1
(t) + · · · + a1

dζ
dt

(t) + a0ζ(t)
)

=
dk Re(ζ)

dtk
(t) + ak−1

dk−1 Re(ζ)
dtk−1

(t) + · · · + a1
d Re(ζ)

dt
(t) + a0 Re(ζ)(t),

showing that Re(ζ) is a solution for F. In like manner, of course, Im(ζ) is also a
solution for F. �

2.2.2.2 Differential operator calculus We introduce a simple object that will
be say a few simple things about.
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2.2.15 Definition (Scalar differential operator with constant coefficients) Let F ∈
{R,C}, let T ⊆ R be an interval, and let k ∈ Z≥0. A kth-order scalar differential
operator with constant coefficients in F is a mapping

D : C∞(T;F)→ C∞(T;F)

of the form

D( f ) = dk
dk f
dt

(t) + dk−1
dk−1 f
dtk−1

(t) + · · · + d1
d f
dt

(t) + d0 f (t)

for d0, d1, . . . , dk ∈ F with dk , 0. The symbol for such an object is

σ(D) = dkXk + dk−1Xk−1 + · · · + d1X + d0 ∈ F[X]. •

Note that, while the domain and range of D in the preceding definition is the
set of infinitely differentiable functions, clearly the definition makes sense when
applied to functions that are at least k-times continuously differentiable. Indeed,
we can think of D as a mapping from Ck+m(T;F) to Cm(T;F) for any m ∈ Z≥0. The
definition as stated just allows us to not fuss about this sort of thing for the purposes
of our discussion.

Note that differential operators of the sort we are talking about have a product
given by composition. Thus, if D1 and D1 are k1th- and k2th-order scalar differen-
tial operators with constant coefficients, then we define a (k1 + k2)th-order scalar
differential operator D1D2 with constant coefficients by D1D2( f ) = D1(D2( f )).

A simplifying observation about scalar differential operators with constant co-
efficients is the following.

2.2.16 Proposition (The symbol of a product is the product of the symbols) Let F ∈
{R,C}, let T ⊆ R be an interval, let k1,k2 ∈ Z≥0. If D1 and D1 are k1th- and k2th-order
scalar differential operators with constant coefficients, then σ(D1D2) = σ(D1)σ(D2).
Proof Let us write

σ(D1) =

k1∑
j=0

d1, jX j, σ(D2) =

k2∑
j=0

d2, jX j.

Then, for f ∈ C∞(T;F),

D1D2( f ) =

k1∑
j=0

d1, j
d j

dt j

 k2∑
l=0

d2,l
dl f
dtl

 =

k1+k2∑
k=0

k∑
j=0

d1, jd2,k− j
dk f
dtk

.

Since

σ(D1)σ(D2) =

k1+k2∑
k=0

k∑
j=0

d1, jd2,k− jXk,

the result follows. �
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2.2.17 Corollary (The product for differential operators is commutative) Let F ∈
{R,C}, let T ⊆ R be an interval, let k1,k2 ∈ Z≥0. If D1 and D1 are k1th- and k2th-
order scalar differential operators with constant coefficients, then D1D2 = D2D1.

Proof This follows from the following facts: (1) polynomial multiplication is com-
mutative; (2) the mapping that assigns σ(D) to D is injective. �

2.2.2.3 Bases of solutions Now we construct a family of solutions for a scalar
linear homogeneous ordinary differential equation. We do this via a procedure.

2.2.18 Procedure (Basis of solutions for scalar linear homogeneous ordinary differ-
ential equations with constant coefficients) Given a scalar linear homogeneous
ordinary differential equation

F : T × R ⊕ L≤k−1
sym (R;R)→ R

with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

do the following.
1. Let FC be the complexification of F,
2. Consider the kth-order scalar differential operator DF with constant coefficients

in C defined by
σ(DFC) = Xk + ak−1Xk + · · · + a1X + a0.

3. Let r1, . . . , rs be the distinct roots of σ(DF) and let m(r j), j ∈ {1, . . . , s}, be the
multiplicity of the root r j. Thus

σ(DFC) = (X − r1)m(r1)
· · · (X − rs)m(rs).

4. Fix j ∈ {1, . . . , s} and consider the following cases.

(a) r j ∈ R: Define functions ξr j,l : T→ R, l ∈ {1, . . . ,m(r j)}, by

ξr j,l(t) = tler jt, l ∈ {0, 1, . . . ,m(r j) − 1}.

(b) r j ∈ C \ R: Note that, since r j is complex and not real, r j is also a root of
σ(DFC). We will work only with one of these roots, so we write r j = σ j + iω j

with ω j > 0. Define functions µr j,l, νr j,l : T→ R by

µr j,l(t) = tleσ jt cos(ω jt), νr j,l(t) = tleσ jt sin(ω jt), l ∈ {0, 1, . . . ,m(r j) − 1}.

5. Note that the result of the above steps is k functions. We will show that these
functions form a basis for Sol(F). •
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2.2.19 Theorem (Basis of solutions for scalar linear homogeneous ordinary differ-
ential equations with constant coefficients) Given a scalar linear homogeneous
ordinary differential equation

F: T × R ⊕ L≤k−1
sym (R;R)→ R

with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

define k functions as in Procedure 2.2.18. Then these functions form a basis for Sol(F).
Proof First we show that each of the functions defined in Procedure 2.2.18 is a
solution for F.

First we consider the functions ξr j,l(t) = tler jt, l ∈ {0, 1, . . . ,m(r j) − 1}, associated
with a real root r j of the characteristic polynomial for F. Since

σ(DFC) = (X − r1)m(r1)
· · · (X − rs)m(rs),

by Corollary 2.2.17 we can write

σ(DFC) = P(X − r j)m(r j)

for some P ∈ C[X]. Therefore, it suffices to show that, for r ∈ R and for m, l ∈ Z≥0

with m ≥ 1 and l < m, we have ( d
dt
− r

)m

P(t)ert = 0, (2.5)

where P is any polynomial function of degree l ∈ {0, 1, . . . ,m − 1}. To prove (2.5),
we first prove a simple lemma.

1 Lemma Let m ∈ Z>0 and r ∈ C. If ξ : T→ C is of class Cm then( d
dt
− r

)m

(ξ(t)ert) = ert dmξ
dtm (t).

Proof We prove this by induction on m. For m = 1 we have( d
dt
− r

)
(ξ(t)ert) =

dξ
dt

(t)ert + rξ(t)ert
− rξ(t)ert = ert dξ

dt
(t),

giving the lemma when m = 1. Now suppose that the lemma holds when m = k.
Then ( d

dt
− r

)k+1

(ξ(t)ert) =
( d
dt
− r

) ( d
dt
− r

)k

(ξ(t)ert)

=
( d
dt
− r

)
ert dkξ

dtk
(t)

= rert dkξ

dtk
(t) + ert dk+1ξ

dtk+1
(t) − r

dkξ

dtk
(t)

= ert dk+1ξ

dtk+1
(t),

as desired. H
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Now, if P is a polynomial function of degree l ∈ {0, 1, . . . ,m}, by the Lemma 1
we have ( d

dt
− r

)m

P(t)ert = ert dmP
dtm (t) = 0.

Thus shows that the functions ξr j,l(t) = tler jt, l ∈ {0, 1, . . . ,m(r j)− 1}, are solutions for
F.

Next we consider the functions

µr j,l = tleσ jt cos(ω jt), νr j,l = tleσ jt sin(ω jt), l ∈ {0, 1, . . . ,m(r j) − 1},

corresponding to a complex root r j = σ j+iω j,ω j > 0, of the characteristic polynomial
of F. In this case, we argue, exactly as in the case of a real root above, that the C-
valued functions ζr j,l(t) = tler jt, l ∈ {0, 1, . . . ,m(r j)− 1}, are solutions for FC. Then, by
Lemma 2.2.14, we have that

µr j,l(t) = tleσ jt cos(ω jt)

= Re(tleσ jt(cos(ω jt) + i sin(ω jt))

= Re(tleσ jteiω jt) = Re(ζr j,l(t))

and, similarly,
νr j,l = tleσ jt sin(ω jt) = Im(ζr j,l(t))

are solutions for F for l ∈ {0, 1, . . . ,m(r j) − 1}.
Our above arguments show that the functions produced in Procedure 2.2.18

are solutions. Moreover, since Procedure 2.2.18 produces k solutions for F, by
Theorem 2.2.3 it suffices to show that these solutions are linearly independent to
show that they form a basis for Sol(F). We achieve this with the aid of the following
lemma.

2 Lemma Let T ⊆ R be an interval containing more than one point. Let r1, . . . , rs ∈ R be
distinct and let P1, . . . ,Ps be C-valued polynomial functions on T. If

P1(t)er1t + · · · + Ps(t)erst = 0, t ∈ T,

then Pj(t) = 0 for all j ∈ {1, . . . , s} and t ∈ T.

Proof We prove the lemma by induction on s. For s = 1 we have, for r1 ∈ R and a
polynomial function P1,

P1(s)er1t = 0, t ∈ T,
=⇒ P1(t) = 0, t ∈ T,

giving the result in this case. Now suppose that the lemma is true for s = k and
suppose that

P1(t)er1t + · · · + Pk(t)erkt + Pk+1(t)erk+1t = 0, t ∈ T,
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for distinct r1, . . . , rk, rk+1 ∈ R and for polynomial functions P1, . . . ,Pk,Pk+1. Then

P1(t)e(r1−rk+1)t + · · · + Pk(t)e(rk−rk+1)t + Pk+1(t) = 0, t ∈ T. (2.6)

Now let us differentiate this expression m times with respect to t, using the Leibniz
Rule for higher-order derivatives, which reads

dm

dtm ( f g) =

m∑
l=1

(
m
l

)
dm−l f
dtm−l

dlg
dtl
.

After m differentiations we get

Pm
1 (t)e(r1−rk+1)t + · · · + Pm

k (t)e(rk−rk+1)t +
dmPk+1

dtm (t) = 0, t ∈ T,

where

Pm
j (t) =

m∑
l=0

(r j − rk+1)l

(
m
l

)
dm−lP j

dtm−l
(t). (2.7)

Since r j − rk+1 , 0, Pm
j is a polynomial function whose degree is the same as the

degree of P j. Now, for m sufficiently large (larger than the degree of Pk+1, to be
precise), dmPk+1

dtm = 0. With m so chosen, we have

Pm
1 (t)e(r1−rk+1)t + · · · + Pm

k (t)e(rk−rk+1)t = 0, t ∈ T.

By the induction hypothesis, Pm
j (t) = 0 for j ∈ {1, . . . , k} and t ∈ T. Now, in the

expression (2.7) for Pm
j , note that the highest polynomial degree term in t in the

sum occurs when m = 0, and this term is (r j − rk+1)mP j(t). For the polynomial Pm
j to

vanish, this term in the sum must vanish, i.e., P j(t) = 0 for every j ∈ {1, . . . , k} and
t ∈ T. Finally, (2.6) then gives Pk+1(t) = 0 for all t ∈ T, giving the result. H

Now we can show that the solutions produced by Procedure 2.2.18 are linearly
independent. Suppose that there are s1 distinct real roots, r1, . . . , rs1 , and s2 distinct
complex roots,

ρ j = σ1 + iω j, . . . , ρs2 = σs2 + iωs2 ,

with ω1, . . . , ωs2 > 0, for the characteristic polynomial of F. Thus s1 + 2s2 = k.
Suppose that we have k scalars

c j,l, j ∈ {1, . . . , s1}, l ∈ {0, 1, . . . ,m(r j) − 1}, (2.8)

and
a j,l, b j,l, j ∈ {1, . . . , s2}, l ∈ {0, 1, . . . ,m(ρ j) − 1}, (2.9)
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satisfying

(c1,0 + c1,1t + · · · + c1,m(r1)−1tm(r1)−1)er1t + . . .

+ (cs1,0 + cs1,1t + · · · + cs1,m(rs1 )−1tm(rs1 )−1)er1t

+ (a1,0 + a1,1t + · · · + a1,m(ρ1)−1tm(ρ1)−1) cos(ω1t)

+ (b1,0 + b1,1t + · · · + b1,m(ρ1)−1tm(ρ1)−1) sin(ω1t) + . . .

+ (as2,0 + as2,1t + · · · + as2,m(ρs2 )−1tm(ρs2 )−1) cos(ωs2t)

+ (bs2,0 + bs2,1t + · · · + bs2,m(ρs2 )−1tm(ρs2 )−1) sin(ωs2t) = 0, t ∈ T.

By Lemma 1, the polynomial functions

c1,0 + c1,1t + · · · + c1,m(r1)−1tm(r1)−1, . . . ,

cs1,0 + cs1,1t + · · · + cs1,m(rs1 )−1tm(rs1 )−1,

a1,0 + a1,1t + · · · + a1,m(ρ1)−1tm(ρ1)−1,

b1,0 + b1,1t + · · · + b1,m(ρ1)−1tm(ρ1)−1, . . . ,

as2,0 + as2,1t + · · · + as2,m(ρs2 )−1tm(ρs2 )−1,

bs2,0 + bs2,1t + · · · + bs2,m(ρs2 )−1tm(ρs2 )−1

must all vanish. But this implies that the scalars (2.8) and (2.9) must all vanish.
This gives the desired linear independence. �

2.2.2.4 Some examples As concerns the general theory of scalar linear ho-
mogeneous ordinary differential equations, the matter is settled pretty much by
Theorem 2.2.19. It remains to consider a few examples.

We first consider an “academic” example, one that illustrates Procedure 2.2.18,
but which has no particular deep meaning.

2.2.20 Example (“Academic” example) We consider the 4th-order scalar linear homo-
geneous ordinary differential equation F with right-hand side

F̂(t, x, x(1), x(2), x(3)) = −5x + 8x(1)
− 2x(2).

Thus solutions t 7→ ξ(t) to this equation satisfy

d4ξ

dt4 (t) + 2
d2ξ
dt2 (t) − 8

dξ
dt

(t) + 5ξ(t) = 0.

The characteristic polynomial is

PF = X4 + 2X2
− 8X + 5

which can be verified to have roots and multiplicities

r1 = 1, m(r1) = 2, ρ1 = −1 + 2i, m(ρ1) = 1.
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Of course, we also have the root ρ1 = −1 − 2i, but the bookkeeping for this is
dealt with when we produce two solutions corresponding to ρ1. According to
Procedure 2.2.18 the 4 solutions that form a basis for Sol(F) are then

ξr1,0(t) = et, ξr1,1(t) = tet, µρ1,0(t) = e−t cos(2t), νρ1,0(t) = e−t sin(2t).

Thus any solution for F can be written as

ξ(t) = c1et + c2tet + c3e−t cos(2t) + c4e−t sin(2t).

To prescribe a specific solution, according to Proposition 2.2.1, we specify initial
conditions. For simplicity, let us do this at t = 0:

ξ(0) = x0,
dξ
dt

(0) = x + 0(1),
d2ξ
dt2 (0) = x(2)

0 ,
d3ξ
dt

(0) = x(3)
0 . (2.10)

To use these conditions to determine c1, c2, c3, c4 is a tedious problem in linear
algebra. We compute

dξ
dt

(t) = c1et + c2(et + tet) + c3(−e−t cos(2t) − 2e−t sin(2t))

+ c4(2e−t cos(2t) − e−t sin(2t)),

d2ξ
dt2 (t) = c1et + c2(2et + tet) + c3(−3e−t cos(2t) + 4e−t sin(2t))

+ c4(−4e−t cos(2t) − 3e−t sin(2t)),

d3ξ
dt3 (t) = c1et + c2(3et + tet) + c3(11e−t cos(2t) + 2e−t sin(2t))

+ c4(−2e−t cos(2t) + 11e−t sin(2t)).

Evaluating these at t = 0 gives the equations

c1 + c3 = x0,

c1 + c2 − c3 + 2c4 = x(1)
0 ,

c1 + 2c2 − 3c3 − 4c4 = x(2)
0 ,

c1 + 3c2 + 11c3 − 2c4 = x(3)
0 .

These are four linear equations in four unknowns that, because of Proposition 2.2.1,
we know possesses unique solutions. These can be solved to give

c1 = 1
16 (15x0 + x(1)

0 + x(2)
0 − x(3)

0 ),

c2 = 1
8 (−5x0 + 3x(1)

0 + x(2)
0 + x(3)

0 ),

c3 = 1
16 (x0 − x(1)

0 − x(2)
0 + x(3)

0 ),

c4 = 1
8 (−x0 + 2x(1)

0 − x(2)
0 ).

Go ahead and plug numbers into this bad boy, if this is your thing. •

The next two examples are intended to illustrate the how the behaviour of the
roots of the characteristic polynomial affect the behaviour of solutions.
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2.2.21 Example (First-order system behaviour) Here we consider a general 1st-order
scalar linear homogeneous ordinary differential equation F with right-hand side

F̂(t, x) = −
x
τ

for τ ∈ R. Solutions t 7→ ξ(t) satisfy

dξ
dt

+ τ−1ξ(t) = 0.

This is an easy equation to solve. It characteristic polynomial is PF = X +τ−1 which
has the single real root r1 = −τ−1. Thus, by Procedure 2.2.18, any solution has the
form ξ(t) = ce−t/τ. To determine c, we use initial conditions as in Proposition 2.2.1.
We take a general initial time t0 and prescribe ξ(t0) = x0. Thus

ξ(t0) = ce−t0/τ =⇒ c = ξ(t0)et0/τ,

and so ξ(t) = ξ(0) = e−(t−t0)/τ.
Let us think about this solution for a moment. When τ > 0, this is exponential

decay and when τ < 0 it is exponential growth. In Figure 2.1 we graph ξ(t) as a

0.0 0.5 1.0 1.5 2.0

0

2

4

6

Figure 2.1 Solutions of a first-order scalar linear homogeneous
ordinary differential equation with ξ(0) = 1

function of t for a few different τ’s. Note that τ is not the rate of growth or decay, but
the inverse of this. This is sometimes known as the time constant for the equation,
since the units for τ are time. We can see that small (in magnitude) τ’s give rise to
relatively faster growth or decay. When τ = ∞ (whatever that means), the decay
or growth is infinitely slow, i.e., solutions neither grow nor decay. •
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2.2.22 Example (Second-order system behaviour) We next consider a certain form of
2nd-order scalar linear homogeneous ordinary differential equation, namely such
an equation F with right-hand side

F̂(t, x, x(1)) = −ω2
0x − 2ζω0x(1)

for ω ∈ R>0 and ζ ∈ R. The equations (1.1) for a mass-spring-damper and (1.6)
for the current in a series RLC circuit are of this general form. A solution t 7→ ξ(t)
satisfies

d2ξ
dt2 (t) + 2ζω0

dξ
dt

(t) + ω2
0ξ(t) = 0.

The characteristic polynomial is

PF = X2 + 2ζω0X + ω2
0.

The roots of this equation are found using the quadratic formula, and their character
depends on discriminant which is ∆ = 2ω2

0(ζ2
− 1). When ∆ > 0 the roots are real

and when ∆ < 0 the roots are complex. To be precise, the roots are the following:
1. ζ2 > 1: two distinct real roots

r1 = ω0(−ζ +
√
ζ2 − 1), m(r1) = 1, r2 = ω0(−ζ −

√
ζ2 − 1), m(r2) = 1;

2. ζ = 1: one repeated real root

r1 = −ω0ζ, m(r2) = 2;

3. ζ2 < 1: a complex conjugate pair of roots with

ρ1 = ω0(−ζ + i
√

1 − ζ2), m(ρ1) = 1.

This then gives rise, according to Procedure 2.2.18, to the following solutions of
the differential equation:

1. ζ2 > 1: ξ(t) = c1eω0(−ζ+
√
ζ2−1)t + c2eω0(−ζ−

√
ζ2−1)t;

2. ζ2 = 1: ξ(t) = c1e−ω0ζt + c2te−ω0ζt;
3. ζ2 < 1: ξ(t) = c1e−ω0ζt cos(ω0

√
1 − ζ2t) + c2e−ω0ζt sin(ω0

√
1 − ζ2t).

To determine the constants c1 and c2, one applies initial conditions. Let us keep
things simple and prescribe initial conditions

ξ(0) = x0,
dξ
dt

(0) = x(1)
0 .

Skipping the tedious manipulations. . .



2.2 Scalar linear homogeneous ordinary differential equations 139

1. ζ2 > 1:

c1 =
ω0(ζ +

√
ζ2 − 1)x0 + x(1)

0

2ω0
√
ζ2 − 1

,

c2 =
−ω0(ζ −

√
ζ2 − 1)x0 − x(1)

0

2ω0
√
ζ2 − 1

;

2. ζ2 = 1:

c1 = x0,

c2 = ω0ζx0 + x(1)
0 ;

3. ζ2 < 1:

c1 = x0,

c2 =
ω0ζx0 + x(1)

0

ω0
√

1 − ζ2
.

In Figure 2.2 we graph solutions for fixed ω0 and varying ζ. We ζ > 0 we say the

0 2 4 6 8 10
-2

-1

0

1

2

Figure 2.2 Solutions of a second-order scalar linear homoge-
neous ordinary differential equation with ω0 = 1, ξ(0) = 1,
and dξ

dt (0) = 0

equation is positively damped, when ζ = 0 we say the equation is undamped, and
when ζ < 0 we say the equation is negatively damped. In practice, systems are
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positively damped, or possibly undamped. So let us focus on this situation for a
moment. Here we break things down into ζ < 1, which is called underdamped,
ζ = 1 which is called critically damped, and ζ > 1 which is called overdamped.
The underdamped case is distinguished by there being oscillations in the motion,
corresponding to the imaginary part of the roots. In the critical and overdamped
cases, we do not get this oscillation. •

Exercises

2.2.1 Consider the ordinary differential equation F with right-hand side given
by (2.1).
(a) Convert this to a first-order equation with k states, following Exer-

cise 1.3.23.
(b) Show that, if the functions a0, a1, . . . , ak are continuous, then the result-

ing first-order equation satisfies the conditions of Theorem 1.4.8 for
existence of a unique solution t 7→ ξ(t) satisfying the initial conditions

ξ(t0) = x0,
dξ
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ

dtk−1
(t)(t0) = x(k−1)

0

at time t0 ∈ T.
2.2.2 Let a, b, c, ω, φ ∈ R and define

ξ1(t) = a cos(ωt + φ), ξ2(t) = b cos(ωt) + c sin(ωt).

Show that ξ1, ξ2 ∈ Sol(F) where F is the second-order scalar linear homoge-
neous ordinary differential equation with constant coefficients whose right-
hand side is

F̂(t, x, x(1)) = −ω2x.

Explain in at least two ways why this is not a violation of Proposition 2.2.1
concerning uniqueness of solutions.

2.2.3 In each of the following cases, show that the functions given are a basis for
Sol(F) with F as given:
(a) take

F(t, x, x(1), x(2)) = x(2)
− x

and
ξ1(t) = et, ξ2(t) = e−t;

(b) take
F(t, x, x(1), x(2), x(3)) = x(3) + 4x(2) + 4x(1)

and
ξ1(t) = 1, ξ2(t) = e−2t, ξ3(t) = te−2t.
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(c) take
F(t, x, x(1), x(2)) = x(2) + ω2x

and
ξ1(t) = cos(ωt), ξ2(t) = sin(ωt).

(d) take
F(t, x, x(1), x(2)) = t2x(2) + tx(1)

− x

and
ξ1(t) = t, ξ2(t) = t−1

(here the time-domain must be an interval not containing 0).
2.2.4 For each of the ordinary differential equations F of Exercise 2.2.3, give the

general form of a solution of the differential equation, i.e., the general form
of t 7→ ξ(t) satisfying

F
(
t, ξ(t),

dξ
dt

(t), . . . ,
dkξ

dtk
(t)

)
= 0.

2.2.5 For each of the ordinary differential equations F of Exercise 2.2.3 for which
you found a general form of their solution in Exercise 2.2.4, give the solution
satisfying the given initial conditions:
(a) ξ(0) = 1 and ξ̇(0) = 1;
(b) ξ(0) = 1, ξ̇(0) = 1, and ξ̈(0) = 1;
(c) ξ(0) = 1 and ξ̇(0) = 0;
(d) ξ(1) = 1 and ξ̇(1) = 1.

2.2.6 If possible, find the characteristic polynomial for the following scalar ordi-
nary differential equations:
(a) F(t, x, x(1)) = x(1) + tx;
(b) F(t, x, x(1)) = x(1) + 3x;
(c) F(t, x, x(1), x(2)) = 2x(2)

− x(1) + 8x;
(d) F(t, x, x(1), x(2)) = x(2) +

ag

` sin(x);
(e) F(t, x, x(1), x(2)) = x(2) + ω2x;
(f) F(t, x, x(1), . . . , x(k)) = akx(k) + · · · + a1x(1) + a0x.

2.2.7 Find the unique lowest degree normalised scalar linear homogeneous or-
dinary differential equation with constant coefficients whose characteristic
polynomial has the following roots:
(a) {−1, 2};
(b) {2 + 2i, 2 − 2i,−2};
(c) {− 1

τ }, τ ∈ R \ {0};
(d) {−a,−a, 2}, a ∈ R;
(e) {ω0(−ζ + i

√
1 − ζ2), ω0(−ζ − i

√
1 − ζ2)}, ω0, ζ ∈ R, ω0 , 0, |ζ| ≤ 1;
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(f) {σ + iω, σ − iω}, σ,ω ∈ R, ω , 0.
2.2.8 Find the unique lowest degree normalised scalar linear homogeneous ordi-

nary differential equation with the following functions as a fundamental set
of solutions:
(a) ξ1(t) = e−t and ξ2(t) = e2t;
(b) ξ1(t) = e2t cos(2t), ξ2(t) = e2t sin(2t), ξ3(t) = e−2t;
(c) ξ1(t) = e−t/τ, τ ∈ R \ {0};
(d) ξ1(t) = e−at, ξ2(t) = te−at, a ∈ R, and ξ3(t) = e2t;
(e) ξ1(t) = e−ω0ζt cos(ω0

√
1 − ζ2t) andξ2(t) = e−ω0ζt sin(ω0

√
1 − ζ2t),ω0, ζ ∈ R,

ω0 , 0, |ζ| ≤ 1;
(f) ξ1(t) = eσt cos(ωt) and ξ2(t) = eσt sin(ωt), σ,ω ∈ R, ω , 0.

2.2.9 In Proposition 2.2.11 it is proved that the set of solutions for a scalar linear
inhomogeneous ordinary differential uniquely determines the differential
equation. Show how you would, given a fundamental set of solutions
to a homogeneous such equation, with constant coefficients, recover the
coefficients in the differential equation.

2.2.10 Solve the following initial value problems:
(a) ξ̇(t) + 3ξ(t) = 0, ξ(0) = 4;
(b) ξ̈(t) − 4ξ̇(t) + 4ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 1;
(c) ξ̈(t) − 4ξ̇(t) − 4ξ(t) = 0, ξ(0) = 1, ξ̇(0) = 1;
(d)

...
ξ(t) − 7ξ̈(t) + 15ξ̇(t) − 9ξ(t) = 0, ξ(0) = 1, ξ̇(0) = 1, ξ̈(0) = 1;

(e)
...
ξ(t) + 3ξ̈(t) + 4ξ̇(t) + 2ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 1, ξ̈(0) = 2;

(f)
....
ξ(t) +

...
ξ(t) + ξ̈(t) + ξ̇(t) + ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 0, ξ̈(0) = 0,

...
ξ(0) = 0.
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Section 2.3

Scalar linear inhomogeneous ordinary differential equations

In this section we still consider scalar linear ordinary differential equations, but
now we consider the inhomogeneous case. We still, this have a time-domain T and
the state space U = R, but now we have a right-hand side of the form

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0x + b(t) (2.11)

for functions a0, a1, ak−1, b : T→ R. Thus solutions t 7→ ξ(t) satisfy

dkξ(t)
dtk

(t) + ak−1(t)
dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t).

We shall proceed in this section much as in the preceding section, first saying some
things about the general case, and then focussing on the case where F has constant
coefficients, as in this case there is more that can be said.

2.3.1 Equations with time-varying coefficients

We begin by stating some general properties of general scalar linear inhomoge-
neous ordinary differential equations.

2.3.1.1 Solutions and their properties First we state the local existence and
uniqueness result that one needs to get off the ground for any class of differential
equations.

2.3.1 Proposition (Local existence and uniqueness of solutions for scalar linear
homogeneous ordinary differential equations) Consider the linear inhomogeneous
ordinary differential equation F with right-hand side equation (2.11) and suppose that the
functions a0, a1, . . . , ak−1 : T→ R are continuous. Let

(t0, x0, x
(1)
0 , . . . , x

(0)
k−1) ∈ T × R ⊕ L≤k−1

sym (R;R).

Then there exists an interval T′ ⊆ T and a map ξ : T′ → R of class C1 that is a solution
for F and which satisfies

ξ(t0) = x0,
dξ
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ

dtk−1
(t)(t0) = x(k−1)

0 .

Moreover, if T̃′ ⊆ T is another subinterval and if ξ̃ : T̃′ → R is another Ck-solution for F
satisfying

ξ̃(t0) = x0,
dξ̃
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ̃

dtk−1
(t)(t0) = x(k−1)

0 ,

then ξ̃(t) = ξ(t) for every t ∈ T̃′ ∩ T′.
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Proof This is Exercise 2.3.1. �

As with homogeneous equations, for the scalar linear inhomogeneous ordinary
differential equations we can show that solutions exist for all times.

2.3.2 Proposition (Global existence of solutions for scalar linear inhomogeneous
ordinary differential equations) Consider the linear in homogeneous ordinary dif-
ferential equation F with right-hand side equation (2.11) and suppose that the functions
a0, a1, . . . , ak−1, b: T → R are continuous. If ξ : T′ → R is a solution for F, then there
exists a solution ξ : T→ R for which ξ|T′ = ξ.

Proof Note that, as per Exercise 1.3.23, we can convert the differential equation
F into a first-order differential equation linear homogeneous differential equation
with states (x, x(1), . . . , x(k−1)). Thus the result will follow from the analogous result
for first-order systems of equations, and this is stated and proved as Proposi-
tion 3.3.2. �

As in the homogeneous case, we can now talk sensibly about the set of all
solutions for F. Thus we can define

Sol(F) =
{
ξ : T→ R

∣∣∣∣
ξ satisfies

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t)
}
,

which is exactly this set of all solutions for F. While Sol(F) was a vector space in the
homogeneous case, in the inhomogeneous case this is no longer the case. However,
the set of all solutions for the homogeneous case plays an important rôle, even in
the homogeneous case. To organise this discussion, we let Fh be the “homogeneous
part” of F. Thus the right-hand side of Fh is

F̂h(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x.

As in Theorem 2.2.3, Sol(Fh) is a R-vector space of dimension k. We can now state
the character of Sol(F).

2.3.3 Theorem (Affine space structure of sets of solutions) Consider the linear inhomo-
geneous ordinary differential equation F with right-hand side equation (2.11) and suppose
that the functions a0, a1, . . . , ak−1, b: T→ R are continuous. Let ξp ∈ Sol(F). Then

Sol(F) = {ξ + ξp | ξ ∈ Sol(Fh)}.

Proof First note that, by Theorem 2.2.3, Sol(F) , ∅ and so there exists some
ξp ∈ Sol(F). We have, of course,

dkξp

dtk
(t) + ak−1(t)

dk−1ξp

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t). (2.12)
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Next let ξ ∈ Sol(F) so that

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t). (2.13)

Subtracting (2.12) from (2.13) we get

dk(ξ − ξp)
dtk

(t) + ak−1(t)
dk−1(ξ − ξp

dtk−1
(t) + · · · + a1(t)

d(ξ − ξp)
dt

(t) + a0(t)(ξ − ξp)(t) = 0,

i.e., ξ − ξp ∈ Sol(Fh). In other words, ξ = ξ̃ + ξp for ξ̃ ∈ Sol(Fh).
Conversely, suppose that ξ = ξ̃ + ξp for ξ̃ ∈ Sol(Fh). Then

dkξ̃

dtk
(t) + ak−1(t)

dk−1ξ̃

dtk−1
(t) + · · · + a1(t)

dξ̃
dt

(t) + a0(t)ξ̃(t) = 0. (2.14)

Adding (2.12) and (2.14) we get

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t),

i.e., ξ ∈ Sol(F). �

2.3.4 Remark (Comparison of Theorem 2.3.3 with systems of linear algebraic equa-
tions) The reader should compare here the result of Theorem 2.3.3 with the situa-
tion concerning linear algebraic equations of the form L(u) = v0, for vector spaces U
and V, a linear map L ∈ L(U; V), and a fixed v0 ∈ V. In particular, we can make ref-
erence to Proposition 1.2.4. In the setting of scalar linear inhomogeneous ordinary
differential equations, we have

U = Ck(T;R),

V = C0(T;R),

L( f )(t) =
dk f
dtk

(t) + ak−1(t)
dk−1 f
dtk−1

(t) + · · · + a1(t)
d f
dt

(t) + a0(t) f (t),

v0 = b.

Then Propositions 2.3.1 and 2.3.2 tell us that L is surjective, and so v0 ∈ image(L).
Thus we are in case (ii) of Proposition 1.2.4, which exactly the statement of
Theorem 2.3.3. Note that L is not injective, since Theorem 2.2.3 tells us that
dimR(ker(L)) = k. •

Note that Theorem 2.3.3 tells us that, to solve a scalar linear inhomogeneous
ordinary differential equation, we must do two things: (1) find some solution for
the equation; (2) find all solutions for the homogeneous part. Then we know
our solution will be found amongst the set of sums of these. Generally, both
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of these things is impossible, in any general way. We do know, however, that
Procedure 2.2.18 can be used, in principle, to find all solutions for the homogeneous
part. Thus one need only find some solution of the equation in this case. Upon
finding such a solution, one calls it a particular solution. Note that there are many
particular solutions. Indeed, Proposition 2.2.1 tells us that there is one solution for
every set of initial conditions. So one should always speak of a particular solution,
not the particular solution.

2.3.1.2 Finding a particular solution using the Wronskian So. . . how do we
find a particular solution? In this section we outline a general (and not very
efficient) way of arriving at some such solution, using the Wronskian of Defini-
tion 2.2.6. To state the result, suppose that we have a fundamental set of solutions
{ξ1, . . . , ξk} for Fh, where F has right-hand side (2.11), and denote

Wb, j(ξ1, . . . , ξk)(t)

= det



ξ1(t) · · · ξ j−1(t) 0 ξ j+1(t) · · · ξk(t)
...

. . .
...

...
...

. . .
...

dk−2ξ1

dtk−2
(t) · · ·

dk−2ξ j−1

dtk−2
(t) 0

dk−2ξ j+1

dtk−2
(t) · · ·

dk−2ξk

dtk−2
(t)

dk−1ξ1

dtk−1
(t) · · ·

dk−1ξ j−1

dtk−1
(t) b(t)

dk−1ξ j+1

dtk−1
(t) · · ·

dk−1ξk

dtk−1
(t)


,

for j ∈ {1, . . . , k}, i.e., Wb, j(ξ1, . . . , ξk)(t) is the determinant of the matrix used to
compute the Wronskian, but with the jth column replaced by (0, . . . , 0, b(t)).

We then have the following result.

2.3.5 Proposition (A particular solution using Wronskians) Consider the linear in homo-
geneous ordinary differential equation F with right-hand side equation (2.11) and suppose
that the functions a0, a1, . . . , ak−1, b: T → R are continuous. Let {ξ1, . . . , ξk} be a fun-
damental set of solutions for Fh and let t0 ∈ T. Then the function ξp : T → R defined
by

ξp(t) =

k∑
j=1

ξj(t)
∫ t

t0

Wb,j(ξ1, . . . , ξk)(τ)
W(ξ1, . . . , ξk)(τ)

dτ

is a particular solution for F.

Proof Let us define

c j(t) =

∫ t

t0

Wb, j(ξ1, . . . , ξk)(τ)
W(ξ1, . . . , ξk)(τ)

dτ, j ∈ {1, . . . , k}, t ∈ T,

so that
dc j

dt
(t) =

Wb, j(ξ1, . . . , ξk)(t)
W(ξ1, . . . , ξk)(t)

, j ∈ {1, . . . , k}, t ∈ T.
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Note that this is equivalent, by Cramer’s Rule for linear systems of algebraic
equations, to the set of equations

ξ1(t) ξ2(t) · · · ξk(t)
dξ1

dt
(t)

dξ2

dt
(t) · · ·

dξk

dt
(t)

...
...

. . .
...

dk−1ξ1

dtk−1
(t)

dk−1ξ2

dtk−1
(t) · · ·

dk−1ξk

dtk−1
(t)





dc1

dt
(t)

dc2

dt
(t)
...

dck

dt
(t)


=


0
0
...

b(t)

 , t ∈ T. (2.15)

Note that the proposition is then that

ξp(t) =

k∑
j=1

c j(t)ξ j(t), t ∈ T,

defines a particular solution for F. This we shall prove by direct computation.
We compute

dξp

dt
(t) =

k∑
j=1

dc j

dt
(t)ξ j(t) +

k∑
j=1

c j(t)
dξ j

dt
(t) =

k∑
j=1

c j(t)
dξ j

dt
(t)

for t ∈ T, using the first of equations (2.15). Repeatedly differentiating and using
successive equations from (2.15), we deduce that

d jξp

dt j (t) =

k∑
j=1

c j(t)
d jξ

dt j (t), j ∈ {0, 1, . . . , k − 1}, t ∈ T.

We also have, using the last of equations (2.15),

dkξp

dtk
(t) =

k∑
j=1

dc j(t)
dt

(t)
dk−1ξ j

dtk−1
(t) +

k∑
j=1

c j(t)
dkξ j

dtk
(t) =

k∑
j=1

c j(t)
dkξ j

dtk
(t) + b(t).

Therefore, combining these calculations,

dkξp(t)
dtk

(t) + ak−1(t)
dk−1ξp

dtk−1
(t) + · · · + a1(t)

dξp

dt
(t) + a0(t)ξ(t)

=

k∑
j=1

c j(t)

dkξ j(t)
dtk

(t) + ak−1(t)
dk−1ξ j

dtk−1
(t) + · · · + a1(t)

dξ j

dt
(t) + a0(t)ξ j(t)

 + b(t) = b(t),

using the fact that ξ1, . . . , ξk are solutions for Fh. Thus ξp is indeed a particular
solution. �

Let us illustrate this result on an example.
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2.3.6 Example (First-order scalar linear inhomogeneous ordinary differential equa-
tions) We consider here the first-order equation F with right-hand side

F̂(t, x) = −a(t)x + b(t)

for continuous functions a, b : T → R. We have seen in Example 2.2.5 that a
fundamental set of solutions is given by {ξ1(t)}, with

ξ1(t) = e−
∫ t

t0
a(τ) dτ

for some t0 ∈ T. Therefore,

W(ξ1)(t) = det
[
ξ1(t)

]
= ξ1(t), W(ξ1)b,1 = det

[
b(t)

]
= b(t).

Thus

ξp(t) = ξ1(t)
(∫ t

t0

b(τ)
ξ1(τ)

dτ
)

= e−
∫ t

t0
a(τ) dτ

∫ t

t0

b(τ)e
∫ τ

t0
a(σ) dσdτ

defines a particular solution for F. Thus, as in Theorem 2.3.3, any solution for F
has the form

ξ(t) = Ce−
∫ t

t0
a(τ) dτ

+ e−
∫ t

t0
a(τ) dτ

∫ t

t0

b(τ)e
∫ τ

t0
a(σ) dσdτ

for some C ∈ R. In we apply an initial condition ξ(t0) = x0, then we see that C = x0.
Therefore, finally, we have the solution

ξ(t) = x0e−
∫ t

t0
a(τ) dτ

+ e−
∫ t

t0
a(τ) dτ

∫ t

t0

b(τ)e
∫ τ

t0
a(σ) dσdτ

to the initial value problem

dξ
dt

(t) + a(t)ξ(t) = b(t), ξ(t0) = x0.

Because we have expressed the solution of a differential equation as an integral,
we declare victory!2

•

2.3.1.3 The Green’s function In this section we describe another means of
determining a particular solution. In this case, what we arrive at is a description
of a particular solution that allows for the inhomogeneous term “b” to be plugged
into an integral. We shall see a close variant of this in Section 3.3 when we discuss
linear inhomogeneous systems of equations.

The result is the following.
2Because victories are few and far between in the business of solving differential equations.
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2.3.7 Theorem (Existence of, and properties of, the Green’s function) Consider the
linear homogeneous ordinary differential equation F with right-hand side equation (2.1)
and suppose that the functions a0, a1, . . . , ak−1 : T → R are continuous. Let t0 ∈ T and
denote Tt0 = T ∩ [t0,∞).

Ft0 : Tt0 × R ⊕ L≤k
sym(R;R)→ R

be defined by Ft0(t, x, x
(1), . . . , x(k)) = F(t, x, x(1), . . . , x(k)). If b ∈ C0(T;R) then define the

inhomogeneous ordinary differential equation

Ft0,b : Tt0 × R ⊕ L≤k
sym(R;R)→ R

(t, x, x(1), . . . , x(k)) 7→ Ft0(t, x, x
(1), . . . , x(k)) − b(t).

Then there exists
GF,t0 : Tt0 × Tt0 → R

with the following properties:

(i)
∂lGF,t0

∂tl
is continuous for l ∈ {0, 1, . . . ,k − 2};

(ii)
∂lGF,t0

∂tl
is continuous on

{(t, τ) ∈ Tt0 × Tt0 | t , τ}

for l ∈ {k − 1,k};
(iii) for τ ∈ Tt0 , we have

lim
t↑τ

∂lGF,t0

∂tl
(t, τ) = 0, lim

t↓τ

∂lGF,t0

∂tl
(t, τ) = 0, l ∈ {0, 1, . . . ,k − 2},

and

lim
t↑τ

∂k−1GF,t0

∂tk−1
(t, τ) = 0, lim

t↓τ

∂k−1GF,t0

∂tk−1
(t, τ) = 1;

(iv)
∂lGF,t0

∂tl
(t0, τ) = 0, l ∈ {0, 1, . . . ,k − 1};

(v) for t ∈ Tt0 \ {τ} we have

∂kGF,t0

∂tk
(t, τ) + ak−1(t)

∂k−1GF,t0

∂tk−1
(t, τ) + · · · + a1(t)

∂GF,t0

∂t
(t, τ) + a0(t)GF,t0(t, τ) = 0;

(vi) if b ∈ Co(T;R) and if ξp,b : Tt0 → R is given by

ξp,b(t) =

∫ t

t0

GF,t0(t, τ)b(τ) dτ,

then ξp,b ∈ Sol(Ft0,b).
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Moreover, there is only one such function satisfying all of the above properties.
Proof Let {ξ1, . . . , ξk} be a fundamental set of solutions and define

g j(s) = (−1)k+ j det


ξ1(s) · · · ξ j−1(s) ξ j+1(s) · · · ξk(s)
...

. . .
...

...
. . .

...

dk−2ξ1

dtk−2
(s) · · ·

dk−2ξ j−1

dtk−2
(s)

dk−2ξ j+1

dtk−2
(s) · · ·

dk−2ξk

dtk−2
(s)

 ,
for j ∈ {1, . . . , k}, and observe that we also have

g j(s) = det



ξ1(s) · · · ξ j−1(s) 0 ξ j+1(s) · · · ξk(s)
...

. . .
...

...
...

. . .
...

dk−2ξ1

dtk−2
(s) · · ·

dk−2ξ j−1

dtk−2
(s) 0

dk−2ξ j+1

dtk−2
(s) · · ·

dk−2ξk

dtk−2
(s)

dk−1ξ1

dtk−1
(s) · · ·

dk−1ξ j−1

dtk−1
(s) 1

dk−1ξ j+1

dtk−1
(s) · · ·

dk−1ξk

dtk−1
(s)


, (2.16)

for j ∈ {1, . . . , k}. Note, then, that ξp : Tt0 → R defined by

ξp(t) =

k∑
j=1

ξ j(t)
∫ t

t0

g j(s)
W(ξ1, . . . , ξk)(s)

ds

is the particular solution with “b(t) = 1” from Proposition 2.3.5. Now define
c j : Tt0 → R, j ∈ {1, . . . , k}, by

c j(τ) =
g j(τ)

W(ξ1, . . . , ξk)(τ)
−

W(ξ1, . . . , ξ j−1, ξp, ξ j+1, . . . , ξk)(τ)
W(ξ1, . . . , ξk)(τ)

.

Finally, take
GF,t0(t, τ) = 0, t ≤ τ,

and

GF,t0(t, τ) = ξp(t) +

k∑
j=1

c j(τ)ξ j(t), t > τ.

The definition immediately gives part (iv).
We also immediately deduce part (v), by virtue of Proposition 2.3.5 and Theo-

rem 2.3.3.
For a function f : Tt0 × Tt0 → R, let us denote

f (τ+, τ) = lim
t↓τ

f (t, τ).

Note that

∂lGF,t0

∂tl
(t, τ) =

dlξp

dtl
(t) +

l∑
j=1

c j(τ)
dlξ j

dtl
(t), l ∈ {0, 1, . . . , k − 1}, t > τ,
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which gives

∂lGF,t0

∂tl
(τ+, τ) =

dlξp

dtl
(τ) +

l∑
j=1

c j(τ)
dlξ j

dtl
(τ), l ∈ {0, 1, . . . , k − 1}.

We then have

ξ1(t) ξ2(t) · · · ξk(t)
dξ1

dt
(t)

dξ2

dt
(t) · · ·

dξk

dt
(t)

...
...

. . .
...

dk−1ξ1

dtk−1
(t)

dk−1ξ2

dtk−1
(t) · · ·

dk−1ξk

dtk−1
(t)




c1(τ)
c2(τ)
...

ck(τ)

 =



GF,t0(t, τ) − ξp(t)
∂GF,t0

∂t
(t, τ) −

dξp

dt
(t)

...

∂k−1GF,t0

∂tk−1
(t, τ) −

dk−1ξp

dtk−1
(t)


. (2.17)

Let us denote by WF,t0, j(ξ1, . . . , ξk)(t, τ) the determinant of the matrix on the left-hand
side of (2.17), but with the jth column replaced by the vector on the right-hand side
of (2.16). By Cramer’s Rule, (2.17) is equivalent to

c j(τ) =
WF,t0, j(ξ1, . . . , ξk)(τ+, τ)

W(ξ1, . . . , ξk)(τ)
, j ∈ {1, . . . , k}.

By our observation (2.16) and the definition of the functions c1, . . . , ck, this implies
that (2.17) is equivalent to

∂lGF,t0

∂tl
(τ+, τ) = 0, l ∈ {0, 1, . . . , k − 2},

∂k−1GF,t0

∂tk−1
(τ+, τ) = 1.

This gives the “t ↓ τ” limits for part (iii). The “t ↑ τ” limits for part (iii) follow since
GF,t0(t, τ) = 0 for t ≤ τ.

Since τ 7→ c j(τ), j ∈ {1, . . . , k}, and the first k derivatives of t 7→ ξp(t) and t 7→ ξ j(t),
j ∈ {1, . . . , k}, are continuous for t > τ, and since GF,t0(t, τ) = 0 for t ≤ τ, we conclude

that
∂lGF,t0
∂tl , l ∈ {0, 1, . . . ,n}, is continuous away from points where t = τ. This gives

part (ii). Combining parts (iii) and (ii) gives part (i).
For part (vi), we must show that, given b ∈ C0(Tt0 ;R), the function ξp,b in the

statement of the theorem is an element of Sol(Ft0,b). We shall use the notation, for
f : Tt0 × Tt0 → R,

f (t, t−) = lim
τ↑t

f (t, τ).

We then define

ξp,b(t) =

∫ t

t0

GF,t0(t, τ)b(τ) dτ
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and compute, for τ ∈ [t0, t),

dlξp,b

dtl
(t) =

∂l−1GF,t0

∂tl−1
(t, t−)b(t) +

∫ t

t0

∂lGF,t0

∂tl
(t, τ) dτ, l ∈ {0, 1, . . . , k}.

Since
∂l−1GF,t0

∂tl−1
(t, t−) =

∂l−1GF,t0

∂tl−1
(t+, t) = 0, l ∈ {0, 1, . . . , k − 1}

by parts (i) and (iii), we have

dlξp,b

dtl
(t) =

∫ t

t0

∂lGF,t0

∂tl
(t, τ) dτ, l ∈ {0, 1, . . . , k − 1}. (2.18)

Also by parts (i) and (iii), we have

dkξp,b

dtk
(t) = b(t) +

∫ t

t0

∂kGF,t0

∂tk
(t, τ) dτ. (2.19)

Combining (2.18) and (2.19), and using part (v), we have, for t ∈ Tt0 ,

∂kξp,b

∂tk
(t) + ak−1(t)

dk−1ξp,b

dtk−1
(t) + · · · + a1(t)

dξp,b

dt
(t) + a0(t)ξp,b(t) = b(t),

giving (vi).
The final uniqueness assertion of the theorem is obtained from the following

observations:
1. for t ≤ τ, t 7→ GF,t0(t, τ) is the unique element of Sol(Fh) with initial conditions

∂lGF,t0

∂tl
(t0, τ) = 0, l ∈ {0, 1, . . . , k − 1};

2. for t > τ, t 7→ GF,t0(t, τ) is the unique element of Sol(Fh) with initial conditions

∂lGF,t0

∂tl
(τ, τ) = 0, l ∈ {0, 1, . . . , k − 2},

∂k−1GF,t0

∂tk−1
(τ, τ) = 1.

These, combined with Proposition 2.3.1, give the theorem. �

Of course, we can give a name to the function GF,t0 from the preceding theorem.

2.3.8 Definition (Green’s function) Consider the linear homogeneous ordinary differen-
tial equation F with right-hand side equation (2.11) and suppose that the functions
a0, a1, . . . , ak−1, b : T→ R are continuous. Let t0 ∈ T and denote Tt0 = T∩ [t0,∞). The
function GF,t0 of Theorem 2.3.7 is the Green’s function for F at time t0. •

There are a few observations one can make about the Green’s function.
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2.3.9 Remarks (Attributes of the Green’s function)
1. As we observed in Remark 2.3.4, the mapping

LF : Ck(Tt0 ;R)→ C0(Tt0 ;R)

ξ 7→ Fh

(
t, ξ(t),

dξ
dt

(t), . . . ,
dkξ

dtk
(t)

)
is surjective, and so, for any b ∈ C0(Tt0 ;R), there exists one (indeed, many by
Theorem 2.3.3), solution of the differential equation with solutions

Fh

(
t, ξ(t),

dξ
dt

(t), . . . ,
dkξ

dtk
(t)

)
= b(t).

One can think of the mapping

b 7→
(
t 7→

∫ t

t0

GF,t0(t, τ)b(τ) dτ
)

(2.20)

as prescribing a right-inverse of LF. Of course, the prescription of a particular
right-inverse amounts to a prescription for choosing initial conditions, since
initial conditions are what distinguish elements of Sol(F). We refer the reader
to Exercise 2.3.2 for just what initial condition choice is being made by the
assignment (2.20).

2. There is also a physical interpretation of the mapping t 7→ GF,t0(t, τ). The initial
conditions are zero at t0, so the solution is at rest, until something happens at
t = τ. At t = τ, we imagine the system being given an “impulse” i.e., a short
duration, large magnitude input. If the area under the graph of this impulse is
1, this will give a jolt to the kth derivative of GF,t0 at t = τ. This discontinuity
when integrated, will give an input of 1 to the (k − 1)st derivative, resulting in
the initial conditions of part (iii) of Theorem 2.3.7.
This nonsense can be made precise using the theory of distributions, and using
the so-called “delta-function” as the “b.” However, a detailed discussion of this,
in this text, will take us too far afield.
Nonetheless, it does motivate calling GF,t0 the impulse response for Fh. In system
theory, this impulse response plays an important rôle. •

Let us give the simplest possible example to illustrate the use of the Green’s
function.

2.3.10 Example (Green’s function for first-order scalar linear ordinary differential
equation) We consider the first order equation F with right-hand side

F̂(t, x) = −a(t)x.
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Let us take T to be the time-domain for the equation, and let t0 ∈ T. One then takes
Tt0 , just as in the statement of Theorem 2.3.7 to be the set of points in T larger than
t0. The way one determines the Green’s function is by first taking τ ∈ Tt0 and then
solving the initial value problem

ξ̇(t) + a(t)ξ(t) = 0, ξ(τ) = 1,

just as prescribed in part (iii) of Theorem 2.3.7. However, in Example 2.2.5 we
obtained the solution to this initial value problem as

ξ(t) = e−
∫ t
τ

a(s) ds.

Then the Green’s function is given by

GF,t0(t, τ) =

0, t ≤ τ,

e−
∫ t
τ

a(s) ds, t > τ.

Therefore, given b ∈ C0(Tt0 ;R), a particular solution to the ordinary differential
equation Ft0,b with right-hand side

F̂(t, x) = −a(t)x + b(t)

is given by

ξp,b(t) =

∫ t

t0

e−
∫ t
τ

a(s) dsb(τ) dτ.

Note that this, in general, is a different particular solution than that obtained in
Example 2.3.6 using the Wronskian method of Proposition 2.3.5.

We plot the graph of GF,t0 in the case of T = [0,∞), t0 = 0, and a(t) = 1 in
Figure 2.3. •

2.3.11 Remark (Green’s function for constant coefficient equations and convolu-
tion) Suppose that F is a kth-order scalar linear inhomogeneous ordinary differ-
ential equation with constant coefficients, and take T = [0,∞) and t0 = 0. As in
the statement of Theorem 2.3.7, for each τ ∈ T, t 7→ GF,0(t, τ) is a solution for F
satisfying the initial conditions

∂ jGF,0

∂t j (τ) = 0, j ∈ {0, 1, . . . , k − 2},

∂k−1GF,0

∂tk−1
(τ) = 1.

Since F has constant coefficients, it is autonomous, and so by Exercise 1.3.19 there
exists HF : T→ R such that GF,0(t, τ) = HF(t−τ). Then, if we add an inhomogeneous
term b to F, the particular solution of Theorem 2.3.7(vi) is

ξp,b(t) =

∫ t

0
HF(t − τ)b(τ) dτ.
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Figure 2.3 The Green’s function for a scalar linear ordinary dif-
ferential equation with constant coefficients

Integrals of the type ∫
f (t − τ)g(τ) dτ

are known as convolution integrals. These arise in system theory, Fourier theory,
and approximation theory, for example. We shall consider convolution in the
context of transform theory in Section 5.1. •

2.3.2 Equations with constant coefficients

We now specialise the general discussion from the preceding section to equa-
tions with constant coefficients. Thus we are looking at scalar linear inhomoge-
neous ordinary differential equations with right-hand sides given by

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + b(t) (2.21)

for a0, a1, . . . , ak−1 ∈ R and b : T→ R. Thus a solution t 7→ ξ(t) satisfies the equation

dkξ(t)
dtk

(t) + ak−1
dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = b(t). (2.22)

These equations are, of course, a special case of the equations considered in Sec-
tion 2.3.1, and so all statements made about the general case of time-varying
coefficients hold in the special case of constant coefficients. In particular, Propo-
sitions 2.3.1 and 2.3.2, and Theorem 2.3.3 hold for equations of the form (2.22).
However, for these constant coefficient equations, it is possible to say some things
a little more explicitly, and this is what we undertake to do.
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2.3.2.1 The “method of undetermined coefficients” We present in this section
a so-called method for solving scalar linear inhomogeneous ordinary differential
equations with constant coefficients. With this method, one guesses a form of
particular solution based on the form of the function b, and this does algebra to
determine the precise solution. The advantages to this method are
1. it does not require first finding a fundamental set of solutions, as in Proposi-

tion 2.3.5,
2. it is in principle possible for a brainless monkey to apply the method, and
3. it is an excellent source of mindless computations that students can be forced

to do for marks in homework and on exams.
The disadvantages of the method are
1. it only works for very specific functions b, and so does not work most of the

time,
2. even when it does work, it is tedious and likely to produce errors when used in

the hands of most humans,
3. it is 2016, for crying out loud, and there are computer packages that do this sort

of thing in their sleep!
What we shall do is (1) describe when the method applies, (2) describe how one
uses the method, and (3) reiterate the silliness of the method at the end of the
discussion.

First let us indicate the sorts of “b’s” we allow.

2.3.12 Definition (Pretty uninteresting function) Let T ⊆ R be an interval. A function
f : T→ R is pretty uninteresting if it has one of the following three forms:

(i) f (t) = tmert for m ∈ Z≥0 and r ∈ R;
(ii) f (t) = tmeσt cos(ωt) for m ∈ Z≥0, σ ∈ R, and ω ∈ R>0;
(iii) f (t) = tmeσt sin(ωt) for m ∈ Z≥0, σ ∈ R, and ω ∈ R>0.

The nonnegative integer m in the above forms is the order of f and is denoted by
o( f ). If f : T→ R has the form

f (t) = c1 f1(t) + · · · + cr fr(t)

where c1, . . . , cr ∈ R and each of f1, . . . , fr is pretty uninteresting, then f is also
pretty uninteresting. •

Here are some examples of useful pretty uninteresting functions.

2.3.13 Examples (Examples of interesting pretty uninteresting functions)
1. Consider the function 1 : [0,∞)→ R defined by 1(t) = 1 for all t ∈ [0,∞). This is

a “step function” and is pretty uninteresting. Often it is taken to be defined on
all of R, and to be zero for negative times. The idea is that it gives an input to
a differential equation that “switches on” at t = 0. Among the many particular
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solutions for a differential equation with b = 1, there is one that is known as the
“step response,” and it is determined by a specific choice of initial condition.
Students going on to take a course in system theory will learn about this.

2. Next consider the function Hω : [0,∞) → R defined by Hω(t) = sin(ωt) for
ω ∈ R>0. This is an example of an “harmonic” function, and specifically is
a “sinusoid.” In this case, one can think of prescribing a “b” of this form
as “shaking” a differential equation. It can be interesting to know how the
behaviour of the system will vary as we change ω. This gives rise in system
theory to something called the “frequency response.” •

We now state a few elementary properties of pretty uninteresting functions.

2.3.14 Lemma (Properties of pretty uninteresting functions) Let T ⊆ R be an interval,
let f, f1, . . . , fr : T → R be pretty uninteresting functions, and consider a scalar linear
homogeneous ordinary differential equation F with constant coefficients with right-hand
side of the form (2.21). Define normalised scalar linear inhomogeneous ordinary differential
equations Fj, j ∈ {1, . . . , r}, by

Fj(t, x, x(1), . . . , x(k)) = xk)
− F̂(t, x, x(1), . . . , x(k−1)) − fj(t).

Then the following statements hold:
(i) there exists unique normalised scalar linear homogeneous ordinary differential equa-

tion Ff of order o(f) such that

Ff

(
t, f(t),

df
dt

(t), . . . ,
do(f)f
dto(f)

)
= 0, t ∈ T;

(ii) if ξj ∈ Sol(Fj), j ∈ {1, . . . , r}, and if

g = c1f1 + · · · + crfr

is also pretty uninteresting, then, if ξ = c1ξ1 + · · · + crξr, then ξ ∈ Sol(Fg), where

Fj(t, x, x(1), . . . , x(k)) = xk)
− F̂(t, x, x(1), . . . , x(k−1)) − g(t).

Proof (i) An examination of Procedure 2.2.18 and the attendant Theorem 2.2.19
shows that F f can be defined by defining their characteristic polynomials as follows
1. f (t) = tmert: take

PF f = (X − r)m+1;

2. f (t) = tmeσt cos(ωt) or f (t) = tmeσt sin(ωt): take

PF f = ((X − σ)2 + ω2)m+1.

(ii) This is a mere verification, once one understands the symbols involved. �

The differential equation F f in the first part of the lemma we call the annihilator
of the pretty uninteresting function f . The following examples illustrate how one
finds the annihilator in practice, based on the proof of the first part of the lemma.
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2.3.15 Examples (Annihilator)
1. Consider the function f (t) = 1. This is the pretty uninteresting function t 7→

tkeσt cos(ωt) with k = 0, σ = 0, and ω. This corresponds, from Procedure 2.2.18,
to a root r = 0 of a polynomial with multiplicity 1. Thus PF f = X, and so

F(t, x, x(1)) = X.

2. Now consider f (t) = e−2t. This is the pretty uninteresting function t 7→
tkeσt cos(ωt) with k = 0, σ = −2, and ω = 0. This corresponds to a root r = −2 of
a polynomial with multiplicity 1. Thus PF f = X + 2 and so

F f (t, x, x(1)) = x(1) + 2x.

3. Next we take f (t) = 2e3t sin(2t)+ t2. This is an also pretty uninteresting function,
being a linear combination of f1(t) = e3t sin(2t) and f2(t) = t2.
Note that f1 is the pretty uninteresting function t 7→ tkeσt sin(ωt) with k = 0,
σ = 3, and ω = 2. This function is associated, via Procedure 2.2.18, with a root
ρ = 3 + 2i of a polynomial with multiplicity 1. Of course, we must also have the
root ρ̄ = 3 − 2i.
Note that f2 is the pretty uninteresting function t 7→ tkeσt cos(ωt) with k = 2,
σ = 0, and ω = 0. This is associated with a root r = 0 with multiplicity 3.
Putting this all together,

PF f = (X − (3 + 2i))(X − (3 − 2i))X3 = X5
− 6X4 + 13X3. •

The second part of the lemma points out, in short, the obvious fact that if “b” is
also pretty uninteresting, then one can obtain a particular solution by obtaining a
particular solution for each of its pretty uninteresting components, and then sum-
ming these with the same coefficients as in the also pretty uninteresting function.
The point of this is that, to obtain a particular solution for an also pretty uninter-
esting “b,” it suffices to know how to do this for a pretty uninteresting b. Thus we
deliver the following construction.

2.3.16 Procedure (Method of undetermined coefficients) We let F be a normalised
scalar linear inhomogeneous ordinary differential equation with constant coeffi-
cients with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + f (t),

where f is pretty uninteresting. Do the following.
1. Let F f be the annihilator of f .
2. Let G f be the normalised scalar linear homogeneous ordinary differential equa-

tion whose characteristic polynomial is PG f = PF f PFh .
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3. Using Procedure 2.2.18, find

(a) pretty uninteresting functions ξ1, . . . , ξk for which {ξ1, . . . , ξk} is a funda-
mental set of solutions for Fh and

(b) pretty uninteresting functions η1, . . . , ηo( f )+1 for which
{ξ1, . . . , ξk, η1, . . . , ηo( f )+1} is a fundamental set of solutions for G f .

4. For (as yet) undetermined coefficients c1, . . . , co( f )+1 ∈ R, denote

ξp = c1η1 + · · · + co( f )+1ηo( f )+1.

5. Determine c1, . . . , co( f )+1 by demanding that ξp be a particular solution for F.
We shall show that this procedure makes sense and defines a particular solution
for F. •

Let us verify that the preceding procedure gives what we want.

2.3.17 Proposition (Validity of the method of undetermined coefficients) Let F be a
normalised scalar linear inhomogeneous ordinary differential equation with constant coef-
ficients with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + f(t),

where f is pretty uninteresting. Then all steps in Procedure 2.3.16 are unambiguously
defined, and the result is a particular solution for F.
Proof In the proof we shall assume that f (t) = to( f )ert for r ∈ R. Entirely similar
reasoning works for the other two sorts of pretty uninteresting functions.

From Procedure 2.2.18 we know that PF f = (X − r)o( f )+1. Let us suppose that

PFh = (X − r)m(r)P,

where P does not have r as a root. Therefore,

PG f = (X − r)m(r)+o( f )+1P.

Then, according to Procedure 2.2.18, among the pretty uninteresting solutions for
Fh are

t 7→ t jert, j ∈ {0, 1, . . . ,m(r) − 1}.

The rest of the pretty uninteresting solutions for Fh have nothing to do with the
root “r” of the characteristic polynomial, and are not interesting to us here. Now
the o( f ) + 1 pretty uninteresting solutions for G f that are added to those for Fh are

t jert, j ∈ {m(r), . . . ,m(r) + o( f )},

again according to Procedure 2.2.18. This demonstrates the viability of the first
three steps of Procedure 2.2.18. We now need to show that one can solve for the
coefficients c1, . . . , co( f )+1 to obtain a particular solution for F. If

ξp(t) = c1tm(r)ert + · · · + co( f )+1tm(r)+o( f )
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then Lemma 1 from the proof of Theorem 2.2.19 shows that(
dm(r)
dtm(r)

− r
)
ξp(t)

is an also pretty uninteresting function whose highest order (as a pretty uninterest-
ing function) term is of order o( f ). By Corollary 2.2.17, and since the derivative of
a pretty uninteresting function of order m is an also pretty uninteresting function
of order m, we have that

Fh

t, ξp(t),
dξp

dt
(t), . . . ,

dkξp

dtk
(t)


is an also pretty uninteresting function of order o( f ). Therefore, we can use the
equality

Fh

t, ξp(t),
dξp

dt
(t), . . . ,

dkξp

dtk
(t)

 = c1tm(r)ert + · · · + co( f )+1tm(r)+o( f )

to solve for the coefficients c1, . . . , co( f )+1, as asserted in Procedure 2.2.18. �

While the preceding discussion does indeed provide a means of solving, in
principle, scalar linear inhomogeneous ordinary differential equations with also
pretty uninteresting “b’s,” it does tend to be a lot of work, cf. Example 2.3.18, and
there are precisely zero equations that can be solved by this procedure that cannot
far more easily be solved with a computer.

2.3.2.2 Some examples We carry on with the three examples of Section 2.2.2.4.
Thus we first give an “academic” example to illustrate Procedure 2.3.16. Then we
consider a first- and second-order system with specific “b’s,” in order to discuss
some features of the solutions in these cases.

2.3.18 Example (“Academic” example) We continue the example of Example 2.2.20,
now adding an inhomogeneous term. Specifically, we consider the 4th-order scalar
linear homogeneous ordinary differential equation F with right-hand side

F̂(t, x, x(1), x(2), x(3)) = −5x + 8x(1)
− 2x(2) + tet + 2 cos(2t).

Thus solutions t 7→ ξ(t) to this equation satisfy

d4ξ

dt4 (t) + 2
d2ξ
dt2 (t) − 8

dξ
dt

(t) + 5ξ(t) = tet + 2cos(2t).

The right-hand side of this equation has the form b(t) = f1(t) + 2 f2(t) for the two
pretty uninteresting functions

f1(t) = tet, f2(t) = cos(2t).
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We find two particular solutions ξp,1 and ξp,2, satisfying

d4ξp,1

dt4 (t) + 2
d2ξp,1

dt2 (t) − 8
dξp,1

dt
(t) + 5ξp,1(t) = tet

and
d4ξp,2

dt4 (t) + 2
d2ξp,2

dt2 (t) − 8
dξp,2

dt
(t) + 5ξp,2(t) = cos(2t),

and then, by Lemma 2.3.14(ii),

ξp = ξp,1 + 2ξp,2

is a particular solution.
Let us find ξp,1 corresponding to f1(t) = tet. The annihilator F f1 of f1 has

characteristic polynomial PF f1
= (X − 1)2. We have

PF f1
PFh = (X − 1)2(X − 1)2(X2 + 2X + 5) = (X − 1)4(X2 + 2X + 5)

as the characteristic polynomial of F f1 ◦ Fh. According to Procedure 2.2.18, a
fundamental set of solutions, each of which is a pretty uninteresting function, is
given by

e−t cos(2t), e−t sin(2t), et, tet, t2et, t3et.

The first four of these are solutions for Fh. So we form our candidate particular
solution from the last two functions:

ξp,1(t) = c1t2et + c2t3et.

To determine c1 and c2, we compute(
d4

dt4 + 2
d2

dt2 − 8
d
dt

+ 5
)
ξp,1(t) = (16c1 + 24c2)et + 48c2tet.

Thus we have

16c1 + 24c2 = 0, 48c2 = 1 =⇒ c1 = −
1

32
, c2 =

1
48
.

Thus

ξp,1(t) = −
t2et

32
+

t3et

48
.

Now we find ξp,2 corresponding to f2 = cos(2t). Here the annihilator F f2 of f2

has characteristic polynomial PF f2
= X2 + 4. We have

PF f2
PFh = (X2 + 4)(X4 + 2X2

− 8X + 5).
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Thus the fundamental set of solutions for F f2 ◦ Fh is given by

e−t cos(2t), e−t sin(2t), et, tet, cos(2t), sin(2t).

Since the first four of these are solutions for Fh, we have

ξp,2(t) = c1 cos(2t) + c2 sin(2t).

To determine c1 and c2 we compute(
d4

dt4 + 2
d2

dt2 − 8
d
dt

+ 5
)
ξp,2(t) = (13c1 − 16c2) cos(2t) + (16c1 + 13c2)sin(2t).

Therefore,

13c1 − 16c2 = 1, 16c1 + 13c2 = 0 =⇒ c1 =
13

425
, c2 =

16
425

.

Thus
ξp,2 =

13
425

cos(2t) +
16

425
sin(2t).

Finally, we have the particular

ξp(t) = −
t2et

32
+

t3et

48
+

13
425

cos(2t) +
16

425
sin(2t).

Thus, as per Theorem 2.3.3, any solution ξ of F can be written we

ξ(t) = c1et + c2tet + c3e−t cos(2t) + c4e−t sin(2t)−
t2et

32
+

t3et

48
+

26
425

cos(2t) +
32
425

sin(2t).

To determine the constants c1, c2, c3, c4, we use the initial conditions

ξ(0) = x0,
dξ
dt

(0) = x + 0(1),
d2ξ
dt2 (0) = x(2)

0 ,
d3ξ
dt

(0) = x(3)
0 .

These do not have the same solution as in Example 2.2.20 because of the presence
of the particular solution. Some unpleasant computation gives the equations

c1 + c3 = −
26

425
+ x0,

c1 + c2 − c3 + 2c4 = −
64

425
+ x(1)

0 ,

c1 + 2c2 − 3c3 − 4c4 =
2089
6800

+ x(2)
0 ,

c1 + 3c2 + 11c3 − 2c4 =
4521
6800

+ x(3)
0
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that have to be solved. Here’s what you get:

c1 =
15
16

x0 +
1

16
x(1)

0 +
1
16

x(2)
0 −

1
16

x(3)
0 −

303
3400

,

c2 = −
5
8

x0 +
3
8

x(1)
0 +

1
8

x(2)
0 +

1
8

x(3)
0 +

2809
27200

,

c3 =
1

16
x0 −

1
16

x(1)
0 −

1
16

x(2)
0 +

1
16

x(3)
0 +

19
680

,

c4 = −
1
8

x0 +
1
4

x(1)
0 −

1
8

x(2)
0 −

3721
54400

.

Alternatively, one can use Mathematica® as illustrated in Section 2.4.2. You will
then get back a reliable answer after about 15 seconds of typing. You can decide
which method you think is best in practice. •

The next two examples give an illustration of where pretty uninteresting func-
tions are interesting in application.

2.3.19 Example (First-order system with step input) The differential equation we con-
sider here is an inhomogeneous version of the equation considered in Exam-
ple 2.2.21. We take the first-order scalar linear inhomogeneous ordinary differ-
ential equation F with constant coefficients and with right-hand side

F̂(t, x) = −
x
τ

+ 1.

Thus solutions t 7→ ξ(t) to this differential equation satisfy

dξ
dt

(t) +
1
τ
ξ(t) = 1.

We have already determined that a solution to the homogeneous equation will
have the form ξ(t) = ce−t/τ, taking the convention that 1

τ = 0 when “τ = ∞.”
So next we find a particular solution. The annihilator F f of the pretty uninter-

esting function f (t) = 1 has characteristic polynomial PF f = X. The characteristic
polynomial for Fh is PFh = X + 1

τ . Thus we must list the fundamental solutions for
G f , where

PG f = X(X − 1
τ ).

There are two cases.
First, when τ , ∞, the fundamental solutions are t 7→ e−t/τ and t 7→ 1, using

Procedure 2.2.18. The first of these is a solution for the homogeneous solution, so
we take a particular solution to be a multiple of the second: ξp(t) = c. To find c we
substitute into the differential equation:( d

dt
+

1
τ

)
ξ =

c
τ
.
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To be a particular solution, we must have c
τ = 1 and so c = τ. Thus ξp(t) = τ.

The other case arises when τ = ∞, and in this case the fundamental solutions
for G f are t 7→ 1 and t 7→ t, again using Procedure 2.2.18. In this case, the first of
these functions is a solution for the homogeneous system, and so a multiple of the
second will be a particular solution, i.e., ξp(t) = ct. To determine c we require that
ξp be a particular solution:

d
dt
ξp(t) = c,

from which we deduce that c = 1. Thus ξp(t) = t.
In summary, a particular solution is

ξp(t) =

τ, τ , ∞,

t, t = ∞.

Therefore, any solution has the form

ξ(t) = ce−ttau + ξp(t).

In case τ , ∞, one normally takes the initial condition ξ(0) = 0 to get c = −τ and so

ξ(t) = τ(1 − e−t/τ).

To allow a fruitful comparison of the effects of changing τ, let us normalise this
solution by multiplying by 1

τ to get the step response

1F(t) = 1 − e−t/τ.

In Figure 2.4 we graph this step response for varying values of τ ∈ R>0. We note

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.4 The step response of a first-order system

that as τ gets smaller, the step response rises more quickly, i.e., responds faster. •
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2.3.20 Example (Second-order system with sinusoidal input) Next we consider the
second-order differential equation of Example 2.2.22, but with a sinusoidal inho-
mogeneous term. Thus we take the second-order scalar linear inhomogeneous
ordinary differential equation F with right-hand side

F̂(t, x, x(1)) = −ω2
0x − 2ζω0x(1) + A sin(ωt)

for A, ω ∈ R>0. Solutions t 7→ ξ(t) then satisfy

d2ξ
dt2 (t) + 2ζω0

dξ
dt

(t) + ω2
0ξ(t) = A sin(ωt).

In Example 2.2.22 we carefully and thoroughly investigated the nature of the
solutions for the homogeneous system. There we saw, for example, that as long
as ζ > 0, solutions to the homogeneous equation decay to zero as t → ∞. For
ζ = 0, solutions were periodic. Here we will thus focus on ζ ∈ R≥0 and on the
nature of the particular solution. When ζ ∈ R>0 this means that we are looking
at the “steady-state” behaviour of the system, i.e., what we see after a long time.
When ζ = 0, we do not have this steady-state interpretation, but nonetheless we
will interpret these solutions in light of our understanding of what happens when
ζ ∈ R>0.

The annihilator F f for the pretty uninteresting function f (t) = A sin(ωt) has
characteristic polynomial PF f = X2+ω2. We have two cases to consider for particular
solutions.

The first case is when ζ ∈ R>0 or when ζ = 0 and ω , ω0. Here the characteristic
polynomial for G f in Procedure 2.3.16 is

PG f = (X2 + ω2)(X2 + 2ζω0X + ω2
0)

The fundamental solutions for G f associated to this polynomial, according to Pro-
cedure 2.2.18, are

ξ1(t), ξ2(t), cos(ωt), sin(ωt),

where ξ1 and ξ2 are homogeneous solutions as determined in Example 2.2.22.
Thus a particular solution will be of the form

ξp(t) = c1 cos(ωt) + c2 sin(ωt).

To determine c1 and c2 we require that ξp be a particular solution. Thus we compute(
d2

dt2 + 2ζω0
d
dt

+ ω2
0

)
ξp(t)

= (c1(ω2
0 − ω

2) + c22ζω0ω) cos(ωt) + (−c22ζω0ω + c2(ω2
0 − ω

2)) sin(ωt).
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We must, therefore, have

c1(ω2
0 − ω

2) + c22ζω0ω = 0,

−c22ζω0ω + c2(ω2
0 − ω

2) = A,
=⇒

c1 =
2ζω0ωA

ω4 + ω4
0 − 2ω2

0ω
2(1 − 2ζ2)

,

c2 =
(ω2

0 − ω
2)A

ω4 + ω4
0 − 2ω2

0ω
2(1 − 2ζ2)

Thus a particular solution is

ξp(t) =
2ζω0ωA

ω4 + ω4
0 − 2ω2

0ω
2(1 − 2ζ2)

cos(ωt) +
(ω2

0 − ω
2)A

ω4 + ω4
0 − 2ω2

0ω
2(1 − 2ζ2)

sin(ωt).

The other case is when ζ = 0 and ω = ω0. Here the characteristic polynomial
for G f in Procedure 2.3.16 is

PG f = (X2 + ω2)2

The fundamental solutions for G f associated to this polynomial, according to Pro-
cedure 2.2.18, are

ξ1(t), ξ2(t), t cos(ωt), t sin(ωt),

where ξ1 and ξ2 are homogeneous solutions as determined in Example 2.2.22.
Therefore, a particular solution will have the form

ξp(t) = c1t cos(ω0t) + c2t sin(ω0t).

To determine c1 and c2 we ask that this be a particular solution. Thus we compute(
d2

dt2 + ω2
0

)
ξp(t) = 2c2ω0 cos(ω0t) − 2c1ω0 sin(ω0t).

Therefore, we must have

2c2ω0 = 0, 2c1ω0 = A, =⇒ c1 =
A

2ω0
, c2 = 0,

and so the particular solution we obtain is

ξp(t) =
At

2ω0
cos(ω0t).

Therefore, in summary, a particular solution is

ξp(t) =


At

2ω0
cos(ω0t), ζ = 0, ω = ω0,

2ζω0ωA
ω4+ω4

0−2ω2
0ω

2(1−2ζ2) cos(ωt) +
(ω2

0−ω
2)A

ω4+ω4
0−2ω2

0ω
2(1−2ζ2) sin(ωt), otherwise.

Any solution will be a sum of this solution, plus some solution to the homogeneous
equation as determined in Example 2.2.22.

In Figure 2.5 we graph particular solutions for various ζ’s and ω0’s, keeping A
and ω0 fixed. We make the following observations.
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Figure 2.5 Response (in blue) of a second-order system with
ω0 = 1 to a sinusoidal input with A = 1 (in red) for vary-
ing ζ and ω (left: ζ = 0.1, ω ∈ {0.5, 1, 2}; middle: ζ = 0.5,
ω ∈ {0.5, 2, 1}; right: ζ = 0.9, ω ∈ {0.5, 1, 2}



168 2 Scalar ordinary differential equations

1. For small values ofω (compared toω0), the response ξp(t) is quite closely aligned
in amplitude and phase with the input f (t).

2. For small values of ζ, i.e., small damping, as ω→ ω0 the response gets large in
amplitude and the phase shift is about 1

4 of a period.
3. For not so small values of ζ, the amplitude as ω→ ω0 does not grow so much,

but the phase still shifts by about 1
4 of a period.

4. As the frequency ω gets large (compared to ω0), the amplitude decays to zero,
and the response and input are out of phase, i.e., the phase shift is about 1

2 of a
period.

One can see in the previous description the genesis of what happens when
ζ = 0, i.e., the response amplitude grows over time. This phenomenon is called
“resonance,” meaning that the excitation from the inhomogeneous term has the
same frequency as the natural frequency of the system.

The matters touched above in the preceding discussion are captured in system
theory by the notion of “frequency response.” •

Exercises

2.3.1 Consider the ordinary differential equation F with right-hand side given
by (2.11).
(a) Convert this to a first-order equation with k states, following Exer-

cise 1.3.23.
(b) Show that, if the functions a0, a1, . . . , ak are continuous, then the result-

ing first-order equation satisfies the conditions of Theorem 1.4.8 for
existence of a unique solution t 7→ ξ(t) satisfying the initial conditions

ξ(t0) = x0,
dξ
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ

dtk−1
(t)(t0) = x(k−1)

0

at time t0 ∈ T.
2.3.2 Consider the ordinary differential equation F with right-hand side given

by (2.11). Answer the following questions.
(a) Show that the particular particular solution

ξp,b(t) =

∫ t

t0

GF,t0(t, τ)b(τ) dτ

satisfies the initial value problem

dkξ(t)
dtk

(t) + ak−1(t)
dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t),

ξ(t0) = 0,
dξ
dt

(t0) = 0, . . . ,
dk−1ξ

dtk−1
(t0) = 0.
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(b) Show that the solution to the initial value problem

dkξ(t)
dtk

(t) + ak−1(t)
dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t),

ξ(t0) = x0,
dξ
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ

dtk−1
(t0) = x(k−1)

0

is given by ξ(t) = ξh + ξp,b, where ξh is the solution to the homogeneous
initial value problem

dkξh(t)
dtk

(t) + ak−1(t)
dk−1ξh

dtk−1
(t) + · · · + a1(t)

dξh

dt
(t) + a0(t)ξh(t) = 0,

ξh(t0) = x0,
dξh

dt
(t0) = x(1)

0 , . . . ,
dk−1ξh

dtk−1
(t0) = x(k−1)

0 .

2.3.3 Find the annihilator for each of the following also pretty uninteresting func-
tions f :
(a) f (t) = 2t2 + 3t − 5;
(b) f (t) = (t2 + 2t + 1)et;
(c) f (t) = te2t cos(t) + e2t sin(t);
(d) f (t) = t3e−t sin(3t) + t2e−t cos(3t).

2.3.4 For the following scalar linear inhomogeneous ordinary differential equa-
tions F, determine the general form of their solutions:
(a) F(t, x, x(1), x(2)) = x(2) + 2x(1) + x − 3et;
(b) F(t, x, x(1), x(2)) = x(2)

− 5x(1) + 6x − 2e3t
− cos(t);

(c) F(t, x, x(1), x(2)) = x(2)
− 2x(1) + 5x − tet sin(2t);

(d) F(t, x, x(1), x(2)) = x(2) + 4x − t cos(2t) + sin(2t);
(e) F(t, x, x(1), x(2), x(3)) = x(3)

− x − tet;
(f) F(t, x, x(1), . . . , x(4)) = x(4) + 4x(2) + 4x − cos(2t) − sin(2t).

2.3.5 Solve the initial value problem for the following scalar linear inhomogeneous
differential equations F with the stated initial conditions:
(a) F(t, x, x(1), x(2)) = x(2) + 2x(1) + x − 3et, and ξ(0) = 1, ξ̇(0) = 1;
(b) F(t, x, x(1), x(2)) = x(2)

− 5x(1) + 6x − 2e3t
− cos(t), and ξ(0) = 0, ξ̇(0) = 1;

(c) F(t, x, x(1), x(2)) = x(2)
− 2x(1) + 5x − tet sin(2t), and ξ(0) = 1, ξ̇(0) = 0;

(d) F(t, x, x(1), x(2)) = x(2) + 4x − t cos(2t) + sin(2t), and ξ(0) = 2, ξ̇(0) = 1;
(e) F(t, x(1), x(2), x(3)) = x(3)

− x − tet, and ξ(0) = 1, ξ̇(0) = 1, ξ̈(0) = 1;
(f) F(t, x, x(1), . . . , x(4)) = x(4)+4x(2)+4x−cos(2t)−sin(2t), andξ(0) = 0, ξ̇(0) = 0,

ξ̈(t) = 0,
...
ξ(t) = 0.

2.3.6 Suppose a mass m falls under the influence of gravity with gravitational
acceleration ag and suppose that the force due to air resistance is proportional
to velocity, i.e., given by ρv, where v is the velocity.
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(a) Use Newton’s laws of force balance to write the equations governing
the falling velocity of the mass.

(b) Obtain the solution to the differential equation from part (a), supposing
the mass is at rest at t = 0.

(c) What is the terminal velocity of the mass?
(d) What are the units of m, ag, and ρ, in terms of mass, length, and time

units?
(e) Combine the physical constants m, ag, and ρ in such a way that the units

for the combined expression are “length/time,” i.e., velocity. How does
this constant compare to the terminal velocity you computed in part (c)?

2.3.7 Let P ∈ R[X] be given by

P = Xk + ak−1Xk−1 + · · · + a1X + a0,

and suppose that r ∈ R is not a root of P. Show that

ξp(t) =
ert

P̂(r)

is a particular solution of the differential equation

F(t, x, x(1), . . . , x(k)) = x(k) + ak−1x(k−1) + · · · + a1x(1) + a0x − ert.

2.3.8 For the following scalar linear homogeneous ordinary differential equations
with time-domain T = [0,∞) and with t0 = 0, find their Green’s function:
(a) F(t, x, x(1), x(2)) = x(2) + x(1);
(b) F(t, x, x(1), x(2)) = x(2) + ω2x, ω ∈ R>0;
(c) F(t, x, x(1), x(2)) = x(2)

− 2x(1) + x.
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Section 2.4

Using a computer to work with scalar ordinary differential
equations

We thank Jack Horn for putting together the Mathematica® and Matlab® results in
this section.

In Sections 2.2 and 2.3 we have discussed the character of, and solved very
specific examples of, scalar linear ordinary differential equations. This, however,
represents a tiny subset (but, arguably, an important tiny subset) of the differential
equations one might encounter in practice. Moreover, even in the simple examples
where the analytical methods we have learnt are applicable, to apply them is
often extremely tedious and error-prone. Therefore, in this section we illustrate
how computers can make working with differential equations, specifically scalar
ordinary differential equations, a bearable undertaking.

In the preface we listed a couple of computer packages—some symbolic, some
numerical, some both—available for working with differential equations. We shall
not attempt to illustrate how all of these work, but choose two as illustrative.
We choose Mathematica® to illustrate a computer algebra package3 and Matlab®

to illustrate a numerical package. There is no reason for this choice, other than
personal familiarity (in the case of Mathematica®) and ease of access (in the case
of Matlab®).

2.4.1 The basic idea of numerically solving differential equations

While this is definitely not a text on numerical methods, it is worth understand-
ing a little bit of what is under the hood when one is using a computer package to
obtain numerical solutions to differential equations.

The basic step in converting a differential equation into something that can be
worked with numerically is to replace derivatives with algebraic approximations.
Suppose that one has a function t 7→ ξ(t). The obvious thing to do to approximate
the derivative of ξ is to work with the standard difference quotient:

dξ
dt

(t) ≈
ξ(t + h) − ξ(t)

h
.

Here, h ∈ R>0 is to be thought of as small (in the limit as h → 0 we get the actual
derivative, if it exists), and is known as the time step. Even here, there are multiple
ways in which one might work with such a difference quotient; for example, here
are two:

dξ
dt

(t) ≈
ξ(t) − ξ(t − h)

h
,

dξ
dt

(t) ≈
ξ(t + h

2 ) − ξ(t − h
2 )

h
.

3Mathematica® also does numerical computations, and indeed was used to produce the nu-
merical results used in the book.
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The first rule is call the “forward difference,” the second the “backward difference,”
and the third the “midpoint rule.” If one knows the value of ξ at time t0, one can
then get an approximation for the value of ξ at time t0 + h by

ξ(t0 + h) = h
dξ
dt

(t0) + ξ(t + 0),

then the value at time t0 + 2h by

ξ(t0 + 2h) = h
dξ
dt

(t0 + h) + ξ(t0 + h).

Then can, of course, be repeated, provided one has values for the derivatives.
However, if ξ is the solution to a first-order scalar ordinary differential equation F
with right-hand side F̂,

ξ̇(t) = F̂(t, ξ(t)),

then one indeed does have the values for the derivatives. Indeed, one have

ξ(t0 + h) = hF̂(t0, ξ(t0)) + ξ(t0),

ξ(t0 + 2h) = hF̂(t0 + h, ξ(t0 + h)) + ξ(t0 + h),
...

Thus we have determined a simple means of numerically generating an approxi-
mation for a solution for F given an initial condition!

We note, however, that any numerical computation package will use a much
more sophisticated method for approximating derivatives than the forward differ-
ence method we have used above. Nonetheless, the basic principle is as we have
outlined it in our simple illustration above.

2.4.2 Using Mathematica® to obtain analytical and/or numerical solutions

For some ordinary differential equations, one can simply plug them into a
computer algebra package, and out will pop the answer. So, this is always worth
a shot.

Our first example illustrates this in Mathematica®.

2.4.1 Example (Solving simple scalar ordinary differential equation) The first ordi-
nary differential equation we will solve is the simple first order equation:

dy
dt

(t) =
−ty(t)

2 − y(t)
.

The following Mathematica® script will use the DSolve command to solve this
ordinary differential equation, then plot the solution.
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soln = DSolve[{y′[t] == (−t ∗ y[t])/(2 − y[t]), y[0] == 1}, y[t], t]soln = DSolve[{y′[t] == (−t ∗ y[t])/(2 − y[t]), y[0] == 1}, y[t], t]soln = DSolve[{y′[t] == (−t ∗ y[t])/(2 − y[t]), y[0] == 1}, y[t], t]

Plot[y[t]/.soln, {t, 0, 5}]Plot[y[t]/.soln, {t, 0, 5}]Plot[y[t]/.soln, {t, 0, 5}]

This gives the output{{
y[t]→ −2ProductLog

[
−

1
2

√
e−1− t2

2

]}}

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Note that, as arguments to DSolve we give the conditions for a solution to the
differential, as well as initial conditions. The syntax y[t]/.soln simply means
that one should replace y[t]with its value as determined by the assignment soln.
Also, the “;” at the end of a Mathematica® command line means that the output
will be suppressed. •

While DSolve is a useful command, it is also possibe to solve ordinary differen-
tial equations using Mathematica® as an assistive tool, rather than just having it
belt out solutions.

2.4.2 Example (Solving ordinary differential equations without using DSolve) We
illustrate Procedure 2.2.18 for the fourth-order equation

d4s
dx

(x) −
d2s
dx

(x) + 9s(x) = 0.

First we must find the roots of the characteristic polynomial.

CharPoly = a∧4 − 10a∧2 + 9 == 0;CharPoly = a∧4 − 10a∧2 + 9 == 0;CharPoly = a∧4 − 10a∧2 + 9 == 0;

roots = Solve[CharPoly, a];roots = Solve[CharPoly, a];roots = Solve[CharPoly, a];

Next, we will find the general solution.

S1 = C1 ∗ Exp[a ∗ x]/.roots[[1]];S1 = C1 ∗ Exp[a ∗ x]/.roots[[1]];S1 = C1 ∗ Exp[a ∗ x]/.roots[[1]];

S2 = C2 ∗ Exp[a ∗ x]/.roots[[2]];S2 = C2 ∗ Exp[a ∗ x]/.roots[[2]];S2 = C2 ∗ Exp[a ∗ x]/.roots[[2]];

S3 = C3 ∗ Exp[a ∗ x]/.roots[[3]];S3 = C3 ∗ Exp[a ∗ x]/.roots[[3]];S3 = C3 ∗ Exp[a ∗ x]/.roots[[3]];



174 2 Scalar ordinary differential equations

S4 = C4 ∗ Exp[a ∗ x]/.roots[[4]];S4 = C4 ∗ Exp[a ∗ x]/.roots[[4]];S4 = C4 ∗ Exp[a ∗ x]/.roots[[4]];

GenSol = S1 + S2 + S3 + S4;GenSol = S1 + S2 + S3 + S4;GenSol = S1 + S2 + S3 + S4;

Once we have the general solution, we will create a system of equations using the
given initial conditions to find the values for C1, C2, C3, and C4.

A1 = GenSol == 5/.x→ 0;A1 = GenSol == 5/.x→ 0;A1 = GenSol == 5/.x→ 0;

A2 = D[GenSol, x] == −1/.x→ 0;A2 = D[GenSol, x] == −1/.x→ 0;A2 = D[GenSol, x] == −1/.x→ 0;

A3 = D[GenSol, {x, 2}] == 21/.x→ 0;A3 = D[GenSol, {x, 2}] == 21/.x→ 0;A3 = D[GenSol, {x, 2}] == 21/.x→ 0;

A4 = D[GenSol, {x, 3}] == −49/.x→ 0;A4 = D[GenSol, {x, 3}] == −49/.x→ 0;A4 = D[GenSol, {x, 3}] == −49/.x→ 0;

Const = Solve[{A1,A2,A3,A4}, {C1,C2,C3,C4}];Const = Solve[{A1,A2,A3,A4}, {C1,C2,C3,C4}];Const = Solve[{A1,A2,A3,A4}, {C1,C2,C3,C4}];

Sol = GenSol/.ConstSol = GenSol/.ConstSol = GenSol/.Const

This gives the solution{
2e−3x

− e−x + 4ex}
We can verify this by using DSolve:

expr = s””[x] − 10s”[x] + 9s[x] == 0;expr = s””[x] − 10s”[x] + 9s[x] == 0;expr = s””[x] − 10s”[x] + 9s[x] == 0;

DSolve[{expr, s[0] == 5, s′[0] == −1, s”[0] == 21, s”’[0] == −49}, s[x], x]DSolve[{expr, s[0] == 5, s′[0] == −1, s”[0] == 21, s”’[0] == −49}, s[x], x]DSolve[{expr, s[0] == 5, s′[0] == −1, s”[0] == 21, s”’[0] == −49}, s[x], x]{{
s[x]→ e−3x

(
2 − e2x + 4e4x

)}}
As you can see, both methods give the same result. •

Let us now work with a particular example with some physical motivation.

2.4.3 Example (Skydiver) Next we will look at another example, this time a second-
order equation. Consider a skydiver jumping from a plane. Using Newton’s laws
of force balance, the governing equation is found to be:

d2y
dt

(t) = −ag +
ρ

m

(
dy
dt

(t)
)2

.

The following script will solve the ordinary differential equation, and plot the
jumpers position and velocity for the first twenty seconds.

m = 80;m = 80;m = 80;

g = 9.81;g = 9.81;g = 9.81;

p = 1.225;p = 1.225;p = 1.225;
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sol = DSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m), y[0] == 500, y′[0] == 0}, y[t], t];sol = DSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m), y[0] == 500, y′[0] == 0}, y[t], t];sol = DSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m), y[0] == 500, y′[0] == 0}, y[t], t];

a[t] = y[t]/.sol;a[t] = y[t]/.sol;a[t] = y[t]/.sol;

b[t] = D[a[t], t];b[t] = D[a[t], t];b[t] = D[a[t], t];

position = Plot[a[t], {t, 0, 20}]position = Plot[a[t], {t, 0, 20}]position = Plot[a[t], {t, 0, 20}]

velocity = Plot[Evaluate[b[t]], {t, 0, 20}]velocity = Plot[Evaluate[b[t]], {t, 0, 20}]velocity = Plot[Evaluate[b[t]], {t, 0, 20}]
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Figure 2.6 Parachuter’s position (left) and velocity (right)

As can be seen from the plots, the parachuter’s velocity asymptotically reaches a
value determined as the inertial forces balance the aerodynamic drag forces. •

In the above examples, we obtained analytical solutions for the differential
equations. Typically this is not possible, and one must obtain numerical solutions.

2.4.4 Example (Solving ordinary differential equations numerically) In this example
we will show that mathematica also has the ability to solve differential equations
numerically as well, again modelling a parachuter jumping from a plane. The
NDSolve command works very similarly to the DSolve command, however it solves
the ordinary differential equation, returning a numerical solution. We work again
with the parachuter equation

d2y
dt

(t) = −ag +
ρ

m

(
dy
dt

(t)
)2

.

The Mathematica® code is as follows.

NumericalSol = NDSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m),NumericalSol = NDSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m),NumericalSol = NDSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m),
y[0] == 500, y′[0] == 0}, y, {t, 0, 20}];y[0] == 500, y′[0] == 0}, y, {t, 0, 20}];y[0] == 500, y′[0] == 0}, y, {t, 0, 20}];

Plot[Evaluate[y[t]/.NumericalSol], {t, 0, 20}]Plot[Evaluate[y[t]/.NumericalSol], {t, 0, 20}]Plot[Evaluate[y[t]/.NumericalSol], {t, 0, 20}]

Plot[Evaluate[y′[t]/.NumericalSol], {t, 0, 20}]Plot[Evaluate[y′[t]/.NumericalSol], {t, 0, 20}]Plot[Evaluate[y′[t]/.NumericalSol], {t, 0, 20}]
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Figure 2.7 Parachuter’s position (left) and velocity (right)

As you can see, the results are nearly identical when compared to the analytically
obtained solutions. •

2.4.3 Using Matlab® to obtain numerical solutions

Matlab® is a very powerful tool for solving complicated differential equations.
However, the process is not quite as simple as Mathematica®. To use the ode45
solver, you must first create a function that is your ordinary differential equation
in the form dy

dt (t) = F(t, y(t)). This function must then be passed into another script
that will solve it. If one types

odeexamples

at the Matlab® prompt, you will be given you a list of examples and from these
you can easily figure out how to do commonplace things using Matlab®. To edit
an example file named foo.m, type

edit foo.m

To run this file type

foo

in Matlab®.
We will now consider the same two examples we covered in the section on

Mathematica®.

2.4.5 Example (Solving simple scalar ordinary differential equation) Below is the
function that contains the same ordinary differential equation from Exercise 2.4.1.
We will pass this into the following main script that will find the solution.

1 function [ dydt ] = Example1( t,y )

2
3 dydt = (-t*y)/(2-y);

4
5 end
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Next we have the main script that will solve this ordinary differential equation.
Note that ode45has three input arguments: the ordinary differential equation iteslf,
time, and initial conditions. The plot that is produced by this script can be found
in Figure 2.8.

1 clc

2 clear all

3 close all

4 %% Solving Numerically
5
6 t = linspace(0,5);

7 y0 = 1;

8
9 solution = ode45(@(t,y)Example1(t,y),t,y0);

10
11 %% Plotting
12
13 figure(1)

14 plot(solution.x,solution.y,'b')
15 xlabel('Time [s]');
16 ylabel('y(t)');
17
18 print -deps Example1Plot

Of course, the numerical result here agrees closely with the plot of the analytical
result produced in Exercise 2.4.1. •

Next we consider the parachuter example initiated in Exercise 2.4.3.

2.4.6 Example (Skydiver) Next we will consider the same skydiver example as in Ex-
ercise 2.4.3. Again we must create a function containing the ordinary differential
equation that will then be passed into the main script.

1 function [ dydt ] = Parachute(t,y)

2
3 m = 80; %Mass, in kg, of the parachuter and their gear

4 g = 9.81; %Gravitational constant

5 p = 1.225; %Density of air in kg/mˆ3

6
7 dydt = [y(2); -g+p*y(2).ˆ2*(1/m)];

8 end

Here is the main script. The plots generated by this script can be found in
Figure 2.9.

1 clc
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Figure 2.8 Plot generated by Matlab® for Exercise 2.4.5

2 close all

3 clear all

4
5 t = linspace(0,20);

6
7 y0 = [500 0];

8
9 y = ode45(@(t,y)Parachute(t,y),t,y0);

10
11 figure(1)

12
13 subplot(2,1,1)

14 plot(y.x,y.y(1,:))

15 ylabel('Height [m]');
16 xlabel('Time [s]');
17
18 subplot(2,1,2)

19 plot(y.x,y.y(2,:))

20 ylabel('Velocity [m/s]');
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21 xlabel('Time [s]');
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Figure 2.9 Position and velocity graphs of the parachuter Exer-
cise 2.4.6

Again, of course, the numerical results agree with those produced by Mathemat-
ica®, both analytically and numerically. •



Chapter 3

Systems of ordinary differential equations

In this chapter we extend our discussion of scalar differential equations in
Chapter 2 to systems of equations. Thus, in the notation of Section 1.3.3, we
consider an ordinary differential equation with time-domain T ⊆ R, state space
U ⊆ Rm, and with right-hand side

F̂ : T ×U × L≤k
sym(R;Rm)→ Rm

giving the equation

dkξ
dtk

(t) = F̂
(
t, ξ,

dξ
dt

(t), . . . ,
dk−1ξ
dtk−1

(t)
)

for solutions t 7→ ξ(t). When we studied scalar equations in Chapter 2, we retained
this higher-order form of the equations, because doing so allowed us to continue
working with scalar equations. However, every scalar equation of order k can
be represented as a first-order equation with k unknowns, cf. Exercise 1.3.23. In
fact, in that exercise we see how to convert a kth-order differential equation in m
unknowns into a first-order equation in km unknowns. The point is that, since
in this chapter we are working already with vector equations, we will always
suppose that our equations are first-order. Also, we will swap around our lettering
from Section 1.3.3 and suppose that U is an open subset of Rn. Thus we have a
right-hand side

F̂ : T ×U→ Rn (3.1)

and solutions satisfy
dξ
dt

(t) = F̂(t, ξ(t)).

Note, however, that physically it may still be interesting to retain the higher-order
form, even for vector equations, cf. the equation (1.2) modelling a coupled mass-
spring system.

As with scalar ordinary differential equations, there is little that one can say in
much generality about general systems of ordinary differential equations. There-
fore, we focus almost entirely on linear equations in this chapter. One of the reasons
that linear systems are so important is that, even for systems that are not linear,
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a first step towards understanding them is often to linearise them. Thus we shall
begin in Section 3.1 with a discussion of linearisation. The next two sections, 3.2
and 3.3, deal with linear systems of equations in some detail. In Section 3.4 we
study, essentially, graphical representations for two-dimensional systems of ordi-
nary differential equations, not necessarily linear. While the planar nature of the
systems we consider limits the generality of the ideas we discuss, it is nonetheless
the case that the ideas seen here form the basis for any serious further study of
ordinary differential equations in more advanced treatments of the subject. In Sec-
tion 3.5 we introduce numerical consideration of systems of ordinary differential
equations.
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Section 3.1

Linearisation

As we have said, if one is given a completely general system of ordinary differ-
ential equations, there is little that one can do. However, sometimes one might be
able to find an isolated solution to the differential equation, and then it becomes
interesting to know what one can say given this information. The first thing one
typically tries is linearisation, i.e., look at the “first-order” variation of solutions
from the given solution. In this section we present this method in some detail.
We shall not at this point say much about what one can do after linearisation; our
main objective is to understand why it might be interesting to focus our attention
on linear systems, which is exactly what we do in the subsequent two sections.

3.1.1 Linearisation along solutions

Suppose that we have a system of ordinary differential equations F with right-
hand side F̂ : T × U → Rn and that we have a solution ξ0 : T′ → U for F. We wish
to understand what happens to solutions “nearby” this fixed solution ξ0.

To do this, we suppose that the map

F̂t : U→ Rn

x 7→ F̂(t, x)

is of class C1. We denote

DF̂(t, x) = DF̂t(x), t ∈ T.

We then suppose that we have a solution ξ : T → U for F for which the deviation
ν , ξ − ξ0 is small. Let us try to understand the behaviour of ν. Naı̈vely, we can
do this as follows:

ξ̇(t) =
d(ξ0 + ν)

dt
(t) = F̂(t, ξ0(t) + ν) = F̂(t, ξ0(t)) + DF̂(t, ξ0) · ν(t) + · · · .

We will not here try to be precise about what “· · · ” might mean, but merely say
that the idea of the preceding equation is that we approximate using the constant
and first-order terms in the Taylor expansion, and then pray that this gives us
something meaningful. Note that, since ξ0 is a solution for F, the approximation
we arrive at is

ξ̇(t) ≈ DF̂(t, ξ0) · (ξ(t) − ξ0(t)).

Meaningful or not, we make the following definition.
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3.1.1 Definition (Linearisation of an ordinary differential equation along a solution)
Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn,

supposing that F̂t is of class C1 for every t ∈ T. For a solution ξ0 : T′ → U for F,
the linearisation of F along ξ0 is the linear ordinary differential equation FL,ξ0 with
right-hand side

F̂L,ξ0 : T′ × Rn
→ Rn

(t,v) 7→ DF̂(ξ0(t)) · v.
•

Note that a solution t 7→ ν(t) for the linearisation of F along ξ0 satisfies

ν̇(t) = A(t)(ν(t)),

where
A(t) = DF̂(t, ξ0(t)).

This is indeed a linear ordinary differential equation. We note that, even when
F is autonomous, the linearisation will generally be nonautonomous, due to the
dependence of the reference solution ξ0 on time.

Note that there is an alternative view of linearisation that can be easily devel-
oped, one where linearisation is of the equation, not just along a solution. The
construction we make is the following.

3.1.2 Definition (Linearisation of an ordinary differential equation) Let F be an ordi-
nary differential equation with right-hand side

F̂ : T ×U→ Rn,

supposing that F̂t is of class C1 for every t ∈ T. The linearisation of F is the ordinary
differential equation FL with right-hand side

F̂L : T × (U × Rn)→ Rn
⊕ Rn

(t, (x,v)) 7→ (̂F(t, x),DF̂(t, x)(v)).
•

Solutions of the linearisation of F are then curves t 7→ (ξ(t),ν(t)) satisfying

ξ̇(t) = F̂(t, ξ(t)),

ν̇(t) = DF̂(t, ξ(t)) · ν(t).

We see, then, that in this version of linearisation we carry along the original differ-
ential equation F as part of the linearisation. This is, in no way, incompatible with
the definition of linearisation along a solution ξ0, since one needs F to provide the
solution.
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Let us illustrate how this works in an example. Finding nonlinear ordinary
differential equations whose nontrivial solutions we can explicitly compute is not
easy,1 so we are sort of stuck with systems with one state. However, this will suffice
for the illustrative purposes here.

3.1.3 Example (Linearisation of an ordinary differential equation along a solution)
We work here with the logistical population model of (1.8). This is the scalar
first-order ordinary differential equation with right-hand side

F̂(t, x) = kx(1 − x).

Solutions t 7→ ξ(t), therefore, satisfy

ξ̇(t) = kξ(t)(1 − ξ(t)).

This equation is separable and so can be solved using the method from Section 2.1.
We skip the details, and instead just say that

ξ0(t) =
x0ekt

1 + x0(ekt − 1)

is the solution for F satisfying ξ0(0) = x0, as long as x0 < {0, 1} (we shall consider
the cases x0 ∈ {0, 1} in Example 3.1.7–1). We have

DF̂(t, x) · v = k(1 − 2x)v,

and so the linearisation FL,ξ0 about the solution ξ0 has the right-hand side

F̂L,ξ0(t, v) =
k(1 − x0(ekt + 1))

1 + x0(ekt − 1)
v.

Thus a solution t 7→ ν(t) for the linearisation satisfies

ν̇(t) =
k(1 − x0(ekt + 1))

1 + x0(ekt − 1)︸               ︷︷               ︸
a(t)

ν(t).

This equation can actually be solved, as we saw in Example 2.2.5:

ν(t) = v0e−
∫ t

0 a(τ) dτ = v0ek(t−t0) (1 + x0(ekt0 − 1))2

(1 + x0(e−kt − 1))2
, 2

where ν(t0) = v0. Just what conclusions we can draw from this are not clear. . . nor
should they be. . . The connection between a differential equation and its linearisa-
tion are not so clear at the moment. In Section 3.1.3 we shall describe the flow of the
linearisation in some detail, and in doing so will arrive at a precise interpretation
of linearisation. •

1We shall see in the next section that working with trivial solutions is easier.
2Integration courtesy of Mathematica®.
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3.1.2 Linearisation about equilibria

In this section we consider what amounts to a special case of linearisation about
a solution. The solution we consider is a very particular sort of solution, as given
by the following definition.

3.1.4 Definition (Equilibrium state for an ordinary differential equation) Let F be an
ordinary differential equation with right-hand side

F̂ : T ×U→ Rn.

A state x0 ∈ U is an equilibrium state if F̂(t, x0) = 0 for every t ∈ T. •

The following result gives the relationship between equilibrium states and
solutions.

3.1.5 Proposition (Equilibrium states and constant solutions) Let F be an ordinary
differential equation with right-hand side

F̂ : T ×U→ Rn.

A state x0 ∈ U is an equilibrium state if and only if the constant function t 7→ x0 is a
solution for F.
Proof Let us denote by ξx0

the constant function t 7→ x0.
First suppose that x0 is an equilibrium state. Then ξ̇0(t) = 0 for every t ∈ T and

F̂(t, ξ0(t)) = 0 and so
ξ̇0(t) = F̂(t, ξ0(t)), t ∈ T,

and thus ξx0
is a solution.

Next suppose that ξx0
is a solution. Then

0 = ξ̇x0
(t) = F̂(t, ξ0(t)) = F̂(t, x0), t ∈ T,

so giving that x0 is an equilibrium state. �

Note that, as a consequence of the preceding simple result, we can linearise
about the constant solution t 7→ x0 in the event that x0 is an equilibrium state. Let
us, however, use some particular language in this case.

3.1.6 Definition (Linearisation of an ordinary differential equation about an equi-
librium state) Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn,

supposing that F̂t is of class C1 for every t ∈ T, and let x0 be an equilibrium state.
The linearisation of F about x0 is the linear ordinary equation FL,x0 with right-hand
side

F̂L,x0 : T × Rn
→ Rn

(t,v) 7→ DF̂(t, x0) · v.
•
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A solution t 7→ ν(t) for FL,x0 satisfies

ν̇(t) = A(t)(v),

where
A(t) = DF̂(t, x0).

Thus we see that the linearisation about an equilibrium point is indeed a linear
ordinary differential equation, just as it should be since the same is true of the
linearisation about an arbitrary solution. What is special here, however, is that the
linearisation is autonomous if F is autonomous. Thus the linearisation when F is
autonomous is a linear ordinary differential equation with constant coefficients.

3.1.7 Examples (Linearisation of an ordinary differential equation about an equi-
librium state)
1. Let us first return to the linearisation of the logistical population model of

Example 3.1.3. We have
F̂(t, x) = kx(1 − x),

and so there are two equilibrium states, x0 = 0 and x0 = 1. In Example 3.1.3 we
computed the derivative of F̂ to be DF̂(t, x) · v = k(1 − 2x)v. We thus have the
linearisations about x0 = 0 and x0 = 1 given by

F̂L,0(t, v) = kv, F̂L,1(t, v) = −kv.

The solutions then satisfy the equations

ν̇0(t) = kν0(t), ν̇1(t) = −kν1(t),

respectively. These are easily solved using Procedure 2.2.18 to give

ν0(t) = ν0(0)ekt, ν1(t) = ν1(0)e−kt.

We see that we have exponential growth for the solutions of the linearisation
about x0 = 0 and exponential decay for the solutions about x0 = 1.
It turns out that this behaviour of the linearisations about the equilibrium state
is an accurate approximation of the behaviour of the actual system near these
states. We do not develop this here, but will address matters such as this in
missing stuff .

2. Let us consider the simple pendulum model of (1.3). This is a scalar second-
order equation F whose right-hand side is

F̂(t, x, x(1)) = −
ag

`
sin(x).
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In order to fit this differential equation into our linearisation framework, we
must convert it into a first-order equation, as in Exercise 1.3.23. Doing this
gives the first-order ordinary differential equation F with right-hand side

F(t, (x1, x2)) =
(
x2,−

ag

`
sin(x)

)
.

This differential equation has equilibria xn = (nπ, 0), n ∈ Z, corresponding
to periodically repeated copies of the “down” and “up” rest positions of the
pendulum. We shall work with two of these, x0 = (0, 0) and x1 = (π, 0), as they
are representative. We compute

DF̂(t, (x1, x2)) · (v1, v2) =

[
0 1

−
ag

` cos(x) 0

] [
v1

v2

]
.

Now, if we compute this at the two equilibria, we have

DF(t, x0) · v =

[
0 1
−

ag

` 0

] [
v1

v2

]
, DF(t, x1) · v =

[
0 1
ag

` 0

] [
v1

v2

]
.

A solution t 7→ ν(t) of the linearisations satisfies[
ν̇1(t)
ν̇2(t)

] [
0 1
−

ag

` 0

] [
ν1(t)
ν2(t)

]
,

[
ν̇1(t)
ν̇2(t)

] [
0 1
ag

` 0

] [
ν1(t)
ν2(t)

]
.

It is possible to solve these equation using Procedure 3.2.45 below, and it turns
out that the solutions are[

ν1(t)
ν2(t)

]
=

[
cos(

√
ag/`t)

√
`/ag sin(

√
ag/`t)

−
√

ag/` sin(
√

ag/`t) cos(
√

ag/`t)

] [
ν1(0)
ν2(0)

]
,[

ν1(t)
ν2(t)

]
=

[
cosh(

√
ag/`t)

√
`/ag sinh(

√
ag/`t)√

ag/` sinh(
√

ag/`t) cosh(
√

ag/`t)

] [
ν1(0)
ν2(0)

]
.

In Section 1.1.2 we said a few quite informal things about how this process of
linearisation is reflected in the behaviour of the pendulum near the “down” and
“up” equilibria. This is reflected in the behaviour of the linearisations, in that,
about the “down” equilibrium, the motion for the linearisation is periodic, and,
about the “up” equilibrium, the motion diverges from (0, 0) most of the time.
We shall be more rigorous about this in missing stuff . •

Summary of linearisation constructions In this section we have illustrated
the idea of linearisation in a few different contexts. The take away from these
constructions is as follows.
1. The linearisation of an ordinary differential equation F about a solution ξ0 gives

rise to a linear ordinary differential equation that will generally be time-varying,
even when F is autonomous.
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2. It is possible to linearise an equation with n states in its entirety, to give an
ordinary differential equation with 2n states.

3. The linearisation of an ordinary differential equation about an equilibrium state
gives rise to a linear ordinary differential equation, and this linear equation is
autonomous if F is autonomous.

4. At this point, we know nothing about what the linearisation of F says about F.
However, what is true is that linear ordinary differential equations, even with
constant coefficients, arise naturally in the context of linearisation, and so are
worthy of some study.

3.1.3 The flow of the linearisation

In this section, in contrast with the preceding sections, we give a very precise
characterisation of linearisation. It has the benefit of being precise, but the draw-
back of being complicated. However, the constructions we give in this section
are of some importance in subjects like optimal control theory. We shall do three
things: (1) provide conditions under which the flow of an ordinary differential
equation is differentiable in state and initial time, as well as final time with respect
to which it is always differentiable; (2) give explicit formulae for the derivatives;
(3) give an interpretation of these derivatives in terms of “wiggling” of initial
conditions in state and time.

We shall first investigate thoroughly the properties of the flow of an ordinary
differential equation that has more regularity properties than are required for the
basic existence and uniqueness theorem, Theorem 1.4.8. In order to state the
result we want, we will make use of some ideas that we will not develop fully
until Section 3.2. Let us suppose that we have a system of ordinary differential
equations F with right-hand side

F̂ : T ×U→ Rn,

and let (t0, x0) ∈ T ×U. We then have the solution

t 7→ ξ0(t) , ΦF(t, t0, x0)

defined for t ∈ JF(t0, x0). We then define

A(t0,x0) : J(t0,x0) → L(Rn;Rn)

t 7→ DF̂(t,ΦF(t, t0, x0)).

Now consider the linear time-varying differential equation FT
(t0,x0) with right-hand

side
F̂L

(t0,x0) : JF × Rn
→ Rn

(t,v) 7→ A(t0,x0)(t) · v.
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To describe solutions of this linear ordinary differential equation, we consider first
the following ordinary differential equation. For t ∈ JF(t0, x0)×Rn, we consider the
following initial value problem:

dΨ

ds
(s) = A(t0,x0)(s) ◦Ψ(s), Ψ(t) = In.

As we shall see in the proof of the theorem immediately following, this initial
value problem has solutions defined for all s ∈ JF(t0, x0). Moreover, we denote the
solution at time s by ΦA(t0 ,x0)(s, t); the associated map

ΦA(t0 ,x0) : JF(t0, x0) × J(t0,x0) → L(Rn;Rn)

is what we shall call the “state transition map” in Section 3.2.2.2, and we shall use
some of the results from this section in the proof below. In particular, we shall use
the fact that the solution to the initial value problem

dν
ds

(s) = A(t0,x0)(s) · ν(s), ν(t) = v0

is
ν(s) = ΦA(t0 ,x0)(s, t) · v0, s ∈ JF(t0, x0).

With the preceding background, we can now state the theorem.

3.1.8 Theorem (Differentiability of flows) Let F be an ordinary differential equation with
right-hand side

F̂ : T ×U→ Rn,

and make the following assumptions:

(i) the map t 7→ F̂(t, x) is continuous for each x ∈ U;

(ii) the map x 7→ F̂(t, x) is continuously differentiable for each t ∈ T;
(iii) for each x ∈ U, there exist r ∈ R>0 and continuous functions g0,g1 : T→ R≥0 such

that
(a) ‖̂F(t,y)‖ ≤ g0(t) for (t,y) ∈ T × B(r, x) and

(b)

∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t,y)

∣∣∣∣∣∣∣ ≤ g1(t) for (t,y) ∈ T × B(r, x) and j,k ∈ {1, . . . ,n}.

Then the following statements hold:
(iv) for t, t0 ∈ T, ΦF

t,t0
: DF(t, t0) → U is a C1-diffeomorphism onto its image and its

derivative is given by DΦF
t,t0

(x0) = ΦA(t0 ,x0) .
(v) the map

DΦF : DF → L(Rn;Rn)

(t, t0, x) 7→ DΦF
t,t0

(x)

is continuous;
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(vi) for (t0, x0) ∈ T ×U, the set

IF(t0, x0) = {t ∈ T | t0 ∈ JF(t, x0)}

is an open interval, the map

ιF,t0,x0 : IF(t0, x0)→ U

t 7→ ΦF(t0, t, x0)

is differentiable, and its derivative is given by

d
dt

ΦF(t0, t, x0) = −Φ(t0,x0)(t0, t) · F̂(t, x0).

Proof Let us first show that the hypotheses of the theorem imply those of
Theorem 1.4.8(ii). Let x ∈ U and let r ∈ R>0 and g0, g1 : T → R≥0 be as in the
statement of the theorem. For y1, y2 ∈ B(r, x), the Mean Value Theoremmissing
stuff gives ∥∥∥̂F(t, y1) − F̂(t, y2)

∥∥∥ ≤ sup{‖DF̂(y)‖ | y ∈ B(r, x)}‖y1 − y2‖

≤ g1(t)‖y1 − y2‖,

giving the desired conclusion.missing stuff
(iv) By virtue of the proof of Theorem 1.4.13 there exists r, r′, α ∈ R>0 such that,

if x ∈ B(r, x0) and t ∈ [t0 − α, t0 + α], then ΦF(t, t0, x) is defined and takes values in
B(r′, x0). Moreover, we have

ΦF(t, t0, x) = x +

∫ t

t0

F̂(s,ΦF(s, t0, x)) ds

in this case. We note that r′, r, and α depend on g0 and L0 according to the required
inequalities ∣∣∣∣∣∣

∫ t

t0

g0(s) ds

∣∣∣∣∣∣ < r′

2
,

∣∣∣∣∣∣
∫ t

t0

L0(s) ds

∣∣∣∣∣∣ < λ
for some λ ∈ (0, 1).

By choosing r′ small enough, there exists g1 : T → R≥0 locally integrable such
that ∣∣∣∣∣∣∣∂F̂ j

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤ g1(t), (t, x) ∈ T × B(r′, x0).

We claim that, if x ∈ B(r, x0), then the ordinary differential equation FT
(t0,x0) with

right-hand side
F̂T

(t0,x0) : (t0 − α, t0 + α) × Rn
→ Rn

(t,v) 7→ DF̂(t,ΦF(t, t0, x)) · v
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possesses unique solutions on (t0 − α, t0 + α). To show this, we note by Lemma 1
from the proof of Theorem 1.4.8 that

t 7→ DF̂(t,ΦF(t, t0, x))

is locally integrable. Our assertion then follows from Proposition 3.2.5 below.
Now we show that, for each t ∈ (t0 − α, t0 + α), ΦF

t,t0
is differentiable at each

x ∈ B(r, x0). Let ρ ∈ (0, r) be small enough that B(ρ, x) ⊆ B(r, x0) for every x ∈ B(r, x0).
Let h ∈ B(ρ, 0). By the Mean Value Inequality, for x ∈ B(r − ρ, x0), we have∫ 1

0
DF̂(t, x + sh) · h ds = F̂(t, x + h) − F̂(t, x).

Therefore,

F̂(t, x + h) − F̂(t, x) −DF̂(t, x) · h =

∫ 1

0
(DF̂(t, x + sh) −DF̂(t, x)) · h ds (3.2)

Define

Mt(h) = sup
{∫ 1

0
|||DF̂(t, x + sh) −DF̂(t, x)|||ds

∣∣∣∣∣∣ x ∈ B(r − ρ, x0)
}
,

and note that Mt is continuous and that Mt(0) = 0. For x ∈ B(r−ρ, x0) and h ∈ B(ρ, 0),
consider the initial value problems

ξ̇0(t) = F̂(t, ξ0(t)), ξ0(t0) = x,

and
ξ̇1(t) = F̂(t, ξ1(t)), ξ1(t0) = x + h.

Denote δ(t) = ξ1(t) − ξ0(t). We then have

δ̇(t) = F̂(t, ξ0(t) + δ(t)) − F̂(t, ξ0(t))

= DF̂(t, ξ0(t))︸       ︷︷       ︸
A(t0 ,x)(t)

·δ(t) +

∫ 1

0
(DF̂(t, ξ0(t) + sδ(t)) −DF̂(t, ξ0(t))) · δ(t) ds︸                                                     ︷︷                                                     ︸

e(t)

,

using (3.2). Note that

‖e(t)‖ ≤
∫ 1

0
‖DF̂(t, ξ0(t) + sδ(t)) −DF̂(t, ξ0(t)) · δ(t)‖ds

≤

∫ 1

0
|||DF̂(t, ξ0(t) + sδ(t)) −DF̂(t, ξ0(t))||| ‖δ(t)‖ds

≤ ‖δ(t)‖Mt(δ(t)).
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Let ν be the solution to the initial value problem

ν̇(t) = A(t0,x)(t) · ν(t), ν(t0) = h.

Now, for fixing t ∈ (t0 − α, t0 + α), we have

δ(t) = ΦA(t0 ,x)(t, t0) · h +

∫ t

t0

ΦA(t0 ,x)(τ, t0)e(τ) dτ,

by Corollary 3.3.3, noting that δ(t0) = h. Here ΦA is the state transition map from
Section 3.2.2.2. Thus

δ(t) = ν(t) +

∫ t

t0

ΦA(t0 ,x)(τ, t0)e(τ) dτ.

Thus

‖δ(t) − ν(t)‖ ≤
∫ t

t0

|||ΦA(t0 ,x)(τ, t0)||| ‖e(τ)‖dτ ≤ (t − t0)|||ΦA(t0 ,x)(·, t0)|||∞‖e‖∞

≤ (t − t0)|||ΦA(t0 ,x)(·, t0)|||∞‖δ(t)‖Mt(δ(t)),

where the ∞-norm is over the interval [t0, τ]. As in the proof of Lemma 2(i), we
have

‖δ(t)‖ ≤ C‖h‖

for some C ∈ R>0. Therefore,

‖δ(t) − ν(t)‖ ≤ C′‖h‖Mt(δ(t)),

where C′ = C(t − t0)|||ΦA(t0 ,x)(·, t0)|||∞. Restoring the pre-abbreviation notation, this
reads

ΦF(t, t0, x + h) −ΦF(t, t0, x) −ΦA(t0 ,x)(t, t0) · h

‖h‖
≤ C′Mt(δ(t)).

Since limh→0 δ(t) = 0 by continuity of solutions with respect to initial conditions
and by definition of Mt, we have

lim
h→0

ΦF(t, t0, x + h) −ΦF(t, t0, x) −ΦA(t0 ,x)(t, t0) · h

‖h‖
= 0,

which shows that ΦF
t,t0

is differentiable on B(r, x0) and for every t ∈ (t0 − α, t0 + α),
and that, moreover, the derivative satisfies the initial value problem

d
dt

DΦF
t,t0

(x) = DF̂(t,ΦF(t, t0, x)) ◦DΦF
t,t0

(x), DΦF
t0,t0

(x) = In.
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Next we show that ΦF
t,t0

is continuously differentiable. To show this, let x ∈ B(r, x0)
and let ρ be such that x + h ∈ B(r, x0). As we showed in the preceding part of the
proof,

DΦF
t,t0

(x + h) = ΦA(t0 ,x+h)(t, t0) = In +

∫ t

t0

A(t0,x+h)(τ) ◦ΦA(t0 ,x+h)(τ, t0) dτ.

We have

|||ΦA(t0 ,x+h)(t, t0)−ΦA(t0 ,x)(t, t0)|||

≤

∫ t

t0

|||A(t0,x+h)(τ) ◦ΦA(t0 ,x+h)(τ, t0) − A(t0,x)(τ) ◦ΦA(t0 ,x)(τ, t0)|||dτ

≤

∫ t

t0

|||A(t0,x+h)(τ) ◦ΦA(t0 ,x+h)(τ, t0) − A(t0,x+h)(τ) ◦ΦA(t0 ,x)(τ, t0)|||dτ

+

∫ t

t0

|||A(t0,x+h)(τ) ◦ΦA(t0 ,x)(τ, t0) − A(t0,x)(τ) ◦ΦA(t0 ,x)(τ, t0)|||dτ

≤

∫ t

t0

g1(τ)|||ΦA(t0 ,x+h)(t, t0) −ΦA(t0 ,x)(t, t0)|||dτ

+ |||ΦA(t0 ,x) |||∞

∫ t

t0

|||A(t0,x+h)(τ) − A(t0,x)(τ)|||dτ.

By Lemma 1 from the proof of Theorem 1.4.13, we have

|||ΦA(t0 ,x+h)(t, t0) −ΦA(t0 ,x)(t, t0)||| ≤ |||ΦA(t0 ,x) |||∞e
∫ t

t0
g1(τ) dτ

∫ t

t0

|||A(t0,x+h)(τ) − A(t0,x)(τ)|||dτ.

By the Dominated Convergence Theorem,

lim
h→0

∫ t

t0

|||A(t0,x+h)(τ) − A(t0,x)(τ)|||dτ = 0,

which gives
lim
h→0
|||DΦF

t,t0
(x + h) −DΦF

t,t0
(x)||| = 0,

which, for t ∈ (t0−α, t0 +α), gives the continuity of the derivative of ΦF
t,t0

on B(r, x0).
The final part of the proof of the local part of the proof is to show that ΦF

t,t0

is invertible with a continuously differentiable inverse. Let r′, α′ ∈ R>0 and let
r ∈ (0, r′] and α ∈ (0, α′] as above, and so such that

ΦF
t,t0

(x) ∈ B(r′, x0), x ∈ B(r, x0), t ∈ [t0 − α, t0 + α].

Let t ∈ (t0 − α, t0 + α) ∩ T and denote

V = ΦF
t,t0

(B(r, x0)) ⊆ B(r′, x0).
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Let x ∈ B(r, x0). Since y , ΦF
t,t0

(x) ∈ B(r′, x0) and t ∈ [t0 − α′, t0 + α′] ∩ T, there
exists ρ ∈ R>0 such that, if y′ ∈ B(ρ, y), then (t0, t, y′) ∈ DF. Moreover, since ΦF

t0,t is
continuous (indeed, continuously differentiable) and ΦF

t0,t(y) = x, we may choose ρ
sufficiently small that ΦF

t0,t(y′) ∈ B(r, x0) if y′ ∈ B(ρ, y). By the preceding part of the
proof, ΦF

t0,t|B(ρ, y) is continuously differentiable. Thus there is a neighbourhood
of x on which the restriction of ΦF

t t0 is invertible, continuously differentiable, and
with a continuously differentiable inverse.

To complete this part of the proof, we need to prove the statement globally. To
this end, let (t0, x0) ∈ T × U and denote by J+(t0, x0) ⊆ T the set of b > t0 such that,
for each b′ ∈ [t0, b), there exists a relatively open interval J ⊆ T and a r ∈ R>0 such
that
1. b′ ∈ J,
2. J × {t0} × B(r, x0) ⊆ DF, and
3. for each t ∈ J, B(r, x0) 3 x 7→ ΦF(t, t0, x) is a C1-diffeomorphism onto its image.
By the local part of the proof above, J+(t0, x0) , ∅. We then consider two cases.

The first case is J+(t0, x0) ∩ [t0,∞) = T ∩ [t0,∞). In this case, for each t ∈ T with
t ≥ t0, there exists a relatively open interval J ⊆ T and r ∈ R>0 such that
1. t ∈ J,
2. J × {t0} × B(r, x0) ⊆ DF, and
3. for each τ ∈ J, B(r, x0) 3 x 7→ ΦF(τ, t0, x) is a C1-diffeomorphism onto its image.

The second case is J+(t0, x0) ∩ [t0,∞) ⊂ T ∩ [t0,∞). In this case we let t1 =
sup J+(t0, x0) and note that t1 , supT. We claim that t1 ∈ JF(t0, x0). Were this not
the case, then we must have b , sup JF(t0, x0) < t1. Since b ∈ J+(t0, x0), there must
be a relatively open interval J ⊆ T containing b such that t ∈ JF(t0, x0) for all t ∈ J.
But, since there are t’s in J larger than b, this contradicts the definition of JF(t0, x0),
and so we conclude that t1 ∈ JF(t0, x0). Let us denote x1 = ΦF(t1, t0, x0). By our
local conclusions from the first part of the proof, there exists α1, r1 ∈ R>0 such that
(t, t1, x) ∈ DF for every t ∈ (t1 − α1, t1 + α1) and x ∈ B(r1, x1), and such that the map

B(r1, x1) 3 x 7→ ΦF(t, t1, x)

is a C1-diffeomorphism onto its image for every t ∈ (t1 − α1, t1 + α1). Since t 7→
ΦF(t, t0, x0) is continuous and ΦF(t1, t0, x0) = x1, let δ ∈ R>0 be such that δ < α1

2 and
ΦF(t, t0, x0) ∈ B(r1/4, x1) for t ∈ (t1 − δ, t1). Now let τ1 ∈ (t1 − δ, t1) and, by our
hypotheses on t1, there exists an open interval J and r′1 ∈ R>0 such that
1. τ1 ∈ J,
2. J × {t0} × B(r′1, x0) ⊆ DF, and
3. for each τ ∈ J, B(r′1, x0) 3 x 7→ ΦF(τ, t0, x) is a C1-diffeomorphism onto its image.
We also choose J and r′1 sufficiently small that

{ΦF(t, t0, x) | t ∈ J, x ∈ B(r′1, x0)} ⊆ B(r1/2, x1).



196 3 Systems of ordinary differential equations

Now we claim that

(τ1 − α1, τ1 + α1) × {t0} × B(r′1, x0) ⊆ DF.

We first show that
[τ1, τ1 + α1) × {t0} × B(r′1, x0) ⊆ DF. (3.3)

Indeed, we have (τ1, t0, x) ∈ DF for every x ∈ B(r′1, x0) since τ1 ∈ J. By definition of
J, ΦF(τ1, t0, x) ∈ B(r1/2, x1). By definition of τ1, t1 − τ1 < δ <

α1
2 . Then, by definition

of α1 and r1,
(t1, τ1,Φ

F(τ1, t0, x)) ∈ DF

for every x ∈ B(r′1, x0). From this we conclude that (t1, t0, x) ∈ DF for every x ∈
B(r′1, x0). Now, since

t ∈ [τ1, τ1 + α1) =⇒ t ∈ (t1 − α1, t1 + α1),

we have (t, t1,ΦF(t, t1, x)) ∈ DF for every t ∈ (τ1 − α1, τ1 + α1) and x ∈ B(r′1, x0). Since

ΦF(t, t1,Φ
F(t1, t0, x)) = ΦF(t, t0, x),

we conclude (3.3). A similar but less complicated argument gives

(τ1 − α1, τ1) × {t0} × B(r′1, x0) ⊆ DF.

Next we claim that the map

B(r′1, x0) 3 x 7→ ΦF(t, t0, x)

is a C1-diffeomorphism onto its image for every t ∈ (τ1 − α1, τ1 + α1). By definition
of τ1, the map

ΦF
t,t0

: B(r′1, x0)→ B(r1/2, x1)

is a C1-diffeomorphism onto its image for t ∈ (τ1 − α1, τ1]. We also have that

ΦF
t,τ1

: B(r1, x1)→ U

is a C1-diffeomorphism onto its image for t ∈ (τ1, τ1 +α1). Since the composition of
C1-diffeomorphisms onto their image is a C1-diffeomorphism onto its image, our
assertion follows.

By our above arguments, we have an open interval J′ and r′1 ∈ R>0 such that
1. t1 ∈ J′,
2. J′ × {t0} × B(r′1, x0) ⊆ DF, and
3. for each t ∈ J′, B(r′1, x0) 3 x 7→ ΦF(t, t0, x) is a C1-diffeomorphism onto its image.
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This contradicts the fact that t1 = sup J+(t0, x0) and so the condition

J+(t0, x0) ∩ [t0,∞) ⊂ T ∩ [t0,∞)

cannot obtain.
One similarly shows that it must be the case that J−(t0, x0)∩(−∞, t0] = T∩(−∞, t0]¡

where J−(t0, x0) has the obvious definition.
Now we note that ΦF

t,t0
injective by uniqueness of solutions for F. Now, asser-

tion (iv) of the theorem now follows since the notion of “C1-diffeomorphism” can
be tested locally, i.e., in a neighbourhood of any point.

To conclude, we must show that the derivative satisfies the initial value problem

d
dt

DΦF(t, t0, x0) = DF̂(t,ΦF(t, t0, x0)) ◦DΦF(t, t0, x0), DΦF(t0, t0, x0) = In,

on JF(t0, x0). Let J+(t0, x0) (reusing the notation from the preceding part of the
proof) be the set of t ≥ t0 such that τ 7→ DΦF(τ, t0, x0) satisfies the preceding
initial value problem on [t0, t1]. Note that J+(t0, x0) , ∅ by our arguments in the
first part of the proof. Let t1 = sup J+(t0, x0). We claim that t1 = sup JF(t0, x0).
If t1 = t0 there is nothing to prove. So suppose that t1 > t0 and suppose that
t1 , sup JF(t0, x0). Therefore, t1 ∈ JF(t0, x0) and so there exists α1 ∈ R>0 such that
(t1 − α1, t1 + α2) ⊆ JF(t0, x0). Let x1 = ΦF(t1, t0, x0). Note that our arguments from the
first part of the proof show that, on (t1 − α1, t1 + α1), t 7→ DΦF(t, t1, x1) satisfies the
initial value problem

d
dt

DF(t, t1, x1) = DF̂(t,ΦF(t, t1, x1)) ◦DΦF(t, t1, x1), DΦF(t1, t1, x1) = In.

Now define Ξ : [t0, t1 + α1)→ L(Rn;Rn) by

Ξ(t) =

DΦF(t, t0, x0), t ∈ [t0, t1],
DΦF(t, t1, x1), t ∈ (t1, t1 + α1).

As we showed in the first part of the proof, if we denote A(t) = DF̂(t,ΦF(t, t0, x0)),
then, since

ΦF(t, t0, x0) = ΦF(t, t1,Φ
F(t1, t0, x0)) = ΦF(t, t1, x1)

for t ∈ [t1, t1 + α1), we have Ξ(t) = ΦA(t0 ,x0)(t, t0) for t ∈ [t0, t1 + α1). Thus we have

d
dt

DF(t, t1, x1) = DF̂(t,ΦF(t, t1, x1)) ◦DΦF(t, t1, x1), DΦF(t1, t1, x1) = In,

on [t0, t1 + α1), which contradicts the definition of J+(t0, x0). Thus we must have
t1 = sup JF(t0, x0). A similar argument can be made for t < t0, and we have thus
completed this part of the proof.
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(v) Let us consider the ordinary differential equation F1 with right-hand side

F̂1 : T ×U × L(Rn;Rn)→ Rn
× L(Rn;Rn)

(t, x,X) 7→ (̂F(t, x),DF̂(t, x) ◦ X).

This ordinary differential equation satisfies the conditions of Theorem 1.4.8(ii).
Moreover, as we saw from the previous part of the proof, JF1(t0, (x0,X0)) = JF(t0, x0)
for every X0 ∈ L(Rn;Rn). Thus

DF1 = {(t, t0, (x0,X0)) | (t, t0, x0) ∈ DF}.

From Theorem 1.4.13 we know that ΦF1 is continuous. Moreover, from the first
part of the proof,

ΦF1(t, t0, (x0,X0)) = (ΦF(t, t0, x0),DΦF
t,t0

(x0) ◦ X).

From this, the desired conclusion follows.
(vi) We will show something more than is stated in this part of the theorem. The

set up we will make is the following. We suppose that we have a, b ∈ T with a < b
and x0 ∈ U, and we suppose that, for some ρ ∈ R>0, we have a solution

[a − ρ, b + ρ] 3 t 7→ ΦF(t, a, x0).

Let us abbreviate ξ0(t) = ΦF(t, a, x0). Then, according to Theorem 1.4.13, there
exists r ∈ R>0 such that, if τ ∈ [a, b] and if (t, x) ∈ (τ − r, τ + r) × B(r, ξ0(τ)), then the
solution

s 7→ ΦF(s, t, x)

is defined for s ∈ [a − ρ, b − ρ].3 We denote

Wr = ∪τ∈[a,b](τ − r, τ + r) × B(r, ξ0(τ)).

We shall show that, for t0, t1 ∈ [a, b], if x0 = ξ0(t0) and if ξ0 is differentiable at t0, then
the function

Wr 3 (t, x) 7→ ΦF(t1, t0, x0)

is differentiable at (t0, x0), and that its derivative is the linear map

(σ,v) 7→ ΦA(t0 ,x0)(t1, t0) · (v − σξ̇0(t0)).

This implies the conclusions of the theorem, since the conclusions of the theorem
are only about the function of t, not of t and x.

We make some preliminary constructions. Let B ∈ R>0 be such that

‖ΦA(t0 ,ξ0(t0))(t1, t0) · v‖ ≤ B‖v‖, t1, t0 ∈ [a − ρ, b + ρ],

3The existence of such r ∈ R>0 follows from a compactness argument, using compactness of
{(τ, ξ0(τ)) | τ ∈ [a, b]}.
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this being possible by part (v). Now define

σ(τ) = sup{|||ΦA(t0+τ,x0)(t1, t0 + τ) −ΦA(t0 ,x0)(t1,t0)(t1, t0)||| | t0, t1 ∈ [a, b]}.

By uniform continuity, σ is continuous and limτ→0 σ(τ) = 0. Now let t0, t1 ∈ [a, b],
let x0 = ξ0(t0), and suppose that ξ0 is differentiable at t0. Denote

v0(τ) =
‖ξ0(t0 + τ) − ξ0(t0) − τξ̇0(t0)‖

|τ|
,

and note that v0 is continuous for small τ and that limτ→0 v0(τ) = 0. Next denote

D(τ,h) =

sup

 ‖ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0+τ,x0)(t1, t0 + τ) · h‖

‖h‖

∣∣∣∣∣∣ t1 ∈ [a, b]

 .
Note that D is continuous and that lim(τ,h)→(0,0) D(τ,h) = 0.

Now we estimate

‖ΦA(t0+τ,x0)(t1, t0+τ) · (x0 + h − ξ0(t0 + τ)) −ΦA(t0 ,x0)(t1, t0) · (h − τξ̇0(t0))‖

≤ ‖ΦA(t0+τ,x0)(t1, t0 + τ) · (ξ0(t0 + τ) − x0 − τξ̇0(t0))‖

+ ‖ΦA(t0+τ,x0)(t1, t0 + τ) · (h − τξ̇0(t0)) −ΦA(t0 ,x0)(t1, t0) · (h − τξ̇0(t0))‖

≤ f1(τ)(|τ| + ‖h‖),

where
f1(τ) = Bv0(τ) + (1 + ‖ξ̇0(t0)‖)σ(τ).

Note that f1 is continuous for small τ and limτ→0 f1(τ) = 0.
Now we estimate

‖ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0+τ,x0)(t1, t0 + τ) · (x0 + h − ξ0(t0 + τ))‖

= ‖ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0 + τ, ξ0(t0 + τ))
−ΦA(t0+τ,x0)(t1, t0 + τ) · (x0 + h − ξ0(t0 + τ))‖

≤ ‖ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0 + τ, x0) −ΦA(t0+τ,x0)(t1, t0 + τ) · h‖

+ ‖ΦF(t1, t0 + τ, ξ0(t0 + τ)) −ΦF(t1, t0 + τ, x0)
−ΦA(t0+τ,x0)(t1, t0 + τ) · (ξ0(t0 + τ) − x0)‖

≤ D(τ,h)(|τ| + ‖h‖) + D(τ, ξ0(t0 + τ) − x0)(|τ| + ‖ξ0(t0 + τ) − x0‖).

By Taylor’s Theorem, we have

ξ0(t0 + τ) − x0 = τ(R(τ) + ξ̇(t0))
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for a continuous function R for which limτ→0 R(τ) = 0. Thus, for small τ,

‖ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0+τ,x0)(t1, t0 + τ) · (x0 + h − ξ0(t0 + τ))‖

≤ f2(τ,h)(|τ| + ‖h‖),

where
f2(τ,h) = D(τ,h) + (1 + ‖ξ̇(t0)‖)D(τ, ξ0(t0 + τ) − x0).

We note that f2 is continuous and that lim(τ,‖h‖) f2(τ,h) = 0.
Combining the preceding two estimates we have

‖ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0 ,x0)(t1, t0) · (h − τξ̇0(t0))‖

≤ ( f1(τ) + f2(τ,h))(|τ| + ‖h‖).

We thus conclude this part of the theorem. �

The proof of the theorem immediately gives the following result.

3.1.9 Corollary (Flow of ordinary differential equations of class C1) Let F be an ordi-
nary differential equation with right-hand side

F̂ : T ×U→ Rn.

If F̂ is of class C1, then ΦF : DF → U is of class C1.
Proof From the proof of part (vi) of the preceding theorem, we have

‖ΦF(t1, t0 + τ0, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0 ,x0)(t1, t0) · (h − τ0ξ̇0(t0))‖

≤ f (τ0,h)(|τ0| + ‖h‖)

for a continuous function f satisfying lim(τ0,h)→(0,0) f (τ0,h) = 0. Note that, under
the hypotheses of the corollary, this conclusion holds for every (t1, t0, x0) ∈ DF since
solutions for F are of class C1 in this case.

Now we have

ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1, t0, x0)

= ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1 + τ1, t0, x0)

+ ΦF(t1 + τ1, t0, x0) −ΦF(t1, t0, x0).

This then gives

‖ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0 ,x0)(t1, t0) · (h − τ0ξ̇0(t0)) − τ1ξ̇0(t1)‖

≤ ‖ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1 + τ1, t0, x0) −ΦA(t0 ,x0)(t1 + τ1, t0) · (h − τ0ξ̇0(t0))‖

+
∣∣∣∣∣∣∣∣∣ΦA(t0 ,x0)(t1 + τ1, t0) −ΦA(t0 ,x0)(t1 + τ1, t0)

∣∣∣∣∣∣∣∣∣ ‖h − τ0ξ̇0(t0)‖

+ ‖ΦF(t1 + τ1, t0, x0) −ΦF(t1, t0, x0) − τ1ξ̇0(t1)‖
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Arguments like those from the proof of part (vi) of the preceding theorem then give

‖ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0 ,x0)(t1, t0) · (h − τ0ξ̇0(t0)) − τ1ξ̇0(t1)‖

≤ f (τ1, τ0,h)(|τ1| + |τ0| + ‖h‖),

where f is a continuous function satisfying

lim
(τ1,τ0,h)→(0,0,0)

f (τ1, τ0,h) = 0.

From this we conclude that the ΦF is differentiable, and, moreover, that the deriva-
tive at (t1, t0, x0) ∈ DF is given by the linear map

(σ1, σ0,v) 7→ ΦA(t0 ,x0)(t1, t0) · (v − σ0ξ̇0(t0)) − σ1ξ̇0(t1).

In the proof of part (iv) of the preceding theorem we showed that (t1, t0, x0) 7→
ΦA(t0 ,x0)(t1, t0) is continuous. Since the map

(t1, t0, x0) 7→
d
dt

∣∣∣∣∣
t=t1

ΦF(t, t0, x0) = F̂(t1,Φ
F(t1, t0, x0))

is also continuous, we conclude in this case that ΦF is continuously differentiable.�

The next construction is a natural one, intuitively; it involves “wiggling” the
initial data for an ordinary differential equation.

3.1.10 Definition (Variation of initial data) Let F be an ordinary differential equation
with right-hand side

F̂ : T ×U→ Rn,

and let ξ0 : T′ → U be a solution for F satisfying ξ0(t0) = x0 for some t0 ∈ T′ and
x0 ∈ U. A variation of the initial data (t0, x0) in the direction of (τ,v) ∈ R×Rn is the
curve

s 7→ (t0 + sτ, x0 + sv),

which we assume takes values in T ×U for small s ∈ R>0. •

For s small, one can then consider “perturbations” of the solution t 7→ ξ0(t) =
ΦF(t, t0, x0), by which we mean the solutions t 7→ ΦF(t, t0 + sτ, x0 + sv). Note, by
Theorem 1.4.13(ix), that if (t, t0, x0) ∈ DF, then (t, t0+sτ, x0+sv) ∈ DF for s sufficiently
small. Thus we can ask for the “first-order effect” of the variation of the initial data
on the solution at the final time t. Precisely, this is

d
ds

∣∣∣∣∣
s=0

ΦF(t, t0 + sτ, x0 + sv) ∈ Rn.

This is sufficiently interesting a quantity that we give it a name.
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3.1.11 Definition (Infinitesimal variation corresponding to variation of initial data)
Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn,

and let ξ0 : T′ → U be a solution for F satisfying ξ0(t0) = x0 for some t0 ∈ T′ and
x0 ∈ U. The infinitesimal variation associated with the variation of the initial data
(t0, x0) in the direction of (τ,v) ∈ R × Rn is

d
ds

∣∣∣∣∣
s=0

ΦF(t, t0 + sτ, x0 + sv) ∈ Rn. •

The following result, which is an immediate consequence of Theorem 3.1.8,
gives the formula for this first-order effect.

3.1.12 Corollary (The infinitesimal variation corresponding to a variation of initial
data) Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn,

and let ξ0 : T′ → U be a solution for F satisfying ξ0(t0) = x0 for some t0 ∈ T′ and x0 ∈ U.
The infinitesimal variation associated with the variation of the initial data (t0, x0) in the
direction of (τ,v) ∈ R × Rn is given by

d
ds

∣∣∣∣∣
s=0

ΦF(t, t0 + sτ, x0 + sv) = ΦA(t0 ,x0)(t, t0) · v − τΦA(t0 ,x0)(t, t0) · F̂(t0, x0).

Proof This follows from Theorem 3.1.8 and the Chain Rule. �

3.1.4 While we’re at it: ordinary differential equations of class Cm

In the previous section we considered ordinary differential equations depend-
ing continuously differentiably on state (Theorem 3.1.8) and on state and time
(Corollary 3.1.9). In this section we extend these result to case where we assume
more differentiability.

Let us start with just differentiability in state.

3.1.13 Theorem (Higher-order differentiability of flows) Let F be an ordinary differential
equation with right-hand side

F̂ : T ×U→ Rn,

let m ∈ Z>0, and make the following assumptions:

(i) the map t 7→ F̂(t, x) is continuous for each x ∈ U;

(ii) the map x 7→ F̂(t, x) is of class Cm for each t ∈ T;
(iii) for each x ∈ U, there exist r ∈ R>0 and continuous functions g0,g1, . . . ,gm : T→ R≥0

such that
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(a) ‖̂F(t,y)‖ ≤ g0(t) for (t,y) ∈ T × B(r, x) and

(b)

∣∣∣∣∣∣∣ ∂l̂Fj

∂xk1 · · · ∂xkl

(t,y)

∣∣∣∣∣∣∣ ≤ gl(t) for (t,y) ∈ T × B(r, x), j,k1, . . . ,kl ∈ {1, . . . ,n}, and

l ∈ {1, . . . ,m}.
Then, for t, t0 ∈ T, ΦF

t,t0
: DF(t, t0)→ U is a Cm-diffeomorphism onto its image.

Proof It suffices to prove the theorem locally, since once this is done, one can use
an argument like that in the proof of Theorem 3.1.8(iv) to get the global result.

We prove the result by induction on m, the result for m = 1 having been proved
in Theorem 3.1.8. So suppose the result true for m = r ∈ Z>0, and that F satisfies the
hypotheses of the theorem for m = r + 1. Then, for (t0, x0), the ordinary differential
equation F1,(t0,x0) with right-hand side

F̂1,(t0,x0) : T × L(Rn;Rn)→ L(Rn;Rn)

(t,X) 7→ DF̂(t,ΦF(t, t0, x0)) ◦ X

satisfies the hypotheses of the theorem for m = r.
missing stuff
According to the induction hypotheses and Theorem 3.1.8(iv), we conclude that

DΦF
t,t0

is of class Cr, i.e., ΦF
t,t0

is of class Cr+1, as desired. �

Exercises

3.1.1 Let F be a kth-order scalar ordinary differential equation with right-hand
side

F̂ : T ×U × L≤k−1
sym (R;R)→ R.

Let F1 be the first-order ordinary differential equation with k states, as in
Exercise 1.3.23. Denote the state for F by x ∈ U and the state for F1 by
y ∈ U1 = U × Rk−1, as in Exercise 1.3.23.
(a) Argue that the correct definition of an equilibrium state for the kth-order

ordinary differential equation F is a state x0 ∈ U such that

F̂(t, x0, 0, . . . , 0) = 0.

(b) Show that x0 ∈ U is an equilibrium for F as in part (a) if and only if
(x0, 0, . . . , 0) is an equilibrium state for F1.

Now let x0 ∈ U be an equilibrium state for F, as in part (a), with y0 =
(x0, 0, . . . , 0) ∈ U1 the associated equilibrium state for F1.
(c) Determine the linearisation of F1 about an equilibrium state y0 =

(x0, 0, . . . , 0).
(d) Show that the linearisation of F1 is a first-order linear ordinary differ-

ential equation with k states that comes from a kth-order scalar linear
ordinary differential equation, and determine explicitly the coefficients
in this scalar equation in terms of F̂.
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3.1.2 For the ordinary differential equations F with the given time-domains, state
spaces, and right-hand sides, determine their equilibrium states and the
linearisations about these equilibrium states:

(a) T = R, U = R, and F̂(t, x) = x − x3;
(b) T = R, U = R, and F̂(t, x) = a(t)x, a ∈ C0(T;R) not identically zero;
(c) T = R, U = R, and F̂(t, x) = cos(x);
(d) T = R, U = R2, and F̂(t, (x1, x2)) = (x2, x1 − x3

1);

(e) T = R, U = R2, and F̂(t, (x1, x2)) = (x2, a(t)x1), a ∈ C0(T;R) not identically
zero;

(f) T = R, U = R2, and F̂(t, (x1, x2)) = (x2, cos(x1));
(g) T = R, U = R2

>0, and F̂(t, (x1, x2)) = (αx1 − βx1x2, δx1x2 − γx2), α, β, δ, γ ∈
R>0.
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Section 3.2

Systems of linear homogeneous ordinary differential equations

In this section we shall begin our study of systems of linear ordinary differential
equations by working with homogeneous systems. Having just specified that we
will work with first-order ordinary differential equations with right-hand sides of
form (3.1), for linear systems we immediately abandon this form by working with
systems whose state space is a general finite-dimensional vector space V. To do
this requires a tiny bit of effort to do the requisite calculus.

3.2.1 Working with general vector spaces

Let us make a few simple definitions.

3.2.1 Definition (Vector space-valued functions) Let F ∈ {R,C}, let T ⊆ R be an
interval, let V be a finite-dimensional F-vector space, and let ξ : T → V be a map.
Let {e1, . . . , en} be a basis for V and write

ξ(t) = ξ1(t)e1 + · · · + ξn(t)en

for maps ξ1, . . . , ξn : T→ F.
(i) The map ξ is of class Cr, r ∈ Z≥0, if ξ1, . . . , ξn ∈ Cr(T;F).
(ii) We denote by Cr(T; V) the set of mappings of class Cr.

(iii) If ξ is of class Cr, then the rth derivative of ξ is the map drξ
dtr : T → V defined

by
drξ
dtr (t) =

n∑
j=1

drξ j

dtr e j, t ∈ T. •

One may verify that these definitions are independent of the basis chosen to
make them (see Exercise 3.2.1).

We note that Cr(T; V) is a vector space with vector addition

(ξ1 + ξ2)(t) = ξ1(t) + ξ2(t)

and scalar multiplication
(aξ)(t) = a(ξ(t))

for ξ, ξ1, ξ2 ∈ Cr(T; V) and a ∈ F.
As we have always done, we will need notation for representing derivatives as

variables for vector space-valued maps. This we do just as in the case of Rn-valued
maps. Here we only need first derivatives since we work only with first-order
ordinary differential equations. We shall also keep in mind Remark 1.3.4 regarding
the simpler nature of derivatives for functions of a single variable. All that being
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said. . . we represent the variable for the first derivative for maps from T to V by
x(1)
∈ V.
We will also require similar notions for linear maps.

3.2.2 Definition (Linear map-valued functions) Let F ∈ {R,C}, let T ⊆ R be an interval,
let U and V be finite-dimensional F-vector spaces, and let L : T→ L(U; V) be a map.
Let { f1, . . . , fm} and {e1, . . . , en} be bases for U and V, respectively, and write

L(t)( fa) =

n∑
j=1

L ja(t)e j, a ∈ {1, . . . ,m},

for maps L ja : T→ F, j ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}.
(i) The map L is of class Cr, r ∈ Z≥0, if L ja ∈ Cr(T;F), j ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}.

(ii) If L is of class Cr, then the rth derivative of L is the map drL
dtr : T → L(U; V)

defined by

drL
dtr (t)( fa) =

n∑
j=1

drL ja

dtr (e j), a ∈ {1, . . . ,m}, t ∈ T. •

Again, one may verify that these definitions are independent of the bases chosen
to make them (see Exercise 3.2.2).

We shall make use of the “dot” notation for derivatives when it is convenient
to do so. Thus we shall write

ξ̇(t) =
dξ
dt

(t), L̇(t) =
dL
dt

(t)

for V- and L(U; V)-valued functions ξ and L.
With these definitions, we can then make sense of a linear ordinary differential

equation in a vector space.

3.2.3 Definition (System of linear ordinary differential equations) Let F ∈ {R,C}, let
T ⊆ R be an interval, and let V be an n-dimensional F-vector space.

(i) A system of linear ordinary differential equations in V is a map F : T×V⊕V→
V of the form

F(t, x, x(1)) = A1(t)(x(1)) + A0(t)(x) − b0(t)

for maps A0,A1 : T → L(V; V) and b0 : T → V, where A1(t) is invertible for
every t ∈ T.

(ii) The right-hand side of a system of linear ordinary differential equations F is
the map F̂ : T × V→ V is the map defined by

F̂(t, x) = −A1(t)−1
◦ A0(t)(x) + A1(t)−1(b0(t)).

We shall typically denote A(t) = −A1(t)−1
◦ A0(t) and b(t) = A1(t)−1(b0(t)).



3.2 Systems of linear homogeneous ordinary differential equations 207

(iii) The system of linear ordinary differential equations F

(a) is homogeneous if b(t) = 0 for every t ∈ T,
(b) is inhomogeneous if b(t) , 0 for some t ∈ T, and
(c) has constant coefficients if A is a constant map.

(iv) A solution for a system of linear ordinary differential equations F is a map
ξ ∈ C1(T′; V) defined on a subinterval T′ ⊆ T and satisfying

dξ
dt

(t) = A(t)(ξ(t)) + b(t), t ∈ T′.

Having gone to the effort of making the above revisions of our usual definition
of a linear ordinary differential equation, we will say a few words about why we did
this. When we study in detail linear ordinary differential equations with constant
coefficients in Section 3.2.3, we shall make some rather detailed constructions with
linear algebra. It is actually less confusing to do this in the setting of general
vector spaces, since the coordinates of Rn are a mere distraction. That being said,
a reader will come to no great harm if, in their mind, they replace “V” with “Rn,”
as indeed all of our examples will come in this form. Indeed, in practice, even if a
specific application does not come with V = Rn, one will normally choose a basis in
which to represent the differential equation, after which one will be in the standard
situation. In Exercise 3.2.3 we show that this is a valid thing to do.

3.2.2 Equations with time-varying coefficients

In this section we work with a system of linear homogeneous ordinary differ-
ential equations F in a finite-dimensional R-vector space V, whose right-hand side,
therefore, takes the form

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

(3.4)

for a map A : T → L(V; V). Thus we are looking at differential equations whose
solutions t 7→ ξ(t) satisfy

ξ̇(t) = A(t)(ξ(t)).

In this section we shall examine the basic properties of these solutions, and the set
of all solutions, just as we did for scalar equations in Section 2.2.1.

3.2.2.1 Solutions and their properties First let us verify that the basic exis-
tence and uniqueness result holds for the differential equations we are consider-
ing.
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3.2.4 Proposition (Local existence and uniqueness of solutions for systems of lin-
ear homogeneous ordinary differential equations) Consider the system of linear
homogeneous ordinary differential equations F with right-hand side (3.4) and suppose that
A: T→ L(V; V) is continuous. Let (t0, x0) ∈ T × V. Then there exists an interval T′ ⊆ T
and a map ξ : T′ → V of class C1 that is a solution for F and which satisfies ξ(t0) = x0.
Moreover, if T̃′ ⊆ T is another subinterval and if ξ̃ : T̃′ → V is another C1-solution for F
satisfying ξ̃(t0) = x0, then ξ̃(t) = ξ(t) for every t ∈ T̃′ ∩ T′.
Proof By choosing a basis for V, we can take V = Rn so that A is an n × n matrix-
valued function, which we denote as A in the usual way. (This is legitimate by
Exercise 3.2.3.) We denote the components of A(t) by A jk(t), j, k ∈ {1, . . . ,n}. The
following technical lemma will be useful.

1 Lemma For (v1, . . . ,vn) ∈ Rn,

n∑
j=1

|vj| ≤
√

n

 n∑
j=1

|vj|
2


1/2

.

Proof Note that

α =
1
n

n∑
j=1

|v j|

is the average of the positive numbers |v1|, . . . , |vn|. Thus we can write each of these
numbers as this average divided by n plus the difference: |v j| = α + δ j. Note that∑n

j=1 δ j = 0. Now compute n∑
j=1

|v j|
2


1/2

=

 n∑
j=1

(α + δ j)2


1/2

=

 n∑
j=1

(α2 + 2αδ j + δ2
j )


1/2

≥

 n∑
j=1

α2


1/2

=
√

nα,

using the fact that
∑n

j=1 δ j = 0. This is the desired result upon employing the
definition of α. H

We shall prove the proposition under the hypothesis that A is locally integrable,
meaning that there exists a locally integrable function g : T→ R≥0 such that A jk(t) ≤
g(t) for t ∈ T. In this case, we must relax the conclusions of the theorem from assert
only that solutions are locally absolutely continuous, not necessarily continuously
differentiable. Let a, b ∈ T, a < b, be such that t0 ∈ [a, b]. The following estimate
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will be useful for us: for any x1, x2 ∈ Rn and t ∈ [a, b],

‖̂F(t, x1) − F̂(t, x2)‖ = ‖A(t)(x1) − A(t)(x2)‖ = ‖A(t)(x1 − x2)‖

=

 n∑
j=1

 n∑
k=1

A jk(t)(x1,k − x2,k)


2

1/2

≤

 n∑
j=1

 n∑
k=1

|A jk(t)(x1,k − x2,k)|


2

1/2

≤

 n∑
j=1

g(t)
n∑

k=1

|x1,k − x2,k|


2

1/2

=

g(t)2
n∑

j=1

 n∑
k=1

|x1,k − x2,k|


2

1/2

≤

g(t)2
n∑

j=1

n∑
k=1

|x1,k − x2,k|
2


1/2

≤

ng(t)2
n∑

k=1

|x1,k − x2,k|
2


1/2

=
√

ng(t)

 n∑
k=1

|x1,k − x2,k|
2


1/2

=
√

ng(t)‖x1 − x2‖.

Let us take h(t) =
√

ng(t), noting that h is locally integrable. We consider the
Banach space C0([a, b];Rn) with the norm

‖ f‖∞,h,t0 = sup
{∥∥∥∥∥ f (t)e−2

∫ t
t0

h(s) ds
∥∥∥∥∥ ∣∣∣∣∣ t ∈ [a, b]

}
.

Let us define
F+ : C0([a, b];Rn)→ C0([a, b];Rn)

by

F+(ξ)(t) = x0 +

∫ t

t0

A(s)(ξ(s)) ds.

We now estimate, for t ∈ [a, b],

‖F+(ξ1)(t) − F+(ξ2)(t)‖ =

∥∥∥∥∥∥
∫ t

t0

A(s)(ξ1(s) − ξ2(s)) ds

∥∥∥∥∥∥
≤

∫ t

t0

‖A(s)(ξ1(s) − ξ2(s))‖ds

≤

∫ t

t0

‖ξ1(s) − ξ2(s)‖e−2
∫ s

t0
h(τ) dτh(s)e2

∫ s
t0

h(τ) dτ ds

≤
1
2
‖ξ1 − ξ2‖∞,h,t0

∫ t

t0

d
ds

e2
∫ s

t0
h(τ) dτ ds

≤
1
2
‖ξ1 − ξ2‖∞,h,t0e

2
∫ t

t0
h(s) ds

.
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From this we conclude that

‖F+(ξ1) − F+(ξ2)‖∞,L ≤
1
2
‖ξ1 − ξ2‖∞,L.

Now one argues just as in the proof of Theorem 1.4.8(ii), using the Contraction
Mapping Theorem to conclude the existence of a unique solution ξ+ for F on [a, b].
Moreover, since

ξ(t) = x0 +

∫ t

t0

A(s)(ξ(s)) ds,

we see that ξ is locally absolutely continuous and satisfies the initial conditions.�

Next, as for scalar linear ordinary differential equations, we show that solutions
exist for all time.

3.2.5 Proposition (Global existence of solutions for systems of linear homoge-
neous ordinary differential equations) Consider the system of linear homogeneous or-
dinary differential equations F with right-hand side (3.4) and suppose that A: T→ L(V; V)
is continuous. If ξ : T′ → V is a solution for F, then there exists a solution ξ : T→ V for
which ξ|T′ = ξ.

Proof Note that in the proof of Proposition 3.2.4 we showed that solutions of the
initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x0,

exist on any interval [a, b] ⊆ T containing t0. So let t ∈ T and let [a, b] be an interval
containing both t0 and t. We then have a solution for the initial value problem that
is defined at t. Since t ∈ T is arbitrary, the result follows. �

Now we can discuss the set of all solutions of a system of linear homogeneous
ordinary differential equation F with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x).

To this end, we denote by

Sol(F) =
{
ξ ∈ C1(T; V)

∣∣∣ ξ̇(t) = A(t)(ξ(t))
}

the set of solutions for F. The following result is then the main structural result
about the set of solutions to a system of linear homogeneous ordinary differential
equations.
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3.2.6 Theorem (Vector space structure of sets of solutions) Consider the system of
linear homogeneous ordinary differential equations F in the n-dimensional R-vector space
V with right-hand side (2.1) and suppose that the map A: T → L(V; V) is continuous.
Then Sol(F) is an n-dimensional subspace of C1(T;R).

Proof Fix t0 ∈ T and define
σt0 : Sol(F)→ V

ξ 7→ ξ(t0).

We claim that σt0 is an isomorphism of vector spaces. First, the verification of the
linearity of σt0 follows from the equalities

(ξ1 + ξ2)(t0) = ξ1(t0) + ξ2(t0), (aξ)(t0) = a(ξ(t0)),

which themselves follow from the definition of the vector space structure in
C1(T; V). Next let us show that σt0 is injective by showing that ker(σt0) = {0}.
Indeed, suppose that σt0(ξ) = 0. Then, by the uniqueness assertion of Proposi-
tion 3.2.4, it follows that ξ(t) = 0 for every t ∈ T, as desired. To show that σt0 is
surjective, let x0 ∈ V. Then, by the existence assertion of Proposition 3.2.4, there
exists ξ ∈ Sol(F) such that ξ(t0) = x0, i.e., such that σt0(ξ) = x0. �

The following corollary, immediate from the proof of the theorem, gives an easy
check on the linear independence of subsets of Sol(F).

3.2.7 Corollary (Linear independence in Sol(F)) Consider the system of linear homo-
geneous ordinary differential equations F in the n-dimensional R-vector space V with
right-hand side (2.1) and suppose that the map A: T → R is continuous. Then a subset
{ξ1, . . . , ξk} ⊆ Sol(F) is linearly independent if and only if, for some t0 ∈ T, the subset
{ξ1(t0), . . . , ξk(t0)} ⊆ V is linearly independent.

As with scalar linear homogeneous ordinary differential equations, the theorem
allows us to give a special name to a basis for Sol(F).

3.2.8 Definition (Fundamental set of solutions) Consider the system of linear homo-
geneous ordinary differential equations F in the n-dimensional R-vector space V
with right-hand side (2.1) and suppose that the map A : T → R is continuous. A
set {ξ1, . . . , ξn} of linearly independent elements of Sol(F) is a fundamental set of
solutions for F. •

3.2.2.2 The state transition map We now present a particular way of organis-
ing a fundamental set of solutions into one object that, for all intents and purposes,
completely characterises Sol(F). This we organise as the following theorem.
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3.2.9 Theorem (Existence of, and properties of, the state transition map) Consider
the system of linear homogeneous ordinary differential equations F in the n-dimensional
R-vector space V with right-hand side (2.1) and suppose that the map A: T → R is
continuous. Then there exists a unique map ΦA : T×T→ V with the following properties:

(i) for each t0 ∈ T, the function

ΦA,t0 : T→ L(V; V)
t 7→ ΦA(t, t0)

is differentiable and satisfies the initial value problem

Φ̇A,t0(t) = A(t) ◦ΦA,t0(t), ΦA,t0(t0) = idV;

(ii) the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x0

is t 7→ ΦA(t, t0)(x0);

(iii) det(Φ(t, t0)) = e
∫ t

t0
tr(A(s)) ds (the Abel–Jacobi–Liouville formula);

(iv) for t, t0, t1 ∈ T, ΦA(t, t0) = ΦA(t, t1) ◦ΦA(t1, t0);
(v) for each t, t0 ∈ T, ΦA(t, t0) is invertible and ΦA(t, t0)−1 = Φ(t0, t).

Proof First of all, we define Φ by the condition in part (i). That is to say, we define
Φ by

∂ΦA

∂t
(t, t0) = A(t) ◦ΦA(t, t0), ΦA(t0, t0) = idV .

Note that this is an initial value problem associated with the system of linear
homogeneous ordinary differential equations FA in L(V; V) with right-hand side

F̂A : T × L(V; V)→ L(V; V)
Φ 7→ A(t) ◦Φ;

note the mapping Φ 7→ A(t) ◦ Φ is linear.4 Thus, by Proposition 3.2.4, it possesses
4The general setting here is this. Let F ∈ {R,C} and let U, V, and W be F-vector spaces. Given

L ∈ L(V; W), define a map (“composition with L”) by

CL : L(U; V)→ L(U; W)
M 7→ L ◦M.

It is then straightforward to verify that this is a linear map:

CL(M1 + M2)(u) = L ◦ (M1 + M2)(u) = L(M1(u) + M2(u))
= L ◦M1(u) + L ◦M2(u) = CL(M1)(u) + CL(M2)(u)

which implies that CL(M1 + M2) = CL(M1) + CL(M2), and

CL(aM)(u) = L ◦ (aM)(u) = L(a(M(u))) = aL ◦M(u) = aCL(M)(u),

which implies that CL(aM) = aCL(M).
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a unique solution which, by Proposition 3.2.5, exists in all of T. This proves the
existence and uniqueness and part (i).

(ii) We compute

d
dt

ΦA(t, t0)(x0) =
∂ΦA

∂t
(t, t0)(x0) = A(t) ◦ΦA(t, t0)(x0)

and ΦA(t0, t0)(x0) = x0, which shows that t 7→ ΦA(t, x0)(x0) solves the stated initial
value problem. By uniqueness of such solutions, this part of the theorem follows.

(iii) We start with a lemma.

1 Lemma Let T ⊆ R be an interval and let A : T→ L(Rn;Rn) be a differentiable map. For
j,k ∈ {1, . . . ,n}, let Cjk(t) be the (j,k)th cofactor of A(t), i.e., (−1)j+k times the determinant
of the (n − 1) × (n − 1) matrix formed by deleting the jth row and kth column from A(t).
Then

d(det A)
dt

(t) =

n∑
j,k=1

Cjk(t)Ȧjk(t).

Proof The row/column expansion rule for determinants gives

det A(t) =

n∑
k=1

A jk(t)C jk(t)

for any j ∈ {1, . . . ,n}. Using the Chain Rule,

d(det A)
dt

(t) =

n∑
j,k=1

∂(det A)
∂A jk

Ȧ jk(t) =

n∑
j,k=1

C jk(t)Ȧ jk(t),

because C jk does not depend on the ( j, k)th component of A. H

We choose a basis {e1, . . . , en} for V and denote by A(t) the matrix representative
of A(t) and by ΦA(t, t0) the matrix representative of ΦA(t, t0). (That we can reduce
to V = Rn is justified by Exercises 3.2.3 and 3.2.4.) For j, k ∈ {1, . . . ,n}, denote by
C jk(t, t0) the ( j, k)th cofactor of ΦA(t, t0), i.e., (−1) j+k times the determinant of the
matrix ΦA(t, t0) with the jth row and kth column removed. Also let C(t, t0) be the
matrix formed from these cofactors. Denote by Φ jk(t, t0) the ( j, k)th component of
ΦA. Using the lemma,

d
dt

det ΦA(t, t0) =

n∑
j,k=1

C jk(t, t0)
d
dt

Φ jk(t, t0)

= tr
(
C(t, t0)T d

dt
ΦA(t, t0)

)
= tr(ΦA(t, t0)C(t, t0)TA(t)),
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using part (i), the definition of trace and transpose, and the easily verified fact that
tr(AB) = tr(BA) for n × n matrices A and B. Now we note that

ΦAC(t, t0)T = det ΦAIn

using Cramer’s Rule for matrix inversion. Thus we arrive at

d
dt

det ΦA(t, t0) = det ΦA(t, t0)A(t).

This equation is a first-order scalar linear homogeneous ordinary differential equa-
tion, and we have seen how to solve these in Example 2.2.5. Applying the computa-
tions there to the present equation, and using the fact that det ΦA(t, t0) = det In = 1,
we get this part of the theorem.

(iv) We compute

d
dt

(ΦA(t, t1) ◦ΦA(t1, t0)) = A(t) ◦ΦA(t, t0) ◦ΦA(t1, t0)

and
ΦA(t1, t1) ◦ΦA(t1, t0) = Φ(t1, t0).

We also have
d
dt

ΦA(t, t0) = A(t) ◦ΦA(t, t0).

That is to say, both t 7→ ΦA(t, t0) and t 7→ ΦA(t, t1) ◦ ΦA(t1, t0) satisfy the initial
problem

Φ̇(t) = A(t) ◦Φ(t), Φ(t1) = ΦA(t1, t0).

By uniqueness of solutions for systems of linear homogeneous ordinary differential
equations, we conclude that ΦA(t, t0) = ΦA(t, t1) ◦ΦA(t1, t0), as desired.

(v) The invertibility of Φ(t, t0) follows from part (iii). The specific formula for
the inverse follows from the formula

idV = ΦA(t0, t0) = Φ(t0, t) ◦Φ(t, t0),

which itself follows from part (iv). �

Let us formally name the mapping ΦA defined in the theorem.

3.2.10 Definition Consider the system of linear homogeneous ordinary differential equa-
tions F in the n-dimensional R-vector space V with right-hand side (2.1) and sup-
pose that the map A : T → R is continuous. The map ΦA : T × T → V from
Theorem 3.2.9 is the state transition map. •

One imagines that it is possible to compute the state transition map if one is
given a fundamental set of solutions. The following procedure gives an explicit
means of doing this.
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3.2.11 Procedure (Determining the state transition map from a fundamental set of
solutions) Given a system of linear homogeneous ordinary differential equations
F in the n-dimensional R-vector space V with right-hand side equation

F̂(t, x) = A(t)(x),

with map A : T → R is continuous, and given a fundamental set of solutions
{ξ1, . . . , ξn}, do the following.
1. Choose a basis {e1, . . . , en}.
2. Let ξ j : T→ Rn be the components of ξ j, j ∈ {1, . . . ,n}, i.e.,

ξ j(t) = ξ1, j(t)e1 + · · · + ξ j,n(t)en.

If V = Rn, one can just take the components of ξ j, j ∈ {1, . . . ,n}, in the standard
basis, as usual.

3. Assemble the matrix function Ξ : T → L(Rn;Rn) by making the components of
ξ1(t), . . . , ξ j(t) the columns of Ξ(t):

Ξ(t) =


ξ1,1(t) ξ2,1(t) · · · ξn,1(t)
ξ1,2(t) ξ2,2(t) · · · ξn,2(t)
...

...
. . .

...
ξ1,n(t) ξ2,n(t) · · · ξn,n(t)

 .
(Be sure you understand that ξ j,k(t) is the kth component of ξ j(t).) We call the
matrix-valued function Ξ : T→ L(Rn;Rn) a fundamental matrix for F.

4. Define Φ(t, t0) = Ξ(t)Ξ(t0)−1.
5. Then Φ(t, t0) is the matrix representative of ΦA(t, t0) in the basis {e1, . . . , en}. •

Let us verify that the preceding procedure does indeed yield the state transition
map.

3.2.12 Proposition (Determining the state transition map from a fundamental set of
solutions) Consider the system of linear homogeneous ordinary differential equations F
in the n-dimensional R-vector space V with right-hand side (2.1) and suppose that the map
A: T→ R is continuous. Then Procedure 3.2.11 will produce the state transition map.
Proof By choosing a basis {e1, . . . , en} as in Procedure 3.2.11, we can assume that
V = Rn. (This is legitimate by virtue of Exercises Exercise 3.2.3 and 3.2.4.) Let us
denote by A(t) the matrix representative of A(t). Defining Φ(t, t0) as in the given
procedure, we have

∂Φ
∂t

(t, t0) = Ξ̇(t)Ξ(t0)−1.

Noting that each of ξ j, j ∈ {1, . . . ,n}, is a solution for F, we have

ξ̇ j,k(t) =

n∑
l=1

Akl(t)ξ j,l(t), j ∈ {1, . . . ,n}, t ∈ T.



216 3 Systems of ordinary differential equations

Therefore, in matrix notation,[
ξ̇1(t) · · · ξ̇(t)

]
= A(t)

[
ξ1(t) · · · ξ(t)

]
=⇒ Ξ̇(t) = A(t)Ξ(t), t ∈ T.

Therefore,
∂Φ
∂t

(t, t0) = A(t)Ξ(t)Ξ(t0)−1 = A(t)Φ(t, t0).

Moreover, Φ(t0, t0) = In. This t 7→ Φ(t, t0) satisfies the matrix representative of the
initial value problem satisfied by t 7→ ΦA(t, t0), i.e., Φ(t, t0) is the matrix represen-
tative of ΦA(t, t0). �

In general, it cannot be expected to find the state transition map for a system
of linear homogeneous ordinary differential equations. However, to illustrate
Procedure 3.2.11, let us give a “cooked” example.

3.2.13 Example (Computing the state transition map) We take the system of linear
homogeneous ordinary differential equations F in R2 with right-hand side

F̂ : (0,∞) × R2
→ R2

(t, (x1, x2)) 7→
(1

t
x1 − x2,

1
t2 x1 +

2
t

x2

)
.

Solutions t 7→ (x1(t), x2(t)) satisfy[
ẋ1(t)
ẋ2(t)

]
=

[
1
t −1
1
t2

2
t

]
︸   ︷︷   ︸

A(t)

[
x1(t)
x2(t)

]
.

A direct verification shows that the functions ξ1, ξ2 : (0,∞)→ R2 defined by

ξ1 = (t2,−t), ξ2(t) = (−t2 ln(t), t + t ln(t))

are solutions of F. To verify that these are linearly independent we compute

det
[

t2
−t2 ln(t)

−t t + t ln(t)

]
= t3.

As this determinant is nowhere zero, we conclude the desired linear independence.
Now we determine the state transition map in this case. In the notation of

Procedure 3.2.11, we have

Ξ(t) =

[
t2
−t2 ln(t)

−t t + t ln(t)

]
,

and then a tedious computation gives

ΦA(t, t0) = Ξ(t)Ξ(t0)−1 =

−
t2(ln(t/t0)−1)

t2
0

−
t2 ln(t/t0)

t0
t ln(t/t0)

t2
0

t(ln(t/t0)+1)
t0

 . •
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3.2.2.3 The Peano–Baker series In this section we will provide a series rep-
resentation for the state transition map for a system of linear ordinary differential
equations. This is presented for two reasons: (1) as an illustration of series methods
in ordinary differential equations, as these arise in many important contexts; (2) as
an illustration, in an elementary setting, of iterative procedure used in the proof of
Theorem 1.4.8. It is by no means being suggested that the series representation we
give for the state transition map is useful for computation.

We let T ⊆ R be an interval and let A : T → L(V; V) be continuous. By its
definition, the state transition map (t, t0) 7→ ΦA(t, t0) is determined from the initial
value problem

Φ̇(t) = A(t) ◦Φ(t), Φ(t0) = idV .

Let us fix t, t0 ∈ T and take t > t0, for concreteness. By the Fundamental Theorem
of Calculus (assuming, as we are, that t 7→ A(t) is continuous), this is equivalent to

Φ(t) = idV +

∫ t

t0

A(τ) ◦Φ(s) ds. (3.5)

Let us informally iterate to find a solution. We define Φ0 : [t0, t]→ L(V;) by Φ0(τ) =
idV. This will, generally, not satisfy the integral equation (3.5). So, let us substitute
this zeroth-order approximation into the same integral equation to get (hopefully)
a better approximation Φ1 : [t0, t]→ L(V; V):

Φ1(τ) = Φ0(τ) +

∫ t

t0

A(τ) ◦Φ0(τ) dτ = idV +

∫ t

t0

A(τ) dτ.

We now continue this process iteratively, assuming that, if we have defined
Φk : [t0, t]→ L(V; V), we define Φk+1 : [t0, t]→ L(V; V) by

Φk+1(τ) = Φk(τ) +

∫ t

t0

A(τ) ◦Φk(τ) dτ.

It is pretty clear that

Φk(t) −Φk−1(t) =

∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

A(t1) ◦ A(t2) ◦ · · · ◦ A(tk) dtk · · ·dt2dt1︸                                                                ︷︷                                                                ︸
Ik(t,t0)

.

Thus we can make the following definition.

3.2.14 Definition (Peano–Baker series) For an interval T ⊆ R, for t0 ∈ T, and for a
continuous map A : T→ L(V; V), the series

I∞(t, t0) = idV +

∞∑
k=1

Ik(t, t0)

is the t0-Peano–Baker series for A. •

Of course, the definition is quite meaningless without addressing whether the
series converges. The main result of this section is now the following.
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3.2.15 Theorem (Convergence of the Peano–Baker series) Let V be a finite-dimensional
R-vector space. For an interval T ⊆ R, for t0 ∈ T, and for a continuous map A: T →
L(V; V), the t0-Peano–Baker series converges uniformly on every compact subinterval of
T, and, moreover, I∞(t, t0) = ΦA(t, t0).

Proof Let T+ > t0. We will show that the t0-Peano–Baker series converges uni-
formly to t 7→ ΦA(t, t0) on [t0,T+]. A similar proof can be concocted for T− < t0.
Then, given a compact subinterval T′ ⊆ T. the theorem follows by taking T− and
T+ such that T′ ⊆ [T−,T+].

We let {e1, . . . , en} be a basis for V. We let A(t) be the matrix representative of
A(t) and let Ik(t, t0) be the matrix representative for Ik(t, t0). Note that, because the
matrix representation for a composition of linear maps is the product of the matrix
representations, we have∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

A(t1)A(t2) · · ·A(tk) dtk · · ·dt2dt1.

For B ∈ L(Rn;Rn) let us define

‖B‖ =

 n∑
j,k=1

|B jk|
2


1/2

.

We claim that
‖BC‖ ≤ ‖B‖‖C‖. (3.6)

Let us denote by c j(B) the jth column of B. In this case

‖B‖ =

 n∑
j=1

‖c j(B)‖2


1/2

.

Now we can verify that

‖BC‖ =

 n∑
j=1

‖c j(BC)‖2


1/2

=

 n∑
j=1

‖Bc j(C)‖2


1/2

≤

 n∑
j=1

‖B‖2‖c j(C)‖2


1/2

≤ ‖B‖

 n∑
j=1

‖c j(C)‖2


1/2

= ‖B‖‖C‖.

We also use the equality∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

dtk · · ·dt2dt1 =
(t − t0)k

k!
, k ∈ Z>0. (3.7)
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This we prove by induction on k. For k = 1 it is certainly true. So suppose it true
for k = m and then compute∫ t

t0

∫ t1

t0

· · ·

∫ tm

t0

dtm+1 · · ·dt2dt1 =

∫ t

t0

(t1 − t0)m

m!
dt1 =

(t − t0)m+1

(m + 1)!
,

as desired.
Now let

M = sup{‖A(τ)‖ | τ ∈ [t0,T+]}.

Let ε ∈ R>0. Since the series of numbers
∞∑

k=0

Mk(T+ − t0)k

k!

converges (it is equal to eM(T+−t0)), there exists N ∈ Z>0 such that, if r, s ≥ N with
r > s,

r∑
k=s+1

Mk(T+ − t0)k

k!
< ε.

Therefore, for r, s ≥ N with r > s, we have∥∥∥∥∥∥∥
r∑

k=1

Ik(t, t0) −
s∑

k=1

Ik(t, t0)

∥∥∥∥∥∥∥ ≤
r∑

k=s+1

‖Ik(t, t0)‖

≤

r∑
k=s+1

∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

‖A(t1)A(t2) · · ·A(tk)‖dtk · · ·dt2dt1

≤

r∑
k=s+1

∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

‖A(t1)‖ ‖A(t2)‖ · · · ‖A(tk)‖dtk · · ·dt2dt1

≤

r∑
k=s+1

Mk

(∫ t

t0

dτ
)k

≤

r∑
k=s+1

Mk(T+ − t0)k

k!
< ε

using (3.6) and (3.7). This shows that the sequence of functions

t 7→ idV +

m∑
k=1

Ik(t, t0), m ∈ Z>0,

is uniformly Cauchy, and so uniformly convergent.missing stuff
Finally, we show that I∞(t, t0) = ΦA(t, t0). By the Fundamental Theorem of

Calculus, the function
t 7→ Ik(t, t0)

is of class C1. Moreover, a direct calculation using the definitions gives

İk+1(t, t0) = A(t)Ik(t, t0), k ∈ Z>0.
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Therefore, the series
∞∑

k=1

İk(t, t0) = A(t)
∞∑

k=1

Ik−1(t, t0),

with the convention that I0(t, t0) = In, converges uniformly. Thus the series of term-
by-term derivatives converges uniformly, and so term-by-term differentiation of
I∞(t, t0) is permissible. Moreover,

İ∞(t, t0) = A(t)I∞(t, t0)

and I∞(t0, t0) = In. Thus the matrix representative of t 7→ I∞(t, t0) satisfies the same
initial value problem as t 7→ ΦA(t, t0), and the uniqueness assertion of Proposi-
tion 3.2.4 gives the result, at least for matrix representatives. That the conclusion
also holds in V is a consequence of Exercise 3.2.4. �

3.2.2.4 The adjoint equation In this section we consider a system of linear
ordinary differential equations related to a given one. It is, in a very precise sense,
dual to the original equation. So we start with what exactly “dual” means.

3.2.16 Definition (Dual of a vector space) Let F ∈ {R,C} and let V be an F-vector space.
The dual5 of V is the F-vector space V∗ = L(V;F). •

Let us consider the notion of duality in a simple setting, indeed one where the
notion of duality is so simple it is confusing.

3.2.17 Example ((Fn)∗) We consider the n-dimensional F-vector space Fn. Thus, by defi-
nition and by the usual conflation of linear maps with matrices, (Fn)∗ is exactly the
set of 1 × n matrices. Thus we can represent an element α ∈ (Rn)∗ by

α =
[
α1 α2 · · · αn

]
for α1, . . . , αn ∈ F. Now, we often write elements of Fn as columns, i.e., as

v =


v1

v2
...

vn

 .
Note that v is not “equal” to this n × 1 matrix, we merely use this n × 1 matrix to
represent v for the purposes of doing matrix-vector multiplication. (Of course, in

5There are many places where one wishes to refine the notion of “dual” we give here to include
some form of continuity. Here we will only work with finite-dimensional vector spaces where such
nuances do not materialise.
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the very literal sense, v = (v1, v2, . . . , vn).) Therefore, for example, the product of
the 1 × n matrix representing α and the n × 1 matrix representing v is

[
α1 α2 · · · αn

] 
v1

v2
...

vn

 = α1v1 + · · · + αnvn.

This is merely the matrix/vector multiplication representation of what one would
write as α(v), thinking of elements of (Rn)∗ as what they are: linear functions on V. •

The upshot of the preceding example is: the dual of an n-dimensional F-vector
space is also an n-dimensional F-vector space. However, it is definitely not the case
that V∗ = V. We shall use the notation “α(v),” “α · v,” or “〈α; v〉” to denote the same
thing.

Next we see how linear maps behave relative to duality.

3.2.18 Definition (Dual of a linear map) Let F ∈ {R,C} and let U and V be F-vector spaces.
The dual of L ∈ L(U; V) is the linear map L∗ : V∗ → U∗ defined by

〈L∗(β); u〉 = 〈β; L(u)〉,

for u ∈ U and β ∈ V∗. •

Note that this does define L∗ since, for each β ∈ V∗, it tells us what L(β) does to
u ∈ U.

Let us work with our simple example above to understand the dual of a linear
map.

3.2.19 Example (Dual of a linear map between Euclidean space) Let F ∈ {R,C} and let
A ∈ L(Fm;Fn). Thus, in the usual way, A is represented by a matrix

A =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...
An1 An2 · · · Anm

 .
Let β ∈ (Fn)∗ and u ∈ Fm. The relation

〈A∗(β); u〉 = 〈β; A(u)〉,

when expressed in matrix/vector notation, reads

(A∗(β))u = βAu,
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from which we conclude that A∗(β) = βA. That is, A∗ is still a matrix, but multipli-
cation is on the left. If we do something unnatural, we can write elements of (Fn)∗

as columns by transposing them. In this case

(βA)T = ATβT.

In this way, we can think of A∗ ∈ (Fn)∗ as being the transpose of A. Indeed,
sometimes A∗ is called the “transpose” of A. •

With all of the above as backdrop, we can now define the adjoint equation.

3.2.20 Definition (Adjoint of a system of linear homogeneous ordinary differential
equations) Consider the system of linear homogeneous ordinary differential equa-
tions F in the n-dimensional R-vector space V with right-hand side (3.4). The ad-
joint equation for F is the system F∗ of linear homogeneous ordinary differential
equations in V∗ with right-hand side

F̂∗ : T × V∗ → V∗

(t, p) 7→ −A∗(t)(p).
•

Thus solutions t 7→ p(t) for the adjoint equation satisfy

ṗ(t) = −A∗(t)(p(t)).

Let us give the state transition map for the adjoint equation.

3.2.21 Proposition (State transition map for the adjoint equation) Consider the system
of linear homogeneous ordinary differential equations F in the n-dimensional R-vector
space V with right-hand side (3.4) and suppose that A: T→ L(V; V) is continuous. Then
A∗ : T → L(V∗; V∗) is continuous and the state transition map for the adjoint equation is
defined by Φ−A∗(t, t0) = ΦA(t0, t)∗ for t, to ∈ T.
Proof The continuity of A∗ follows from choosing a basis for V so that A becomes
the matrix-valued function A : T→ L(Rn;Rn). In this case, A∗(t) has the matrix rep-
resentative A(t)T, which is shows that the matrix representative of A is continuous
of and only if the matrix representative of A∗ is continuous.

By Theorem 3.2.9(v) we have

ΦA(t, t0) ◦ΦA(t0, t) = idV .

Differentiating this with respect to time we get

0 =
d
dt

ΦA(t, t0) ◦ΦA(t0, ) =
( d
dt

ΦA(t, t0)
)
◦ΦA(t0, t) + ΦA(t, t0) ◦

( d
dt

ΦA(t0, t)
)
,

from which we derive
d
dt

ΦA(t0, t) = −ΦA(t0, t) ◦
( d
dt

ΦA(t, t0)
)
◦ΦA(t0, t)

= −ΦA(t0, t) ◦ A(t) ◦ΦA(t, t0) ◦ΦA(t0, t)
= −ΦA(t0, t) ◦ A(t). (3.8)
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Taking the dual of this equation, and using Exercise 3.2.7, we have

d
dt

ΦA(t0, t)∗ = −A∗(t) ◦ΦA(t0, t)∗.

Since Φ∗A(t0, t0) = idV∗ , we thus see that t 7→ ΦA(t, t0)∗ satisfies the initial value
problem that defines the state transition map for the adjoint equation, and so the
uniqueness assertion of Proposition 3.2.4 gives the result. �

We have not yet addressed the important question, “Why should one care
about the adjoint equation?” We convert this question into another question with
the following result.

3.2.22 Proposition (A property of the adjoint equation) Consider the system of linear
homogeneous ordinary differential equations F in the n-dimensional R-vector space V with
right-hand side (3.4) and suppose that A: T→ L(V; V) is continuous. Let t0 ∈ T, x0 ∈ V,
and p0 ∈ V∗, and denote x(t) = ΦA(t, t0)(x0) and p(t) = ΦA(t0, t)∗(p0). Then

〈p(t); x(t)〉 = 〈p0; x0〉.

Proof We compute

d
dt
〈p(t); x(t)〉 = 〈ṗ(t); x(t)〉 + 〈p(t); ẋ(t)〉

= − 〈A∗(t)(p(t)); ΦA(t, t0)(x0)〉 + 〈ΦA(t0, t)∗(p0); A(t)(x(t))〉
= − 〈A∗(t) ◦ΦA(t0, t)∗(p0); Φ(t, t0)(x0)〉 + 〈ΦA(t0, t)∗(p0); A(t) ◦ΦA(t, t0)(x0)〉
= 0.

Since the function t 7→ 〈p(t); x(t)〉 is of class C1, it follows that this function is
constant. �

When α ∈ V∗ and v ∈ V satisfy α(v) = 0, we say that α annihilates v. This
is a sort of “orthogonality condition,” although it most definitely is not an actual
orthogonality condition, there being no inner product in sight. One of the upshots
of the preceding result is the following corollary, saying that the adjoint equation
preserves the annihilation condition.

3.2.23 Corollary (The geometric meaning of the adjoint equation) Consider the system
of linear homogeneous ordinary differential equations F in the n-dimensional R-vector
space V with right-hand side (3.4) and suppose that A: T → L(V; V) is continuous. Let
t0 ∈ T, x0 ∈ V, and p0 ∈ V∗, and denote x(t) = ΦA(t, t0)(x0) and p(t) = ΦA(t0, t)∗(p0). If
〈p0; x0〉 = 0, then 〈p(t); x(t)〉 = 0 for all t ∈ T.

It is this property of the adjoint equation that makes it an important tool in
optimal control theory, but this is not a subject into which we shall dwell deeply
here.
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3.2.3 Equations with constant coefficients

We now consider the special case of systems of linear homogeneous equations
with constant coefficients, i.e., those systems of linear ordinary differential equa-
tions F in a vector space V with right-hand sides

F̂(t, x) = A(x), (3.9)

for A ∈ L(V; V). As with the scalar version of such equations that we studied in
Section 2.2.2, there is a great deal more that we can say about such equations,
beyond the general assertions in the preceding section. Indeed, one can say that,
in principle, one can “solve” such equations, and we shall present a procedure for
doing so.

Before we do so, however, we reiterate that the ordinary differential equations
we are considering in this section are special cases of the time-varying equations
of the preceding section, so all of the general statements made there apply here
as well. In particular, Propositions 3.2.4 and 3.2.5, and Theorem 3.2.6 hold for
equations of the form (3.9).

We have already seen in Theorem 3.2.6 that linear algebra plays a rôle in the
theory of systems of linear homogeneous ordinary differential equations. We shall
see in this section that this rôle is amplified for equations with constant coefficients.
Therefore, the next two sections have to do with linear algebra.

3.2.3.1 Invariant subspaces associated with eigenvalues We assume that
the reader is familiar with the basic theory of eigenvalues and eigenvectors for
linear transformations of finite-dimensional F-vector spaces. In this section and the
next, we shall expand this elementary theory into a comprehensive understanding
of the invariant subspaces of a linear transformation of a finite-dimensional R-
vector space.

One of the complications that arise in the study of eigenvalues is that of multi-
plicity. We shall see that there are two, generally distinct, notions of multiplicity,
and the distinction between these is the source of some beautiful, and somewhat
complicated, mathematics.

We begin by associating a specific invariant subspace to a given linear transfor-
mation of a vector space. The construction is a little involved, and seems a little
pointless at present. However, it will form the essential part of the definition of
algebraic multiplicity in Definition 3.2.26. We consider some constructions involv-
ing the kernels of powers of an endomorphism. Thus we let F ∈ {R,C}, V be an
F-vector space, and L ∈ L(V; V). We denote

L j = L ◦ · · · ◦ L︸    ︷︷    ︸
j times

, j ∈ Z>0,
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and consider the subspaces ker(L j) ⊆ V, j ∈ Z>0. We denote by UL the subspace
spanned by ∪ j∈Z>0 ker(L j). Since the sequence

ker(L) ⊆ ker(L2) ⊆ · · · ⊆ ker(L j) ⊆ · · · (3.10)

is increasing, in fact we simply have UL = ∪ j∈Z>0 ker(L j). Since the subspace UL will
be essential in our definition of algebraic multiplicity, let us make a few comments
on its properties and its computation in practice.

3.2.24 Proposition (Characterisation of UL) Let F ∈ {R,C}, let V be an F-vector space, and
let L ∈ L(V; V). The subspace UL is the smallest subspace of V with the properties that

(i) UL is L-invariant and
(ii) ker(L) ⊆ UL.

Proof Let us first prove that UL has the two properties stated in the proposition.
Let v ∈ UL so that v ∈ ker(Lk) for some k ∈ Z>0. Then L ◦ Lk(v) = Lk(L(v)) = 0, and so
L(v) ∈ ker(Lk) ⊆ UL, showing that UL is L-invariant. It is also clear that ker(L) ⊆ UL.

Now we show that UL is the smallest subspace with the two stated properties.
Thus we let U′L be a subspace with the two properties. We claim that ker(L j) ⊆ U′L
for j ∈ Z>0. This is clearly true for j = 1, so suppose it true for j ∈ {1, . . . , k} and let
v ∈ ker(Lk+1). Thus Lk+1(v) = Lk(L(v)) = 0. Thus L(v) ∈ ker(Lk) ⊆ U′L by the induction
hypothesis. Therefore, by definition of UL and since U′L is a subspace, we have
UL ⊆ U′L, which completes the proof. �

This result has the following corollary which is useful in limiting the compu-
tations one must do in practice when computing the algebraic multiplicity. The
result says, roughly, that if the sequence

ker(L) ⊆ ker(L2) ⊆ · · · ⊆ ker(L j) ⊆ · · ·

has two neighbouring terms which are equal, then all remaining terms in the
sequence are also equal. This makes the computation of UL simpler in these cases.

3.2.25 Corollary (Computation of UL) Let F ∈ {R,C}, let V be an F-vector space, and let
L ∈ L(V; V). If, for some k ∈ Z>0, ker(Lk) = ker(Lk+1), then ker(Lj) = ker(Lj) for all
j ≥ k, and, moreover, UL = ker(Lk). Moreover, if V is finite-dimensional, then it will
always be the case that UL = ker(Lk) for some k ∈ Z>0.

Proof The result will follow from the definition of UL if we can show that UL =
ker(Lk). Since ker(Lk) ⊆ UL, this will follow if we can show that ker(Lk) is L-invariant,
since clearly ker(L) ⊆ ker(Lk). First let v ∈ ker(Lk). Then, since ker(Lk+1) = ker(Lk),
Lk+1(v) = Lk(L(v)) = 0, showing that L(v) ∈ ker(Lk). Thus ker(Lk) is L-invariant, and
the corollary follows. The final assertion of the corollary is merely the statement
that subspaces of a finite-dimensional vector space are finite-dimensional. �



226 3 Systems of ordinary differential equations

We now use the definition of the subspace UL above to talk about invariant
subspaces associated with eigenvalues. To do so, for λ ∈ F we denote

Lλ = λ idV −L.

We have the following obvious facts:
1. λ is an eigenvalue if and only if ker(Lλ) , {0};
2. eigenvectors are nonzero vectors in ker(Lλ).
We may now characterise the various multiplicities associated with an eigenvalue.

3.2.26 Definition (Eigenspaces, algebraic and geometric multiplicity) Let F ∈ {R,C},
let V be an F-vector space, let L ∈ L(V; V), and let λ ∈ F be an eigenvalue for L.

(i) The eigenspace for λ is the subspace W(λ,L) = ker(Lλ).

(ii) The generalised eigenspace for λ is the subspace W(λ,L) = ∪ j∈Z>0 ker(L j
λ).

(iii) The geometric multiplicity of λ is mg(λ,L) = dimF(W(λ,L)).

(iv) The algebraic multiplicity of λ is ma(λ,L) = dimF(W(λ,L)). •

The definitions immediately lead to the following facts.

3.2.27 Remarks (Properties of geometric and algebraic multiplicity)
1. Note that both the geometric and algebraic multiplicity are nonzero.
2. The algebraic and geometric multiplicities are always finite if V is finite-

dimensional.
3. It always holds that ma(λ,L) ≥ mg(λ,L). •

It will be useful to know that eigenspaces and generalised eigenspaces are
invariant.

3.2.28 Proposition (Invariance of eigenspaces and generalised eigenspaces) Let F ∈
{R,C}, let V be an F-vector space, let L ∈ L(V; V), and let λ be an eigenvalue for L.
Then, for any j ∈ Z>0, ker(Lj

λ) is an L-invariant subspace. As a consequence, W(λ,L) and
W(λ,L) are L-invariant subspaces.

Proof We first claim that L ◦ L j
λ = L j

λ
◦ L. We prove this by induction. For j = 1 we

simply have

L ◦ (λ idV −L) = λL ◦ idV −L ◦ L = λ idV ◦L − L ◦ L = (λ idV −L) ◦ L.

Now suppose the claim true for j ∈ {1, . . . , k} and compute

L ◦ (λ idV −L)k+1 = L ◦ (λ idV −L) ◦ (λ idV −L)k = (λ idV −L) ◦ L ◦ (λ idV −L)k

= (λ idV −L) ◦ (λ idV −L)k
◦ L = (λ idV −L)k+1

◦ L,

giving our claim.
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The first assertion of the proposition now follows easily. If v ∈ ker(L j
λ) then we

have
L j
λ(v) = 0 =⇒ L ◦ L j

λ(v) = L j
λ(L(v)) = 0

so that L ∈ ker(L j
λ). For the second assertion, it immediately follows that W(λ,L)

is L-invariant. The L-invariance of W(λ,L) follows since, if v ∈ W(λ,L), then
v ∈ ker(L j

λ) for some j ∈ Z>0. �

It is fairly clear that, if λ1 and λ2 are distinct eigenvalues for L ∈ L(V; V), then
W(λ1,L) ∩W(λ2,L) = {0}. It is less clear, although still true, that the corresponding
statement for the generalised eigenspaces also holds.

3.2.29 Proposition (Intersections of generalised eigenspaces are zero) Let F ∈ {R,C},
let V be an F-vector space, and let L ∈ L(V; V). If λ1 and λ2 are distinct eigenvalues for L
then W(λ1,L) ∩W(λ2,L) = {0}.
Proof We first prove a lemma characterising the intersections of generalised
eigenspaces.

1 Lemma W(λ1,L) ∩W(λ2,L) = ∪j∈Z>0(ker(Lj
λ1

) ∩ ker(Lj
λ2

)).
Proof By definition we have

W(λ1,L) ∩W(λ2,L) =
(
∪ j∈Z>0 ker(L j

λ1
)
)
∩

(
∪k∈Z>0 ker(Lk

λ2
)
)
.

By standard properties of union and intersection we have

W(λ1,L) ∩W(λ2,L) = ∪k∈Z>0

((
∪ j∈Z>0 ker(L j

λ1
)
)
∩ ker(Lk

λ2
)
)

= ∪k∈Z>0

(
∪ j∈Z>0

(
ker(L j

λ1
) ∩ ker(Lk

λ2
)
))

It is clear that the inclusion

∪ j∈Z>0(ker(L j
λ1

) ∩ ker(L j
λ2

)) ⊆ ∪k∈Z>0

(
∪ j∈Z>0

(
ker(L j

λ1
) ∩ ker(Lk

λ2
)
))

holds. If
v ∈ ∪k∈Z>0

(
∪ j∈Z>0

(
ker(L j

λ1
) ∩ ker(Lk

λ2
)
))
,

then there exists j, k ∈ Z>0 such that v ∈ ker(L j
λ1

) ∩ ker(Lk
λ2

). If j = k then we
immediately have

v ∈ ∪ j∈Z>0(ker(L j
λ1

) ∩ ker(L j
λ2

)).

So suppose, without loss of generality, that j > k. Then

ker(Lk
λ2

) ⊆ ker(L j
λ2

),

and so we again arrive at

v ∈ ∪ j∈Z>0(ker(L j
λ1

) ∩ ker(L j
λ2

)),

so giving our claim. H
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We next claim that ker(L j
λ1

) ∩ ker(L j
λ2

) = {0} for each j ∈ Z>0. We prove this by
induction on j. For j = 1, let v ∈ ker(Lλ1) ∩ ker(Lλ2). Then

L(v) = λ1v = λ2v =⇒ (λ1 − λ2)v = 0 =⇒ v = 0.

Now suppose that ker(L j
λ1

) ∩ ker(L j
λ2

) = {0} for j ∈ {1, . . . , k} and let v ∈ ker(Lk+1
λ1

) ∩
ker(Lk+1

λ2
). Then

Lk+1
λ1

(v) = Lk+1
λ2

(v) = 0.

This means that Lλ1(v) ∈ ker(Lk
λ1

) and Lλ2(v) ∈ ker(Lk
λ2

).
We now use a lemma.

2 Lemma Let F ∈ {R,C}, let V be an F-vector space, and let L,M ∈ L(V; V). Show that,
if L and M commute, i.e., L ◦M = M ◦ L, then ker(L) is M-invariant and that ker(M) is
L-invariant.

Proof Let v ∈ ker(L). Then 0 = M ◦ L(v) = L ◦M(v), i.e., M(v) ∈ ker(L). Thus ker(L)
is M-invariant. The other assertion, of course, follows in the same way. H

A direct computation shows that Lλ1 and Lλ2 commute. Thus, by the lemma,
ker(Lk

λ2
) and ker(Lk

λ1
) are invariant under Lλ1 and Lλ2 , respectively. Thus we have

Lλ1(Lλ2(v)) ∈ ker(Lk
λ2

), Lλ2(Lλ1(v)) ∈ ker(Lk
λ1

).

Therefore, by the induction hypothesis,

Lλ1(Lλ2(v)) = Lλ2(Lλ1(v)) = 0,

since Lλ1 and Lλ2 commute. Therefore,

Lλ2(v) ∈ ker(Lλ1) ⊆ ker(Lk
λ1

), Lλ1(v) ∈ ker(Lλ2) ⊆ ker(Lk
λ2

).

That is, Lλ1(v),Lλ2(v) ∈ ker(Lk
λ1

) ∩ ker(Lk
λ2

). Again by the induction hypothesis, this
gives Lλ1(v) = 0 and Lλ2(v) = 0. Thus v ∈ ker(Lλ1) ∩ ker(Lλ2) = {0}, so giving our
claim that ker(L j

λ1
) ∩ ker(L j

λ2
) = {0} for each j ∈ Z>0.

The result now easily follows from this and Lemma 1. �

Let us give an example that exhibit the character of and relationship between
algebraic and geometric multiplicity.

3.2.30 Example (Algebraic and geometric multiplicity) For F ∈ {R,C} take V = F3 and
define L1,L2 ∈ L(V; V) by the two 3 × 3 matrices

L1 =

0 0 0
0 0 0
0 0 −1

 , L2 =

0 1 0
0 0 0
0 0 −1

 .
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These linear maps both have eigenvalues 0 and −1. We can readily see that

ker(0 idV −L1) = spanF((1, 0, 0), (0, 1, 0)),
ker(0 idV −L1) = spanF((1, 0, 0)),

ker(−1 idV −L1) = spanF((0, 0, 1)),
ker(−1 idV −L2) = spanF((0, 0, 1)).

From this we deduce that for L1, mg(0,L1) = 2 and mg(−1,L1) = 1, and that for L2,
mg(0,L2) = 1 and mg(−1,L2) = 1. To compute the algebraic multiplicities, we must
compute the powers of the matrices λ idV −L where λ runs over the eigenvalues,
and L is either L1 or L2. For this purpose it is sufficient to compute

dimF(ker(0 idV −L1)) = 2, dimF(ker(0 idV −L2)) = 1,

dimF(ker(0 idV −L1)2) = 2, dimF(ker(0 idV −L2)2) = 2,

dimF(ker(0 idV −L1)3) = 2, dimF(ker(0 idV −L2)3) = 2,
dimF(ker(−1 idV −L1)) = 1, dimF(ker(−1 idV −L2)) = 1,

dimF(ker(−1 idV −L1)2) = 1, dimF(ker(−1 idV −L2)2) = 1.

We then conclude that ma(0,L1) = ma(0,L2) = 2 and ma(−1,L1) = ma(−1,L) = 1. •

The definition of the algebraic multiplicity that we give is interesting, because
it is geometric. However, it is not very useful in that we do not know a priori
how far along we need to go in the sequence (3.10) before it terminates. If V is
finite-dimensional, it is certainly the case that we will be able to stop after dimF(V)
terms. But in this case, we can give a precise upper bound for the k ∈ Z>0 for
which ker(L j

λ) = ker(Lk
λ) for all j ≥ k. A proof of this upper bound requires a deeper

understanding of linear transformations than we are willing to undertake just now,
so we content ourselves with a mere statement of the required estimate.

3.2.31 Fact (Determining algebraic multiplicity) LetF ∈ {R,C}, let V be a finite-dimensional
F vector space, let L ∈ L(V; V), and let λ ∈ F be an eigenvalue for L. Let PL ∈ F[X] be
the characteristic polynomial for L and let m(λ,PL) be the multiplicity of λ as a root of PL.
Then

(i) ker(L j
λ) = ker(Lm(λ,PL)

λ ) for j ≥ m(λ,PL) and
(ii) ma(λ,L) = m(λ,PL).

A corollary of this fact, Proposition 3.2.29, and the Fundamental Theorem of
Algebra (that every polynomial over C has a root) is the following.

3.2.32 Theorem (Decomposition into generalised eigenspaces for C-linear trans-
formations) Let V be a finite-dimensional C vector space, let L ∈ L(V; V), and let
λ1, . . . , λk ∈ C be the distinct eigenvalues for L. Then

V = W(λ1,L) ⊕ · · · ⊕W(λk,L),

and each of the subspaces W(λj,L), j ∈ {1, . . . ,k}, are L-invariant.
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Note that the theorem does not hold, in general, for R-vector spaces, since a
R-linear transformation may not possess any eigenvalues; see Exercise 1.2.3. Thus
for R-linear transformations we have to work a little harder.

3.2.3.2 Invariant subspaces of R-linear maps associated with complex
eigenvalues The primary reason for complexifying a R-vector space and then
a R-linear map is for the purpose of studying eigenvalues of R-linear transfor-
mations. Thus we let V be a R-vector space, let L ∈ L(V; V), with VC and LC the
associated complexifications. We are interested in studying how the eigenvalues
of L and LC are related. The following result gives the relationships we seek.

3.2.33 Proposition (Eigenvalues and eigenspaces of a linear transformation and its
complexification) If V is a R-vector space and if L ∈ L(V; V) with LC

∈ L(VC; VC) its
complexification, then the following statements hold:

(i) λ ∈ R is an eigenvalue for L if and only if λ is an eigenvalue for LC;
(ii) if λ ∈ C is an eigenvalue for LC, then λ̄ is an eigenvalue for LC;
(iii) if λ ∈ R is an eigenvalue for L then

W(λ,LC) = {(u,v) | u,v ∈W(λ,L)};

(iv) if λ ∈ R is an eigenvalue for L then

W(λ,LC) = {(u,v) | u,v ∈W(λ,L)};

(v) if λ ∈ C is an eigenvalue for LC then

W(λ̄,LC) = {(u,v) ∈ VC
| (u,−v) ∈W(λ,LC)};

(vi) if λ ∈ C is an eigenvalue for LC then

W(λ̄,LC) = {(u,v) ∈ VC
| (u,−v) ∈W(λ,LC)}.

Proof (i) First suppose that λ is an eigenvalue for L and denote by W(λ,L) the
eigenspace. We claim that

ker(LC
λ ) = {(u, v) ∈ VC

| u, v ∈W(λ,L)}.

Indeed, by definition of the complexification of a linear map, LC
λ (u, v) = (0, 0) if and

only if L(u) = λu and L(v) = λv. This shows that λ is an eigenvalue of LC and that
the eigenspace is {(u, v) ∈ VC

| u, v ∈W(λ,L)}.
Now suppose that λ ∈ R is an eigenvalue for LC and let W(λ,LC) be the

eigenspace. Thus, by definition of the complexification of a linear map we have

ker(LC
λ ) = {(u, v) ∈ VC

| u, v ∈ ker(Lλ)},
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so giving λ as an eigenvalue for L and also giving

W(λ,LC) = {(u, v) ∈ VC
| u, v ∈W(λ,L)}.

(ii) Before we get to the proof of this part of the result, let us make some
constructions with complexifications. For M ∈ L(VC; VC), let us write

M(u, v) = (M1(u) + M2(v),M3(u) + M4(v))

for (u, v) ∈ VC, and for some M1,M2,M3,M4 ∈ L(V; V). For this map to be C-linear,
we must have M(i(u, v)) = iM(u, v) for every (u, v) ∈ VC. Using the definition of
scalar multiplication in VC, this reads

(−M1(v) + M2(u),−M3(v) + M4(u)) = (−M3(u) −M4(v),M1(u) + M2(v)).

This holds for every (u, v) ∈ VC if and only if M4 = M1 and M3 = −M2. Thus we can
write

M(u, v) = (M1(u) + M2(v),−M2(u) + M1(v)).

Now define the conjugate of M as M̄ ∈ L(VC; VC) defined by

M̄(u, v) = (M1(u) −M2(v),M2(u) + M1(v)).

Note that

M̄ = M
⇐⇒ M1(u) −M2(u) = M1(u) + M2(v), M2(u) + M1(v) = −M2(u) + M1(v),

(u, v) ∈ VC

⇐⇒ M2 = 0

⇐⇒ M = MC
1 .

That it to say, M is the complexification of a R-linear map if and only if M̄ = M.
With these constructions at hand, we proceed with the proof. We may as well

suppose that λ is not real. Thus we write λ = σ + iω for σ,ω ∈ R and with ω , 0.
We first claim that LC

λ̄
= L̄C

λ . Indeed

L̄C
λ = LC − λ idV = L̄C

− λ̄ īdV = L − λ̄ idV = LC
λ̄
.

The following lemma gives us a useful characterisation of the kernel and image of
the conjugate of a linear map, and this characterisation will be used several times
in the remainder of the proof.
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1 Lemma If U and V are R-vector spaces and if L ∈ L(UC; VC), then
(i) ker(L̄) = {(u,v) ∈ UC

| (u,−v) ∈ ker(L)} and
(ii) image(L̄) = {(u,v) ∈ VC

| (u,−v) ∈ image(L)}.

Proof As above, we may write

L(u, v) = (L1(u) + L2(v),−L2(u) + L1(v))

for L1,L2 ∈ L(U; V). We then compute

ker(L̄) = {(u, v) ∈ UC
| (L1(u) − L2(v),L2(u) + L1(v)) = (0, 0)}

= {(u,−v) ∈ UC
| (L1(u) + L2(v),L2(u) − L1(v)) = (0, 0)}

= {(u,−v) ∈ UC
| (L1(u) + L2(v),−L2(u) + L1(v)) = (0, 0)}

= {(u, v) ∈ UC
| (u,−v) ∈ ker(L)},

giving the first part of the lemma.
For the second part we write

image(L̄) = {(L1(u) − L2(v),L2(u) + L1(v)) | (u, v) ∈ UC
}

= {(L1(u) + L2(v),L2(u) − L1(v)) | (u,−v) ∈ UC
}

= {(L1(u) + L2(v),L2(u) − L1(v)) | (u, v) ∈ UC
}

= {(u′, v′) | (u′,−v′) ∈ image(L)},

so giving the second part of the lemma. H

Now we proceed with the proof. Let us first consider the case when λ is an
eigenvalue for LC. By the lemma we have

ker(LC
λ̄

) = {(u,−v) | (u, v) ∈ ker(LC
λ )}.

Thus λ̄ is an eigenvalue for LC and

W(λ̄,VC) = {(u, v) ∈ VC
| (u,−v) ∈W(λ,LC)}.

(iii) This was proved during the course of proving (i).
(iv) We have (LC

λ ) j(u, v) = (L j
λ(u),L j

λ(v)) for each j ∈ Z>0 and (u, v) ∈ VC. Therefore,

ker((LC
λ ) j) = {(u, v) ∈ VC

| u, v ∈ ker(L j
λ)}.

From this we infer that

∪ j∈Z>0 ker((LC
λ ) j) =

{
(u, v) ∈ VC

∣∣∣ u, v ∈ ∪ j∈Z>0 ker(L j
λ)
}
,

which is the desired result.
(v) This was proved during the course of the proof of part (ii).



3.2 Systems of linear homogeneous ordinary differential equations 233

(vi) Since LC
λ̄

= L̄C
λ , it follows that (LC

λ̄
) j = (L̄C

λ ) j for each j ∈ Z>0. From the lemma
above we then conclude that, for each j ∈ Z>0,

ker((LC
λ̄

) j) =
{
(u, v) ∈ VC

∣∣∣ (u,−v) ∈ ker((LC
λ ) j)

}
.

It follows that

∪ j∈Z>0 ker((LC
λ̄

) j) =
{
(u, v) ∈ VC

∣∣∣ (u,−v) ∈ ∪ j∈Z>0 ker((LC
λ ) j)

}
,

which is exactly the claim. �

The proposition tells us that every eigenvalue of L is also an eigenvalue of LC.
Of course, it is not generally the case that eigenvalues of LC are also eigenvalues of
L, since the former are allowed to be complex, whereas the latter are always real.
Nonetheless, one can wonder what implications the existence of non-real eigenval-
ues for LC has on the structure of L. The following result addresses precisely this
point. The essential idea is that eigenspaces for LC give rise to invariant subspaces
for L of twice the dimension.

3.2.34 Proposition (Real invariant subspaces for complex eigenvalues) Let V be a
finite-dimensional R-vector space, let L ∈ L(V; V), and let VC and LC be the corresponding
complexifications. Suppose that λ = σ + iω, σ,ω ∈ R, ω , 0, is a complex eigenvalue for
LC and let Bλ and Bλ be bases for the eigenspace W(λ,LC) and the generalised eigenspace
W(λ,LC), respectively. Then the following statements hold:

(i) the sets

B′λ = {u ∈ V | (u,v) ∈ Bλ} ∪ {v ∈ V | (u,v) ∈ Bλ}, (3.11)

B′λ = {u ∈ V | (u,v) ∈ Bλ} ∪ {v ∈ V | (u,v) ∈ Bλ}

are linearly independent;
(ii) if (u,v) ∈ Bλ then

L(u) = σu − ωv, L(v) = ωu + σv,

and so, in particular, the two-dimensional subspace spanR(u,v) is L-invariant;

(iii) the subspaces spanR(B′λ) and spanR(B′λ) are L-invariant;
(iv) relative to the partition given in (3.11) for the basis B′λ, the restriction of L to

spanR(B′λ) has the matrix representative[
σIk ωIk

−ωIk σIk

]
,

where k is the number of basis vectors in Bλ.
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Proof (i) We shall prove the result for B′λ, the proof for B′λ being entirely similar.
Let us define

Bλ̄ = {(u,−v) ∈ VC
| (u, v) ∈ Bλ},

noting by Proposition 3.2.29 that spanC(Bλ) ∩ spanC(Bλ̄) = {(0, 0)}. Moreover,
by Proposition 3.2.33(vi) we also know that Bλ̄ is a basis for W(λ̄,LC). These
facts together ensure that Bλ ∪Bλ̄ is a basis for W(λ,LC) ⊕W(λ̄,LC). Now define
(2k) × (2k)-matrix P by

P =

[
Ik Ik

Ik −Ik

]
.

This matrix is invertible as one can see by checking that it has an inverse given by

P−1 =
1
2

[
Ik Ik

Ik −Ik

]
.

Thus P is a change of basis matrix from the basis Bλ ∪Bλ̄ for W(λ,LC) ⊕W(λ̄,LC)
to another basis for W(λ,LC)⊕W(λ̄,LC). Using the definition of the change of basis
matrix, one can further check that this new basis is exactly

{(u, 0) | (u, v) ∈ Bλ} ∪ {(0, v) | (u, v) ∈ Bλ}. (3.12)

Using the fact that this is a basis, and so linearly independent, we now prove that
B′λ is linearly independent. Let

{u ∈ V | (u, v) ∈ Bλ} = {u1, . . . ,uk}, {u ∈ V | (u, v) ∈ Bλ} = {v1, . . . , vk},

and suppose that
a1u1 + · · · + akuk + b1v1 + · · · + bkvk = 0

for a1, . . . , ak, b1, . . . , bk ∈ R. Using the definition of scalar multiplication in VC this
implies that

(a1 + i0)(u1, 0) + · · · + (ak + i0)(uk, 0) + (b1 + i0)(0, v1) + · · · + (bk + i0)(0, vk) = (0, 0).

Since the set (3.12) is linearly independent, we must have a j + i0 = 0 + i0 and
b j + i0 = 0 + i0 for j ∈ {1, . . . , k}. This gives linear independence of B′λ.

(ii) If (u, v) ∈ Bλ then we have

(L(u),L(v)) = LC(u, v) = (σ + iω)(u, v) = (σu − ωv, ωu + σv),

as claimed. Since L(u),L(v) ∈ spanR(u, v), it follows that spanR(u, v) is L-invariant.
(iii) To prove this part of the result it is useful to employ a lemma that captures

the essence of what is going on.
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1 Lemma Let V be a R-vector space with complexification VC and let L ∈ L(V; V) have
complexification LC. If U is a subspace of VC which is invariant under LC then

(i) the subspace
U = {(u,−v) | (u,v) ∈ U}

is LC-invariant and
(ii) the subspaces

{u ∈ V | (u,v) ∈ U + U}, {v ∈ V | (u,v) ∈ U + U}

of V are L-invariant.

Proof (i) Let (u,−v) ∈ U for (u, v) ∈ U. Then (L(u),L(v)) ∈ U since U is LC-invariant.
Therefore,

LC(u,−v) = (L(u),−L(v)) ∈ U,

giving invariance of U under LC as desired.
(ii) Let u ∈ {u′ ∈ V | (u′, v′) ∈ U + U} and let v ∈ V have the property that

(u, v) ∈ U + U. Then (u,−v) ∈ U + U. Since U + U is LC-invariant,

(L(u),L(v)), (L(u),−L(v)) ∈ U + U.

Therefore, (2L(u), 0) ∈ U + U and so L(u) ∈ {u′ ∈ V | (u′, v′) ∈ U + U}, giving
invariance of {u′ ∈ V | (u′, v′) ∈ U + U} under L. A similar computation gives
invariance of {v′ ∈ V | (u′, v′) ∈ U + U} under L. H

By applying the lemma with U = W(λ,LC) and then with U = W(λ,LC), this part
of the proposition follows.

(iv) Let us write
Bλ = {(u1, v1), . . . , (uk, vk)}.

The basis B′λ can then be written as

B′λ = {u1, . . . ,uk, v1, . . . , vk}.

We then have

L(u j) = σu j − ωv j, L(v j) = ωu j + σv j j ∈ {1, . . . , k}.

Using the definition of matrix representative, this then gives the matrix represen-
tative of L| spanR(B′λ) to be [

σII ωII

−ωII σII

]
,

as desired. �
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The idea is that, for every C-subspace of VC that is invariant under LC, there
corresponds a R-subspace of V of twice the dimension that is invariant under L.
Moreover, one can choose as a basis for this R-subspace the real and imaginary
parts of the basis for the C-subspace. Finally, if the invariant C-subspace is an
eigenspace for VC, then the representation of L is related to the complex eigenvalue
in a simple way (i.e., as in part (ii)).

It is useful to develop some notation for capturing all of this. To this end, for a
complex eigenvalue λ ∈ C \ R, we denote

W(λ,L) = {u ∈ V | (u, v) ∈W(λ,VC)} + {v ∈ V | (u, v) ∈W(λ,L)}

and

W(λ,L) = {u ∈ V | (u, v) ∈W(λ,VC)} + {v ∈ V | (u, v) ∈W(λ,L)}. (3.13)

Note that, despite the notation, W(λ,L) is not an eigenspace and W(λ,L) is not a
generalised eigenspace, simply because λ is not an eigenvalue.

Let us consider a simple example of how this works.

3.2.35 Example (Complex eigenvalues for R-linear transformations) We take the lin-
ear transformation L ∈ L(R3;R3) defined by the 3 × 3 matrix1 0 −2

0 1 0
2 0 1

 .
The characteristic polynomial of L is

PL = det

X − 1 0 2
0 X − 1 0
−2 0 X − 1

 = X3
− 3X2 + 7X − 5.

This may be determined to have roots

`1 = 1, λ1 = 1 + 2i, λ3 = 1 − 2i.

Let us first consider the invariant subspaces of LC. The generalised eigenspace
(which is the same as the eigenspace, since the geometric multiplicity is 1) for L
associated to the real eigenvalue ` = 1 is

W(1,L) = ker(1 · idV −L) = ker

 0 0 2
0 0 0
−2 0 0

 = spanR((0, 1, 0)).

Therefore, by Proposition 3.2.33(iv), the generalised eigenspace for LC associated
to the real eigenvalue ` = 1 is

W(1,LC) = spanR(((0, 1, 0), (0, 0, 0)), ((0, 0, 0), (0, 1, 0))).
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Written more clearly, maybe,

W(1,LC) = spanR((0, 1, 0), i(0, 1, 0)).

The generalised eigenspace (which is the same as the eigenspace, since the geo-
metric multiplicity is 1) for LC associated to the complex eigenvalue λ1 = 1 + 2i
is

W(1 + 2i,LC) = ker((1 + 2i) · idV −L) = ker

 2i 0 2
0 2i 0
−2 0 2i

 = spanC(((0, 0, 1), (1, 0, 0))).

Written in a perhaps clearer way,

W(1 + 2i,LC) = spanC((0, 0, 1) + i(1, 0, 0)).

From Proposition 3.2.33(vi) we immediately have

W(1 − 2i,LC) = spanC((0, 0, 1) − i(1, 0, 0)).

We note that

(R3)C = C3 = W(1,LC) ⊕W(1 + 2i,LC) ⊕W(1 − 2i,LC).

Now we can think about the invariant subspaces of L. Here we work with
the real eigenvalue and one of the complex eigenvalues (the other being conjugate
and so essentially redundant). As above, we have the generalised eigenspace
corresponding to the real eigenvalue ` = 1 given by

W(1,L) = spanR((0, 1, 0)).

For the 2-dimensional invariant subspace corresponding to λ1 = 1 + 2i, by
Proposition 3.2.34(i) we take the real and imaginary parts of the basis for
W(1 + 2i,LC), i.e., the 2-dimensional subspace

W(1 + 2i) = spanR((0, 0, 1), (1, 0, 0)).

Thus we have the invariant subspace decomposition

R3 = W(1,L) ⊕W(1 + 2i,L). •
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3.2.36 Remark (Summary of linear algebraic constructions) The preceding two sec-
tions developed a fairly complicated picture of the structure of linear transforma-
tions associated with eigenvalues. In this remark, we summarise the take-away
message from all of this. We let V be a finite-dimensional R-vector space and let
L ∈ L(V; V). We suppose we have distinct real eigenvalues

`1, . . . , `r

for L and distinct complex eigenvalues

λ1 = σ1 + iω1, . . . , λs = σ2 + iωs,

along with their complex conjugates. We let ma(` j,L), j ∈ {1, . . . , r}, and ma(λ j,L),
j ∈ {1, . . . , s}, be the algebraic multiplicities.
1. We have

r∑
j=1

ma(` j,L) + 2
s∑

j=1

ma(λ j,L) = dimR(V).

2. For each j ∈ {1, . . . , r}, there is a subspace

W(` j,L) = ker((` j idV −L)ma(` j,L))

of V of R-dimension ma(` j,L) that is L-invariant.
3. For each j ∈ {1, . . . , s}, there is a subspace

W(λ j,LC) = ker((λ j idV −LC)ma(λ j,L))

of VC of C-dimension ma(λ j,L) that is LC-invariant.

4. For each j ∈ {1, . . . , s}, there is a subspace W(λ j,L) of V as in (3.13) ofR-dimension
2ma(λ j,L) that is L-invariant.

5. We have

V = W(`1,L) ⊕ · · · ⊕W(`r,L) ⊕W(λ1,L) ⊕ · · · ⊕W(λs,L). (3.14)

This decomposition of V into L-invariant subspaces will form the basis for
Procedure 3.2.45 where we determine the state transition map for a system of
linear homogeneous ordinary differential equations with constant coefficients.

•

3.2.3.3 The Jordan canonical form In the preceding two sections we de-
scribed a collection of invariant subspaces of a linear transformation L of a finite-
dimensional R-vector space associated with the eigenvalues of L. It turns out that
the resulting invariant subspace decomposition (3.14) can be further refined. We
shall present this refinement without proof since it is interesting but not ultimately
useful for us.

The key idea to organise the discussion is the following.
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3.2.37 Definition (Jordan blocks) Let k ∈ Z>0, let ` ∈ R, and let λ = σ + iω with ω , 0.
Denote

B(σ,ω) =

[
σ ω
−ω σ

]
.

We have the following constructions.
(i) The k × k matrix

J(`, k) ,


` 1 0 · · · 0 0
0 ` 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · ` 1
0 0 0 · · · 0 `


is the R-Jordan block associated with k and `.

(ii) The 2k × 2k-matrix

J(σ,ω, k) ,


B(σ,ω) I2 02×2 · · · 02×2 02×2

02×2 B(σ,ω) I2 · · · 02×2 02×2
...

...
...

. . .
...

...
02×2 02×2 02×2 · · · B(σ,ω) I2

02×2 02×2 02×2 · · · 02×2 B(σ,ω)


is the R-Jordan block associated with k and λ = σ + iω ∈ C.

(iii) A Jordan arrangement for ` is a matrix of the form

J(`,k) =


J(`, k1) 0 · · · 0

0 J(`, k2) · · · 0
...

...
. . .

...
0 0 · · · J(`, kr)


for some k = (k1, . . . , kr) ∈ Z>0.

(iv) A Jordan arrangement for λ = σ + iω is a matrix of the form

J(σ,ω,k) =


J(σ,ω, k1) 0 · · · 0

0 J(σ,ω, k2) · · · 0
...

...
. . .

...
0 0 · · · J(σ,ω, kr)


for some k = (k1, . . . , kr) ∈ Z>0. •

With this notation we can state the following canonical form for R-
endomorphisms.
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3.2.38 Theorem (R-Jordan canonical form) Let V be a finite-dimensional R-vector space.
For L ∈ L(V; V) suppose that `j ∈ R, j ∈ {1, . . . , r}, and σj, ωj ∈ R, ωj > 0, j ∈ {1, . . . , s},
are such that

`1, . . . , `r, σ1 + iω1, . . . , σs + iωs, σ1 − iω1, . . . , σs − iωs

are the distinct eigenvalues of L. Then there exists
(i) pj ∈ Z>0, j ∈ {1, . . . , r},

(ii) kj ∈ Z
pj

>0, j ∈ {1, . . . , r},
(iii) qj ∈ Z>0, j ∈ {1, . . . , s},

(iv) lj ∈ Z
qj

>0, j ∈ {1, . . . , s}, and
(v) a basis B for V

such that

[L]BB =



J(`1,k1) · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · J(`r,kr) 0 · · · 0
0 · · · 0 J(σ1, ω1, l1) · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · J(σs, ωs, ls)


.

Moreover, this form of the matrix representative is unique up to reordering of the diagonal
blocks.

3.2.3.4 Complexification of systems of linear ordinary differential equations
In Section 2.2.2.1 we complexified a scalar linear homogeneous ordinary differen-
tial equation with constant coefficients. The reason we had to do so was that the
characteristic polynomial for such an equation will generally have complex roots,
and these complex roots lead naturally to complex solutions of the differential
equation. It is only after taking real and imaginary parts of a complex solution
that we recover the real solutions. The same sort of thing happens with systems
of linear homogeneous ordinary differential equations with constant coefficients.
In this case, the issue that arises, as ought to be clear from the discussion in the
preceding two sections, is that one will generally have complex eigenvalues.

The process of complexification is an easy one, and requires no words like
“everything we have done in the real case also works in the complex case,” since we
are working with systems defined on abstract R-vector spaces, and VC is certainly
a R-vector space.

3.2.39 Definition (Complexification of a system of linear ordinary differential equa-
tion) Consider the system of linear homogeneous ordinary differential equations
F with constant coefficients and with right-hand side (3.9). The complexification
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of F is the system of linear homogeneous ordinary differential equations FC with
constant coefficients given by

FC : T × VC
× VC

→ VC

(t, z,w) 7→ w − AC(z).
•

A solution for FC is a C1-map ζ : T→ VC that satisfies

ζ̇(t) = AC(ζ(t)).

Note that, as VC = V × V, we can write ζ(t) = (ξ(t), η(y)) for C1-maps ξ, η : T → V
that are the real part and imaginary part of ζ, respectively.

As in the scalar case, the real and imaginary parts of a solution separately satisfy
the uncomplexified differential equation.

3.2.40 Lemma (Real and imaginary parts of complex solutions are solutions) Con-
sider the system of linear homogeneous ordinary differential equations F with constant
coefficients, with right-hand side (3.9) and with complexification FC. If ζ : T → VC is a
solution for FC, then Re(ζ) and Im(ζ) are solutions for F.

Proof Given ζ : T→ VC we write ζ(t) = (ξ(t), η(t)) so that ξ = Re(ζ) and η = Im(ζ).
Since ζ is a solution for FC, we have

ζ̇(t) = (ξ̇(t), η̇(t)) = AC(ζ(t)) = (A(ξ(t)),A(η(t))

by definition of AC. Equating the second and fourth terms in this string of equalities
gives the lemma. �

3.2.3.5 The operator exponential In this section we consider the constant co-
efficient version of the state transition map.

3.2.41 Definition (Operator exponential) Let F ∈ {R,C}, V be a finite-dimensional F-
vector space, and let L ∈ L(V; V). The operator exponential of L is the linear map
eL
∈ L(V; V) defined by eL = ΦA(1, 0), where A : [0, 1] → L(V; V) is defined by

A(t) = L for all t ∈ [0, 1]. •

What we call the “operator exponential” will almost universally be called the
“matrix exponential” because it is defined as we have defined it, but in the case
where V = Rn and so L is an n × n matrix. Since we work with abstract vector
spaces, our terminology in perhaps better suited to our setting.

Let us give some alternative characterisations and properties of the operator
exponential.
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3.2.42 Theorem (Properties of the operator exponential) Let F ∈ {R,C}, let V be a finite-
dimensional R-vector space, and let L,M ∈ L(V; V). Then the following statements hold:

(i) eL = idV +

∞∑
k=1

Lk

k!
;

(ii) if F = C, then eL is a C-linear map;
(iii) d

dte
Lt = L ◦ eLt = eLt

◦ L;
(iv) e0 = idV;
(v) for α ∈ F, eα idV = eα idV ;
(vi) eLt

◦ eMt = e(L+M)t for all t ∈ R if and only if L ◦M = M ◦ L;
(vii) eL is invertible and (eL)−1 = e−L;
(viii) if U ⊆ V is L-invariant, then it is also eL-invariant;
(ix) the solution to the initial value problem

ξ̇(t) = L(ξ(t)), ξ(t0) = x0,

is ξ(t) = eL(t−t0)(x0).

Proof (i) Let A : [0, 1]→ L(V; V) be defined by A(t) = L for t ∈ [0, 1]. Adapting the
notation of Section 3.2.2.3, if we define

Ik =

∫ 1

0

∫ t1

0
· · ·

∫ tk−1

0
A(t1) ◦ A(t2) ◦ · · · ◦ A(tk) dtk · · ·dt2dt1,

then

eA = idV +

∞∑
k=1

Ik,

and we know the series converges by virtue of Theorem 3.2.15. Note that

Ik = Lk
∫ 1

0

∫ t1

0
· · ·

∫ tk−1

0
dtk · · ·dt2dt1 =

Lk

k!

by (3.7), and this part of the result then follows.
(ii) Since eL is R-linear, we have

eL(v1 + v2) = eL(v1) + eL(v2).

Now let v ∈ V and a ∈ C. We have

eL(av) = av +

∞∑
k=1

Lk

k!
(av) = a

v +

∞∑
k=1

Lk

k!
(v)

 = a expL(v),

using part (i) and C-linearity of L, and hence also of Lk for every k ∈ Z>0.



3.2 Systems of linear homogeneous ordinary differential equations 243

(iii) As we say in the proof of Theorem 3.2.15, both series

∞∑
k=0

Lktk

k!
,

and the series
∞∑

k=1

Lktk−1

(k − 1)!
= L ◦

 ∞∑
k=0

Lktk

k!

 =

 ∞∑
k=0

Lktk

k!

 ◦ L.

of term-by-term derivatives with respect to t, converge uniformly on any bounded
time-domain. Therefore,

d
dt

eLt = L ◦ eLt = eLt
◦ L.

(iv) This follows from part (i).
(v) By part (i) we have

eα idV = idV +

∞∑
k=1

idk
V α

k

k!
=

1 +

∞∑
k=1

αk

k!

 idV = eα idV,

as desired.
(vi) Suppose that L ◦M = M ◦ L. This gives

(L + M)k =

k∑
j=0

(
k
j

)
L jMk− j,

using the Binomial Formula, where
(k

j

)
= k!

j!(k− j)! . (Note that this does require that
L ◦M = M ◦ L.) Then

e(L+M)t = idV +
∑
k=1

(L + M)ktk

k!

= idV +

∞∑
k=1

k∑
j=0

L jt jMk− jtk− j

j!(k − j)!

=

idV +

∞∑
j=1

L jt j

j!


idV +

∞∑
k=1

Mktk

k!


for all t ∈ R.

Now suppose that e(L+M)t = eLt
◦ eMt for all t ∈ R. We then compute

d
dt

e(L+M)t = (L + M) ◦ e(L+M)t



244 3 Systems of ordinary differential equations

and
d
dt

eLt
◦ eMt = L ◦ eLt

◦ eMt + eLt
◦M ◦ eMt.

Next
d2

dt2 e(L+M)t = (L + M)2e(L+M)t

and

d2

dt2 eLt
◦ eMt = L2

◦ eLt
◦ eMt + L ◦ eLt

◦M ◦ eMt + L ◦ eLt
◦M ◦ eMt + eLt

◦M2
◦ eMt.

Evaluating the two second-derivatives at t = 0 and equating them gives

(L + M)2 = L2 + 2L ◦M + M2

=⇒ L2 + L ◦M + M ◦ L + M2 = L2 + 2L ◦M + M2

=⇒ M ◦ L = L ◦M,

as desired.
(vii) That eL is invertible is a consequence of its definition and Theorem 3.2.9(v).

By parts (iv) and (vi), we have

idV = eL−L = eLe−L,

from which we conclude that (eL)−1 = e−L.
(viii) Let U be an L-invariant subspace of V and let u ∈ U. We claim that U is also

Lk-invariant for every k ∈ Z>0. This we prove by induction, it obviously being true
when k = 1. Suppose it true for k = m and let u ∈ U. Then Lm+1(u) = L ◦ Lm(u). Since
Lm(u) ∈ U and since U is L-invariant, we immediately have Lm+1(u) ∈ U, showing
that, indeed, U is Lk-invariant for every k ∈ Z>0. Using part (i) we then haveidV +

m∑
k=1

Lk

k!

 (u) = u +

m∑
k=1

Lk(u)
k!
∈ U.

Thus we have the sequence (um)m∈Z>0 in V given by

u +

m∑
k=1

Lk(u)
k!

.

Since U is closed,6 we have

eL(u) = u +

∞∑
k=1

Lk(u)
k!

= lim
m→∞

um ∈ U,

6Let us sketch why a subspace U of a finite-dimensional vector space V is closed. Suppose that
we have a sequence (u j) j∈Z>0 in U that converges in V to some u. Let { f1, . . . , fr} be a basis for U that
extends to a basis { f1, . . . , fr, e1, . . . , en−r} for V. Write

u = u1 f1 + · · · + ur fr + v1e1 + · · · + vn−ren−r
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as desired.
(ix) Using (iii) we compute

d
dt

eL(t−t0)(x0) = L ◦ eL(t−t0)(x0).

We also have eL(t−t0)(x0), when evaluated at t = t0, is x0 by part (iv). Thus t 7→
eL(t−t0)(x0) does indeed satisfy the stated initial value problem. �

3.2.43 Remark (eL
◦ eM = eL+M does not imply L ◦ M = M ◦ L) Let V = R3 and define

L,M ∈ L(R3;R3) by the matrices 0 6π 0
−6π 0 0

0 0 0

 ,
0 0 0
0 0 8π
0 −8π 0

 ,
respectively. Using Procedure 3.2.48 below, we can compute eL = eM = eL+M = idR3 ,
and so eLeM = eL+M. However, we do not have L ◦M = M ◦ L, as may be verified by
a direct computation. •

Let us consider the representation of the operator exponential in a basis.

3.2.44 Proposition (The matrix representation of the operator exponential is the op-
erator exponential of the matrix representation) Let F ∈ {R,C}, let V be an n-
dimensional F-vector space, let L ∈ L(V; V), and let B = {e1, . . . , en} be a basis for V.
Then

[eL]BB = e[L]B
B.

Proof This follows from the definition of the operator exponential and Exer-
cise 3.2.4. �

3.2.3.6 Bases of solutions Now, for equations with constant coefficients, we
construct “explicitly” a basis for Sol(F).

and
u j = u j,1 f1 + · · · + u j,r fr, j ∈ Z>0.

Then

lim
j→∞

u j = u

=⇒ lim
j→∞

(u j,1 f1 + · · · + u j,r fr) = u1 f1 + · · · + ur fr + v1e1 + · · · + vn−ren−r

=⇒

(
lim
j→∞

u j,1

)
f1 + · · · +

(
lim
j→∞

u j,r

)
fr = u1 f1 + · · · + ur fr + v1e1 + · · · + vn−ren−r

=⇒ lim
j→∞

u j,a = ua, vb = 0, a ∈ {1, . . . , r}, b ∈ {1, . . . ,n − r}.

Thus u ∈ U, as claimed. Perhaps a reader will need a little more analysis that they have to fully
understand this proof, but the main ideas are suggestive as concerns the truth of the assertion.
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3.2.45 Procedure (Basis of solutions for a system of linear homogeneous ordinary
differential equations with constant coefficients) Given a system of linear ho-
mogeneous ordinary differential equations

F : T × V ⊕ V→ V

in an n-dimensional R-vector space V and with right-hand side

F̂(t, x) = A(x),

do the following.
1. Choose a basis {e1, . . . , en} for V. Let A be the matrix representative of A with

respect to this basis. If V = Rn, one can just take A to be the usual matrix
associated with A ∈ L(Rn;Rn).

2. Compute the characteristic polynomial PA = det(XIn − A).
3. Compute the roots of PA, i.e., the eigenvalues of AC, and organise them as

follows. We have distinct real roots

`1, . . . , `r

and distinct complex roots

λ1 = σ1 + iω1, . . . , λs = σ2 + iωs,

ω1, . . . , ωs ∈ R>0, along with their complex conjugates.
4. Let m j = ma(` j,A), j ∈ {1, . . . , r}, and µ j = ma(λ j,A), j ∈ {1, . . . , s}, be the algebraic

multiplicities.
5. For j ∈ {1, . . . , r}, let {x j,1, . . . , x j,m j} be a basis for

W(` j,A) = ker((` jIn − A)m j).

6. For j ∈ {1, . . . , s}, let {z j,1, . . . , z j,µ j} be a basis for

W(λ j,AC) = ker((λ jIn − AC)µ j).

Write z j,k = a j,k + ib j,k for each k ∈ {1, . . . , µ j}. Then

{a j,1, b j,1, . . . ,a j,µ j , b j,µ j}

is a basis for W(λ j,A).
7. For j ∈ {1, . . . , r} and k ∈ {1, . . . ,m j}, define

ξ j,k(t) = e` jt

(
In +

(A − ` jIn)t
1!

+ · · · +
(A − ` jIn)m j−1tm j−1

(m j − 1)!

)
x j,k.
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8. For j ∈ {1, . . . , s} and k ∈ {1, . . . , µ j}, define

α j,k(t) = eσ jt



µ j−1∑
m=0

d
m−1

2 e∑
l=0

(−1)lω2ltm

(2l)!(m − 2l)!
(A − σ jIn)m−2l

 (cos(ω jt)a j,k − sin(ω jt)b j,k)

−


µ j−1∑
m=0

b
m−1

2 c∑
l=0

(−1) j+1ω2l+1tm

(2l + 1)!(m − 2l − 1)!
(A − σ jIn)m−2l−1

 (cos(ω jt)b j,k + sin(ω jt)a j,k)


(3.15)

and

β j,k(t) = eσ jt



µ j−1∑
m=0

d
m−1

2 e∑
l=0

(−1)lω2ltm

(2l)!(m − 2l)!
(A − σ jIn)m−2l

 (cos(ω jt)b j,k + sin(ω jt)a j,k)

+


µ j−1∑
m=0

b
m−1

2 c∑
l=0

(−1) j+1ω2l+1tm

(2l + 1)!(m − 2l − 1)!
(A − σ jIn)m−2l−1

 (cos(ω jt)a j,k − sin(ω jt)b j,k)

 ,
(3.16)

where, for x ∈ R, bxc is greatest integer less than or equal to x and dxe is smallest
integer greater than or equal to x.

9. For j ∈ {1, . . . , r} and k ∈ {1, . . . ,m j}, let ξ j,k : T → V be the function whose
components with respect to the basis {e1, . . . , en} are the components of ξ j,k.

10. For j ∈ {1, . . . , s} and k ∈ {1, . . . , µ j}, let α j,k, β j,k : T → V be the functions whose
components with respect to the basis {e1, . . . , en} are the components of α j,k and
β j,k, respectively.

11. Then the n functions

ξ j,k, j ∈ {1, . . . , r}, k ∈ {1, . . . ,m j},

α j,k, β j,k, j ∈ {1, . . . , s}, k ∈ {1, . . . , µ j},

are a basis for Sol(F). •

Of course, we should verify that the procedure does, indeed, produce a basis
for Sol(F).

3.2.46 Theorem (Basis of solutions for a system of linear homogeneous ordinary
differential equations with constant coefficients) Given a system of linear homo-
geneous ordinary differential equations

F: T × V ⊕ V→ V

in an n-dimensional R-vector space V and with right-hand side

F̂(t, x) = A(x),

define n functions as in Procedure 3.2.45. Then these functions for a basis for Sol(F).
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Proof By virtue of Exercise 3.2.3 we can choose a basis {e1, . . . , en} for V and so
assume that V = Rn.

Let us first fix j ∈ {1, . . . , r} and show that ξ j,k, k ∈ {1, . . . ,m j}, are solutions for F.
Let t0 ∈ T. Let us also fix k ∈ {1, . . . ,m j}. By Theorem 3.2.42(ix), the unique solution
to the initial value problem

ξ̇(t) = Aξ(t), ξ(t0) = eAt0x j,k,

is
t 7→ eA(t−t0)eAt0x j,k = eAtx j,k,

using Theorem 3.2.42(vi) and the obvious fact that the matrices tA and t0A com-
mute. Now we have

eAtx j,k = e` jtIne(A−` jIn)t = e` jte(A−` jIn)tx j,k

using parts (v) and (vi) of Theorem 3.2.42. Now, since x j,k ∈W(` j,A),

e` jte(A−` jIn)tx j,k = e` jt
m j−1∑
m=0

(A − ` jIn)mtm

m!
x j,k,

using Theorem 3.2.42(i). However, this last expression is exactly ξ j,k(t), showing
that this is indeed a solution for F.

Next we show that, still keeping j ∈ {1, . . . , r} fixed, the m j solutions ξ j,k, k ∈
{1, . . . ,m j}, are linearly independent. As we have seen,

ξ j,k(t0) = eAt0x j,k, k ∈ {1, . . . ,m j}.

Thus, for c1, . . . , cm j ∈ R, we have

c1ξ j,k(t0) + · · · + cm jξ j,m j
(t0) = 0

=⇒ c1eAt0x j,1 + · · · + cm je
At0x j,m j = 0

=⇒ eAt0(c1x j,1 + · · · + cm jx j,m j) = 0

=⇒ c1x j,1 + · · · + cm jx j,m j = 0

=⇒ c1 = · · · = cm j = 0,

since x j,1, . . . , x j,m j are constructed as being linearly independent. By Corollary 3.2.7
we conclude that ξ j,1, . . . , ξ j,m j

are indeed linearly independent.
Now we fix j ∈ {1, . . . , s} and work with the complex eigenvalue λ j = σ j + iω j.

First of all, let us define ζ j,k : T→ Cn, k ∈ {1, . . . , µ j}, by

ζ j,k = eACtz j,k.
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Then, exactly as above for the real eigenvalues, we have

ζ j,k(t) = eλ jt
µ j−1∑
m=0

(AC
− λ jIn)mtm

m!
z j,k.

Moreover, ζ j,k, k ∈ {1, . . . , µ j}, are solutions for FC. Therefore, by Lemma 3.2.40,
the real and imaginary parts of ζ j,k are solutions for F. To determine the real and
imaginary parts, we first make use of the following lemma.

1 Lemma For a C-vector space V, for L ∈ L(V; V), for b ∈ C, and for m ∈ Z≥0,

(L + i b idV)m =

d
m−1

2 e∑
j=0

(
m
2j

)
(−1)jb2jLm−2j + i

b
m−1

2 c∑
j=0

(
m

2j + 1

)
(−1)j(b2j+1Lm−2j−1),

where, for r, s ∈ Z with r ≥ s,
(r

s

)
= r!

s!(r−s)! .

Proof By the Binomial Formula, and since L and idV commute, we have

(L + i b idV) =

m∑
j=0

(
m
j

)
(i b) jLm−1.

The stated formula is obtained by separating this expression into its real and
imaginary parts. H

With the lemma, and some tedious manipulations, one can then verify that

α j,k(t) = Re

eλ jt

In +
(AC
− λ jIn)t
1!

+ · · · +
(AC
− λ jIn)µ j−1

(µ j − 1)!

 z j,k

 ,
β j,k(t) = Im

eλ jt

In +
(AC
− λ jIn)t
1!

+ · · · +
(AC
− λ jIn)µ j−1

(µ j − 1)!

 z j,k


for k ∈ {1, . . . , µ j}. This shows that α j,k and β j,k are solutions for F for k ∈ {1, . . . , µ j}.

Now we verify that
α j,1, . . . ,α j,µ j ,β j,1, . . . ,β j,µ j

are linearly independent. As above in the real case, the complex solu-
tions ζ j,1, . . . ,ζ j,µ j

for FC are linearly independent. Now let t0 ∈ T and
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c1, . . . , cµ j , d1, . . . , dµ j ∈ R, and note that

µ j∑
k=1

(cka j,k(t0) + dkb j,k(t0)) = 0

=⇒

µ j∑
k=1

(ck Re(ζ j,k)(t0) + dk Im(ζ j,k)(t0)) = 0

=⇒

µ j∑
k=1

(ck Re(eACt0z j,k) + dk Im(eACt0z j,k))

=⇒

µ j∑
k=1

(ckeACt0a j,k + dkeACt0b j,k) = 0

=⇒

µ j∑
k=1

(cka j,k + dkb j,k) = 0

=⇒ c1 = · · · = cµ j = d1 = · · · = dµ j = 0,

using the fact that, since A is real, eACt0 is also real and using Proposition 3.2.34(i).
This gives the linear independence of

α j,1, . . . ,α j,µ j ,β j,1, . . . ,β j,µ j
,

as claimed.
Now we have m1 + · · · + m2 + 2(µ1 + · · · + µ2) = n solutions for F. It remains to

show that the collection of all of these solutions are linearly independent. Let us
suppose that

c1,1ξ1,1(t) + · · · + c1,m1ξ1,m1
(t)︸                             ︷︷                             ︸

∈W(`1,A)

+ · · · + cr,1ξr,1(t) + · · · + cr,mrξr,mr
(t)︸                            ︷︷                            ︸

∈W(`r,A)

+ d1,1a1,1(t) + · · · + d1,µ1a1,µ1(t)︸                             ︷︷                             ︸
∈W(λ1,A)

+ · · · + ds,1as,1(t) + · · · + ds,µsas,µs(t)︸                            ︷︷                            ︸
∈W(λs,A)

+ e1,1b1,1(t) + · · · + e1,µ1b1,µ1(t)︸                            ︷︷                            ︸
∈W(λ1,A)

+ · · · + es,1bs,1(t) + · · · + es,µsbs,µs(t)︸                           ︷︷                           ︸
∈W(λs,A)

= 0,

for suitable scalar coefficients. Since the generalised eigenspaces intersect in {0} by
Proposition 3.2.29, and since the generalised eigenspaces are invariant under eAt

for all t ∈ T by Theorem 3.2.42(viii), for the preceding equation to hold, each of its
components in each of the eigenspaces must be zero, i.e.,

c j,1ξ j,1(t) + · · · + c j,m jξ j,m j
(t) = 0, j ∈ {1, . . . , r},
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and

d j,1a j,1(t) + · · · + d j,µ ja j,µ j(t) + e j,1b j,1(t) + · · · + e j,µ jb j,µ j(t) = 0, j ∈ {1, . . . , s}.

This implies that all coefficients must be zero, since we have already shown the
linear independence of the solutions with initial conditions in each of the subspaces
W(`l,A), j ∈ {1, . . . , r}, and W(λ j,A), j ∈ {1, . . . , s}. Thus we have the desired linear
independence, and thus the theorem follows. �

From the proof of the theorem, we provide the following comment on how one
might deal with complex eigenvalues in practice.

3.2.47 Remark (Computing solutions associated with complex eigenvalues) The for-
mulae (3.15) and (3.16) of Procedure 3.2.45, while fun to look at, are typically not
the best ways to work out solutions associated with complex eigenvalues. How-
ever, the proof of the preceding theorem tells us an alternative that is easier in easy
examples (although using a computer algebra package is even easier). Indeed, in
the proof we saw that

α j,k(t) = Re

eλ jt

In +
(AC
− λ jIn)t
1!

+ · · · +
(AC
− λ jIn)µ j−1

(µ j − 1)!

 z j,k

 ,
β j,k(t) = Im

eλ jt

In +
(AC
− λ jIn)t
1!

+ · · · +
(AC
− λ jIn)µ j−1

(µ j − 1)!

 z j,k


for k ∈ {1, . . . , µ j}. Thus, in practice, one might simply compute

ζ j,k(t) = eλ jt

In +
(AC
− λ jIn)t
1!

+ · · · +
(AC
− λ jIn)µ j−1

(µ j − 1)!

 z j,k,

k ∈ {1, . . . , s}, and simply takes its real and imaginary parts as linearly independent
solutions. •

We can now give an algorithm for computing, in principle, the operator expo-
nential. The following procedure, while given for computing eA, obviously may be
used as well to compute the state transition matrix ΦA(t, t0) = eA(t−t0) for a system of
linear homogeneous ordinary differential equations with constant coefficients.

3.2.48 Procedure (Operator exponential) Given an n-dimensional R-vector space V and
A ∈ L(V; V), do the following.
1. Choose a basis {e1, . . . , en} and let A be the matrix representative of A. If V = Rn,

one can just take A to be the usual matrix associated with A ∈ L(Rn;Rn).
2. Using Procedure 3.2.45, determine a fundamental set of solutions ξ1, . . . , ξn,

defined on all of R, for the system of linear homogeneous ordinary differential
equations F in Rn with right-hand side

F̂(t, x) = Ax.



252 3 Systems of ordinary differential equations

3. Define

Ξ(t) =


ξ1,1(t) ξ2,1(t) · · · ξn,1(t)
ξ1,2(t) ξ2,2(t) · · · ξn,2(t)
...

...
. . .

...
ξ1,n(t) ξ2,n(t) · · · ξn,n(t)

 ,
where ξ j,k is the kth component of ξ j.

4. Using Procedure 3.2.11 calculate

eAt = ΦA(t, 0) = Ξ(t)Ξ(0)−1.

5. We then have eA as the linear map whose matrix representative is eA. •

3.2.3.7 Some examples Obviously, carrying out Procedure 3.2.45 for a mod-
erately complicated linear transformation A is not something one would want to
do more than once a day, and that once a day for at most a week or so. Because I
am very manly, I did this four times in one day.

3.2.49 Example (Simple 2× 2 example) We take V = R2 and let A ∈ L(R2;R2) be defined
by the matrix

A =

[
−7 4
−6 3

]
.

The characteristic polynomial for A is

PA = X2 + 4X + 3 = (X + 1)(X + 3).

Thus the eigenvalues for A are `1 = −1 and `2 = −3. Since the eigenvalues are dis-
tinct, the algebraic and geometric multiplicities will be equal, and the generalised
eigenvectors will simply be eigenvectors. An eigenvector for `1 = −1 is x1,1 = (2, 3)
and an eigenvector for `2 = −3 is x2,1 = (1, 1). Procedure 3.2.45 then gives two
linearly independent solutions as

ξ1,1(t) = e−t

[
2
3

]
, ξ2,1(t) = e−3t

[
1
1

]
.

Thus we have determined a fundamental matrix to be

Ξ(t) =

[
2e−t e−3t

3e−2t e−3t

]
,

by assembling the linearly independent solutions into the columns of this matrix.
It is then an easy calculation to arrive at

eAt = Ξ(t)Ξ(0)−1 =

[
3e−3t

− 2e−t
−2e−3t + 2e−t

3e−3t
− 3e−t

−2e−3t + 3e−t

]
•
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3.2.50 Example (A 3× 3 example with multiplicity) We take V = R3 with the linear map
A ∈ L(R3;R3) determined by the matrix A more interesting case is the following:

A =

−2 1 0
0 −2 0
0 0 −1

 .
Since the matrix is upper triangular, the eigenvalues are the diagonal elements:
`1 = −2 and `2 = −1. The algebraic multiplicity of `1 is 2. However, we readily see
that dimR(ker(`1I3 − A)) = 1 and so the geometric multiplicity is 1. So we need to
compute generalised eigenvectors in this case. We have

(A − λ1I3)2 =

0 0 0
0 0 0
0 0 1

 ,
and the generalised eigenvectors span the kernel of this matrix, and so we may
take x1,1 = (1, 0, 0) and x1,2 = (0, 1, 0) as generalised eigenvectors. Applying Proce-
dure 3.2.45 gives

ξ1,1(t) = e−2t

100
 + te−2t

0 1 0
0 0 0
0 0 1


100


=

e
−2t

0
0


and

ξ1,2(t) = e−2t

010
 + te−2t

0 1 0
0 0 0
0 0 1


010


=

te
−2t

e−2t

0

 .
Finally we determine that x2,1 = (0, 0, 1) is an eigenvector corresponding to `2 = −1,
and so this gives the solution

ξ2,1(t) =

 0
0

e−t

 .
Thus we arrive at our three linearly independent solutions. We assemble these into
the columns of a matrix to determine a fundamental matrix

Ξ(t) =

e
−2t te−2t 0
0 e−2t 0
0 0 e−t

 .
It so happens that in this example we lucked out and eAt = Ξ(t) since Ξ(0) = I3. •
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3.2.51 Example (A simple example with complex roots) Here we take V = R3 with
A ∈ L(R3;R3) determined by the matrix

A =

−1 1 0
−1 −1 0
0 0 −2

 .
The characteristic polynomial is

PA = X3 + 4X2 + 6X + 4.

One ascertains that the eigenvalues are then λ1 = −1 + i, λ̄1 = −1 − i, `1 = −2. Let’s
deal with the complex root first, using Remark 3.2.47 rather than the complicated
formulae (3.15) and (3.16) of Procedure 3.2.45 for complex eigenvalues. We have

A − λ1I3 =

−i 1 0
−1 −i 0
0 0 −1 − i

 ,
from which we glean that an eigenvector is z1,1 = (−i, 1, 0). Using Remark 3.2.47,
the complex solution is then

ζ1,1(t) = e(−1+i)t

−i
1
0

 .
Using Euler’s formula, eiθ = cosθ + i sinθ, we have

ζ1,1(t) = e−t

−i cos t + sin t
cos t + i sin t

0

 = e−t

sin t
cos t

0

 + ie−t

− cos t
sin t

0

 ,
thus giving

α1,1(t) = e−t

sin t
cos t

0

 , β1,1(t) = e−t

− cos t
sin t

0

 .
Corresponding to the real eigenvalue `1 we readily determine that

ξ1,1 = e−2t

001


is a corresponding solution. This gives three linearly independent real solutions
α1,1(t), β1,1(t), and ξ1,1(t). Putting these into the columns of a matrix gives a funda-
mental matrix

Ξ(t) =

e−t sin t −e−t cos t 0
e−t cos t e−t sin t 0

0 0 e−2t

 .
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A straightforward computation yields

eAt = Ξ(t)Ξ(0)−1 =

 e−t cos t e−t sin t 0
−e−t sin t e−t cos t 0

0 0 e−2t

 . •

3.2.52 Example (An example of complex roots with multiplicity) Our final example
has V = R4 and A ∈ L(R4;R4) determined by the matrix

A =


0 1 1 0
−1 0 0 1
0 0 0 1
0 0 −1 0

 .
The eigenvalues are determined to be λ1 = i and λ̄1 = −i, both with algebraic
multiplicity 2. One readily determines that the kernel of iI4−A is one-dimensional,
and so the geometric multiplicity of these eigenvalues is just 1. Thus we need to
compute complex generalised eigenvectors. We compute

(A − iI4)2 = 2


−1 −i −i 1
i −1 −1 −i
0 0 −1 −i
0 0 i −1


and one checks that z1,1 = (0, 0,−i, 1) and z1,2 = (−i, 1, 0, 0) are two linearly inde-
pendent generalised eigenvectors. We compute

(A − iI4)z1,1 =


−i
1
0
0

 , (A − iI4)z1,2 =


0
0
0
0

 .
We now determine the two linearly independent real solutions corresponding to
z1,1. We have

ζ1,1(t) = eit(u1 + t(A − iI4)z1,1) = eit


0
0
−i
1

 + teit


−i
1
0
0


= (cos t + i sin t)



0
0
0
1

 + i


0
0
−1
0

 + t


0
1
0
0

 + it


−1
0
0
0


 =


t sin t
t cos t
sin t
cos t

 + i


−t cos t
t sin t
− cos t
sin t

 .
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Therefore,

α1,1(t) =


t sin t
t cos t
sin t
cos t

 , β1,1(t) =


−t cos t
t sin t
− cos t
sin t

 .
For z2,1 we have

ζ1,2(t) = eit(u2 + t(A − iI4)u2) = eit


−i
1
0
0


= (cos t + i sin t)



0
1
0
0

 + i


−1
0
0
0


 =


sin t
cos t

0
0

 + i


− cos t
sin t

0
0

 ,
and so we have

α1,2(t) =


sin t
cos t

0
0

 , β1,2(t) =


− cos t
sin t

0
0

 .
Thus we have the four real linearly independent solutions α1,1, α1,2, β1,1, and β1,2.
The corresponding fundamental matrix is

Ξ(t) =


t sin t −t cos t sin t − cos t
t cos t t sin t cos t sin t
sin t − cos t 0 0
cos t sin t 0 0

 .
A little manipulation gives

eAt = Ξ(t)Ξ(0)−1 =


cos t sin t t cos t t sin t
− sin t cos t −t sin t t cos t

0 0 cos t sin t
0 0 − sin t cos t

 . •

Exercises

3.2.1 Show that the definition of “class Cr” and “rth-derivative” in Definition 3.2.1
do not depend on the basis chosen.
Hint: Use the change of basis formula (1.24).

3.2.2 Show that the definition of “class Cr” and “rth-derivative” in Definition 3.2.2
do not depend on the basis chosen.
Hint: Use the change of basis formula (1.25).
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3.2.3 Let V be an n-dimensional R-vector space and let F be a system of linear
ordinary differential equations in V with right-hand side

F̂(t, x) = A(t)(x) + b(t)

for A : T→ L(V; V) and b : T→ V. Let {e1, . . . , en} be a basis for V and write

b(t) =

n∑
j=1

b j(t)e j, A(t)(e j) =

n∑
k=1

Akj(t)ek, j ∈ {1, . . . ,n},

for functions b j : T → R, j ∈ {1, . . . ,n}, and Akj : T → R, j, k ∈ {1, . . . ,n}. This
defines b : T → Rn and A : T → L(Rn;Rn). Denote by F the system of linear
ordinary differential equations in Rn given by

F(t, x, x(1)) = x(1)
− A(t)x − b(t).

Answer the following questions.
(a) Show that ξ : T′ → V is a solution for F if and only if the function

ξ : T′ → Rn, defined by

ξ(t) =

n∑
j=1

ξ j(t)e j,

is a solution for F.
Now let {ẽ1, . . . , ẽn} be another basis for V and let P be the change of basis
matrix defined by

ẽ j =

n∑
k=1

Pkjek, j ∈ {1, . . . ,n}.

Define b̃ : T→ Rn, Ã : T→ L(Rn;Rn), and F̃ as above, for this new basis.
(b) Show that b̃(t) = Pb(t) and Ã(t) = P−1A(t)P for every t ∈ T.

Hint: Use the change of basis formulae (1.24) and (1.26).
(c) Show that, if ξ : T′ → Rn is a solution for F, then ξ̃ : T′ → Rn is a solution

for F̃ if and only if ξ̃(t) = P−1ξ(t) for every t ∈ T.
3.2.4 Let V be an n-dimensional R-vector space and let F be a system of linear

homogeneous ordinary differential equations with right-hand side

F̂(t, x) = A(t)(x)

for a continuous map A : T→ L(V; V). Let {e1, . . . , en} be a basis for V and let
A(t) be the matrix representative for A(t), t ∈ T, and let F be the corresponding
system of linear homogeneous ordinary differential equations in Rn with
right-hand side

F̂(t, x) = A(t)x.

cf. Exercise 3.2.3.
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(a) Show that, for every t, t0 ∈ T, the matrix representative of ΦA(t, t0) is
ΦA(t, t0).

Now let {ẽ1, . . . , ẽn} be another basis for V and let P be the change of basis
matrix defined by

ẽ j =

n∑
k=1

Pkjek, j ∈ {1, . . . ,n}.

Define Ã : T→ L(Rn;Rn) and F̃ as above, for this new basis.
(b) Show that, for every t, t0 ∈ T,

ΦÃ(t, t0) = P−1ΦA(t, t0)P.

3.2.5 Consider the system of linear homogeneous ordinary differential equations
F with right-hand side equation (3.4) and suppose that A : T→ R is contin-
uous. Recall from the proof of Theorem 3.2.6 the maps

σt : Sol(F)→ V
ξ 7→ ξ(t)

, t ∈ T,

that were shown to be isomorphisms.
(a) Show that

ΦA(t, t0) = σt ◦ σ
−1
t0

for each t, t0 ∈ T.
(b) Use this to give alternative proofs of parts (iv) and (v) of Theorem 3.2.9.

3.2.6 Consider a scalar linear homogeneous ordinary differential equation F with
right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −a0(t)x − a1(t)x(1)
− · · · − ak−1(t)x(k−1),

for continuous functions a0, a1, . . . , ak−1 : T→ R.
(a) Following Exercise 1.3.23, convert this kth order scalar system into a first

order system F1 of linear homogeneous ordinary differential equations
in Rk, i.e., find the matrix function A : T→ L(Rk;Rk) in this case.

(b) For a solution t 7→ ξ(t) for F, what is the corresponding solution t 7→ ξ(t)
for F1?

(c) Show that, given a fundamental set of solutions {ξ1, . . . , ξk} for F, the so-
lutions {ξ1, . . . , ξk} for F1 from part (b) are a fundamental set of solutions
for F1.

(d) Show that

det ΦA(t, t0) =
W(ξ1, . . . , ξn)(t)
W(ξ1, . . . , ξn)(t0)

.
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(e) Show that

W(ξ1, . . . , ξk)(t) = W(ξ1, . . . , ξk)(t0)e−
∫ t

t0
ak−1(τ) dτ

.

3.2.7 Let F ∈ {R,C} and let U, V, and W be F-vector spaces. For L ∈ L(U; V) and
M ∈ L(V; W), show that (M ◦ L)∗ = L∗ ◦M∗.

3.2.8 Let F ∈ {R,C}, let V be an n-dimensional F-vector space, and let L ∈ L(V; V).
Let B= {e1, . . . , en} and B′ = {ẽ1, . . . , ẽn} be bases for V and let P be the change
of basis matrix defined by

ẽ j =

n∑
k=1

Pkjek, j ∈ {1, . . . ,n}.

Let L and L̃ be the matrix representatives for L in the Band B̃, respectively.
(a) Use part (b) of Exercise 3.2.4 to show that

[eL]B̃
B̃

= P−1[eL]BBP.

(b) Use Theorem 3.2.42(i) and Proposition 3.2.44 to arrive at the same con-
clusion.

3.2.9 Consider the first-order scalar linear homogeneous ordinary differential
equation with right-hand side F̂(t, x) = a(t)x for a continuous function
a : T → R. Determine the state-transition map in this case, thinking of
this as a system of linear homogeneous ordinary differential equations in the
one-dimensional vector space R.

3.2.10 Let λ ∈ F ∈ {R,C} and consider the linear map A ∈ L(Fn;Fn) determined by
the n × n-matrix

A =



λ 0 · · · 0 0 0 0 0 · · · 0 0
0 λ · · · 0 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 · · · λ 0 0 0 0 · · · 0 0
0 0 · · · 0 λ 0 0 0 · · · 0 0
0 0 · · · 0 0 λ 1 0 · · · 0 0
0 0 · · · 0 0 0 λ 1 · · · 0 0
0 0 · · · 0 0 0 0 λ · · · 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 · · · 0 0 0 0 0 · · · λ 1
0 0 · · · 0 0 0 0 0 · · · 0 λ



.

We suppose the lower right block is a k × k-matrix and the upper left block,
therefore, is a (n − k) × (n − k)-matrix.

Answer the following questions.
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(a) What are the eigenvalues of A?
(b) For each of the eigenvalues of A, determine its algebraic multiplicity.
(c) For each of the eigenvalues of A, determine its eigenspace.
(d) For each of the eigenvalues of A, determine its geometric multiplicity.
(e) For each of the eigenvalues of A, determine its generalised eigenspace.
(f) For each of the eigenvalues ` of A, determine the smallest m ∈ Z>0 for

which W(`,A) = ker((A − `In)m).
3.2.11 For each of the following linear maps A ∈ L(Rn;Rn), given by an n×n-matrix,

determine the
1. eigenvalues,
2. eigenvectors,
3. generalised eigenvectors,
4. algebraic multiplicities of each eigenvalue, and
5. geometric multiplicities of each eigenvalue.
Here are the linear maps:

(a) A =

[
2 −5
0 3

]
;

(b) A =

[
−1 −2
1 −3

]
;

(c) A =

[
4 −1
4 0

]
;

(d) A =

5 0 −6
0 2 0
3 0 −4

;
(e) A =

5 0 −6
1 2 −1
3 0 −4

;
(f) A =

4 2 −4
2 0 −4
2 2 −2

;

(g) A =


2 1 0 1
1 3 −1 3
0 1 2 1
1 −1 −1 −1

;

(h) A =


−7 0 0 −4
−13 −2 −1 −8

6 1 0 4
15 1 0 9

;

(i) A =


1 4 −2 0 9
0 −2 1 2 −6
−2 4 −1 3 0
−9 4 1 0 2
4 0 3 −1 3

.

3.2.12 For each of the following Rn-valued functions ξ of time, indicate whether
they can be the solution of a system of linear homogeneous ordinary differ-
ential equations with constant coefficients. If they can be, find a matrix A for
which the function satisfies ξ̇(t) = Aξ(t). If they cannot be, explain why not.
(a) ξ(t) = (et, e−t);
(b) ξ(t) = (cos(t) − sin(t), cos(t) + sin(t));
(c) ξ(t) = (et + e2t, 0, 0);
(d) ξ(t) = (t, 0, 1);
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(e) ξ(t) = (et, et + e2t, 0);
(f) ξ(t) = (cos(t) + sin(t), cos(t) + sin(t)).

3.2.13 Let F be a scalar linear homogeneous ordinary differential equation with
right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

for a0, a1, . . . , ak−1 ∈ R.
(a) Following Exercise 1.3.23, convert F into a first-order system of linear

homogeneous ordinary differential equations F1 in Rk and with right-
hand side

F̂1(t, x) = Ax,
explicitly identifying A ∈ L(Rk;Rk).

(b) Show that the characteristic polynomial PF of F is the same as the char-
acteristic polynomial PA of A.

3.2.14 Determine eAt for the following linear transformations A ∈ L(Rn;Rn) from
Exercise 3.2.11.

3.2.15 For the linear transformations A ∈ L(Rn;Rn) of Exercise 3.2.14, determine
the solution to the initial value problem

ξ̇(t) = Aξ(t), ξ(0) = x0,

with x0 as follows:

(a) x0 = (0, 1);
(b) x0 = (2,−3);
(c) x0 = (1, 1);
(d) x0 = (−3,−1, 0);
(e) x0 = (1, 0, 1);

(f) x0 = (4, 1, 2);
(g) x0 = (1,−1, 0, 1);
(h) x0 = (−1,−1, 3,−2);
(i) x0 = (0, 0, 0, 0, 0).

3.2.16 For the scalar linear homogeneous ordinary differential equations of Exer-
cise 2.2.10, do the following:
(a) convert these to a first-order system of linear homogeneous ordinary

differential equations, explicitly identifying A;
(b) using the fundamental solutions obtained during the solution of the

problems from Exercise 2.2.10, compute eAt;
(c) solve the initial value problems from Exercise 2.2.10 using the operator

exponential.
3.2.17 Let ` ∈ R and k ∈ Z>0. Consider the Jordan block

J(`, k) =


` 1 0 · · · 0 0
0 ` 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · ` 1
0 0 0 · · · 0 `

 .
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Do the following.
(a) Solve the initial value problems

ξ̇ j(t) = J(`, k)ξ j(t), ξ j(0) = e j, IVP j

j ∈ {1, . . . , k}, recursively, first by solving IVPk, then by solving IVPk−1,
and so on. At each stage you should be solving a scalar linear, possibly
inhomogeneous, ordinary differential equation, and so the methods of
Sections 2.2.2 and 2.3.2 can be used.

(b) Use your calculations to determine eJ(`,k)t.
Alternatively, compute eJ(`,k)t as follows.
(c) What are the eigenvalues of J(`, k)?
(d) What are the geometric and algebraic multiplicities of the eigenvalues?
(e) Compute

(J(`, k) − `In) j, j ∈ {0, 1, . . . , k − 1},

probably using mathematical induction on j.
(f) Use your answers from the preceding three questions to explicitly com-

pute eJ(`,k)t using Procedure 3.2.45.
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Section 3.3

Systems of linear inhomogeneous ordinary differential
equations

In this section we extend our discussion of homogeneous equations in Sec-
tion 3.2 to inhomogeneous equations. Thus we are talking about systems of linear
ordinary differential equations F in a finite-dimensional R-vector space V with
right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x) + b(t)

(3.17)

for maps b : T → V and A : T → L(V; V). In our treatment of scalar equations in
Section 3.2, we were gave no fewer than three methods for working with inhomo-
geneous equations, two general methods (using Wronskians in Section 2.3.1.2 and
the theory of Green’s function in Section 2.3.1.3) and one method that only works
for inhomogeneous terms that are pretty uninteresting (the “method of undeter-
mined coefficients in Section 2.3.2.1). We shall not be so expansive for systems
of linear inhomogeneous equations, and shall really only consider “the” method
for working with such equations, since this method is as tractable as any other
method in practice (which is to say, not very tractable at all, barring the use of a
computer algebra package), and is exceptionally powerful in developing the theory
of systems of linear ordinary differential equations.

As we have done in all preceding developments of linear ordinary differential
equations, we work first in the general time-varying case, and then in the case of
constant coefficients.

3.3.1 Equations with time-varying coefficients

We state the, by now, more or less obvious results concerning existence and
uniqueness, now for systems of linear inhomogeneous ordinary differential equa-
tions.

3.3.1 Proposition (Local existence and uniqueness of solutions for systems of lin-
ear inhomogeneous ordinary differential equations) Consider the system of linear
inhomogeneous ordinary differential equations F with right-hand side (3.17) and suppose
that b: T → V and A: T → L(V; V) are continuous. Let (t0, x0) ∈ T × V. Then there
exists an interval T′ ⊆ T and a map ξ : T′ → V of class C1 that is a solution for F and
which satisfies ξ(t0) = x0. Moreover, if T̃′ ⊆ T is another subinterval and if ξ̃ : T̃′ → V is
another C1-solution for F satisfying ξ̃(t0) = x0, then ξ̃(t) = ξ(t) for every t ∈ T̃′ ∩ T′.
Proof By Proposition 3.2.4, there exists a compact interval T′ ⊆ T and a solution
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ξh : T→ V for Fh satisfying ξh(t0) = x0. Now define

ξ : T′ → V

t 7→ ΦA(t, t0)(x0) +

∫ t

t0

Φ(t, τ)(b(τ)) dτ.

Note that the integral defining ξ exists since both τ 7→ ΦA(t, τ) and τ 7→ b(τ) are
continuous, the first holding for every t ∈ T′. In order to verify that ξ so defined is
a solution for F, we will use the following lemma.

1 Lemma Let T ⊆ R be a compact interval and let g : T × T → Rn have the following
properties:

(i) for t ∈ T, the map τ 7→ g(t, τ) is continuous;
(ii) for τ ∈ T, the map t 7→ g(t, τ) is differentiable;
(iii) there exists M1 ∈ R>0 such that ‖g(t, τ)‖ ≤M1 for every t, τ ∈ T;

(iv) there exists M2 ∈ R>0 such that ‖∂gj

∂t (t, τ)‖ ≤M2 for every j ∈ {1, . . . ,n} and t, τ ∈ T.
Then, for any t0 ∈ T, the function

G : T→ Rn

t 7→
∫ t

t0

g(t, τ) dτ

is differentiable and
dG
dt

(t) =

∫ t

t0

∂g
∂t

(t, τ) dτ + g(t, t).

Proof Continuity of τ 7→ g(t, τ) ensures that the integral in the definition of G
exists. Consider the function

G̃ : T × T→ Rn

(t1, t2) 7→
∫ t1

t0

g(t2, τ) dτ.

By the Fundamental Theorem of Calculus, G̃ is differentiable with respect to t1 and

∂G̃
∂t1

(t1, t2) = g(t2, t1).

The assumptions on g ensure that we can differentiate G̃ with respect to t2 inside
the integral:

∂G̃
∂t2

(t1, t2) =

∫ t1

t0

∂g
∂t2

(t2, τ) dτ.
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Now define
δ : T→ T × T

t 7→ (t, t).

Clearly δ is differentiable and

G(t) = G̃ ◦ δ(t).

Using the Chain Rule,

dG
dt

(t) =
∂G̃
∂t1

(δ(t)) ◦
dδ1

dt
(t) +

∂G̃
∂tt

(δ(t)) ◦
dδ2

dt
(t)

= g(t, t) +

∫ t

t0

∂g
∂t

(t, τ) dτ,

as claimed. H

Let us verify that the hypotheses of the lemma hold for (t, τ) 7→ ΦA(t, τ)(b(τ)).
First of all, we certainly have the first two hypotheses of the lemma. Moreover,
writing ΦA(t, τ)(b(τ)) = ΦA(t, t0) ◦ ΦA(τ, t0)−1(b(τ)) and noting that (1) τ 7→ b(τ)
is continuous (and so bounded on the compact interval T′), (2) t 7→ ΦA(t, t0) is
continuous (and so also bounded on the compact intervalT′), and (3)τ 7→ ΦA(τ, t0)−1

is also continuous (and so also bounded), we conclude that the third hypothesis of
the lemma holds. Finally, using Theorem 3.2.9(i), ∂ΦA

∂t (t, τ) = A(t) ◦ΦA(t, τ), and this
is bounded by continuity of A and our observation about that ΦA(t, τ) is bounded.
Thus we can use the lemma to calculate

dξ
dt

(t) = A(t) ◦ΦA(t, t0)(x0) + A(t) ◦
∫ t

t0

ΦA(t, τ)(b(τ)) dτ + b(t)

= A(t)(ξ(t)) + b(t),

i.e., ξ is a solution of F. Moreover, we also clearly have ξ(t0) = x0.
To conclude uniqueness, suppose that we have two solutions ξ1 and ξ2 defined

on the same interval T′. Then

dξ1

dt
(t) = A(t)(ξ1(t)) + b(t),

dξs

dt
(t) = A(t)(ξs(t)) + b(t),

and ξ1(t0) = ξ2(t0) = x0. Therefore,

d(ξ1 − ξ2)
dt

(t) = A(t)(ξ1(t) − ξ2(t)), (ξ1 − ξ2)(t0) = 0.

By the uniqueness assertion of Proposition 3.2.4, we conclude that ξ1 − ξ2 =
0, i.e., ξ1 = ξ2. �

We also have a global existence result in this case, just as for homogeneous
systems.
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3.3.2 Proposition (Global existence of solutions for systems of linear inhomoge-
neous ordinary differential equations) Consider the system of linear inhomogeneous
ordinary differential equations F with right-hand side (3.17) and suppose that b: T → V
and A: T→ L(V; V) are continuous. If ξ : T′ → V is a solution for F, then there exists a
solution ξ : T→ V for which ξ|T′ = ξ.

Proof In the proof of Proposition 3.3.1, we showed that a unique solution exists
on any compact interval containing t0. Just as in the proof of Proposition 3.2.5, this
implies that a solution exists at any t ∈ T. �

Since, in the proof of Proposition 3.3.1, we gave an explicit formula for solutions
to initial value problems, it is worth extracting this explicit formula.

3.3.3 Corollary (An explicit solution for systems of linear inhomogeneous ordi-
nary differential equations) Consider the system of linear inhomogeneous ordinary
differential equations F with right-hand side (3.17) and suppose that b: T → V and
A: T→ L(V; V) are continuous. Given t0 ∈ T and x0 ∈ V, the unique solution ξ : T→ V
to the initial value problem

ξ̇(t) = A(t)(ξ(t)) + b(t)

is

ξ(t) = ΦA(t, t0)(x0) +

∫ t

t0

ΦA(t, τ)(b(τ)) dτ, t ∈ T. (3.18)

The formula (3.18) for solutions to systems of linear inhomogeneous ordinary
differential equations is often called the variation of constants formula.

We note that this solution bears a strong resemblance in form to the Green’s
function solution for scalar systems given in Theorem 2.3.7; indeed, one can think
of the state transition map as playing the rôle of a Green’s function in this case.
In particular, given b ∈ V (a constant vector, note) the physical interpretation of
Remark 2.3.9–2 applies to the map t 7→ ΦA(t, τ)(b), and leads us to think of this as
being the result of applying an impulse at time τ with (vector) magnitude b. This
leads to the important notion in system theory of the impulse response.

Now we can discuss the set of all solutions of a system of linear inhomogeneous
ordinary differential equation F with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x).

To this end, we denote by

Sol(F) =
{
ξ ∈ C1(T; V)

∣∣∣ ξ̇(t) = A(t)(ξ(t))
}

the set of solutions for F. While Sol(F) was a vector space in the homogeneous
case, in the inhomogeneous case this is no longer the case. However, the set
of all solutions for the homogeneous case plays an important rôle, even in the
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homogeneous case. To organise this discussion, we let Fh be the “homogeneous
part” of F. Thus the right-hand side of Fh is

F̂h(t, x) = A(t)(x).

As in Theorem 2.3.3, Sol(Fh) is a R-vector space of dimension dimR(V). The follow-
ing result is then the main structural result about the set of solutions to a system
of linear inhomogeneous ordinary differential equations, mirroring Theorem 2.3.3
for scalar systems.

3.3.4 Theorem (Affine space structure of sets of solutions) Consider the system of linear
inhomogeneous ordinary differential equations F in the n-dimensional R-vector space V
with right-hand side (2.11) and suppose that the maps b: T→ V and A: T→ L(V; V) are
continuous. Let ξp ∈ Sol(F). Then

Sol(F) = {ξ + ξp | ξ ∈ Sol(Fh)}.

Proof First note that, by Theorem 3.2.6, Sol(F) , ∅ and so there exists some
ξp ∈ Sol(F). We have, of course,

dξp

dt
(t) = A(t)(ξp(t)) + b(t). (3.19)

Next let ξ ∈ Sol(F) so that

dξ
dt

(t) = A(t)(ξ(t)) + b(t). (3.20)

Subtracting (3.19) from (3.20) we get

d(ξ − ξp)
dt

(t) = A(t)(ξ(t) − ξp(t)),

i.e., ξ − ξp ∈ Sol(Fh). In other words, ξ = ξ̃ + ξp for ξ̃ ∈ Sol(Fh).
Conversely, suppose that ξ = ξ̃ + ξp for ξ̃ ∈ Sol(Fh). Then

dξ̃
dt

(t) = A(t)(ξ̃(t)). (3.21)

Adding (3.19) and (3.21) we get

dξ
dt

(t) = A(t)(ξ(t)) + b(t),

i.e., ξ ∈ Sol(F). �

As with scalar linear inhomogeneous ordinary differential equations, there is
an insightful correspondence to be made between the situation described in The-
orem 3.3.4 and that of systems of linear algebraic equations described in Proposi-
tion 1.2.4.
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3.3.5 Remark (Comparison of Theorem 3.3.4 with systems of linear algebraic equa-
tions) Let us compare here the result of Theorem 3.3.4 with the situation in Propo-
sition 1.2.4 concerning linear algebraic equations of the form L(u) = v0, for vector
spaces U and W, a linear map L ∈ L(U; W), and a fixed w0 ∈ W. In the setting
of systems of linear inhomogeneous ordinary differential equations in a R-vector
space V, we have

U = C1(T; V),

W = C0(T; V),

L( f )(t) = ˙f (t) − A(t)( f (t)),
w0 = b.

Then Propositions 3.3.1 and 3.3.2 tell us that L is surjective, and so w0 ∈ image(L).
Thus we are in case (ii) of Proposition 1.2.4, which exactly the statement of
Theorem 3.3.4. Note that L is not injective, since Theorem 3.2.6 tells us that
dimR(ker(L)) = dimR(V). •

3.3.6 Remark (What happened to the Wronskian?) In Section 2.3.1.2 we described
how the Wronskian can be used for scalar linear inhomogeneous ordinary differen-
tial equations to generate a particular solution. A similar development is possible
for systems of equations, but we shall not pursue it here. It is worth recording the
reasons for not doing so.
1. In Corollary 3.3.3 we produce a specific and natural “particular solution” for

a system of linear inhomogeneous ordinary differential equations, namely the
function that assigns to the inhomogeneous term “b,” the solution

ξp(t) =

∫ t

t0

ΦA(t, τ)(b(τ)) dτ.

Then the form of the solution of Corollary 3.3.3 is ξ = ξh +ξp, where ξh ∈ Sol(Fh)
satisfies the initial conditions. This is just so cool. . . why would you want to do
more?

2. In Section 2.2.1 we discussed the notion of a fundamental set of solutions
for scalar linear homogeneous ordinary differential equations. There is no
really distinguished fundamental set of solutions, and the Wronskian-related
constructions were developed for an arbitrary fundamental set of solutions. This
has its benefits in this setting, as the results are general in this respect.
However, in Section 3.2.2.2 we saw that there was one object that naturally
describes the solutions for a system of linear homogeneous ordinary differential
equations, the state transition map. Note that in Procedure 3.2.11 we indicate
how to build the state transition map from a fundamental set of solutions for a
system of equations, through the fundamental matrix-function Ξ that we build



3.3 Systems of linear inhomogeneous ordinary differential equations 269

after choosing a basis. It is the fundamental matrix, and its determinant, that
would be involved in Wronskian-type constructions for systems of equations.
However, these are only arrived at after choosing a basis, and so seem quite
unnatural in our setting of general vector spaces. •

Given that we will not be pursuing any Wronskian-type constructions, it only
remains to illustrate how one might use the about constructions in practice.

3.3.7 Example (System of linear inhomogeneous ordinary differential equations)
We take V = R2 and the linear inhomogeneous ordinary differential equation F
with right-hand side

F̂ : (0,∞) × R2
→ R2

(t, (x1, x2)) 7→
(1

t
x1 − x2 + t,

1
t2 x1 +

2
t

x2 − t2
)
.

A solution t 7→ (ξ1(t), ξ2(t)) satisfies[
ẋ1(t)
ẋ2(t)

]
=

[
1
t −1
1
t2

2
t

]
︸   ︷︷   ︸

A(t)

[
x1(t)
x2(t)

]
+

[
t
−t2

]
︸︷︷︸

b(t)

.

Note that the homogeneous system Fh was examined in Example 3.2.13, where we
computed the state transition matrix to be

ΦA(t, t0) =

−
t2(ln(t/t0)−1)

t2
0

−
t2 ln(t/t0)

t0
t ln(t/t0)

t2
0

t(ln(t/t0)+1)
t0

 .
We then compute7∫ t

t0

ΦA(t, τ)b(τ) dτ =

∫ t

t0

[
−

t2(ln(t/τ)−1)
τ2 −

t2 ln(t/τ)
τ

t ln(t/τ)
τ2

t(ln(t/τ)+1)
τ

] [
τ
−τ2

]
dτ

=

[
1
4 t2(t2

− 2t2
0 ln(t/t0) − 2 ln(t/t0)2 + 4 ln(t/t0) − t2

0)
1
4 t(2 ln(t/t0)(ln(t/t0) + t2

0) − 3(t − t0)(t + t0))

]
.

If we now wish to find the solution for F with initial condition x0 = (x10, x20) at time
t0, we use the explicit form of Corollary 3.3.3:

ξ(t) = ΦA(t, t0)x0 +

∫ t

t0

ΦA(t, τ)b(τ) dτ

=

−
t2(ln(t/t0)−1)

t2
0

x10 −
t2 ln(t/t0)

t0
x20 + 1

4 t2(t2
− 2t2

0 ln(t/t0) − 2 ln(t/t0)2 + 4 ln(t/t0) − t2
0)

t ln(t/t0)
t2
0

x10 + t(ln(t/t0)+1)
t0

x20 + 1
4 t(2 ln(t/t0)(ln(t/t0) + t2

0) − 3(t − t0)(t + t0))

 .
7Integration courtesy of Mathematica®.
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As with pretty much any method for solving systems of linear inhomogeneous
(or, indeed, homogeneous) ordinary differential equations, tedious computations
and generally impossible integrals render the explicit formula of Corollary 3.3.3 of
questionable value as a computational tool. •

3.3.2 Equations with constant coefficients

We now specialise the discussion in the preceding section to systems of linear
inhomogeneous ordinary differential equations with constant coefficients. Thus we
are looking at a system of linear inhomogeneous ordinary differential equations F
in a finite-dimensional R-vector space V and with right-hand side given by

F̂(t, x) = A(x) + b(t) (3.22)

for A ∈ L(V; V) and b : T→ V. Of course, all general results concerning the existence
and uniqueness of solutions (i.e., Propositions 3.3.1 and 3.3.2), and of the structure
of the set of solutions (i.e., Theorem 3.3.4) apply in the constant coefficient case.
Here, however, we can refine a little the explicit solution of Corollary 3.3.3 because,
as per Theorem 3.2.42(ix), ΦA(t, t0) = eA(t−t0) in this case. We can thus summarise
the situation in the following theorem.

3.3.8 Theorem (An explicit solution for systems of linear inhomogeneous ordinary
differential equations with constant coefficients) Consider the system of linear
inhomogeneous ordinary differential equations F with constant coefficients and right-hand
side (3.22), and suppose that b: T → V is continuous. Given t0 ∈ T and x0 ∈ V, the
unique solution ξ : T→ V to the initial value problem

ξ̇(t) = A(ξ(t)) + b(t)

is

ξ(t) = eA(t−t0)(x0) +

∫ t

t0

eA(t−τ)(b(τ)) dτ, t ∈ T.

We comment that our observations Remark 2.3.11 about the particular solution

ξp,b =

∫ t

t0

eA(t−τ)(b(τ)) dτ

for constant coefficient systems and its relation to convolution integrals is also valid
here.

3.3.9 Remark (What happened to the “method of undetermined coefficients”?) In
Section 2.3.2.1 we spent some time describing a rather ad hoc method, the “method
of undetermined coefficients,” for finding particular solutions for scalar linear
inhomogeneous ordinary differential equations with constant coefficients. A sim-
ilar strategy is possible for systems of linear inhomogeneous ordinary differential
equations with constant coefficients, but we shall not pursue it here. Here is why.
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1. The rationale of Remark 3.3.6–1 is equally valid here: we have such a nice
characterisation in Corollary 3.3.3 of a particular solution that to mess this up
with an ad hoc procedure that only works for pretty uninteresting functions is
simply not a worthwhile undertaking.

2. While for scalar equations it might be argued that there is some reason for being
able to quickly bang out particular solutions for specific pretty uninteresting
functions—see, particular, the notion of “step response” in Example 2.3.19 and
the notion of “frequency response” in Example 2.3.20—for systems of equations
the benefit of this is not so clear, given the complexity of doing computation in
any example. •

All that remains, since we have discharged ourselves of the responsibility of
providing any analogies to the various methods we used for scalar equations
in Section 2.2, is to give an example of how to apply the explicit formula of
Theorem 3.3.8.

3.3.10 Example (A second-order scalar equation as a system of equations) We con-
sider here the second-order scalar linear inhomogeneous ordinary differential equa-
tion F with right-hand side

F̂(t, x, x(1)) = −ω2
0x − 2ζω0x(1) + A sin(ωt)

that was considered in detail in Example 2.3.20. First we convert this into a system
of linear inhomogeneous ordinary differential equations, following Exercise 1.3.23.
Thus we introduce the variables x1 = x and x2 = x(1) so that

x(1)
1 = x(1) = x2,

x(1)
2 =x(2) = −ω2

0x − 2ζω0x(1) + A sin(ωt) = −ω2
0x1 − 2ζω0x2 + A sin(ωt).

That is to say
F̂1(t, (x1, x2)) = (x2,−ω

2
0x1 − 2ζω0x2 + A sin(ωt)).

Solutions t 7→ (ξ1(t), ξ2(t)) then satisfy[
ξ̇1(t)
ξ̇2(t)

]
=

[
0 1
−ω2

0 −2ζω0

]
︸           ︷︷           ︸

A

[
ξ1(t)
ξ2(t)

]
+

[
0

A sin(ωt)

]
︸       ︷︷       ︸

b(t)

.

To illustrate, we suppose that ζ2
≤ 1 and ω0 > 0.

We will first compute eAt in this case, following Procedure 3.2.48, making use
of the notation in Procedure 3.2.45. The characteristic polynomial of A is

PA = X2 + 2ζω0X + ω2
0,
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and so the eigenvalues of A are λ1 = ω0(−ζ + i
√

1 − ζ2), along with its complex
conjugate λ̄1. This eigenvalue necessarily has algebraic and geometric multiplicity
1. We compute that

ker(AC
− λ1I2) = spanR((−ζ, ω0) + i(

√
1 − ζ2, ω0)).

Thus we take
ζ1,1 = (−ζ, ω0) + i(

√
1 − ζ2, ω0)

and, therefore,
a1,1 = (−ζ, ω0), b1,1 = (−

√
1 − ζ2, 0).

Thus
α1,1(t) = e−ω0ζt cos(ω0

√
1 − ζ2t)a1,1 − e−ω0ζt sin(ω0

√
1 − ζ2t)b1,1

and
β1,1(t) = e−ω0ζt cos(ω0

√
1 − ζ2t)b1,1 + e−ω0ζt sin(ω0

√
1 − ζ2t)a1,1.

Thus a fundamental matrix is then determined to be

Ξ(t) = e−ω0ζt

[
−ζ cos(ω0

√
1 − ζ2t) +

√
1 − ζ2 sin(ω0

√
1 − ζ2t)

ω0 cos(ω0
√

1 − ζ2t)

−
√

1 − ζ2 cos(ω0
√

1 − ζ2t) − ζ sin(ω0
√

1 − ζ2t)
ω0 sin(ω0

√
1 − ζ2t)

]
.

Then we calculate

eAt = Ξ(t)Ξ(0)−1

= e−ω0ζt


cos(ω0

√
1 − ζ2t) +

ζ sin(ω0

√
1−ζ2t)

√
1−ζ2

sin(ω0

√
1−ζ2t)

ω0

√
1−ζ2

−
ω0 sin(ω0

√
1−ζ2t)

√
1−ζ2

cos(ω0
√

1 − ζ2t) − ζ sin(ω0

√
1−ζ2t)

√
1−ζ2

 .
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Now we can calculate8∫ t

0
eA(t−τ)b(τ) dτ =

(
e−ω0ζt 2Aωω0ζ

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ω0

√
1 − ζ2t)

+ e−ω0ζt Aω(ω2 + ω2
0(2ζ2

− 1))
√

1 − ζ2ω0(ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0)
sin(ω0

√
1 − ζ2t)

−
2Aωω0ζ

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ωt)

+
A(ω2

0 − ω
2)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

sin(ωt),

e−ω0ζt Aω(ω2
− ω2

0)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ω0

√
1 − ζ2t)

− e−ωζt Aωζ(ω2 + ω2
0)

√
1 − ζ2(ω4 + 2ω2ω2

0(2ζ2 − 1) + ω4
0)

sin(ω0

√
1 − ζ2t)

+
Aω(ω2

0 − ω
2)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ωt)

+
2Aζω2ω0

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

sin(ωt)
)
, (3.23)

assuming that ζ , 0. If ζ = 0 and ω , ω0, the preceding expression is still valid.
When ζ = 0 and ω = ω0, a different computation must be done, and in this case we
compute ∫ t

0
eA(t−τ)b(τ) dτ =

(
A

2ω2
0
(sin(ω0t) − ω0t cos(ω0t)), A

2 t sin(ω0t)
)
. (3.24)

Note that, in all cases, the preceding expressions give the solution to the ordinary
differential equation when the initial conditions are (0, 0). Let us make some
comments on this solution.
1. ζ , 0: Note that (3.23) is not the steady-state response of the system, as was

the particular solution obtained for this problem in Example 2.3.20 using the
method of undetermined coefficients. The reason for the disparity is that the
expression above has the property that its initial conditions at t = 0 are (0, 0).

8Integration courtesy of Mathematica®.
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Note that, as t→∞, we have∫ t

0
eA(t−τ)b(τ) dτ ≈

(
−

2Aωω0ζ

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ωt)

+
A(ω2

0 − ω
2)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

sin(ωt),

Aω(ω2
0 − ω

2)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ωt)

+
2Aζω2ω0

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

sin(ωt)
)
.

Notice that the first component of this is exactly the particular solution of
Example 2.3.20, while the second component is its time-derivative. This is as
it should be, given our conversion of the scalar second-order equation into a
vector first-order equation.

2. ζ = 0 and ω , ω0: In this case, there is no steady-state solution since the
homogeneous solution does not decay to zero as t→∞, and is indeed periodic
itself. Nonetheless, the solution (3.23) does have two components, one with
frequencyω and one with frequencyω0. While this does not quite disambiguate
the particular from the homogeneous solution9, we can nonetheless see from
the expression (3.23) that the particular solution of Example 2.3.20 is comprised
on the last two terms in the first component.

3. ζ = 0 and ω = ω0: In this case, there is again no steady-state solution; indeed
the solution “blows up” as t → ∞. This is as we saw in Example 2.3.20,
and is due to the physical phenomenon of “resonance.” Moreover, the first
component of (3.24) is not the particular solution from Example 2.3.20; the
particular particular solution (3.24) is prescribed to have initial condition (0, 0),
whereas, in the method of undetermined coefficients, it is the form of the solution
that is determined. •

Exercises

3.3.1 Consider the first-order scalar linear homogeneous ordinary differential
equation with right-hand side F̂(t, x) = a(t)x + b(t) for continuous functions
a, b : T → R. Using your result from Exercise 3.2.9, use Corollary 3.3.3 to
determine the solution to the initial value problem

ξ̇(t) = a(t)ξ(t) + b(t), ξ(t0) = x0,

thinking of this as a system of linear inhomogeneous ordinary differential
equations in the one-dimensional vector space R.

9A periodic function can have more than one frequency.
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3.3.2 Consider the scalar linear inhomogeneous ordinary differential equation F
given by

F(t, x, x(1), x(2)) = x(2) + ω2x − sin(ωt)

for ω ∈ R>0. Answer the following questions.
(a) Use the method of undetermined coefficients to obtain a particular so-

lution for F.
(b) Convert F into a system of linear inhomogeneous ordinary differential

equations F1 in R2 with right-hand side

F̂ : T × R2
→ R2

(t, (x1, x2)) 7→ A
[
x1

x2

]
+ b(t),

giving explicit formulae for A ∈ L(R2;R2) and b : T→ R2.
(c) Show that

eAt =

[
cos(ωt) 1

ω sin(ωt)
−ω sin(ωt) cos(ωt)

]
.

(d) Compute

ξp,b(t) =

∫ t

0
eA(t−τ)b(τ) dτ.

Use your answer to give a particular solution for the scalar equation F.
(e) Explain how the particular solutions from parts (a) and (d) are the same,

and explain how to describe the difference between them.
3.3.3 For the linear transformations A ∈ L(Rn;Rn) of Exercise 3.2.14, use Theo-

rem 3.3.8 to determine the solution to the initial value problem

ξ̇(t) = Aξ(t) + b(t), ξ(0) = 0,

with b as follows:

(a) b(t) = (0, 1);
(b) b(t) = (cos(t), 0);
(c) b(t) = (e2t, 0);
(d) b(t) = (sin(t), 0, 1);
(e) b(t) = (0, e−t, 0);

(f) b(t) = (sin(2t), 0, 1);
(g) b(t) = (1, 0, 0, 1);
(h) b(t) = (sin(t), 0, 0, cos(t));
(i) b(t) = (0, 0, 0, 0, 0).
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Section 3.4

Phase-plane analysis

In this section we consider a way of representing the behaviour of ordinary
differential equations whose state space is a subset of R2 via their “phase portraits.”
We have already used this method informally on a number of occasions, and in
this section we shall be a little more systematic. We begin in Section 3.4.1 by
exhaustively examining phase portraits for linear systems in two variables. In
Section 3.4.2 we consider phenomenon that can happen for nonlinear systems.
In this case, the presentation is essentially example driven, and we give little by
way of rigorous methodology. This analysis appears a little ad hoc, however, the
methods can give more insight into what is “really happening” with a differential
equation. Also, the ideas that we encounter in the simple two-dimensional setting
suggest techniques that may be profitably applied in higher-dimensions. These
ideas are discussed in Section 3.4.3.

3.4.1 Phase portraits for linear systems

We begin our discussion with a consideration of phase portraits for systems of
linear ordinary differential equations in R2 with constant coefficients. Thus we are
considering differential equations F with

F̂ : T × R2
→ R2

(t, (x1, x2)) 7→
[
A11 A12

A21 A22

]
︸      ︷︷      ︸

A

[
x1

x2

]
.

In Section 3.2.3 we learned that the solution to the initial value problem[
ξ̇1(t)
ξ̇2(t)

]
=

[
A11 A12

A21 A22

] [
ξ1(t)
ξ2(t)

]
,

[
ξ1(0)
ξ2(0)

]
= x0 =

[
x0,1

x2,0

]
,

is ξ(t) = eAtx0. What we shall do in this section is represent these solutions in a
particular way, such as we initially discussed in Example 1.3.23. To be specific,
we shall plot the solutions as parameterised curves in the (x1, x2)-plane. In doing
this, we shall represent, not just one solution, but the entirety of solutions with
various initial conditions. By doing this, one gets a qualitative understanding of
the behaviour of solutions that is simply not achievable by looking at a closed-
form solution or by looking at plots of t 7→ ξ1(t) and t 7→ ξ2(t) of fixed solutions
with a single initial condition. The resulting collection of solutions, represented as
parameterised curves, is called the phase portrait.

We shall break down the analysis into various cases, based on the character of
eigenvalues and eigenvectors.
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3.4.1.1 Stable nodes We first consider the case where there are two negative
real eigenvalues. In this case, there are a few cases to consider, but all fall into the
general category of what we call a stable node, since, as we shall see, all solutions
tend to (0, 0) as t→∞.

Distinct eigenvalues

Here we suppose that we have eigenvalues λ1, λ2 ∈ R with λ1 < λ2 < 0. The
behaviour in the case is then determined by the eigenvectors. Let us first look at
the simple case where the eigenvectors are the standard basis vectors e1 = (1, 0)
and e2 = (0, 1). In this case, A is given by

A =

[
λ1 0
0 λ2

]
.

Then [
ξ1(t)
ξ2(t)

]
= eAt

[
ξ1(0)
ξ2(t)

]
=

[
ξ1(0)eλ1t

ξ2(0)eλ2t

]
.

In Figure 3.1a we show the phase portrait, i.e., the family of solutions plotted as
parameterised curves in the (x1, x2)-plane. Let us make a few comments about the
nature of the phase portrait so as to explain the nature of its essential features.
1. The eigenvectors, which are e1 and e2 in this case, show up as lines through the

origin with the property that solutions that start on these lines remain on these
lines. These are, then, invariant subspaces for the dynamics. In Figure 3.1a
these are indicated in red. In this case, because the eigenvalues are negative,
the solutions along these lines approach (0, 0) as t→∞, as can be seen from the
direction of the arrows.

2. Solutions corresponding to other initial conditions also approach (0, 0) as t→∞.
From Figure 3.1a we can see that all of these other solutions approach (0, 0)
tangent to the eigenvector e2. The reason for this is that the eigenvalue λ1 is the
“more negative” eigenvalue, and so solutions decay to zero more quickly in the
direction of the corresponding eigenvector e1.
In the phase portrait of Figure 3.1a the eigenvectors are the standard basis

vectors, and this was selected to make the process easier to visualise and explain.
However, typically the eigenvectors are not the standard basis vectors, of course.
However, the same ideas apply: (1) the eigenvectors represent invariant subspaces
for the dynamics and (2) solutions approach (0, 0) more quickly in the direction of
the “more negative” eigenvector. Let us illustrate this with an example, taking

A =

[
−

5
3

1
3

2
3 −

4
3

]
.

In this case we compute the eigenvalues of A to beλ = −1 andλ2 = −2, i.e., the same
eigenvalues as in the example illustrated in Figure 3.1a. Corresponding eigenvec-
tors are v1 = (1,−1) and v2 = (1, 2). In Figure 3.1b we show the phase portrait. In
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(a) Stable node with the distinct eigenval-
ues λ1 = −2 and λ2 = −1, and standard
basis vectors as eigenvectors
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(b) Stable node with distinct eigenvalues
λ1 = −2 and λ2 = −1 and eigenvectors
v1 = (1,−1), and v2 = (1, 2)
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(c) Stable node with repeated eigenvalue
λ = −1 and geometric multiplicity 2
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(d) Stable node with repeated eigenvalue
λ = −1 and geometric multiplicity 1

Figure 3.1 Stable nodes

red we denote the invariant subspaces corresponding to the eigenvectors. Note
that, essentially, once one understand the phase portrait in Figure 3.1a with the
standard basis vectors as eigenvectors, it is a matter of “distortion” to produce the
phase portrait of Figure 3.1b with its different eigenvectors.
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Repeated eigenvalue with geometric multiplicity 2

Next we consider the case where A has a single eigenvalue λ ∈ R<0 with ma(λ,A) =
mg(λ,A) = 2. In this case note that we simply have

A =

[
λ 0
0 λ

]
=⇒ eAt =

[
eλt 0
0 eλt

]
.

That is to say, all vectors are eigenvectors. Thus the phase portrait of Figure 3.1c is
perhaps not surprising.

Repeated eigenvalue with geometric multiplicity 1

Here we again consider the case where A has a single eigenvalue λ ∈ R<0 with
ma(λ,A) = 2. But in this case we assume that mg(λ,A) = 1. A representative
example is given by

A =

[
λ 1
0 λ

]
=⇒ eAt =

[
eλt t
0 eλt

]
.

The phase portrait is shown in Figure 3.1d, with the single invariant subspace
indicated in red.

3.4.1.2 Unstable nodes The cases we consider in this section are rather like
those in the previous section, except that here we will work with positive eigenval-
ues. In this case we have an unstable node since all solutions, except the one with
initial condition (0, 0), diverge to infinity as t → ∞. The analysis is quite like that
for stable nodes, so we will be briefer.

Distinct eigenvalues

We first consider the case where A has distinct negative real eigenvalues. In this
case, there will be two linearly independent eigenvectors that will each span a
one-dimensional invariant subspace for the differential equation. Consider first
the case where

A =

[
λ1 0
0 λ2

]
=⇒ eAt =

[
eλ1t 0
0 eλ2t

]
for 0 < λ1 < λ2. In this case the eigenvectors are the standard basis vectors e1

and e2. The phase portrait is shown in Figure 3.2a for this case. We see that,
the phase portrait is, in some sense, the “opposite” of that in Figure 3.1a for a
stable node. One still has the invariant subspaces, but now the parameterised
curves for solutions are diverging from the equilibrium at (0, 0). Note that, since
the divergence from (0, 0) is faster in the direction of e2, solution curves approach
(0, 0) faster going backwards in time. This is why solutions approach (0, 0) tangent
to the e1-direction.
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(a) Unstable node with the distinct eigen-
values λ1 = 1 and λ2 = 2, and standard
basis vectors as eigenvectors
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(b) Unstable node with distinct eigenval-
ues λ1 = 1 and λ2 = 2 and eigenvectors
v1 = (1,−1), and v2 = (1, 2)
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(c) Unstable node with repeated eigen-
value λ = 1 and geometric multiplicity
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(d) Unstable node with repeated eigen-
value λ = 1 and geometric multiplicity
1

Figure 3.2 Unstable nodes

Let us also consider a case where the eigenvectors are not the standard basis
vectors. Here we take

A =

[
4
3

1
3

2
3

5
3

]
,
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which has eigenvalues λ1 = 1 and λ2 = 2. Associated eigenvectors are v1 = (1,−1)
and v2 = (2, 1). As we see in Figure 3.2b, the phase portrait is the expected
“distortion” of the phase portrait from Figure 3.2a.

Repeated eigenvalue with geometric multiplicity 2

Next we consider the case of a positive real eigenvalueλwith ma(λ,A) = mg(λ,A) =
2. In this case, A is necessarily given by

A =

[
λ 0
0 λ

]
=⇒ eAt =

[
eλt 0
0 eλt

]
.

In this case, every one-dimensional subspace is an invariant subspace along which
solutions diverge to∞. The phase portrait is shown in Figure 3.2c, and shows the
expected features.

Repeated eigenvalue with geometric multiplicity 1

The final unstable node is associated to a positive eigenvalue λ with ma(λ,A) =
2 and mg(λ,A) = 1. In this case, we have only one one-dimensional invariant
subspace associated to an eigenvector. In Figure 3.2d we show the phase portrait
for this case associated with the typical example

A =

[
λ 1
0 λ

]
=⇒ eAt =

[
eλt t
0 eλt

]
.

Again, we note that all solution curves, except for the one at the equilibrium (0, 0),
diverge to∞ as t→∞.

3.4.1.3 Saddle points The next case we consider is where the real eigenvalues
λ1 and λ2 satisfy λ1 < 0 < λ2. In this case we have what is called a saddle
point, in reference to the setting of a function of two variables at a point where
the derivative of the function vanishes and its Hessian has one positive and one
negative eigenvalue.

In this case, eigenvectors for the distinct eigenvalues are necessarily linearly
independent, so we do not have to carefully consider cases of differing algebraic
and geometric multiplicities. Let us begin with the special case

A =

[
λ1 0
0 λ2

]
=⇒ eAt =

[
eλ1t 0
0 eλ2t

]
,

where the eigenvectors are the standard basis vectors e1 and e2. In Figure 3.3a we
show the phase portrait in this case. Let us make a few comments on what we see.
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(a) Saddle point with eigenvalues λ1 =
−1 andλ2 = 2, and standard basis vectors
as eigenvectors
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(b) Saddle point with eigenvalues λ1 =
−1 and λ2 = 2, and eigenvectors v1 =
(1,−1) and v2 = (2, 1)

Figure 3.3 Saddle points

1. There are two invariant subspaces corresponding to the linearly independent
eigenvectors. On the invariant subspace associated with the negative eigen-
value, the solutions converge to (0, 0) as t → ∞. On the invariant subspace
associated with the positive eigenvalue, solutions diverge to∞ as t→∞.

2. All other solutions, except for that at the equilibrium point (0, 0), diverge to ∞
as t→∞, but do so after possibly falling temporarily under the influence of the
negative eigenvalue.
We can, of course, adapt this to situations where the eigenvectors are not the

standard basis vectors. To illustrate, let us take

A =

[
1 2
1 0

]
.

Then the eigenvalues of A are λ1 = −1 and λ2 = 2, and the associated eigenvectors
v1 = (1,−1) and v2 = (2, 1). The phase portrait here we depict in Figure 3.3b. It is,
as expected, a “distortion” of the phase portrait in Figure 3.3a with the standard
basis vectors as eigenvectors.

3.4.1.4 Centres We next consider cases where A has complex eigenvalues, first
looking at the case where the eigenvalues of A are purely imaginary, say λ1 = iω
and λ2 = −iω, with ω ∈ R>0. In this case we say we have a centre. The prototypical
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case here is

A =

[
0 −ω
ω 0

]
.

In this case we have, using Procedure 3.2.45,

eAt =

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
.

Note that, if [
ξ1(t)
ξ2(t)

]
= eAt

[
ξ1(0)
ξ2(0)

]
,

then ‖ξ(t)‖ = ‖ξ(0)‖. Thus the parameterised solution curves reside in circles
centred at (0, 0), and this is illustrated in Figure 3.4a.
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(a) “Canonical” centre
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(b) “Noncanonical” centre

Figure 3.4 Centres

For more generic cases, the solutions will still be periodic, and the solution
curves will then live on ellipses. To describe the ellipses, we suppose that we have
eigenvalues λ1 = iω and λ2 = −iω. We suppose that the associated eigenvectors
are w1 = u + iv and w2 = u − iv for u,v ∈ R2. To illustrate how u and v prescribe
the ellipses traced out by solutions, we shall consider an example:

A =

[
1
3 −

2
3

5
3 −

1
3

]
.

The eigenvalues in this case are λ1 = i and λ2 = −i. The eigenvectors are w1 = u+ iv
and w2 = u − iv, where

u = (1, 5), v = (3, 0).
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In Figure 3.4b we illustrate the phase portrait in this case, and also show scaled
eigenvectors in red, and a box centred at (0, 0) whose sides are parallel to the
eigenvectors. As one can see, the ellipse along which solution curves evolve is the
unique ellipse tangent to an appropriately scaled box.

3.4.1.5 Stable spirals We continue thinking about cases with complex eigen-
values, but now we consider eigenvalues with nonzero real part. First we consider
the situation where the real part is negative, this being called a stable spiral. First
let us consider the prototypical case where

A =

[
σ −ω
ω σ

]
,

with eigenvalues λ1 = σ + iω and λ2 = σ − iω, where we take σ ∈ R<0. We have,
using Procedure 3.2.45,

eAt = eσt

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
.

The phase portrait in this case we depict in Figure 3.5a, and one can see why the
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(a) “Canonical” stable spiral
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(b) “Noncanonical” stable spiral

Figure 3.5 Stable spirals

name “stable spiral” is applied in this case.
We can also consider a more generic case to illustrate, as in the case of centres,

the rôle of the eigenvectors. We take

A =

[
7

30 −
2
3

5
3 −

13
30

]
,
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and determine the eigenvalues to be λ1 = − 1
10 + i and λ2 = − 1

10 − i. The eigenvectors
are w1 = u + iv and w2 = u − iv, where

u = (1, 5), v = (3, 0),

i.e., the eigenvectors are the same as for the centre in the previous section. In
Figure 3.5b we depict the phase plane in this case, and also overlay the box used
to illustrate the rôle of the eigenvectors in the case of a centre.

3.4.1.6 Unstable spirals Next we consider the case where A has complex eigen-
values with positive real part, this being the case of an unstable spiral. The “canon-
ical” case is exactly like that for a stable spiral, except now σ ∈ R>0. The phase
portrait in this case is depicted in Figure 3.6a. The situation is the “opposite” of
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(a) “Canonical” unstable spiral
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(b) “Noncanonical” unstable spiral

Figure 3.6 Unstable spirals

that for the stable spiral in Figure 3.5a.
We can also give a more generic case by considering

A =

[
13
30 −

2
3

5
3 −

7
30

]
.

In this case, the eigenvalues are λ1 = 1
10 + i and λ2 = 1

10 − i and the eigenvectors are
w1 = u + iv and w2 = u − iv, where

u = (1, 5), v = (3, 0).

Note that these are the same eigenvalues as for the centre and the stable spiral
considered above. In Figure 3.6b we show the phase portrait in this case, along
with a box determined by the eigenvectors as in our discussion of the spiral above.
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3.4.1.7 Nonisolated equilibria The remaining situations we consider are “de-
generate” and do not arise as frequently as the preceding cases (although they do
arise). All of these correspond to cases of a zero eigenvalue. Note that, if one has a
zero eigenvalue and if v is any corresponding eigenvector, then any multiple of v
is an equilibrium point for the differential equation. Thus, when one is considering
cases with zero eigenvalues, the equilibrium point at (0, 0) is not isolated.

Let us consider the various cases.

Zero eigenvalue with algebraic multiplicity 1

We begin by supposing that A has eigenvalues λ1 = 0 and λ2 = λ , 0. In this case,
we suppose that

A =

[
0 0
0 λ

]
.

The behaviour of the solution curves in the phase portrait depends on whether λ is
positive or negative. In Figure 3.7a we depict the case whenλ ∈ R<0. We see, in this
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(a) One zero eigenvalue and one negative
eigenvalue

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

(b) One zero eigenvalue and one positive
eigenvalue

Figure 3.7 Zero eigenvalue with algebraic multiplicity 1

case, that the subspace (in red) generated by the eigenvector e1 for the eigenvalue
0 is populated with equilibria, and that, because λ is negative, all solution curves
approach one of these equilibria as t→∞.

The situation for λ ∈ R>0 is rather similar, and is depicted in Figure 3.7b.
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Zero eigenvalue with algebraic multiplicity 2

Finally we consider the case of a repeated zero eigenvalue. There are two situations
to consider here, one when mg(0,A) = 1 and another when mg(0,A) = 2. In the
former case, we consider

A =

[
0 1
0 0

]
and in the latter case we must have A = 0. In the former case we have

eAt =

[
0 t
0 0

]
and in the latter case we have e0t = In. In Figure 3.8a and Figure 3.8b we show
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(a) Zero eigenvalue with algebraic mul-
tiplicity 2 and geometric multiplicity 1
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(b) Zero eigenvalue with algebraic and
geometric multiplicity 2

Figure 3.8 Zero eigenvalue with algebraic multiplicity 2

the phase portraits. Of course, the phase portrait in Figure 3.8b is spectacularly
uninteresting, since it consists entirely of equilibria!

3.4.2 An introduction to phase portraits for nonlinear systems

The analysis of the preceding section for planar linear ordinary differential
equations with constant coefficients was quite comprehensive, exactly because the
setting was so simple. Extensions to either higher-dimensions than planar and/or
to nonlinear ordinary differential equations are difficult, the former for reasons
of difficulty of representation, the latter for reasons of plain ol’ difficulty. In this
section we consider some ad hoc techniques for understanding phase portraits for
planar nonlinear ordinary differential equations.
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3.4.2.1 Phase portraits near equilibrium points

3.4.2.2 Periodic orbits

3.4.2.3 Attractors

3.4.3 Extension to higher dimensions

3.4.3.1 Behaviour near equilibria

3.4.3.2 Attractors

Exercises

3.4.1 For the scalar linear homogeneous ordinary differential equations in R2 de-
fined by the following 2 × 2 matrices, do the following:
1. determine what type of planar linear system this is, i.e., “stable node,”

“unstable node,” “saddle point,” etc.;
2. sketch the phase portrait, clearly indicating the essential features (know-

ing what these are is part of the question).

(a) A =

[
2 −5
0 3

]
;

(b) A =

[
−2 0
0 −2

]
;

(c) A =

[
−1 −2
1 −3

]
;

(d) A =

[
4 −1
4 0

]
;

(e) A =

[
1 2
3 2

]
;

(f) A =

[
−4 6
−1 1

]
;

(g) A =

[
1 0
0 1

]
;

(h) A =

[
2 4
−2 6

]
;

(i) A =

[
−4 9
−1 2

]
.
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Section 3.5

Using a computer to work with systems of ordinary differential
equations

We thank Jack Horn for putting together the Mathematica® and Matlab® results in
this section.

In this section we illustrate how to use computer packages to obtain analytical
and numerical solutions for systems of ordinary differential equations. We restrict
our attention to attention to linear equations with constant coefficients, since these
are really the only significant class of equations that one can work with analytically.
For numerical solutions, the techniques here are extended in the obvious way to
nonlinear or time-varying systems. As in Section 2.4, we restrict our attention to
illustrating the use of Mathematica® and Matlab®.

3.5.1 Using Mathematica® to obtain analytical and/or numerical solutions

Solving systems of differential equations in Mathematica® requires a similar
procedure as solving a single ordinary differential equation. You must use the
DSolve command, while keeping your system in the form dx

dt (t) = Ax(t) + f (t), for a
given matrix A and vector function f .

3.5.1 Example (Using DSolve to solve systems of ordinary differential equations)
The first system we will consider is:

dy
dt

(t) =

[
−1 −2
1 −3

]
y(t) +

[
cos(t)

1

]
The following script will find and plot the solutions to this system.

A = {{−1,−2}, {1,−3}};A = {{−1,−2}, {1,−3}};A = {{−1,−2}, {1,−3}};

Y[t ] = {y1[t],y2[t]};Y[t ] = {y1[t],y2[t]};Y[t ] = {y1[t],y2[t]};

solution = DSolve[{Y′[t] == A.Y[t] + {Cos[t], 1},Y[0] == {0, 0}}, {y1,y2}, t];solution = DSolve[{Y′[t] == A.Y[t] + {Cos[t], 1},Y[0] == {0, 0}}, {y1,y2}, t];solution = DSolve[{Y′[t] == A.Y[t] + {Cos[t], 1},Y[0] == {0, 0}}, {y1,y2}, t];

Plot[{y1[t],y2[t]}/.solution, {t, 0, 5}]Plot[{y1[t],y2[t]}/.solution, {t, 0, 5}]Plot[{y1[t],y2[t]}/.solution, {t, 0, 5}]



290 3 Systems of ordinary differential equations

1 2 3 4 5

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Note that the “.” in Mathematica® means matrix-vector multiplication in the
above code. •

3.5.2 Example (Matrix exponential in Mathematica®) Mathematica® is also an incredibly
handy software for various aspects of linear algebra. In this example we will work
with the matrix

A =

−1 1 0
−1 −1 0
0 0 2


and will compute matrix exponentials, first using the MatrixExp command, then
by following the process in Procedure 3.2.48.

A = {{−1, 1, 0}, {−1,−1, 0}, {0, 0, 2}};A = {{−1, 1, 0}, {−1,−1, 0}, {0, 0, 2}};A = {{−1, 1, 0}, {−1,−1, 0}, {0, 0, 2}};

MatrixExp[t ∗ A]//MatrixFormMatrixExp[t ∗ A]//MatrixFormMatrixExp[t ∗ A]//MatrixForm
e−tCos[t] e−tSin[t] 0

−e−tSin[t] e−tCos[t] 0

0 0 e2t


Now we will follow the steps from class, and compare the results.

Eigenvals = Eigenvalues[A];Eigenvals = Eigenvalues[A];Eigenvals = Eigenvalues[A];

Eigenvect = Eigenvectors[A];Eigenvect = Eigenvectors[A];Eigenvect = Eigenvectors[A];

F1 = Exp[t ∗ Eigenvals[[1]]] ∗ Eigenvect[[1]];F1 = Exp[t ∗ Eigenvals[[1]]] ∗ Eigenvect[[1]];F1 = Exp[t ∗ Eigenvals[[1]]] ∗ Eigenvect[[1]];

F2 = Exp[t ∗ Eigenvals[[2]]] ∗ Eigenvect[[2]];F2 = Exp[t ∗ Eigenvals[[2]]] ∗ Eigenvect[[2]];F2 = Exp[t ∗ Eigenvals[[2]]] ∗ Eigenvect[[2]];

F3 = Exp[t ∗ Eigenvals[[3]]] ∗ Eigenvect[[3]];F3 = Exp[t ∗ Eigenvals[[3]]] ∗ Eigenvect[[3]];F3 = Exp[t ∗ Eigenvals[[3]]] ∗ Eigenvect[[3]];

Fund = Transpose[{F1,F2,F3}];Fund = Transpose[{F1,F2,F3}];Fund = Transpose[{F1,F2,F3}];
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FundInv = Inverse[Fund];FundInv = Inverse[Fund];FundInv = Inverse[Fund];

B = FundInv/.t→ 0;B = FundInv/.t→ 0;B = FundInv/.t→ 0;

Indirect = Fund.B//MatrixFormIndirect = Fund.B//MatrixFormIndirect = Fund.B//MatrixForm

This ”indirect” method gives us the ugly looking matrix shown below:
1
2e(−1−i)t + 1

2e(−1+i)t 1
2 ie(−1−i)t

−
1
2 ie(−1+i)t 0

−
1
2 ie(−1−i)t + 1

2 ie(−1+i)t 1
2e(−1−i)t + 1

2e(−1+i)t 0

0 0 e2t


However, this is equivalent to the matrix found by using the MatrixExp command,
which can be seen by applying the ComplexExpand command.

ComplexExpand[Indirect]//MatrixFormComplexExpand[Indirect]//MatrixFormComplexExpand[Indirect]//MatrixForm
e−tCos[t] e−tSin[t] 0

−e−tSin[t] e−tCos[t] 0

0 0 e2t




e−tCos[t] e−tSin[t] 0

−e−tSin[t] e−tCos[t] 0

0 0 e2t




e−tCos[t] e−tSin[t] 0

−e−tSin[t] e−tCos[t] 0

0 0 e2t


Sometimes it is not so easy to see that identical symbolic expressions in Mathemat-
ica® are, in fact, identical. For things that are not excessively disgusting to look at,
sometimes the Simplify command is useful. For complex things, ComplexExpand
is sometimes useful. •

Next we consider inhomogeneous equations, using Corollary 3.3.3.

3.5.3 Example (Inhomogeneous linear systems of equations using Mathematica®)
Now that we are comfortable with commands such as MatrixExp, we will see
how it is also possible to solve systems of ordinary differential equations using the
formula

x(t) = eAtx0 +

∫ t0

0
eA(t0−τ) f (τ) dτ.

We will show this by solving the same system given Exercise 3.5.1.

x[t] = MatrixExp[t ∗ A].{0, 0} + Integrate[MatrixExp[A ∗ (t − T)].{Cos[T], 1}, {T, 0, t}];x[t] = MatrixExp[t ∗ A].{0, 0} + Integrate[MatrixExp[A ∗ (t − T)].{Cos[T], 1}, {T, 0, t}];x[t] = MatrixExp[t ∗ A].{0, 0} + Integrate[MatrixExp[A ∗ (t − T)].{Cos[T], 1}, {T, 0, t}];

Plot[x[t], {t, 0, 5}]Plot[x[t], {t, 0, 5}]Plot[x[t], {t, 0, 5}]
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As you can see, the plots are identical to the direct results in Exercise 3.5.1. •

One can also use Mathematica® to produce phase portraits. There are sophis-
ticated Mathematica® packages for doing this (we used DynPac for the plots from
Section 3.4), and here we shall indicate how to do this with standard Mathematica®

commands.

3.5.4 Example (Phase plane using Mathematica®) We consider the planar system of
linear equations [

ẋ(t)
ẏ(t)

]
=

[
−1 −2
1 −3

] [
x(t)
y(t)

]
+

[
cos(t)

1

]
.

We use the commands StreamPlot and ParametricPlot.

splot = StreamPlot[{−x − 2y, x − 3y}, {x,−10, 10}, {y,−10, 10}];splot = StreamPlot[{−x − 2y, x − 3y}, {x,−10, 10}, {y,−10, 10}];splot = StreamPlot[{−x − 2y, x − 3y}, {x,−10, 10}, {y,−10, 10}];

Show[splot,Show[splot,Show[splot,

ParametricPlot[ParametricPlot[ParametricPlot[

Evaluate[Evaluate[Evaluate[

First[First[First[

{x[t], y[t]}/.DSolve[{x′[t] == −x[t] − 2 ∗ y[t] + Cos[t], y′[t] == x[t] − 3 ∗ y[t] + 1,{x[t], y[t]}/.DSolve[{x′[t] == −x[t] − 2 ∗ y[t] + Cos[t], y′[t] == x[t] − 3 ∗ y[t] + 1,{x[t], y[t]}/.DSolve[{x′[t] == −x[t] − 2 ∗ y[t] + Cos[t], y′[t] == x[t] − 3 ∗ y[t] + 1,

{x[0], y[0]} == {5,−7}}, {x[t], y[t]}, t]]], {t, 0, 10},PlotStyle→ Red]]{x[0], y[0]} == {5,−7}}, {x[t], y[t]}, t]]], {t, 0, 10},PlotStyle→ Red]]{x[0], y[0]} == {5,−7}}, {x[t], y[t]}, t]]], {t, 0, 10},PlotStyle→ Red]]
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We have plotted, using StreamPlot, the phase plane for the homogeneous system,
and superimposed in red one solution for the inhomogeneous system. •

3.5.2 Using Matlab® to obtain numerical solutions

In Matlab®, solving systems of differential equations is not much different than
solving a single ordinary differential equation. You must create a function for your
system, which must then be passed into a script that will use the ode45 solver.

3.5.5 Example (Using ode45 to solve systems of ordinary differential equations) We
will once again be considering the same examples as we did in Mathematica®, this
time using Matlab®. First we will solve the following system:

dy
dt

(t) =

[
−1 −2
1 −3

]
y(t) +

[
cos(t)

1

]
.

1 function [ dydt ] = Example2( t,y )

2
3 A = [-1 -2;1 -3];

4
5 dydt = A*y + [cos(t); 1];

6
7 end

Below is the main script that will plot the solution to this system. See Figure 3.9
for the Matlab® generated plots.
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1 clc

2 clear all

3 close all

4 %% Solving Numerically
5
6 t = linspace(0,5);

7 y0 = [0 0];

8
9 y = ode45(@(t,y)Example2(t,y),t,y0);

10
11 plot(y.x,y.y)

12 xlabel('Time [s]');
13 ylabel('y(t)');
14 legend('y1(t)','y2(t)');

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]
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y
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)

y1(t)

y2(t)

Figure 3.9 Plots generated by Matlab® for Exercise 3.5.5

One can see that the solutions are quite similar to those from Exercise 3.5.1 using
Mathematica®. The jagged character of the plots is indicative of the fact that the
time step for ode45 can be decreased. This can be done by specifying

t_int = tinit:tstep:tfinal
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where the meaning of tinit, tfinal, and tstep is just what you think they are. •

Matlab® is also very useful for linear algebra.

3.5.6 Example (Matrix exponential in Matlab®) We will consider the same matrix ex-
ponential example

A =

−1 1 0
−1 −1 0
0 0 2


as in Example 3.5.2. Again, it is possible to calculate the matrix exponential
both directly (using the expm command), or you can follow the steps from Proce-
dure 3.2.48.

1 clc

2 clear all

3 close all

4
5 %% Calculating Matrix Exponential Directly
6 A = [-1 1 0; -1 -1 0; 0 0 -2];

7 syms t

8 MatrixExpDirect = expm(t*A)

9 %% Calculating Matrix Exponential Using Procedure from Class
10
11 [EigenVectors ,EigenValues] = eig(t*A);

12
13 F1 = exp(EigenValues(1,1)).*EigenVectors(:,1);

14 F2 = exp(EigenValues(2,2)).*EigenVectors(:,2);

15 F3 = exp(EigenValues(3,3)).*EigenVectors(:,3);

16
17 Fund = [F1 F2 F3];

18 FundInv = inv(Fund);

19 B = subs(FundInv ,0); %Here we are evaluating the fundamental

matrix at t = 0

20
21 MatrixExponential = Fund*B

Here is the output from the Matlab® code

MatrixExponential =

[exp(t*(-1-1i))/2+exp(t*(-1+1i))/2,

(exp(t*(-1-1i))*1i)/2-(exp(t*(-1+1i))*1i)/2, 0]

[-(exp(t*(-1-1i))*1i)/2+(exp(t*(-1+1i))*1i)/2,

exp(t*(-1-1i))/2+exp(t*(-1+1i))/2, 0]

[0, 0, exp(-2*t)]

Of course, the result here is the same as we saw using Mathematica®. •
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Finally, let us see how Matlab® can be used to create phase portraits.

3.5.7 Example To create phase portraits in Matlab®, you must use the meshgrid com-
mand, and evaluate the first derivatives of y1 and y2 at each point for t = 0. Once
you have done this, use the quiver command to plot the vector field. To plot a
specific solution, simply use the ode45 command, and plot the first and second
columns of the outputted matrix. See Figure 3.10 for the result.

1 clc

2 clear all

3 close all

4
5 [x,y] = meshgrid(-10:1:10,-10:1:10);

6
7 u = zeros(size(x));

8 v = zeros(size(x));

9
10 t = 0;

11 for i = 1:numel(x)

12 dydt = Example2(t,[x(i);y(i)]);

13 u(i) = dydt(1);

14 v(i) = dydt(2);

15 end

16
17 quiver(x,y,u,v,'b');
18 xlabel('y1(t)');
19 ylabel('y2(t)');
20
21 t = linspace(0,5);

22 y0 = [5,-7];

23
24 hold on

25 y = ode45(@(t,y)Example2(t,y),t,y0);

26 plot(y.y(1,:),y.y(2,:))

27 hold off

28
29 print -deps PhasePortrait

It is possible to customise Matlab® output to look prettier, but this is something
we leave to the reader as they progress through their professional lives. •
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Figure 3.10 Phase portrait generated by Matlab®



Chapter 4

Stability theory for ordinary differential
equations

In the preceding two chapters we considered some methods for solving ordi-
nary differential equations, dealing almost exclusively with linear equations. In
Section 3.1 we motivated our rationale for this by illustrating that systems of or-
dinary differential equations can be linearised, although we did not at that time
indicate how this process of linearisation might be useful. In this chapter we shall
see, among other things, a concrete illustration of why one is interested in linear
ordinary differential equations, namely that understanding them can help one un-
derstand the stability of systems that are not necessarily linear. Indeed, in this
chapter we shall engage in a general discussion of stability, and this connection to
linear ordinary differential equations will be just one of the topics considered.

We shall begin our general presentation in Section 4.1 with definitions of various
types of stability and examples that illustrate these. We shall give many definitions
here, and shall only consider a few of them in any detail subsequently. However,
the full slate of definitions is useful for establishing context. In Section 4.2 we
consider the stability of systems of linear ordinary differential equations, where
the extra structure, especially in the case of systems with constant coefficients,
allows a complete description of stability. Two methods, called “Lyapunov’s First
and Second Method,” for stability analysis for systems of (not necessarily linear)
ordinary differential equations are considered in Sections 4.3 and 4.4. Lyapunov’s
First Method allows the determination of the stability of a system of differential
equations from its linearisation in some cases.
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Section 4.1

Stability definitions

In this section we state the standard stability definitions for a system of ordinary
differential equations. Thus we are working with an ordinary differential equation
F with right-hand side

F̂ : T ×U→ Rn,

where U ⊆ Rn is an open subset of Rn. In order to ensure local existence and
uniqueness of solutions, we shall make the following assumptions on F.

4.1.1 Assumption (Right-hand side assumptions for stability definitions) We sup-
pose that

(i) the map t 7→ F̂(t, x) is continuous for each x ∈ U,

(ii) the map x 7→ F̂(t, x) is Lipschitz for each t ∈ T, and
(iii) for each x ∈ U and for each r ∈ R>0, there exist continuous functions g,L : T→

R≥0 such that
‖̂F(t, y)‖ ≤ g(t), (t, y) ∈ T × B(r, x),

and
‖̂F(t, y1) − F̂(t, y2)‖ ≤ L(t)‖y1 − y2‖, t ∈ T, y1, y2 ∈ B(r, x). •

4.1.1 Definitions

The first thing one should address when talking about stability is “stability of
what?” Almost always—and always for us—we will be thinking about stability of
a solution t 7→ ξ0(t) of a system of ordinary differential equations F. In all cases,
stability of a solution intuitively means that other solutions starting nearby remain
nearby at t → ∞. However, this intuitive idea needs to be made precise. As part
of this, we make the following definitions.

4.1.2 Definition (ε-neighbourhood of a curve) Let U ⊆ Rn be open, let T ⊆ R be an
interval, and let γ : T→ U be a curve. The set

N(γ, ε) = {x ∈ U | ‖x − γ(t)‖ < ε for some t ∈ T}

is the ε-neighbourhood of γ. •

4.1.3 Definition (Distance to a set) Let U ⊆ Rn be open and let S ⊆ U. The function

dS : U→ R≥0

x 7→ inf{‖x − y‖ | y ∈ S}

is the distance function to S. •

We can now state our stability definitions.
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4.1.4 Definition (Stability of solutions) Let F be a system of ordinary differential equa-
tions satisfying Assumption 4.1.1 and suppose that supT = ∞.1 Let ξ0 : T′ → U
be a solution for F, supposing that supT′ = ∞. The solution ξ0 is:

(i) Lyapunov stable, or merely stable, if, for any ε ∈ R>0 and t0 ∈ T′, there exists
δ ∈ R>0 such that, if x ∈ U satisfies ‖ξ0(t0) − x‖ < δ, then the solution ξ to the
initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ‖ξ(t) − ξ0(t)‖ < ε for t ≥ t0;
(ii) asymptotically stable if it is stable and if, for every t0 ∈ T′, there exists

δ ∈ R>0 such that, for ε ∈ R>0, there exists T ∈ R>0 such that, if x ∈ U satisfies
‖ξ0(t0) − x‖ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ‖ξ(t) − ξ0(t)‖ < ε for t ≥ t0 + T;
(iii) exponentially stable if it is stable and if, for every t0 ∈ T′, there exists M, δ, σ ∈

R>0 such that, if x ∈ U satisfies ‖ξ0(t0)−x‖ < δ, then the solution ξ to the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ‖ξ(t) − ξ0(t)‖ ≤Me−σ(t−t0);
(iv) orbitally stable if, for any ε ∈ R>0 and t0 ∈ T′, there exists δ ∈ R>0 such that, if

x ∈ U satisfies ‖ξ0(t0)− x‖ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ξ(t) ∈ N(ξ0, ε) for t ≥ t0;
(v) asymptotically orbitally stable if it is orbitally stable and if, for every t0 ∈ T′,

there exists δ ∈ R>0 such that, for ε ∈ R>0, there exists T ∈ R>0 such that, if
x ∈ U satisfies ‖ξ0(t0)− x‖ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies dimage(ξ0)(ξ(t)) < ε for t ≥ t0 + T;
(vi) exponentially orbitally stable if it is orbitally stable and if, for every t0 ∈ T′,

there exists M, σ, δ ∈ R>0 such that, if x ∈ U satisfies ‖ξ0(t0) − x‖ < δ, then the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies dimage(ξ0)(ξ(t)) ≤Me−σ(t−t0);

1Thus T is a time-interval that is unbounded on the right, i.e., either T = [a,∞) or T = (a,∞) for
some a ∈ R.
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(vii) uniformly Lyapunov stable, or merely uniformly stable, if, for any ε ∈ R>0,
there exists δ ∈ R>0 such that, if (t0, x) ∈ T′ × U satisfies ‖ξ0(t0) − x‖ < δ, then
the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ‖ξ(t) − ξ0(t)‖ < ε for t ≥ t0;
(viii) uniformly asymptotically stable if it is uniformly stable and if there exists

δ ∈ R>0 such that, for ε ∈ R>0, there exists T ∈ R>0 such that, if (t0, x) ∈ T′ ×U
satisfies ‖ξ0(t0) − x‖ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ‖ξ(t) − ξ0(t)‖ < ε for t ≥ t0 + T;
(ix) uniformly exponentially stable if it is uniformly stable and if there exists

M, σ, δ ∈ R>0 such that, if (t0, x) ∈ T′ × U satisfies ‖ξ0(t0) − x‖ < δ, then the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ‖ξ(t) − ξ0(t)‖ ≤Me−σ(t−t0);
(x) uniformly orbitally stable if, for any ε ∈ R>0, there exists δ ∈ R>0 such that, if

(t0, x) ∈ T′ ×U satisfies ‖ξ0(t0) − x‖ < δ, then the solution ξ to the initial value
problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ξ(t) ∈ N(ξ0, ε) for t ≥ t0;
(xi) uniformly asymptotically orbitally stable if it is uniformly orbitally stable

and if there exists δ ∈ R>0 such that, for ε ∈ R>0, there exists T ∈ R>0 such
that, if (t0, x) ∈ T′ ×U satisfies ‖ξ0(t0)− x‖ < δ, then the solution ξ to the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies dimage(ξ0)(ξ(t)) < ε for t ≥ t0 + T;
(xii) uniformly exponentially orbitally stable if it is uniformly orbitally stable and

if there exists M, σ, δ ∈ R>0 such that, if (t0, x) ∈ T′ ×U satisfies ‖ξ0(t0)− x‖ < δ,
then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies dimage(ξ0)(ξ(t)) ≤Me−σ(t−t0);
(xiii) unstable if it is not stable. •

While this seems like an absurdly large number of definitions, it is made to ap-
pear larger by there being a few concepts, represented in all possible combinations.
Let us describe the essential dichotomies and trichotomies.
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1. Stable/(asymptotically stable)/(exponentially stable). The idea of the dichotomy of
stable/(asymptotically stable) is that stability has to do with solutions remaining
close if their initial conditions are close, while asymptotic stability has to do with
solutions with close initial conditions getting closer and closer as time goes by.
The notion of exponential stability is similar to that of asymptotic stability,
but places some constraints on the rate at which solutions with nearby initial
conditions approach one another.

2. Stable/(orbitally stable). The stable/(orbitally stable) dichotomy has to do with
how one measures the “closeness” of solutions with nearby initial conditions.
When dealing with stability, as opposed to orbital stability, one asks that, at all
times, solutions remain close. Orbital stability is weaker in that we do not ask
that solutions at the same time are close, but rather that one solution at one time
is close to another solution, but possibly at a different time.

3. Stable/(uniformly stable). The dichotomy here here has to do with the rôle of the
initial time t0 in the definition. In uniform stability, the parameters δ, M, and
σ are independent of the initial time t0, whereas with (nonuniform) stability,
these parameters depend on t0. This is a more or less standard occurrence of
the notion of “uniform,” and if a reader is encountering this notion for the first
time, it is best to acquire a feeling for what it represents.
Now that we have presented our definitions and tried to understand what they

mean, let us explore them a little. First let us consider the relationships between the
various notions of stability. To do this it is most convenient to arrange the various
definitions in a diagram. To control the clutter in the diagram and other places, we
use some obvious abbreviations:

(U)S (uniformly) stable
(U)AS (uniformly) asymptotically stable
(U)ES (uniformly) exponentially stable
(U)OS (uniformly) orbitally stable
(U)AOS (uniformly) asymptotically orbitally stable
(U)EOS (uniformly) exponentially orbitally stable

With these abbreviations, we have the diagram in Figure 4.1 illustrating the re-
lationships between the various forms of stability. All of the implications in the
diagram follow more or less immediately from the definitions.

Next let us see that, in the case of most interest to us where the solution ξ0 is an
equilibrium solution, the preceding definitions simplify by a factor of 1

2 . Thus, in
this discussion, we have an equilibrium state x0 for F, i.e., F̂(t, x0) = 0 for all t ∈ T.
In this case, as per Proposition 3.1.5, we have the equilibrium solution ξ0 defined
by ξ0(t) = 0, t ∈ T. The usual linguistic simplification is to speak, not of the stability
of this equilibrium solution, but of the stability of the equilibrium state x0 since the
latter prescribes the former.

The next result records the simplifications that occur in the stability definitions
in this case.
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Figure 4.1 Relationships between the various forms of stability

4.1.5 Proposition (Collapsing of stability definitions for equilibria) Let F be a
system of ordinary differential equations satisfying Assumption 4.1.1 and suppose that
supT = ∞. For an equilibrium state x0 for F, we have the following implications:

(i) OS =⇒ S;
(ii) AOS =⇒ AS;
(iii) EOS =⇒ ES;

(iv) UOS =⇒ US;
(v) UAOS =⇒ AOS;
(vi) UEOS =⇒ UES.

In short, all forms of orbital stability are implied by their nonorbital counterparts
in the case of equilibrium solutions.

Moreover, if F is autonomous, then we additionally have the following implications:
(vii) S =⇒ US;
(viii) AS =⇒ UAS;
(ix) ES =⇒ UES.

Proof In all cases, this amounts to the observation that, if ξ0 is the equilibrium
solution ξ0(t) = x0, then N(ξ0, ε) = B(ε, x0), and so
1. x ∈ N(ξ0, ε) if and only if ‖x − x0‖ < ε and
2. dimage(ξ0)(x) = ‖x − x0‖. �

For the final assertion of the proposition, we shall explicitly give the proof that
S =⇒ US, the other implications following using the same idea. Let ε ∈ R>0. Since
x0 is stable, for t0 ∈ T, there exists δ ∈ R>0 such that, if x ∈ U satisfies ‖x − x0‖ < δ,
the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

exists for t ≥ t0 and satisfies ‖ξ(t)− x0‖ < ε for t ≥ t0. Now let t̂0 ∈ T. Then, let x ∈ U
be such that ‖x − x0‖ < δ and let ξ : T → U and ξ̂ : T → U be the solutions to the
initial value problems

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,
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and
˙̂ξ(t) = F̂(t, ξ̂(t)), ξ̂(t′0) = x,

respectively. By Exercise 1.3.19 we have ξ̂(t) = ξ(t−(t̂0−t0)). Therefore, ξ̂ is defined
for t ≥ t̂0 and

‖x̂(t) − x0‖ = ‖x(t − (t̂0 − t0)) − x0‖ < ε

for t ≥ t̂0. This shows that the choice of δ can be made independently of the initial
time t0, and so x0 is uniformly stable.

We conclude our discussion of stability definitions with a warning of some
lurking dangers in these definitions.

4.1.6 Remarks (Caveats concerning stability definitions)
1. First let us provide some good news. For stability of equilibria—by far the

most widely used and interesting case—the definitions we give are completely
standard and coherent and offer no difficulties in their use.

2. It is often possible to reduce the study of stability of nonequilibrium solutions
to the study of equilibria. Let us illustrate how this is done. We suppose that
we have an ordinary differential equation F with right-hand side

F̂ : T ×U→ Rn

with supT = ∞. Let us suppose that we have a solution ξ0 : T→ U for F, whose
stability we wish to examine. In order to do this, we suppose that there exists
r ∈ R>0 such that the “tube”

T(r, ξ0) = {ξ0(t) + x′ | t ∈ T, x′ ∈ B(r, 0)}

of radius r about ξ0 is a subset of U. We then define a “time-varying change of
coordinates”

Φ : T × T(r, ξ0)→ T × B(r, 0)
(t, x) 7→ (t, x − ξ0(t)).

We then define a differential equation G with right-hand side

Ĝ : T × B(r, 0)→ Rn

(t, y) 7→ F̂ ◦Φ−1(t, y),

whose state space is B(r, 0). Note that, if ξ : T′ → U is a solution for F for which
ξ(t) − ξ0(t) ∈ B(r, 0), then the function η(t) = ξ(t) − ξ0(t) is a solution for G.
Indeed,

η̇(t) = ξ̇(t) − ξ̇0(t) = F̂(t, ξ(t)) = F̂(t,η(t) + ξ0(t)) = Ĝ(t,η(t)).

Moreover, since Φ ◦ξ0(t) = (t, 0) for every t ∈ T, the solution ξ0 is mapped to the
equilibrium solution η0 : t 7→ 0. Therefore, the study of the stability of solution
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ξ0 is reduced to the study of the equilibrium solution at 0. In this way, the
study of nonequilibrium solutions can sometimes be reduced to the study of
equilibrium solutions. Note, also, that, even if F is autonomous, the resulting
differential equation G will be nonautonomous.

3. Now for the bad news. For stability of nonequilibrium solutions, there are
some possible problems with the definitions that need to be understood. The
problems manifest themselves in at least two different ways, and these two
ways are not unrelated.

(a) The ε-neighbourhood of a solution is measured using a specific notion of
distance coming from the Euclidean norm. It is possible that this is not
the most meaningful way of measuring distance, and that, upon choosing
another way of measuring distance, one can get inconsistent conclusions
when applying stability tests. For example, one might use one method
of measuring distance and conclude stability, while another method of
measuring distance yields instability. To see examples of where this can
happen requires understanding “other ways of measuring distance,” and
this is not something we shall do here.

(b) The definitions we give can vary with coordinate systems. That is, one can
render a stable (or unstable) system unstable (or stable) by using different
coordinates. The reader is asked to explore this in Exercise 4.1.1.

These caveats need to be kept in mind when working with the stability of
nonequilibrium solutions. •

4.1.2 Examples

In this section, we give some examples to illustrate some of the ways in which
the different notions of stability are separated in practice.

4.1.7 Example (Stable versus unstable versus asymptotically stable I) We consider
the ordinary differential equation F with state space U = R and with right-hand
side F̂(t, x) = ax with a ∈ R. This is a simple linear ordinary differential equation
and has solution ξ(t) = ξ(t0)ea(t−t0). We shall consider the stability of the equilibrium
point x0 = 0. We have three cases.
1. a < 0: In this case we note two things. First of all, |ξ(t)| ≤ |ξ(t0)| for t ≥ t0,

from which we conclude that the equilibrium at x0 = 0 is stable. (Formally, let
ε ∈ R>0. Then, if we take δ = ε, we have

|ξ(t0) − 0| ≤ δ =⇒ |ξ(t) − 0| < ε, t ≥ t0.

which is what is required to prove stability of the equilibrium x0 = 0.) Also,
limt→∞|ξ(t) − 0| = 0, which gives asymptotic stability of x0 = 0. Moreover, in
this case we also have |ξ(t)| = |ξ(t0)|ea(t−t0), and so we further have exponential
stability.
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2. a = 0: Here we have ξ(t) = ξ(t0) for all t. Therefore, we have stability, but not
asymptotic stability of the equilibrium x0 = 0. (Formally, let ε ∈ R>0. Then,
taking δ = ε, we have

|ξ(t0) − 0| < δ =⇒ |ξ(t) − 0| < ε, t ≥ t0.)

3. a > 0: Here, as long as ξ(t0) , 0, we have limt→∞|ξ(t)| = ∞, and this suffices
to show that the equilibrium x0 = 0 is unstable. (Formally, we must show that
there exists ε ∈ R>0 such that, for any δ ∈ R>0 there exists ξ(t0) ∈ R and T ∈ R>0

such that, |ξ(t0)| < δ and |ξ(t0 + T)| ≥ ε. We can take ε = 1 and, given δ ∈ R>0,
we can take ξ(t0) = δ

2 and T ∈ R>0 such that eaT
≥

2
δ .) •

4.1.8 Example (Stable versus unstable versus asymptotically stable II) We consider
another example illustrating the same trichotomy as the preceding example, but
one that generates some pictures that one can keep in mind when thinking about
concepts of stability. We consider the ordinary differential equation F with state
space U = R2 and with right-hand side F̂(t, (x1, x2)) = (x2,−x1 − 2δx2) for |δ| < 1. We
shall be concerned with the stability of the equilibrium point x0 = (0, 0). Solutions
ξ : T→ R2 satisfy

ξ̇1(t) = ξ2(t),

ξ̇2(t) = − ξ1(t) − 2δξ2(t).

This is a linear homogeneous ordinary differential equation with constant coeffi-
cients determined by the matrix

A =

[
0 1
−1 −δ

]
.

We compute the eigenvalues of A to be

λ1 = −δ + i
√

1 − δ2, λ2 = −δ − i
√

1 − δ2.

Thus we have two distinct complex eigenvalues. We can then apply Proce-
dures 3.2.45 and 3.2.48 to compute

eAt = e−δt

cos(
√

1 − δ2t) + δ
√

1−δ2
sin(
√

1 − δ2t) 1
√

1−δ2
sin(
√

1 − δ2t)

−
1

√

1−δ2
sin(
√

1 − δ2t) cos(
√

1 − δ2t) + δ
√

1−δ2
sin(
√

1 − δ2t)

 .
In Figure 4.2 we plot the parameterised curves in (x1, x2)-space in what we shall in
Section 3.4 call “phase portraits. Without going through the details of the analysis,
we shall simply make the following observations.
1. δ > 0: Here we see that x0 = (0, 0) is asymptotically stable.
2. δ = 0: Here we see that x0 = (0, 0) is stable, but not asymptotically stable.
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Figure 4.2 Phase portraits for F̂(t, (x1, x2)) = (x2,−x1 − δx2) for
δ < 0 (top left), δ = 0 (top right), and δ > 0 (bottom)

3. δ < 0: Here we see that x0 = (0, 0) is unstable.
One can look at the behaviour of solutions in Figure 4.2 to convince oneself of the
validity of these conclusions. •

The definitions we give in Definition 4.1.4 are “local.2” This means that they
only give conclusions about the behaviour of solutions nearby the reference solu-
tion. Our preceding two examples might give one the impression that they hold
globally, but this is not the case, as we illustrate in the next two examples.

2Indeed, the definitions we give are often prefixed by “local.”



4.1 Stability definitions 309

4.1.9 Example (Stable does not mean “globally stable” I) Here we consider the
ordinary differential equation F with state space U = R and right-hand side
F̂(t, x) = x − x3. We will look at the stability of the equilibria for this differen-
tial equation. According to Proposition 3.1.5, a state x0 ∈ R is an equilibrium
state if and only if x0 − x3

0 = 0, which gives the three equilibria x− = −1, x0 = 0,
and x+ = 0. We shall subsequently see how to rigorously prove the stability of
these three equilibria, but here we shall argue heuristically. In Figure 4.3 we graph
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3

Figure 4.3 The right-hand side x − x3

the right-hand side as a function of x. From this graph, we make the following
conclusions.
1. x0 is unstable: We see that, when x > x0 = 0 and x is nearby x0 = 0, that

F̂(t, x) > 0, Therefore, if ξ(t0) > 0 and is nearby 0, then ξ(t) will become “more
positive.” In similar manner, if ξ(t0) < 0 and is nearby 0, then ξ(t) will become
“more negative.” Thus all solutions nearby 0 “move away” from 0.

2. x± are asymptotically stable: Here the opposite phenomenon occurs as com-
pared to x0. When x > x± and x is nearby x±, then F̂(t, x) < 0. Therefore,
if ξ(t0) > x± and is nearby x±, then ξ(t) will “move towards” x±. In similar
manner, if ξ(t0) < x± and is nearby x±, then ξ(t) will again “move towards” x±.

The point is that our conclusions about stability for all three equilibria hold only
for initial conditions nearby the equilibria. Moreover, the stability is different for
different equilibria. •

4.1.10 Example (Stable does not mean “globally stable” II) The example here illus-
trates a similar phenomenon as the preceding example, but does so while produc-
ing some useful pictures. The ordinary differential equation we consider has state
space U = R2 with right-hand side F̂(t, (x1, x2)) = (x2, x1 − x3

1 −
1
2x2). Thus solutions
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ξ : T→ R2 satisfy

ξ̇1(t) = ξ2(t)

ξ̇2(t) = ξ1(t) − ξ1(t)3
−

1
2ξ2(t).

We will consider the stability of the equilibria for F. By Proposition 3.1.5, an
equilibrium x0 = (x01, x02) will satisfy

0 = x02,

0 = x01 − x3
01 −

1
2

x01,

which gives the three equilibrium points x0 = (0, 0), x− = (−1, 0), and x+ = (0, 1). In
Figure 4.4 we show a few parameterised solutions for F in the (x1, x2)-plane. From
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2

Figure 4.4 Phase portrait for F̂(t, (x1, x2)) = (x2, x1 − x3
1 −

1
2 x2)

this figure we deduce that x0 is unstable and x± is asymptotically stable. •

The reader will have noticed that “stable” is included in the definition of
“asymptotically stable.” It seems like this might be redundant, but it is not as
the next example indicates.
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4.1.11 Example (Why “stable” is part of the definition of “asymptotically stable”)
We work with the ordinary differential equation F with state space R2 and with

F̂(t, (x1, x2)) =

(
x2

1(x2 − x1) + x5
2

(x2
1 + x2

2)(1 + (x2
1 + x2

2)2)
,

x2
2(x2 − 2x1)

(x2
1 + x2

2)(1 + (x2
1 + x2

2)2)

)
This solutions ξ : T→ R2 for F satisfy

ξ̇1(t) =
ξ1(t)2(ξ2(t) − ξ1(t)) + ξ2(t)5

(ξ1(t)2 + ξ2(t)2)(1 + (ξ1(t)2 + ξ2(t)2)2)

ξ̇2(t) =
ξ2(t)2(ξ2(t) − 2ξ1(t))

(ξ1(t)2 + ξ2(t)2)(1 + (ξ1(t)2 + ξ2(t)2)2)
.

We are interested in the stability of the equilibrium point x0 = (0, 0). In Figure 4.5
we depict the phase portrait for the equation. From the phase portrait, we can
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Figure 4.5 Phase portrait for

F̂(t, x) =
(

x2
1(x2−x1)+x5

2
(x2

1+x2
2)(1+(x2

1+x2
2)2)
,

x2
2(x2−2x1)

(x2
1+x2

2)(1+(x2
1+x2

2)2)

)

reasonable say that (1) for any initial condition ξ(t0) ∈ R2, we have limt→∞ ξ(t) =
(0, 0) and (2) x0 = (0, 0) is not stable. The former can be seen straightaway from
Figure 4.5. For the latter, we note that, for any ε ∈ R>0, no matter how small
we choose δ, there is an initial condition satisfying ‖ξ(t0) − x0‖ < δ for which the
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corresponding solution leaves the ball of radius ε centred at x0. Thus stability is
required as part of the definition of asymptotic stability in order to rule out this
“large deviation” behaviour.3 •

4.1.12 Example (Asymptotically stable versus exponentially stable) In some of our
examples above where an equilibrium is asymptotically stable, it is also exponen-
tially stable. However, this need not be the case always. To illustrate this, we
consider the ordinary differential equation with state space U = R and right-hand
side F̂(t, x) = −x3. In this case, we can argue as in Example 4.1.9 that the equilib-
rium state at x0 = 0 is asymptotically stable. Let us show that it is not exponentially
stable. For ξ(t0) ∈ R, we can use the technique of Section 2.1 to obtain the solution
with this initial condition as

ξ(t) = sign(ξ(t0))
(

1 + 2(t − t0)ξ(t0)2

ξ(t0)2

)−1/2

,

where sign: R → {−1, 0, 1} returns the sign of a real number. The observation
we make is that, as t → ∞, ξ(t) decays to zero like (t − t0)−1/2, which prohibits
exponential stability. •

4.1.13 Example (Stable versus orbitally stable) As we saw in Proposition 4.1.5, one
cannot distinguish between “stable” and “orbitally stable” for equilibria. There-
fore, necessarily, if we wish to consider a distinction between these sorts of stability,
we need to work with a nonequilibrium solution. The example we give is one that
is easily imagined, and we do not rigorously prove our assertions.

We consider the motion of a simple pendulum. This can be thought of as a
first-order system of ordinary differential equations with state space U = R2 and
with right-hand side

F̂(t, (x1, x2)) =
(
x2,−

ag

`
sin(x1)

)
.

Here ag is acceleration due to gravity and ` is the length of the pendulum. Solutions
ξ : T→ R2 satisfy

ξ̇1(t) = ξ2(t)

ξ̇2(t) = −
ag

`
sin(x1).

Let us make some (mathematically unproved, but physically “obvious”) observa-
tions about this equation.

3One very often sees the following definition.

Definition A solution ξ0 of an ordinary differential equation is attractive if there exists δ ∈ R>0
such that, for any ε, there exists T ∈ R>0 for which, if ‖ξ(t0) − ξ0(t0)‖ < δ, then ‖ξ(t) − ξ0(t)‖ < ε for
t ≥ t0 + T. •

One can then say that “asymptotic stability” means “stable” and “attractive.”
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1. For small oscillations of the pendulum, the period of the oscillation is 2π
√

`
ag

.

2. As the amplitude of the oscillation becomes large (approaching π), the period
becomes large. Indeed, for oscillations with amplitude exactly π, the period
is “∞.” Let us be clear what this means. There is a motion of the pendulum
where, at “t = −∞,” the pendulum is upright at rest, and then begins to fall. It
will fall and then swing up to the upright configuration at rest, getting there at
“t = ∞.”

3. For amplitudes between 0 and π, the period will grow monotonically from

2π
√

`
ag

to∞. There is, in fact, a precise formula for this, and it is

T(θ0) = 4

√
`
ag

∫ π/2

0

1

(1 − sin2(θ0
2 ) sin2(φ))1/2

dφ,

where θ0 is the amplitude of the oscillation. This integral, while not expressible
in terms of anything you know about, is expressible in terms of what is known
as an “elliptic function.” The formula itself can be derived using conservation
of energy. In Figure 4.6 we plot the period of oscillation versus the amplitude.
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Figure 4.6 Normalised (by `
ag

) period of a pendulum oscillation
as a function of the amplitude

Now let us make use of the preceding observations. We will consider the stabil-
ity of some nontrivial periodic motion of the pendulum with amplitude between
0 and π. We claim that such a solution is orbitally stable, but not stable. In Fig-
ure 4.7 we show a periodic motion of the pendulum as a parameterised curve in
the (x1, x2)-plane. In the figure we plot three solutions. The middle of the three
solutions is the solution ξ0 whose stability we are referencing. It has initial condi-
tion θ0 and is defined on the time interval [0,T(θ0)]. The other two solutions have
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Figure 4.7 Orbital stability, but not stability, of the nontrivial pe-
riodic motions of a pendulum; the middle curve is the nominal
solution whose stability is being determined

nearby initial conditions, and are defined on the same time interval, and a dot is
placed at the final point of the solution. We make the following observations.
1. ξ0 is not stable: The reasoning here is this. In Figure 4.7 we see that the periodic

solutions nearby ξ0 do not undergo exactly one period in the time it takes ξ0
to undergo exactly one period; the inner solution travels more than one period
and the outer solution travels less than one period. Now imagine letting the
trajectory ξ0 undergo an increasing number of periods. The inner and outer
solutions will drift further and further from ξ0 when compared at the same
times. This prohibits stability of ξ0 since nearby initial conditions will produce
solutions that are eventually not close.

2. ξ0 is orbitally stable: The reasoning here is this. While solutions with nearby
initial conditions will drift apart in time, the solutions themselves remain close
in the sense that any point on one solution is nearby some point (not at the same
time) on the other solution. More viscerally, the images of solutions for nearby
initial solutions are close. •

4.1.14 Example (Stable versus uniformly stable I) Here we take the linear homoge-
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neous ordinary differential equation F in V = R defined by the right-hand side

F̂(t, x) = −
x

1 + t

for t ∈ T = [0,∞). We will consider the stability of the equilibrium point x0 = 0.
We can explicitly solve this ordinary differential equation (for example, using the
method of Section 2.1) to give

ξ(t) =
ξ(t0)(1 + t0)

1 + t
.

From this we can make the following observations.
1. x0 = 0 is asymptotically stable: This follows since, for any initial condition ξ(t0),

we have limt→∞ ξ(t) = 0.
2. x0 = 0 is uniformly stable: Let ε ∈ R>0 and take δ = ε. If |ξ(t0) − 0| < δ, then

|ξ(t)| ≤ |ξ(t0)| < ε

for t ≥ t0. This gives the desired uniform stability.
3. x0 = 0 is not uniformly asymptotically stable: We must show that, for every δ ∈ R>0

and T ∈ R>0, there exists ε ∈ R>0, t0 ∈ T, and x ∈ R satisfying |x − 0| < δ, such
that the solution ξ : T→ R to the initial value problem

ξ̇(t) = −
ξ(t)
1 + t

, ξ(t0) = x,

satisfies |ξ(t0 + T)| ≥ ε. We take x = δ
2 , ε = 1, T ∈ R>0, and t0 ∈ T such that

1 + t0

1 + t0 + T
≥

2
δ

;

this is possible since limt0→∞
1+t0

1+t0+T = 1 for any T ∈ R>0. Now let x ∈ R satisfy
|x − 0| < δ, and let ξ : T→ R be the solution to the initial value problem

ξ̇(t) = −
ξ(t)
1 + t

, ξ(t0) = x.

Then
|ξ(t0 + T)| =

∣∣∣∣∣ x(1 + t0)
1 + t0 + T

∣∣∣∣∣ =
δ
2

∣∣∣∣∣ 1 + t0

1 + t0 + T

∣∣∣∣∣ ≥ 1,

which gives the desired lack uniform asymptotic convergence. •
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4.1.15 Example (Stable versus uniformly stable II) We again consider a linear homoge-
neous ordinary differential equation in R, this one with right-hand side

F̂(t, x) = sin(ln(t)) + cos(ln(t)) − α

for some α ∈ (1,
√

2). Here we consider T = (0,∞). Again we consider stability
of the equilibrium point at x0 = 0. In this case, an application of the method of
Section 2.1 gives the solution

ξ(t) = e−α(t−t0)+t sin(ln(t))−t0 sin(ln(t0))ξ(t0).

We make the following observations.
1. x0 = 0 is asymptotically stable: Here we note that, since

lim
t→∞

(−α(t − t0) + t sin(ln(t)) − t0 sin(ln(t0))) = −∞

since α > 1, we must have limt→∞ ξ(t) = 0 for any initial condition ξ(t0). This
gives asymptotic stability. In fact, we can refine this conclusion a little.

2. x0 = 0 is not uniformly stable: This is more difficult to prove. We choose β ∈
(α,
√

2) and θ1 ∈ (0, π4 ) and θ2 ∈ (π4 ,
π
2 ) such that

sinθ + cosθ ≥ β, θ ∈ [θ1, θ2].4

Then, for j ∈ Z>0, define

t j = e2 jπ+θ2 , t0, j = e2 jπ+θ1 ,

and compute, for j ∈ Z>0,∫ t j

t0, j

(sin(ln(t)) + cos(ln(t)) − α) dt =

∫ 2 jπ+θ2

2 jπ+θ1

(sinθ + cosθ − α)e2 jπ+θ dθ

=

∫ θ2

θ1

(sinθ + cosθ − α)e2 jπ+θ dθ

≥ (β − α)e2 jπ
∫ θ2

θ1

eθ dθ

= (β − α)e2 jπ(eθ2 − eθ1),

4To see why this is possible, first note that
√

2 cos(θ − π
4 ) = sinθ sin π

4 + cosθ cos π
4 = sinθ + cosθ,

using standard trigonometric identities. Then note that the function

θ 7→
√

2 cos(θ − π
4 )

has a local maximum at θ = π
4 with value

√
2. Thus, since α < β <

√
2, we can choose θ1 < π

4 and
θ2 > π

4 sufficiently close to π
4 to ensure that sinθ + cosθ ≥ β for θ ∈ [θ1, θ2].
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where we have used the change of variable t = e2 jπ+θ in the second line. Note,
then, that

lim
j→∞

∫ t j

t0, j

(sin(ln(t)) + cos(ln(t)) − α) dt = ∞.

Now, using this fact, we claim that x0 = 0 is not uniformly stable. We must
show that there exists ε ∈ R>0 such that, for every δ ∈ R>0, there exists T ∈ R>0,
t0 ∈ T, and x ∈ R satisfying |x − 0| < δ and for which the solution to the initial
value problem

ξ̇(t) = (sin(ln(t)) + cos(ln(t)) − α)ξ(t), ξ(t0) = x,

satisfies |ξ(t0 + T) − 0| ≥ ε. We take ε = 1. Let δ ∈ R>0 and x = δ
2 . Let j ∈ Z>0 be

sufficiently large that∫ t j

t0, j

(sin(ln(t)) + cos(ln(t)) − α) dt ≥
2
δ
.

Then take t0 = t0, j and T = t j. We then have

|ξ(t0 + T)| =

∣∣∣∣∣∣
∫ t j

t0, j

(sin(ln(t)) + cos(ln(t)) − α) dt

∣∣∣∣∣∣ |x| ≥ 1,

giving the desired absence of uniform stability. •

While the preceding examples do not cover all of the possible gaps in the
stability definitions of Definition 4.1.4, they do hopefully sufficiently illustrate the
essence of the difference in the various definitions that a reader can have a picture
in their mind of these differences as we proceed to study stability in more detail in
the sequel.

Exercises

4.1.1 Let us consider the system of ordinary differential equations F with state-
space R2 defined by the right-hand side

F̂ : R × R2
→ R2

(t, (x1, x2)) 7→ (1, 0).

Answer the following questions.
(a) Show that

ξ0 : R→ R2

t 7→ (t, 0)

is the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(0) = 0.
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(b) Show that the solution ξ0 is stable but not asymptotically stable.
Now consider a change of coordinates from (x1, x2) ∈ R2 to (y1, y2) ∈ R2

defined by
y1 = x1, y2 = ex1x2,

and let G be the ordinary differential equation F, represented in these coor-
dinates.
(c) Use the Chain Rule to compute ẏ1 and ẏ2,

ẏ1(t) =
∂y1

∂x1
ẋ1(t) +

∂y1

∂x2
ẋ2(t),

ẏ2(t) =
∂y2

∂x1
ẋ1(t) +

∂y2

∂x2
ẋ2(t),

and so give the right-hand side Ĝ for G.
Hint: Write everything in terms of the coordinates (y1,y2).

(d) Show that the solution ξ0 is mapped, under the change of coordinates,
to the solution η0 : R→ R2 given by η0(t) = (t, 0).

(e) Show that η0 is not stable.
Now consider a change of coordinates from (x1, x2) ∈ R2 to (z1, z2) ∈ R2

defined by
z1 = x1, z2 = e−x1x2,

and let H be the ordinary differential equation F, represented in these coor-
dinates.
(f) Use the Chain Rule to compute ż1 and ż2,

ż1(t) =
∂z1

∂x1
ẋ1(t) +

∂z1

∂x2
ẋ2(t),

ż2(t) =
∂z2

∂x1
ẋ1(t) +

∂z2

∂x2
ẋ2(t),

and so give the right-hand side Ĥ for H.
Hint: Write everything in terms of the coordinates (z1, z2).

(g) Show that the solution ξ0 is mapped, under the change of coordinates,
to the solution ζ0 : R→ R2 given by ζ0(t) = (t, 0).

(h) Show that ζ0 is asymptotically stable.



4.2 Stability of linear ordinary differential equations 319

Section 4.2

Stability of linear ordinary differential equations

In this section we devote ourselves specially to the theory of stability for linear
systems. We shall see that, for linear systems, there are a few natural places where
one can refine the general definitions of stability from Definition 4.1.4, taking
advantage of the linearity of the dynamics. Moreover, there are also equivalent
characterisations of stability that hold for linear equations that do not hold in
general.

As we did in Chapter 3 when dealing with linear systems, we shall work with
linear systems whose state space is a finite-dimensional vector space V. Our stabil-
ity definitions from Definition 4.1.4 all involve the measure of distance provided by
the Euclidean norm on Rn. An abstract vector space does not have a natural norm,
but one can always be provided by, for example, choosing a basis B = {e1, . . . , en}

and then defining ‖v‖B = ‖(v1, . . . , vn)‖, where v = v1e1 + · · · + vnen. The fact of
the matter is that nothing we do depends in any way on the choice of this norm,5

and so we shall simply use the symbol “‖·‖” to represent some choice of norm,
possibly arising from the Euclidean norm by a choice of basis as described above.
For readers following the “all vector spaces are Rn” path, this is not anything of
concern so you can resume sleeping.

4.2.1 Special stability definitions for linear equations

We begin with some definitions for stability that are suitable for linear equa-
tions.

4.2.1 Definition (Stability for linear systems) Let F be a system of linear homogeneous
ordinary differential equations in an n-dimensional R-vector space V and with
right-hand side F̂(t, x) = A(t)(x) for A : T → L(V; V). Suppose that supT = ∞. Let
ζ : T→ V be the zero solution ζ(t) = 0, t ∈ T.

(i) The equation F is S (resp. AS, ES, US, UAS, UES) if the zero solution ζ is S
(resp. AS, ES, US, UAS, UES).

The equation F is:
(ii) globally stable if, for each t0 ∈ T, there exists C ∈ R>0 such that, for x ∈ V, the

5The “big fact” here is that if we have two norms ‖·‖1 and ‖·‖2 for a vector space V, then there
exists C ∈ R>0 such that

C‖v‖2 ≤ ‖v‖1 ≤ C−1
‖v‖2, v ∈ V.

Thus, if a reader goes through our definitions where a norm is used, she will see that using a
different norm will only have the effect of change constants in the definition, while not materially
altering the meaning of the definition.
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solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ C‖x‖ for t ≥ t0;
(iii) globally asymptotically stable if, for each t0 ∈ T and each ε ∈ R>0, there

exists T ∈ R>0 such that, for x ∈ V, the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ ε‖x‖ for t ≥ t0 + T;
(iv) globally exponentially stable if, for each t0 ∈ T, there exists M, c ∈ R>0 such

that, for x ∈ V, the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤M‖x‖e−c(t−t0) for t ≥ t0;
(v) globally uniformly stable if there exists C ∈ R>0 such that, for (t0, x) ∈ T × V,

the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ C‖x‖ for t ≥ t0;
(vi) globally uniformly asymptotically stable if it is globally uniformly stable

and if, for each ε ∈ R>0, there exists T ∈ R>0 such that, for (t0, x) ∈ T × V, the
solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ ε‖x‖ for t ≥ t0 + T;
(vii) globally uniformly exponentially stable if there exists M, c ∈ R>0 such that,

for (t0, x) ∈ T × V, the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤M‖x‖e−c(t−t0) for t ≥ t0. •

Part (i) of the definition is merely the statement of the convention that, when
talking about stability for linear ordinary differential equations, one is interested in
the stability of the equilibrium state at 0. For this reason, given Proposition 4.1.5, we
do not discuss orbital stability for linear equations. The remaining six definitions
above are quite particular to linear equations.

We can add obviously to our list of abbreviations.

(U)GS (uniformly) globally stable
(U)GAS (uniformly) globally asymptotically stable
(U)GES (uniformly) globally exponentially stable
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There is a little subtlety to the preceding definitions that merits exploration, and
this is that (1) the definition of GAS does not include GS as part of the definition,
(2) the definition of UGES does not include UGS, whereas (3) for UGAS and UGES,
we do include the requirement that the equation also be UGS. As we shall see in
the proof of Theorem 4.2.3 below, it is the case that GAS =⇒ GS. It is obvious
from the definition that UGES =⇒ UGS. However, it is not true that UGS can be
omitted in the definitions of UGAS and UGES, as the following example shows.

4.2.2 Example (UGS must be a part of the definition of UGAS and UGES) We shall
construct a system of linear homogeneous ordinary differential equations F in
V = R with right hand-side F̂(t, x) = a(t)x and with the following properties:
1. F is not UGS;
2. for ε ∈ R>0 there exists T ∈ R>0 with the property that, for (t0, x) ∈ T × V, the

solution to the initial value problem

ξ̇(t) = a(t)(ξ(t)), ξ(t0) = x,

satisfies |ξ(t)| < ε|x| for t ≥ t0 + T.
The example is a little convoluted.

We take T = R≥0 and define a : T→ R in the following way.
1. Define sequences (ak)k∈Z≥0 , (bk)k∈Z≥0 , and (∆k)k∈Z≥0 as follows:

(a) ∆k = 2−k−1, k ∈ Z≥0;
(b) bk = k2k+1, k ∈ Z≥0;
(c) define a1 = 1 and then define ak, k ≥ 2, by

bk−1∆k−1 − ak(1 − ∆k) + bk∆k + bk+1∆k+1 = −1.

2. If t ∈ T, let k ∈ Z≥0 be such that t ∈ [k, k + 1), and then define

a(t) =

−ak, t ∈ [k, k + ∆k+1),
bk, t ∈ [k + ∆k+1, k + 1).

Note that a is not continuous, however, it can be modified to be continuous and
still have the desired properties.

To show that F, defined by a, has the desired properties, we first show that F has
the property 1 above. For k ∈ Z≥0 define tk = k + 1 and t0,k = k + ∆k. Let x = 1 ∈ V
and let ξk : T→ V be the solution to the initial value problem

ξ̇k(t) = a(t)ξk(t), ξk(t0,k) = x,

for k ∈ Z≥0. Note that

|ξk(tk)| =
∣∣∣∣∣xe
−

∫ tk
t0,k

a(τ) dτ
∣∣∣∣∣ = |x|ek.
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This prohibits uniform global stability for F.
Next we show that F has the property 2 above. Thus let ε ∈ R>0 and define

T ∈ Z>0 such that e−(T−3) < ε. Let t0 ∈ T and let t ≥ t0 + T. Let k1 ∈ Z≥0 be such that
t0 ∈ [k1, k1 + 1), let k2 ∈ Z>0 be such that t ∈ [k2, k2 + 1). Note that

t − t0 ≥ T =⇒ k2 − k1 + 1 > T =⇒ k2 − k1 − 2 > T − 3.

Now we estimate∫ t0+t

t0

a(τ) dτ =

∫ k1+1

t0

a(τ) dτ +

k2−1∑
k=k1+1

∫ k+1

k
a(τ) dτ +

∫ t

k2

a(τ) dτ

≤ bk1∆k1 +

k2−1∑
k=k1+1

(−ak(1 − ∆k) + bk∆k) + bk2∆k2

≤

k2−1∑
k1+1

(bk−1∆k−1 − ak(1 − ∆k) + bk∆k + bk+1∆k+1)

= −

k2−1∑
k=k1+1

1 = −(k2 − k1 − 2) < −(T − 3).

Now let x ∈ V and let ξ : T→ V satisfy the initial value problem

ξ̇(t) = a(t)ξ(t), ξ(t0) = x.

Then
|ξ(t)| =

∣∣∣∣∣xe−
∫ t

t0
a(τ) dτ

∣∣∣∣∣ ≤ |x|e(T−3) < ε|x|,

for t ≥ t0 + T, giving the desired conclusion. •

Let us further explore these definitions by (1) exploring their relationships with
the notions of stability from Definition 4.1.4 and (2) exploring the relationships
between these new notions.

First the first. . .

4.2.3 Theorem (Equivalence of stability and global stability for linear ordinary dif-
ferential equations) Consider the system of linear homogeneous ordinary differential
equations F with right-hand side (4.5) and suppose that A: T → L(V; V) is continuous.
Suppose that supT = ∞. Then F is S (resp. AS, ES, US, UAS, UES) if and only if it is
GS (resp. GAS, GES, GUS, GUAS, GUES).

Proof (GS =⇒ S) Let t0 ∈ T and let C ∈ R>0 be such that the solution to the initial
value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,
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satisfies ‖ξ(t)‖ ≤ C‖x‖ for t ≥ t0. Let ε ∈ R>0 and take δ = ε
C . Now let x ∈ V satisfy

‖x‖ < δ and let ξ : T→ V be the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

We then have
‖ξ(t)‖ ≤ C‖x‖ =

ε
δ
‖x‖ ≤ ε,

for t ≥ t0, giving stability of F.
(S =⇒ GS) Let t0 ∈ T and let δ ∈ R>0 have the property that, if ‖x‖ ≤ δ, then the

solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ 1 for t ≥ t0. Define C = δ−1. Now let x ∈ V and let ξ : T→ V be the
solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x. (4.1)

First suppose that x , 0 and define x̂ = δ x
‖x‖ so that ‖x̂‖ = δ. Thus the solution

ξ̂ : T→ V to the initial value problem

˙̂ξ(t) = A(t)(ξ̂(t)), ξ̂(t0) = x̂,

satisfies ‖ξ̂(t)‖ ≤ 1 for t ≥ t0. However,

ξ(t) = ΦA(t, t0)(x) = ΦA(t, t0)
(
‖x‖
δ

x̂
)

=
‖x‖
δ

ΦA(t, t0)(x̂) = C‖x‖ξ̂(t).

Therefore,
‖ξ(t)‖ = C‖x‖ ‖ξ̂(t)‖ ≤ C‖x‖.

If x = 0 this relation clearly holds since the solution to the initial value problem (4.1)
is simply ξ(t) = 0, t ∈ T. Thus F is globally stable.

(GAS =⇒ AS) First we show that GAS =⇒ GS (which implies S as we have
already proved). Let t0 ∈ T, let x ∈ V, and let ξ : T→ V be the solution to the initial
value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

First suppose that x , 0. Since

lim
t→∞

‖ξ(t)‖
‖x‖

= 0

and since ξ is continuous (indeed, of class C1), it follows that t 7→ ‖ξ(t)‖
‖x‖ is

bounded, i.e., there exists C ∈ R>0 such that

‖ξ(t)‖
‖x‖

≤ C =⇒ ‖ξ(t)‖ ≤ C‖x‖.
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This relationship also holds when x = 0, we conclude global stability of F.
Now let t0 ∈ T and take δ = 1

2 . Let ε ∈ R>0, and take T ∈ R>0 such that the
solution ξ : T→ V to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ ε‖x‖ for t ≥ t0 +T. Now suppose that ‖x‖ < δ = 1
2 , and let ξ : T→ V

be the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

Then, for t ≥ t0 + T,
‖ξ(t)‖ ≤ ε‖x‖ < ε.

This shows that F is asymptotically stable.
(AS =⇒ GAS) Let t0 ∈ T and let δ ∈ R>0 have the property that, given ε ∈ R>0,

there exists T ∈ R>0 such that, if ‖x‖ < δ, then the solution ξ : T → V to the initial
value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ < ε for t ≥ t0 + T.
Let ε ∈ R>0 and let T ∈ R>0 be such that, if ‖x‖ < δ, then the solution to the initial

value problem
ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ < εδ
2 for t ≥ t0 + T. Let x ∈ V and let ξ : T→ V be the solution to the

initial value problem
ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

Let x̂ = δ x
2‖x‖ and let ξ̂ : T→ V be the solution to the initial value problem

˙̂ξ(t) = A(t)(ξ̂(t)), ξ̂(t0) = x̂.

Since ‖x̂‖ = δ
2 < δ, ‖ξ̂(t)‖ < εδ

2 for t ≥ t0 + T. We also have

ξ(t) = ΦA(t, t0)(x) = ΦA(t, t0)
(2‖x‖
δ

x̂
)

=
2‖x‖
δ

ΦA(t, t0)(x̂) =
2‖x‖
δ
‖x‖ξ̂(t).

Thus
‖ξ(t)‖ ≤

2
δ
‖x‖ ‖ξ̂(t)‖ < ε‖x‖,

for t ≥ t0 + T, and so F is globally asymptotically stable.
(GES =⇒ ES) First we note that GES =⇒ GS (which implies S, as we have

already seen). Indeed, the proof that GAS =⇒ GS we gave above also applies if
we replace “GAS” with “GES.”

Now let t0 ∈ T and let M̃, σ̃ ∈ R>0 be such that, for v ∈ V, the solution to the
initial value problem

˙ξ(t) = A(t)(ξ(t)), ξ(t0) = x,
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satisfies ‖ξ(t)‖ ≤ M̃‖x‖e−σ̃(t−t0) for t ≥ t0. Now let δ = 1
2 and take M = M̃ and σ = σ̃.

Then, for ‖x‖ < δ = 1
2 , let ξ : T→ V be the solution to the initial value problem

˙ξ(t) = A(t)(ξ(t)), ξ(t0) = x.

We then have
‖ξ(t)‖ ≤ M̃‖x‖eσ̃(t−t0)

≤Me−σ(t−t0),

showing that F is exponentially stable.
(ES =⇒ GES) Let t0 ∈ T and let M̃, δ, σ̃ ∈ R>0 be such that, if ‖x‖ < δ, then the

solution ξ : T→ V to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ M̃e−σ̃(t−t0) for t ≥ t0.
Take M = 2M̃

δ and σ = σ̃. Now let x ∈ V and let ξ : T → V be the solution to the
initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

Let x̂ = δ x
2‖x‖ and let ξ̂ : T→ V be the solution to the initial value problem

˙̂ξ(t) = A(t)(ξ̂(t)), ξ̂(t0) = x̂.

Since ‖x̂‖ = δ
2 < δ, ‖ξ̂(t)‖ ≤ M̃e−σ̃(t−t0) for t ≥ t0. Then, as in the proof that AS =⇒

GAS,

ξ(t) =
2‖x‖
δ
ξ̂(t),

and so

‖ξ(t)‖ =
2
δ
‖x‖ ‖ξ̂(t)‖ ≤

2M̃
δ
‖x‖e−σ̃(t−t0) = M‖x‖e−σ(t−t0),

for t ≥ t0, showing that F is globally exponentially stable.
The remainder of the proof concerns the results we have already proved, but

with the property “uniform” being applied to all hypotheses and conclusions. The
proofs are entirely similar to those above. We shall, therefore, only work this out
in one of the three cases, the other two following in an entirely similar manner.

(GUS =⇒ US) Let C ∈ R>0 be such that the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ C‖x‖ for t ≥ t0. Let ε ∈ R>0 and take δ = ε
C . Now let x ∈ V satisfy

‖x‖ < δ and let ξ : T→ V be the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

We then have
‖ξ(t)‖ ≤ C‖x‖ =

ε
δ
‖x‖ ≤ ε,
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for t ≥ t0, giving stability of F.
(US =⇒ GUS) Let δ ∈ R>0 have the property that, if ‖x‖ ≤ δ, then the solution

to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ 1 for t ≥ t0. Define C = δ−1. Now let x ∈ V and let ξ : T→ V be the
solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x. (4.2)

First suppose that x , 0 and define x̂ = δ x
‖x‖ so that ‖x̂‖ = δ. Thus the solution

ξ̂ : T→ V to the initial value problem

˙̂ξ(t) = A(t)(ξ̂(t)), ξ̂(t0) = x̂,

satisfies ‖ξ̂(t)‖ ≤ 1 for t ≥ t0. However,

ξ(t) = ΦA(t, t0)(x) = ΦA(t, t0)
(
‖x‖
δ

x̂
)

=
‖x‖
δ

ΦA(t, t0)(x̂) = C‖x‖ξ̂(t).

Therefore,
‖ξ(t)‖ = C‖x‖ ‖ξ̂(t)‖ ≤ C‖x‖.

If x = 0 this relation clearly holds since the solution to the initial value problem (4.2)
is simply ξ(t) = 0, t ∈ T. Thus F is globally stable. �

Now let us examine some relationships between these special notions of stability
for linear equations.

4.2.4 Theorem (Equivalence of uniform asymptotic and uniform exponential sta-
bility for linear ordinary differential equations) Consider the system of linear ho-
mogeneous ordinary differential equations F with right-hand side (4.5) and suppose that
A: T→ L(V; V) is continuous. Suppose that supT = ∞. Then F is UGAS if and only if
it is UGES.
Proof It is clear that UGES implies UGAS, so we will only prove the converses.

(UGAS =⇒ UGES) By definition of uniform asymptotic stability, there exists
C,T ∈ R>0 such that

‖ΦA(t, t0)(x)‖ ≤ C‖x‖

and
‖ΦA(t, t0)(x)‖ ≤

1
2
‖x‖, t ≥ t0 + T,

for all (t0, x) ∈ T × V. Then, for k ∈ Z>0, (t0, x) ∈ T × V, and t ≥ t0 + kT,

‖ΦA(t, t0)(x)‖

= ‖ΦA(t, t0 + kT) ◦ΦA(t0 + kT, t0 + (k − 1)T) ◦ · · · ◦ΦA(t0 + T, t0)(x)‖ ≤
C
2k
‖x‖.
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Now define M = C and σ = ln 2
T and let (t0, x) ∈ T×V and t ≥ t0. Then t ∈ [t0, t0 + kT)

for some uniquely defined k ∈ Z>0, and then

‖ΦA(t, t0)(x)‖ ≤
C
2k
‖x‖ = Me−σkT

≤Meσ(t−t0),

as desired. �

Note that the conclusions of the theorem are not true if we eliminate “uniform”
in the hypotheses.

4.2.5 Example (Global asymptotic stability does not imply global exponential sta-
bility) We consider the system of linear homogeneous ordinary differential equa-
tions F in V = R and with

F̂(t, x) = −
x
t
,

and we take T = [1,∞). This equation can be solved using the methods of Sec-
tion 2.1 to give

ξ(t) =
t0ξ(t0)

t
,

and from this we conclude that, for any initial condition ξ(t0), limt→∞ ξ(t) = 0
(i.e., we have GAS) but that we do not have exponential stability. •

Let us summarise the relationships between the various notions of stability for
systems of linear homogeneous ordinary differential equations in a diagram:

UGES ks +3

��

UGAS +3

��

UGS

��
GES +3 GAS +3 GS

The arrows not present in the diagram represent implications that do not, in fact,
hold.

4.2.2 Stability theorems for linear equations

Now we turn to some results concerning the stability of systems of linear ho-
mogeneous ordinary differential equations. We proceed in a manner contrary to
our approach in Sections 2.2, 2.3, 3.2, and 3.3, and first consider in Section 4.2.2.1
equations with constant coefficients. The rationale is that, for equations with con-
stant coefficients, there are easily understandable characterisations for all of the
various sorts of stability. When we turn in Section 4.2.2.2 to general equations,
the constant coefficient characterisations give us something with which to com-
pare. Much of what can be said for the stability of linear equations with constant
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coefficients has to do with the roots of the characteristic polynomial of the lin-
ear transformation associated to the equation. In Section 4.2.2.3 we give some
methods for understanding the roots of polynomials without having to compute
them.

4.2.2.1 Equations with constant coefficients We shall study the stability of
systems of linear homogeneous ordinary differential equations F with constant
coefficients in a finite-dimensional R-vector space V. Such an equation will have
right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V).
First we observe that the general stability definitions of Definition 4.2.1 for

linear homogeneous ordinary differential equations collapse.

4.2.6 Proposition (Collapsing of stability definitions for linear homogeneous equa-
tions with constant coefficients) Let F be a system of linear homogeneous ordinary
differential equations in an n-dimensional R-vector space V and with right-hand side
F̂(t, x) = A(x) for A ∈ L(V; V). Suppose that supT = ∞. Then F is GS (resp. GAS,
GES) if and only if it is UGS (resp. UGAS, UGES). Moreover, F is GAS if and only if it
is GES.

Proof The first assertion follows from Proposition 4.1.5 and the second follows
from Theorem 4.2.4. �

Now we turn to providing a useful characterisation of stability for linear homo-
geneous ordinary differential equations with constant coefficients. To do this we
first make a definition.

4.2.7 Definition (Spectrum of a linear transformation) Let V be a finite-dimensional
R-vector space and let A ∈ L(V; V). The spectrum of A is the set

spec(A) = {λ ∈ C | λ is an eigenvalue for AC
}

of eigenvalues of the complexification of A. •

Our characterisations of stability will be given in terms of the location of spec(A).
It will be convenient to introduce the following notation:

C− = {z ∈ C | Re(z) < 0}, C+ = {z ∈ C | Re(z) > 0},

C− = {z ∈ C | Re(z) ≤ 0}, C+ = {z ∈ C | Re(z) ≥ 0},
iR = {z ∈ C | Re(z) = 0}.

With this notation, we state the following theorem, which is the main result of
this section.
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4.2.8 Theorem (Stability of systems of linear homogeneous ordinary differential
equations with constant coefficients) Let F be a system of linear homogeneous ordi-
nary differential equations in an n-dimensional vector space V with constant coefficients
and with F̂(t, x) = A(x) for A ∈ L(V; V). The following statements hold.

(i) F unstable if spec(A) ∩ C+ , ∅.
(ii) F is GAS if spec(A) ⊆ C−.
(iii) F is GS if spec(A) ∩ C+ = ∅ and if mg(λ,A) = ma(λ,A) for λ ∈ spec(A) ∩ (iR).
(iv) F is unstable if mg(λ,A) < ma(λ,A) for λ ∈ spec(A) ∩ (iR).

Proof (i) In this case there is an eigenvalue σ + iω ∈ C+ and a corresponding
eigenvector u + iv ∈ VC which gives rise to real solutions

ξ1(t) = eσt(cos(ωt)u − sin(ωt)v), ξ2(t) = eσt(sin(ωt)u + cos(ωt)v).

Clearly these solutions are unbounded as t→∞ since σ > 0.
(ii) If all eigenvalues lie in C−, then any solution of F will be a linear combination

of n linearly independent vector functions of the form

tke−αtu or tke−σt(cos(ωt)u − sin(ωt)v) or tke−σt(sin(ωt)u + cos(ωt)v) (4.3)

for α, σ > 0. Note that all such functions tend in length to zero as t→ ∞. Suppose
that we have a collection ξ1, . . . , ξn of such vector functions. Then, for any solution
ξ we have, for some constants c1, . . . , cn,

lim
t→∞
‖ξ(t)‖ = lim

t→∞
‖c1ξ1(t) + · · · + cnξn(t)‖

≤ |c1| lim
t→∞
‖ξ1(t)‖ + · · · + |cn| lim

t→∞
‖ξn(t)‖

= 0,

where we have used the triangle inequality, and the fact that the solutions ξ1, . . . , ξn

all tend to zero as t→∞.
(iii) If spec(A) ∩ C+ = ∅ and if, further, spec(A) ⊆ C−, then we are in case (ii), so

F is GAS, and so GS. Thus we need only concern ourselves with the case when
we have eigenvalues on the imaginary axis. In this case, provided that all such
eigenvalues have equal geometric and algebraic multiplicities, all solutions will be
linear combinations of functions like those in (4.3) or functions like

sin(ωt)u or cos(ωt)u. (4.4)

Letξ1, . . . , ξ` be ` linearly independent functions of the form (4.3), and letξ`+1, . . . , ξn

be linearly independent functions of the form (4.4), so that ξ1, . . . , ξn forms a set
of linearly independent solutions for F. Thus we will have, for some constants



330 4 Stability theory for ordinary differential equations

c1, . . . , cn,

lim sup
t→∞

‖ξ(t)‖ = lim sup
t→∞

‖c1ξ1(t) + · · · + cnξn(t)‖

≤ |c1| lim sup
t→∞

‖ξ1(t)‖ + · · · + |c`| lim sup
t→∞

‖ξ`(t)‖+

|c`+1| lim sup
t→∞

‖ξ`+1(t)‖ + · · · + |cn| lim sup
t→∞

‖ξn(t)‖

= |c`+1| lim sup
t→∞

‖ξ`+1(t)‖ + · · · + |cn| lim sup
t→∞

‖ξn(t)‖.

Since each of the terms ‖ξ`+1(t)‖, . . . , ‖ξn(t)‖ are bounded as functions of t, their
lim sup’s will exist, which is what we wish to show.

(iv) If A has an eigenvalue λ = iω on the imaginary axis for which mg(λ,A) <
algmult(λ,A), then there will be solutions for F that are linear combinations of vector
functions of the form tk sin(ωt)u or tk cos(ωt)v. Such functions are unbounded as
t→∞, and so F is unstable. �

4.2.9 Remarks (Stability and eigenvalues)
1. A matrix A is Hurwitz if spec(A) ⊆ C−. Thus A is Hurwitz if and only if F is

GAS.
2. We see that stability is almost completely determined by the eigenvalues of A.

Indeed, one says that F is spectrally stable if A has no eigenvalues in C+. It
is only in the case where there are repeated eigenvalues on the imaginary axis
that one gets to distinguish spectral stability from stability. •

The notion of stability for systems of linear homogeneous ordinary differential
equations with constant coefficients is, in principle, an easy one to check, as we see
from an example.

4.2.10 Example (Stability of system of linear homogeneous ordinary differential
equations with constant coefficients) We look at a system of linear homogeneous
ordinary differential equations F in R2 with constant coefficients, and determined
by the 2 × 2-matrix

A =

[
0 1
−b −a

]
.

The eigenvalues of A are the roots of the characteristic polynomial PA = X2 +aX+b,
and these are

−
a
2 ±

1
2

√

a2 − 4b.

The situation with the eigenvalue placement can be broken into cases.
1. a = 0 and b = 0: In this case there is a repeated zero eigenvalue. Thus we have

spectral stability, but we need to look at eigenvectors to determine stability.
One readily verifies that there is only one linearly independent eigenvector for
the zero eigenvalue, so the system is unstable.
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2. a = 0 and b > 0: In this case the eigenvalues are purely imaginary. Since the
roots are also distinct, they will have equal algebraic and geometric multiplicity.
Thus the system is GS, but not GAS.

3. a = 0 and b < 0: In this case both roots are real, and one will be positive. Thus
the system is unstable.

4. a > 0 and b = 0: There will be one zero eigenvalue if b = 0. If a > 0 the other root
will be real and negative. In this case then, we have a root on the imaginary
axis. Since it is distinct, the system will be GS, but not GAS.

5. a > 0 and b > 0: One may readily ascertain (in Section 4.2.2.3 we’ll see an easy
way to do this) that all eigenvalues are in C− if a > 0 and b > 0. Thus when a
and b are strictly positive, the system is GAS.

6. a > 0 and b < 0: In this case both eigenvalues are real, one being positive and
the other negative. Thus the system is unstable.

7. a < 0 and b = 0: We have one zero eigenvalue. The other, however, will be real
and positive, and so the system is unstable.

8. a < 0 and b > 0: We play a little trick here. If s0 is a root of s2 +as+b with a, b < 0,
then −s0 is clearly also a root of s2

− as + b. From the previous case, we know
that −s0 ∈ C−, which means that s0 ∈ C+. So in this case all eigenvalues are in
C+, and so we have instability.

9. a < 0 and b < 0: In this case we are guaranteed that all eigenvalues are real, and
furthermore it is easy to see that one eigenvalue will be positive, and the other
negative. Thus the system will be unstable. •

4.2.2.2 Equations with time-varying coefficients We work in this section with
a system F of linear homogeneous ordinary differential equations with right-hand
side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

(4.5)

for some function A : T→ L(V; V).

4.2.2.3 Hurwitz polynomials From Theorem 4.2.8 we see that it is important to
be able to determine when the roots of a polynomial lie in the negative half-plane.
However, checking that such a condition holds may not be so easy; one should
regard the problem of computing the roots of a polynomial as being impossible
for polynomials of degree 5 or more, and annoyingly complicated for polynomials
of degree 3 or 4. However, one may establish conditions on the coefficients of a
polynomial. In this section, we present three methods for doing exactly this. We
also look at a test for the roots to lie in C− when we only approximately know
the coefficients of the polynomial. We shall generally say that a polynomial all of
whose roots lie in C− is Hurwitz.
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The Routh criterion

For the method of Routh, we construct an array involving the coefficients of the
polynomial in question. The array is constructed inductively, starting with the
first two rows. Thus suppose one has two collections a11, a12, . . . and a21, a22, . . . of
numbers. In practice, this is a finite collection, but let us suppose the length of
each collection to be indeterminate for convenience. Now construct a third row
of numbers a31, a32, . . . by defining a3k = a21a1,k+1 − a11a2,k+1. Thus a3k is minus the
determinant of the matrix

[
a11 a1,k+1
a21 a2,k+1

]
. In practice, one writes this down as follows:

a11 a12 · · · a1k · · ·

a21 a22 · · · a2k · · ·

a21a12 − a11a22 a21a13 − a11a23 · · · a21a1,k+1 − a11a2,k+1 · · ·

One may now proceed in this way, using the second and third row to construct
a fourth row, the third and fourth row to construct a fifth row, and so on. To
see how to apply this to a given polynomial P ∈ R[X]. Define two polynomials
P+,P− ∈ R[X] as the even and odd part of P. To be clear about this, if

P = p0 + p1X + p2X2 + p3X3 + · · · + pn−1Xn−1 + pnXn,

then
P+ = p0 + p2X + p4X2 + . . . , P− = p1 + p3X + p5X2 + . . . .

Note then that P(X) = P+(X2) + XP−(X2). Let R(P) be the array constructed as
above, with the first two rows being comprised of the coefficients of P+ and P−,
respectively, starting with the coefficients of lowest powers of X, and increasing to
higher powers of X. Thus the first three rows of R(P) are

p0 p2 · · · p2k · · ·

p1 p3 · · · p2k+1 · · ·

p1p2 − p0p3 p1p4 − p0p5 · · · p1p2k+2 − p0p2k+3 · · ·
...

...
...

...
...

In making this construction, a zero is inserted whenever an operation is undefined.
It is readily determined that the first column of R(P) has at most n + 1 nonzero
components. The Routh array is then the first column of the first n + 1 rows.

With this as setup, we may now state a criterion for determining whether a
polynomial is Hurwitz.

4.2.11 Theorem (Routh’s criterion) A polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz if and only if all elements of the Routh array corresponding to R(P) are positive.
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Proof Let us construct a sequence of polynomials as follows. We let P0 = P+ and
P1 = P− and let

P2(X) = X−1
(
P1(0)P0(X) − P0(0)P1(X)

)
.

Note that the constant coefficient of P1(0)P0(X) − P0(0)P1(X) is zero, so this does
indeed define P2 as a polynomial. Now inductively define

Pk(X) = X−1
(
Pk−1(0)Pk−2(X) − Pk−2(0)Pk−1(X)

)
for k ≥ 3. With this notation, we have the following lemma that describes the
statement of the theorem.

1 Lemma The (k + 1)st row of R(P) consists of the coefficients of Pk with the constant
coefficient in the first column. Thus the hypothesis of the theorem is equivalent to the
condition that P0(0),P1(0), . . . ,Pn(0) all be positive.

Proof We have P0(0) = p0, P1(0) = p1, and P2(0) = p1p2 − p0p3, directly from the
definitions. Thus the lemma holds for k ∈ {0, 1, 2}. Now suppose that the lemma
holds for k ≥ 3. Thus the kth and the (k + 1)st rows of R(P) are the coefficients of
the polynomials

Pk−1(X) = pk−1,0 + pk−1,1X + · · ·

and
Pk(X) = pk,0 + pk,1X + · · · ,

respectively. Using the definition of Pk+1 we see that Pk+1(0) = pk,0pk−1,1 − pk−1,0pk,1.
However, this is exactly the term as it would appear in first column of the (k + 2)nd
row of R(P). H

Now note that P(X) = P0(X2) + XP1(X2) and define Q ∈ R[X] by Q(X) = P1(X2) +
XP2(X2). One may readily verify that deg(Q) ≤ n − 1. Indeed, in the proof of
Theorem 4.2.13, a formula for Q will be given. The following lemma is key to the
proof. Let us suppose for the moment that pn is not equal to 1.

2 Lemma The following statements are equivalent:
(i) P is Hurwitz and pn > 0;
(ii) Q is Hurwitz, qn−1 > 0, and P(0) > 0.

Proof We have already noted that P(X) = P0(X2) + XP1(X2). We may also compute

Q(X) = P1(X2) + X−1
(
P1(0)P0(X2) − P0(0)P1(X2)

)
. (4.6)

For λ ∈ [0, 1] define Qλ(X) = (1 − λ)P(X) + λQ(X), and compute

Qλ(X) =
(
(1 − λ) + X−1λP1(0)

)
P0(X2) +

(
(1 − λ)X + λ − X−1λP0(0)

)
P1(X2).

The polynomials P0(X2) and P1(X2) are even, so that when evaluated on the imagi-
nary axis they are real. Now we claim that the roots of Qλ that lie on the imaginary
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axis are independent of λ, provided that P(0) > 0 and Q(0) > 0. First note that, if
P(0) > 0 and Q(0) > 0, then 0 is not a root of Qλ. Now, if iω0 is a nonzero imaginary
root, then we must have(

(1 − λ) − iω−1
0 λP1(0)

)
P0(−ω2

0) +
(
(1 − λ)iω0 + λ + iω−1

0 λP0(0)
)
P1(−ω2

0) = 0.

Balancing real and imaginary parts of this equation gives

(1 − λ)P0(−ω2
0) + λP1(−ω2

0) = 0

λω−1
0

(
P0(0)P1(−ω2

0) − P1(0)P0(−ω2
0)
)

+ ω0(1 − λ)P1(−ω2
0).

(4.7)

If we think of this as a homogeneous linear equation in P0(−ω2
0) and P1(ω2

0), one
determines that the determinant of the coefficient matrix is

ω−1
0

(
(1 − λ)2ω2

0 + λ((1 − λ)P0(0) + λP1(0))
)
.

This expression is positive for λ ∈ [0, 1] since P(0),Q(0) > 0 implies that
P0(0),P1(0) > 0. To summarise, we have shown that, provided that P(0) > 0 and
Q(0) > 0, all imaginary axis roots iω0 of Qλ satisfy P0(−ω2

0) = 0 and P1(−ω2
0) = 0. In

particular, the imaginary axis roots of Qλ are independent of λ ∈ [0, 1] in this case.
(i) =⇒ (ii) For λ ∈ [0, 1] let

N(λ) =

n, λ ∈ [0, 1)
n − 1, λ = 1.

Thus N(λ) is the number of roots of Qλ. Now let

Zλ = {zλ,i | i ∈ {1, . . . ,N(λ)}}

be the set of roots of Qλ. Since P is Hurwitz, Z0 ⊆ C−. Our previous computations
then show that Zλ ∩ iR = ∅ for λ ∈ [0, 1]. Now, if Q = Q1 were to have a root in C+,
this would mean that, for some value of λ, one of the roots of Qλ would have to lie
on the imaginary axis, using the (nontrivial) fact that the roots of a polynomial are
continuous functions of its coefficients. This then shows that all roots of Q must
lie in C−. That P(0) > 0 is a consequence of Exercise 4.2.3 and P being Hurwitz.
One may check that qn−1 = p1 · · · pn, so that qn−1 > 0 follows from Exercise 4.2.3 and
pn > 0.

(ii) =⇒ (i) Let us adopt the notation N(λ) and Zλ from the previous part of the
proof. Since Q is Hurwitz, Z1 ⊆ C−. Furthermore, since Zλ ∩ iR = ∅, it follows that,
forλ ∈ [0, 1], the number of roots of Qλ withinC−must equal n−1 as deg(Q) = n−1.
In particular, P can have at most one root in C+. This root, then, must be real, and
let us denote it by z0 > 0. Thus P(X) = P̃(X)(X − z0) where P̃ is Hurwitz. By
Exercise 4.2.3 it follows that all coefficients of P̃ are positive. If we write

P̃ = p̃n−1Xn−1 + p̃n−2Xn−2 + · · · + p̃1X + p̃0,
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then
P(X) = p̃n−1Xn + (p̃n−2 − z0p̃n−1)Xn−1 + · · · + (p̃0 − z0p̃1)X − p̃0z0.

Thus the existence of a root z0 ∈ C+ contradicts the fact that P(0) > 0. Note that we
have also shown that pn > 0. H

Now we proceed with the proof proper. First suppose that P is Hurwitz. By
successive applications of Lemma 2, it follows that the polynomials

Qk(X) = Pk(X2) + XPk+1(X2), k ∈ {1, . . . ,n},

are Hurwitz and that deg(Qk) = n − k, k ∈ {1, . . . ,n}. What’s more, the coefficient
of Xn−k is positive in Qk. Now, by Exercise 4.2.3, we have P0(0) > 0 and P1(0) > 0.
Now suppose that P0(0),P1(0), . . . ,Pk(0) are all positive. Since Qk is Hurwitz with
the coefficient of the highest power of X being positive, from Exercise 4.2.3 it
follows that the coefficient of X in Qk should be positive. However, this coefficient
is exactly Pk+1(0). Thus we have shown that Pk(0) > 0 for k = 0, 1, . . . ,n. From
Lemma 1 it follows that the elements of the Routh array are positive.

Now suppose that one element of the Routh array is nonpositive and that P is
Hurwitz. By Lemma 2, we may suppose that Pk0(0) ≤ 0 for some k0 ∈ {2, 3, . . . ,n}.
Furthermore, since P is Hurwitz, as above the polynomials Qk, k ∈ {1, . . . ,n}, must
also be Hurwitz, with deg(Qk) = n−k where the coefficient of Xn−k in Qk is positive.
In particular, by Exercise 4.2.3, all coefficients of Qk0−1 are positive. However, since
Qk0−1(X) = Pk0−1(X2)+XPk0(X2) it follows that the coefficient of X in Qk0−1 is negative,
and hence we arrive at a contradiction, and the theorem follows. �

The Routh criterion is simple to apply, and we illustrate it in the simple case of
a degree two polynomial.

4.2.12 Example (The Routh criterion) Let us apply the criteria to the simplest nontrivial
example possible: P = X2 + aX + b. We compute the Routh table to be

R(P) =
b 1
a 0
a 0

.

Thus the Routh array is
[
b a a

]
, and its entries are all positive if and only if a, b > 0.

Let us see how this compares to what we know doing the calculations “by hand.”
The roots of P are r1 = − a

2 + 1
2

√

a2 − 4b and r2 = − a
2 −

1
2

√

a2 − 4b. Let us consider the
various cases.
1. If a2

−4b < 0, then the roots are complex with nonzero imaginary part, and with
real part −a. Thus the roots in this case lie in the negative half-plane if and only
if a > 0. We also have b > a2

4 and so b > 0, and hence ab > 0 as in the Routh
criterion.

2. If a2
− 4b = 0, then the roots are both −a, and so lie in the negative half-plane if

and only if a > 0. In this case b = a2

4 and so b > 0. Thus ab > 0 as predicted.
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3. Finally we have the case when a2
− 4b > 0. We have two subcases.

(a) When a > 0, then we have negative half-plane roots if and only if a2
−4b < a2

which means that b > 0. Therefore, we have negative half-plane roots if
and only a > 0 and ab > 0.

(b) When a < 0, then we will never have all negative half-plane roots since
−a +

√

a2 − 4b is always positive.

So we see that the Routh criterion provides a very simple encapsulation of the
necessary and sufficient conditions for all roots to lie in the negative half-plane,
even for this simple example. •

The Hurwitz criterion

We consider in this section another test for a polynomial to be Hurwitz. The key
ingredient in the Hurwitz construction we consider is a matrix formed from the
coefficients of a polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X].

We denote the Hurwitz matrix by H(P) ∈ L(Rn;Rn) and define it by

H(P) =


pn−1 1 0 0 · · · 0
pn−3 pn−2 pn−1 1 · · · 0
pn−5 pn−4 pn−3 pn−2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · p0

 .
Any terms in this matrix that are not defined are taken to be zero. Of course, we
also take pn = 1. Now define H(P)k ∈ L(Rk;Rk), k ∈ {1, . . . ,n}, to be the matrix
of elements H(P)i j, i, j ∈ {1, . . . , k}. Thus H(P)k is the matrix formed by taking the
“upper left k × k block from H(P).” Also define ∆k = det H(P)k.

With this notation, the Hurwitz criterion is as follows.

4.2.13 Theorem (Hurwitz’s criterion) A polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz if and only if the n Hurwitz determinants ∆1, . . . ,∆n are positive.

Proof Let us begin by resuming with the notation from the proof of Theo-
rem 4.2.11. In particular, we recall the definition of Q(X) = P1(X2) + XP2(X2).
We wish to compute H(Q), so we need to compute Q in terms of the coefficients of
P. A computation using the definition of Q and P2 gives

Q(X) = p1 + (p1p2 − p0p3)X + p3X2 + (p1p4 − p0p5)X3 + · · · .
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One can then see that, when n is even, we have

H(Q) =


pn−1 p1pn 0 0 · · · 0 0
pn−3 p1pn−2 − p0pn−1 pn−1 p1pn · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · p1p2 − p0p3 p3

0 0 0 0 · · · 0 p1


and, when n is odd, we have

H(Q) =


p1pn−1 − p0pn pn 0 0 · · · 0 0

p1pn−3 − p0pn−2 pn−2 p1pn−1 − p0pn pn · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · p1p2 − p0p3 p3

0 0 0 0 · · · 0 p1

 .
Now define T ∈ L(Rn;Rn) by

T =



1 0 0 · · · 0 0 0
0 p1 0 · · · 0 0 0
0 −p0 1 · · · 0 0 0
...

...
...
. . .

...
...
...

0 0 0 · · · p1 0 0
0 0 0 · · · −p0 1 0
0 0 0 · · · 0 0 1


when n is even and by

T =



p1 0 · · · 0 0 0
−p0 1 · · · 0 0 0
...

...
. . .

...
...
...

0 0 · · · p1 0 0
0 0 · · · −p0 1 0
0 0 · · · 0 0 1


when n is odd. One then verifies by direct calculation that

H(P)T =


...

H(Q) p4

p2

0 · · · 0 p0

 . (4.8)

We now let ∆1, . . . ,∆n be the determinants defined above and let ∆̃1, . . . , ∆̃n−1 be
the similar determinants corresponding to H(Q). A straightforward computation
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using (4.8) gives the following relationships between the ∆’s and the ∆̃’s:

∆1 = p1

∆k+1 =

p−b
k
2 c

1 ∆̃k, k even

p−d
k
2 e

1 ∆̃k, k odd
, k = 1, . . . ,n − 1,

(4.9)

where bxc gives the greatest integer less than or equal to x and dxe gives the smallest
integer greater than or equal to x.

With this background notation, let us proceed with the proof, first supposing
that P is Hurwitz. In this case, by Exercise 4.2.3, it follows that p1 > 0 so that
∆1 > 0. By Lemma 2 of Theorem 4.2.11, it also follows that Q is Hurwitz. Thus
∆̃1 > 0. A trivial induction argument on n = deg(P) then shows that ∆2, . . . ,∆n > 0.

Now suppose that one of ∆1, . . . ,∆n is nonpositive and that P is Hurwitz. Since Q
is then Hurwitz by Lemma 2 of Theorem 4.2.11, we readily arrive at a contradiction,
and this completes the proof. �

The Hurwitz criterion is simple to apply, and we illustrate it in the simple case
of a degree two polynomial.

4.2.14 Example (The Hurwitz criterion) Let us apply the criteria to our simple example
of P = X2 + aX + b. We then have

H(P) =

[
a 1
0 b

]
We then compute ∆1 = a and ∆2 = ab. Thus ∆1,∆2 > 0 if and only if a, b > 0.
This agrees with our application of the Routh method to the same polynomial in
Example 4.2.12. •

The Hermite criterion

We next look at a manner of determining whether a polynomial is Hurwitz which
makes contact with the Lyapunov methods of Section 4.3.6. Let us consider, as
usual, a monic polynomial of degree n:

P(s) = sn + pn−1sn−1 + · · · + p1s + p0.

Corresponding to such a polynomial, we construct its Hermite matrix as the n × n
matrix P(P) given by

P(P)i j =


∑i

k=1(−1)k+ipn−k+1pn−i− j+k, j ≥ i, i + j even
P(P) ji, j < i, i + j even
0, i + j odd.
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As usual, in this formula we take pi = 0 for i < 0. One can get an idea of how this
matrix is formed by looking at its appearance for small values of n. For n = 2 we
have

P(P) =

[
p1p2 0

0 p0p1

]
,

for n = 3 we have

P(P) =

p2p3 0 p0p3

0 p1p2 − p0p3 0
p0p3 0 p0p1

 ,
and for n = 4 we have

P(P) =


p3p4 0 p1p4 0

0 p2p3 − p1p4 0 p0p3

p1p4 0 p1p2 − p0p3 0
0 p0p3 0 p0p1

 .
The following theorem gives necessary and sufficient conditions for P to be Hurwitz
based on its Hermite matrix.

4.2.15 Theorem (Hermite’s criterion) A polynomial

P(s) = sn + pn−1sn−1 + · · · + p1s + p0 ∈ R[s]

is Hurwitz if and only if P(P) is positive-definite.
Proof Let

A(P) =


−pn−1 −pn−2 · · · −p1 −p0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , b(P) =


pn−1

0
pn−3

0
...

 .
An unenjoyable computation gives

P(P)A(P) + A(P)TP(P) = −b(P)b(P)T.

First suppose that P(P) is positive-definite. By Theorem 4.3.27(i), since b(P)b(P)T is
positive-semidefinite, A(P) is Hurwitz. Conversely, if A(P) is Hurwitz, then there
is only one symmetric P so that

PA(P) + A(P)TP = −b(P)b(P)T,

this by Theorem 4.3.59(i). Since P(P) satisfies this relation even when A(P) is not
Hurwitz, it follows that P(P) is positive-definite. The theorem now follows since
the characteristic polynomial of A(P) is P. �

Let us apply this theorem to our favourite example.
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4.2.16 Example (Hermite’s criterion) We consider the polynomial P(s) = s2 +as+b which
has the Hermite matrix

P(P) =

[
a 0
0 ab

]
.

Since this matrix is diagonal, it is positive-definite if and only if the diagonal entries
are zero. Thus we recover the by now well established condition that a, b > 0. •

The Hermite criterion, Theorem 4.2.15, does indeed record necessary and suffi-
cient conditions for a polynomial to be Hurwitz. However, it is more computation-
ally demanding than it needs to be, especially for large polynomials. Part of the
problem is that the Hermite matrix contains so many zero entries. To get conditions
involving smaller matrices leads to the so-called reduced Hermite criterion which
we now discuss. Given a degree n polynomial P with its Hermite matrix P(P), we
define reduced Hermite matrices C(P) and D(P) as follows:

1. C(P) is obtained by removing the even numbered rows and columns of P(P)
and

2. D(P) is obtained by removing the odd numbered rows and columns of P(P).
Thus, if n is even, C(P) and D(P) are n

2 ×
n
2 , and if n is odd, C(P) is n+1

2 ×
n+1

2 and D(P)
is n−1

2 ×
n−1

2 . Let us record a few of these matrices for small values of n. For n = 2
we have

C(P) =
[
p1p2

]
, D(P) =

[
p0p1

]
,

for n = 3 we have

C(P) =

[
p2p3 p0p3

p0p3 p0p1

]
, D(P) =

[
p1p2 − p0p3

]
,

and for n = 4 we have

C(P) =

[
p3p4 p1p4

p1p4 p1p2 − p0p3

]
, D(P) =

[
p2p3 − p1p4 p0p3

p0p3 p0p1

]
.

Let us record a useful property of the matrices C(P) and D(P), noting that they
are symmetric.

4.2.17 Lemma (A property of reduced Hermite matrices) P(P) is positive-definite if and
only if both C(P) and D(P) are positive-definite.
Proof For x = (x1, . . . , xn) ∈ Rn, denote xodd = (x1, x3, . . .) and xeven = (x2, x4, . . .). A
simple computation then gives

xTP(P)x = xT
oddC(P)xodd + xT

evenD(P)xeven. (4.10)

Clearly, if C(P) and D(P) are both positive-definite, then so too is P(P). Conversely,
suppose that one of C(P) or D(P), say C(P), is not positive-definite. Thus there
exists x ∈ Rn so that xodd , 0 and xeven = 0, and for which

xT
oddC(P)xodd ≤ 0.

From (4.10), it now follows that P(P) is not positive-definite. �
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The Hermite criterion then tells us that P is Hurwitz if and only if both C(P)
and D(P) are positive-definite. The remarkable fact is that we need only check one
of these matrices for definiteness, and this is recorded in the following theorem.

4.2.18 Theorem (Reduced Hermite criterion) A polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz if and only if any one of the following conditions holds:
(i) p2k > 0, k ∈ {0, 1, . . . , bn−1

2 c} and C(P) is positive-definite;
(ii) p2k > 0, k ∈ {0, 1, . . . , bn−1

2 c} and D(P) is positive-definite;
(iii) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , bn−2

2 c} and C(P) is positive-definite;
(iv) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , bn−2

2 c} and D(P) is positive-definite.

Proof First suppose that P is Hurwitz. Then all coefficients are positive (see
Exercise 4.2.3) and P(P) is positive-definite by Theorem 4.2.15. This implies that
C(P) and D(P) are positive-definite by Lemma 4.2.17, and thus conditions (i)–(iv)
hold. For the converse assertion, the cases when n is even or odd are best treated
separately. This gives eight cases to look at. As certain of them are quite similar in
flavour, we only give details the first time an argument is encountered.

Case 1: We assume (i) and that n is even. Denote

A1(P) =


−

pn−2

pn
−

pn−4

pn
· · · −

p2

pn
−

p0

pn

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


.

A calculation then gives C(P)A1(P) = −D(P). Since C(P) is positive-definite, there
exists an orthogonal matrix R so that RC(P)RT = ∆, where ∆ is diagonal with strictly
positive diagonal entries. Let ∆1/2 denote the diagonal matrix whose diagonal
entries are the square roots of those of ∆. Now denote C(P)1/2 = RT∆1/2R, noting
that C(P)1/2C(P)1/2 = C(P). Also note that C(P)1/2 is invertible, and we shall denote
its inverse by C(P)−1/2. Note that this inverse is also positive-definite. This then
gives

C(P)1/2A1(P)C(P)−1/2 = −C(P)−1/2D(P)C(P)−1/2. (4.11)

The matrix on the right is symmetric, so this shows that A1(P) is similar to a
symmetric matrix, allowing us to deduce that A1(P) has real eigenvalues. These
eigenvalues are also roots of the characteristic polynomial

sn/2 +
pn−2

pn
sn/2−1 + · · · +

p2

pn
s +

p0

pn
.

Our assumption (i) ensures that is s is real and nonnegative, the value of the
characteristic polynomial is positive. From this we deduce that all eigenvalues of
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A1(P) are negative. From (4.11) it now follows that D(P) is positive-definite, and so
P is Hurwitz by Lemma 4.2.17 and Theorem 4.2.15.

Case 2: We assume (ii) and that n is even. Consider the polynomial P−1(s) =
snP( 1

s ). Clearly the roots of P−1 are the reciprocals of those for P. Thus P−1 is
Hurwitz if and only if P is Hurwitz (see Exercise 4.2.4). Also, the coefficients
for P−1 are obtained by inverting those for P. Using this facts, one can see that
C(P−1) is obtained from D(P) by reversing the rows and columns, and that D(P−1)
is obtained from C(P) by reversing the rows and columns. One can then show that
P−1 is Hurwitz just as in Case 1, and from this it follows that P is Hurwitz.

Case 3: We assume (iii) and that n is odd. In this case we let

A2(P) =


−

pn−2

pn
−

pn−4

pn
· · · −

p1

pn
0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


and note that one can check to see that

C(P)A2(P) = −

[
D(P) 0

0T 0

]
. (4.12)

As in Case 1, we may define the square root, C(P)1/2, of C(P), and ascertain that

C(P)1/2A2(P)C(P)−1/2 = −C(P)−1/2

[
D(P) 0

0T 0

]
C(P)−1/2.

Again, the conclusion is that A2(P) is similar to a symmetric matrix, and so must
have real eigenvalues. These eigenvalues are the roots of the characteristic poly-
nomial

X(n+1)/2 +
pn−2

pn
X(n+1)/2−1 + · · · +

p1

pn
X.

This polynomial clearly has a zero root. However, since (iii) holds, for positive real
values of X, the characteristic polynomial takes on positive values, so the nonzero
eigenvalues of A2(P) must be negative, and there are n+1

2 − 1 of these. From this
and (4.12) it follows that the matrix [

D(P) 0
0T 0

]
has one zero eigenvalue and n+1

2 − 1 positive real eigenvalues. Thus D(P) must be
positive-definite, and P is then Hurwitz by Lemma 4.2.17 and Theorem 4.2.15.

Case 4: We assume (i) and that n is odd. As in Case 2, define P−1(X) = XnP( 1
X ). In

this case one can ascertain that C(P−1) is obtained from C(P) by reversing rows and
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columns, and that D(P−1) is obtained from D(P) by reversing rows and columns.
The difference from the situation in Case 2 arises because here we are taking n odd,
while in Case 2 it was even. In any event, one may now apply Case 3 to P−1 to
show that P−1 is Hurwitz. Then P is itself Hurwitz by Exercise 4.2.4.

Case 5: We assume (ii) and that n is odd. For ε > 0 define Pε ∈ R[X] by
Pε(X) = (X + ε)P(X). Thus the degree of Pε is now even. Indeed,

Pε(X) = pnXn+1 + (pn−1 + εpn)Xn + · · · + (p0 + εp1)X + εp0.

One may readily determine that

C(Pε) = C(P) + εC

for some matrix C which is independent of ε. In like manner, one may show that

D(Pε) =

[
D(P) + εD11 εD12

εD12 εp2
0

]
,

where D11 and D12 are independent of ε. Since D(P) is positive-definite and a0 > 0,
for ε sufficiently small we must have that D(Pε) is positive-definite. From the
argument of Case 2, we may infer that Pε is Hurwitz, from which it is obvious that
P is also Hurwitz.

Case 6: We assume (iv) and that n is odd. We define P−1(X) = XnP( 1
X ) so that

C(P−1) is obtained from C(P) by reversing rows and columns, and that D(P−1) is
obtained from D(P) by reversing rows and columns. One can now use Case 5 to
show that P−1 is Hurwitz, and so P is also Hurwitz by Exercise 4.2.4.

Case 7: We assume (iii) and that n is even. As with Case 5, we define Pε(X) =
(X + ε)P(X) and in this case we compute

C(Pε) =

[
C(P) + εC11 εC12

εC12 εp2
0

]
and

D(Pε) = D(P) + εD,
where C11, C12, and D are independent of ε. By our assumption (iii), for ε > 0
sufficiently small we have C(Pε) positive-definite. Thus, invoking the argument of
Case 1, we may deduce that D(Pε) is also positive-definite. Therefore Pε is Hurwitz
by Lemma 4.2.17 and Theorem 4.2.13. Thus P is itself also Hurwitz.

Case 8: We assume (iv) and that n is even. Taking P−1(X) = XnP( 1
X ) we see that

C(P−1) is obtained from D(P) by reversing the rows and columns, and that D(P−1)
is obtained from C(P) by reversing the rows and columns. Now one may apply
Case 7 to deduce that P−1, and therefore P, is Hurwitz. �

The Liénard–Chipart criterion

Although less well-known than the criterion of Routh and Hurwitz, the test we
give next has the advantage of delivering fewer determinantal inequalities to test.
This results from their being a dependence on some of the Hurwitz determinants.
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4.2.19 Theorem (Liénard–Chipart criterion) A polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz if and only if any one of the following conditions holds:
(i) p2k > 0, k ∈ {0, 1, . . . , bn−1

2 c} and ∆2k+1 > 0, k ∈ {0, 1, . . . , bn−1
2 c};

(ii) p2k > 0, k ∈ {0, 1, . . . , bn−1
2 c} and ∆2k > 0, k ∈ {1, . . . , bn

2 c};
(iii) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , bn−2

2 c} and ∆2k+1 > 0, k ∈ {0, 1, . . . , bn−1
2 c};

(iv) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , bn−2
2 c} and ∆2k > 0, k ∈ {1, . . . , bn

2 c}.
Here ∆1, . . . ,∆n are the Hurwitz determinants.
Proof The theorem follows immediately from missing stuff and Theorem 4.2.18,
after one checks that the principal minors of C(P) are exactly the odd Hurwitz
determinants ∆1,∆3, . . ., and that the principal minors of D(P) are exactly the even
Hurwitz determinants ∆2,∆4, . . .. �

The advantage of the Liénard–Chipart test over the Hurwitz test is that one will
generally have fewer determinants to compute. Let us illustrate the criterion in the
simplest case, when n = 2.

4.2.20 Example (Liénard–Chipart criterion) We consider the polynomial P = X2 +aX+b.
Recall that the Hurwitz determinants were computed in Example 4.2.14:

∆1 = a, ∆2 = ab.

Let us write down the four conditions of Theorem 4.2.19:
1. p0 = b > 0, ∆1 = a > 0;

2. p0 = b > 0, ∆2 = ab > 0;

3. p0 = b > 0, p1 = a > 0, ∆1 = a > 0;

4. p0 = b > 0, p1 = a > 0, ∆2 = ab > 0.
We see that all of these conditions are equivalent in this case, and imply that P is
Hurwitz if and only if a, b > 0, as expected. This example is really too simple to
illustrate the potential advantages of the Liénard-Chipart criterion, but we refer
the reader to Exercise 4.2.5 to see how the test can be put to good use. •

Kharitonov’s test

It is sometimes the case that one does not know exactly the coefficients for a given
polynomial. In such instances, one may know bounds on the coefficients. That is,
for a polynomial

P(s) = pnsn + pn−1sn−1 + · · · + p1s + p0, (4.13)
one may know that the coefficients satisfy inequalities of the form

pmin
i ≤ pi ≤ pmax

i , i = 0, 1, . . . ,n. (4.14)

In this case, the following remarkable theorem gives a simple test for the stability
of the polynomial for all possible values for the coefficients.
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4.2.21 Theorem (Kharitonov’s criterion) Given a polynomial of the form (4.13) with the
coefficients satisfying the inequalities (4.14), define four polynomials

Q1(s) = pmin
0 + pmin

1 s + pmax
2 s2 + pmax

3 s3 + · · ·

Q2(s) = pmin
0 + pmax

1 s + pmax
2 s2 + pmin

3 s3 + · · ·

Q3(s) = pmax
0 + pmax

1 s + pmin
2 s2 + pmin

3 s3 + · · ·

Q4(s) = pmax
0 + pmin

1 s + pmin
2 s2 + pmax

3 s3 + · · ·

Then P is Hurwitz for all

(p0,p1, . . . ,pn) ∈ [pmin
0 ,pmax

0 ] × [pmin
1 ,pmax

1 ] × · · · × [pmin
n ,pmax

n ]

if and only if the polynomials Q1, Q2, Q3, and Q4 are Hurwitz.

Proof Let us first assume without loss of generality that pmin
j > 0, j = 0, . . . ,n.

Indeed, by Exercise 4.2.3, for a polynomial to be Hurwitz, its coefficients must
have the same sign, and we may as well suppose this sign to be positive. If

p = (p0, p1, . . . , pn) ∈ [pmin
0 , pmin

0 ] × [pmin
1 , pmin

1 ] × · · · × [pmin
n , pmin

n ],

then let us say, for convenience, that p is allowable. For p allowable denote

Pp(s) = pnsn + pn−1sn−1 + · · · + p1s + p0.

It is clear that if all polynomials Pp are allowable then the polynomials Q1, Q2, Q3,
and Q4 are Hurwitz. Thus suppose for the remainder of the proof that Q1, Q2,
Q3, and Q4 are Hurwitz, and we shall deduce that Pp is also Hurwitz for every
allowable p.

For ω ∈ R define
R(ω) = {Pp(iω) | p allowable}.

The following property of R(ω) lies at the heart of our proof. It is first noticed by
Dasgupta [1988].

1 Lemma For each ω ∈ R, R(ω) is a rectangle in C whose sides are parallel to the real and
imaginary axes, and whose corners are Q1(iω), Q2(iω), Q3(iω), and Q4(iω).

Proof We note that for ω ∈ R we have

Re(Q1(iω)) = Re(Q2(iω)) = pmin
0 − pmaxω2 + pmin

4 ω4 + · · ·

Re(Q3(iω)) = Re(Q4(iω)) = pmax
0 − pminω2 + pmax

4 ω4 + · · ·

Im(Q1(iω)) = Im(Q4(iω)) = ω
(
pmin
− pmaxω2 + pmin

4 ω4 + · · ·
)

Im(Q2(iω)) = Im(Q3(iω)) = ω
(
pmax

− pminω2 + pmax
4 ω4 + · · ·

)
.
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Q1(iω) Q4(iω)

Q3(iω)Q2(iω)

Figure 4.8 R(ω)

From this we deduce that for any allowable p we have

Re(Q1(iω)) = Re(Q2(iω)) ≤ Re(Pp(iω)) ≤ Re(Q3(iω)) = Re(Q4(iω))
Im(Q1(iω)) = Im(Q4(iω)) ≤ Im(Pp(iω)) ≤ Im(Q2(iω)) = Im(Q3(iω)).

This leads to the picture shown in Figure 4.8 for R(ω). The lemma follows imme-
diately from this. H

Using the lemma, we now claim that if p is allowable, then Pp has no imagi-
nary axis roots. To do this, we record the following useful property of Hurwitz
polynomials.

2 Lemma If P ∈ R[s] is monic and Hurwitz with deg(P) ≥ 1, then arg P(iω) is a continuous
and strictly increasing function of ω.

Proof Write

P(s) =

n∏
j=1

(s − z j)

where z j = σ j + iω j with σ j < 0. Thus

arg P(iω) =

n∑
j=1

arg (iω + |σ j| − iω j) =

n∑
j=1

arctan
(ω − ω j

|σ j|

)
.

Since |σ j| > 0, each term in the sum is continuous and strictly increasing, and thus
so too is arg P(iω). H

To show that 0 < R(ω) for ω ∈ R, first note that 0 < R(0). Now, since the corners
of R(ω) are continuous functions of ω, if 0 ∈ R(ω) for some ω > 0, then it must be
the case that for some ω0 ∈ [0, ω] the point 0 ∈ C lies on the boundary of R(ω0).
Suppose that 0 lies on the lower boundary of the rectangle R(ω0). This means that
Q1(iω0) < 0 and Q4(iω0) > 0 since the corners of R(ω) cannot pass through 0. Since
Q1 is Hurwitz, by Lemma 2 we must have Q1(i(ω0 + δ)) in the (−,−) quadrant in C
and Q4(i(ω0 + δ)) in the (+,+) quadrant in C for δ > 0 sufficiently small. However,
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since Im(Q1(iω)) = Im(Q4(iω)) for all ω ∈ R, this cannot be. Therefore 0 cannot lie
on the lower boundary of R(ω0) for any ω0 > 0. Similar arguments establish that 0
cannot lie on either of the other three boundaries either. This then prohibits 0 from
lying in R(ω) for any ω > 0.

Now suppose that Pp0
is not Hurwitz for some allowable p0. For λ ∈ [0, 1] each

of the polynomials
λQ1 + (1 − λ)Pp0

(4.15)

is of the form Ppλ for some allowable pλ. Indeed, the equation (4.15) defines a
straight line from Q1 to Pp0

, and since the set of allowable p’s is convex (it is a cube),
this line remains in the set of allowable polynomial coefficients. Now, since Q1 is
Hurwitz and Pp0

is not, by continuity of the roots of a polynomial with respect to
the coefficients, we deduce that for some λ ∈ [0, 1), the polynomial Ppλ must have
an imaginary axis root. However, we showed above that 0 < R(ω) for all ω ∈ R,
denying the possibility of such imaginary axis roots. Thus all polynomials Pp are
Hurwitz for allowable p. �

4.2.22 Remarks
1. Note the pattern of the coefficients in the polynomials Q1, Q2, Q3, and Q4

has the form (. . . ,max,max,min,min, . . . ) This is charmingly referred to as the
Kharitonov melody.

2. One would anticipate that to check the stability for P one should look at all
possible extremes for the coefficients, giving 2n polynomials to check. That this
can be reduced to four polynomial checks is an unobvious simplification. •

Let us apply the Kharitonov test in the simplest case when n = 2.

4.2.23 Example We consider
P(s) = s2 + as + b

with the coefficients satisfying

(a, b) ∈ [amin, amax] × [bmin, bmax].

The polynomials required by Theorem 4.2.21 are

Q1(s) = s2 + amins + bmin

Q2(s) = s2 + amaxs + bmin

Q3(s) = s2 + amaxs + bmax

Q4(s) = s2 + amins + bmax.

We now apply the Routh/Hurwitz criterion to each of these polynomials. This
indicates that all coefficients of the four polynomials Q1, Q2, Q3, and Q4 should be
positive. This reduces to requiring that

amin, amax, bmin, bmax > 0.
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That is, amin, bmin > 0. In this simple case, we could have guessed the result our-
selves since the Routh/Hurwitz criterion are so simple to apply for degree two
polynomials. Nonetheless, the simple example illustrates how to apply Theo-
rem 4.2.21. •

Notes

It is interesting to note that the method of Edward John Routh (1831–1907) was
developed in response to a famous paper of James Clerk Maxwell6 (1831–1879) on
the use of governors to control a steam engine. This paper of Maxwell [1868] can
be regarded as the first paper in mathematical control theory.

Theorem 4.2.11 is due to Routh [1877].
Theorem 4.2.13 is due to Hurwitz [1895].
Theorem 4.2.15 is due to Charles Hermite (1822–1901) [see Hermite 1854]. The

slick proof using Lyapunov methods comes from the paper of Parks [1962].
Our proof of Theorem 4.2.18 follows that of Anderson [1972].
Theorem 4.2.19 is from Liénard and Chipart [1914]7 This is given thorough

discussion by Gantmacher [1959]. Here we state the result, and give a proof
due to Anderson [1972] that is more elementary than that of Gantmacher. The
observation in the proof of Theorem 4.2.19 is made by a computation which we
omit, and appears to be first been noticed by Fujiwara [1915].

Theorem 4.2.21 is due to Kharitonov [1978]. Since the publication of
Kharitonov’s result, or more properly its discovery by the non-Russian speak-
ing world, there have been many simplifications of the proof [e.g., Chapellat and
Bhattacharyya 1989, Dasgupta 1988, Mansour and Anderson 1993]. The proof we
give essentially follows Minnichelli, Anagnost, and Desoer [1989]. Anderson, Jury,
and Mansour [1987] observe that for polynomials of degree 3, 4, or 5, it suffices to
check not four, but one, two, or three polynomials, respectively, as being Hurwitz.
A proof of Kharitonov’s theorem, using Lyapunov methods (see Section 4.3.6), is
given by Mansour and Anderson [1993].

Reference on operator norm.

Exercises

4.2.1

In the next exercise we shall make use of a norm ||| · ||| on the set L(V; V) of linear
transformations induced by a norm ‖·‖ on V. The norm is defined by

|||L||| = sup
{
‖L(v)‖
‖v‖

∣∣∣∣∣ v ∈ V \ {0}
}
,

6Maxwell, of course, is better known for his famous equations of electromagnetism.
7Perhaps the relative obscurity of the test reflects that of its authors; I was unable to find a

biographical reference for either Liénard or Chipart. I do know that Liénard did work in differential
equations, with the Liénard equation being a well-studied second-order linear differential equation.
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for L ∈ L(V; V). It is easy to show that this is, in fact, a norm and we refer the reader
to the references for this.
4.2.2 Let F be a system of linear homogeneous ordinary differential equations in

an n-dimensional R-vector space V and with right-hand side F̂(t, x) = A(t)(x)
for a continuous map A : T→ L(V; V). Suppose that supT = ∞.
(a) Show that F is stable if and only if, for every t0 ∈ T, there exists C ∈ R>0

such that |||ΦA(t, t0)||| ≤ C for t ≥ t0.
(b) Show that F is asymptotically stable if and only if, for every t0 ∈ T and

ε ∈ R>0, there exists T ∈ R>0 such that |||ΦA(t, t0)||| < ε for t ≥ t0 + T.
(c) Show that F is exponentially stable if and only if, for every t0 ∈ T, there

exist M, σ ∈ R>0 such that |||ΦA(t, t0)||| ≤Me−σ(t−t0) for t ≥ t0.
(d) Show that F is uniformly stable if and only if there exists C ∈ R>0 such

that, for every t0 ∈ T, |||ΦA(t, t0)||| ≤ C for t ≥ t0.
(e) Show that F is uniformly asymptotically stable if and only if,

1. there exists C ∈ R>0 such that, for every t0 ∈ T, |||ΦA(t, t0)||| ≤ C for
t ≥ t0 and

2. for every ε ∈ R>0, there exists T ∈ R>0 such that, for every t0 ∈ T,
|||ΦA(t, t0)||| < ε for t ≥ t0 + T.

(f) Show that F is exponentially stable if and only if there exist M, σ ∈ R>0

such that, for every t0 ∈ T, |||ΦA(t, t0)||| ≤Me−σ(t−t0) for t ≥ t0.
4.2.3 A useful necessary condition for a polynomial to have all roots in C− is given

by the following theorem.

Theorem If the polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz, then the coefficients p0,p1, . . . ,pn−1 are all positive.

(a) Prove this theorem.
(b) Is the converse of the theorem true? If so, prove it, if not, give a coun-

terexample.
4.2.4 Consider a polynomial

P = pnXn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

with p0, pn , 0, and define P−1
∈ R[X] by P−1(X) = XnP( 1

X ).
(a) Show that the roots for P−1 are the reciprocals of the roots for P.
(b) Show that P is Hurwitz if and only if P−1 is Hurwitz.

4.2.5 For the following two polynomials,
(a) P = X3 + aX2 + bX + c,
(b) P = X4 + aX3 + bX2 + cX + d,
write down the four conditions of the Liénard–Chipart criterion, Theo-
rem 4.2.19, and determine which is the least restrictive.
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Section 4.3

Lyapunov’s Second Method

Much of the basic stability theory used in practice originates with the work
of Aleksandr Mikhailovich Lyapunov (1857–1918). In this section and the next
we shall cover what are commonly called “Lyapunov’s First Method” (also “Lya-
punov’s Indirect Method”) and “Lyapunov’s Second Method” (also “Lyapunov’s
Direct Method”). The First Method is a useful one in that it allows one to deduce
stability from the linearisation, and often the stability of the linearisation can be
determined by computing a polynomial (Section 4.2.2.1) and performing computa-
tions with its coefficients (Section 4.2.2.3). The Second Method, on the other hand,
involves hypothesising a function—called a “Lyapunov function”—with certain
properties. In practice and in general, it is to be regarded as impossible to find a
Lyapunov function. However, the true utility of the Second Method is that, once
one has a Lyapunov function, there is a great deal one can say about the differential
equation. However, such matters lie beyond the scope of the present text, and we
refer to the references for further discussion.

It goes without saying that we shall discuss the Second Method first. Lya-
punov’s Second Method, or Direct Method, is a little. . . er. . . indirect, since it has to
do with considering functions with certain properties. We shall consider in the text
four settings for Lyapunov’s Second Method. We shall treat each of the four cases
in a self-contained manner, so a reader does not have to understand the (somewhat
complicated) most general setting in order to understand the (less complicated)
less general settings. Therefore, let us provide a roadmap for these cases.

4.3.1 Road map for Lyapunov’s Second Method We list the four settings for Lya-
punov’s Second Method, and what should be read to comprehend them, together
or separately.
1. General nonautonomous equations. The most general setting is that of equations

that are nonautonomous, i.e., time-varying, and not necessarily linear. Here
one needs to carefully discriminate between uniform and nonuniform stability
notions. The material required to access the result on these equations is:

(a) class K- and class KL-functions in Section 4.3.1.1;
(b) time-invariant definite and semidefinite functions in Section 4.3.1.2;
(c) time-varying definite and semidefinite functions in Section 4.3.1.3;
(d) characterisations of stability using class K- and class KL-functions in Sec-

tion 4.3.2;
(e) the results on Lyapunov’s Second Method in Section 4.3.3;
(f) the theorems of Sections 4.3.4, 4.3.5, and 4.3.6 are corollaries of the more

general theorems, although we also give independent proofs.
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2. General autonomous equations. Here we consider autonomous ordinary differen-
tial that are not necessarily linear. The simplifications assumed by not having to
discriminate between uniform and nonuniform stability make the results here
significantly simpler than those for nonautonomous equations. The material
needed to understand the results in this case is:

(a) understand Definition 4.3.6;
(b) the results on Lyapunov’s Second Method in Section 4.3.4;
(c) the theorems of Section 4.3.6 are corollaries of the more general theorems,

although we also give independent proofs. •

3. Time-varying linear equations. The next class of equations one can consider are
linear homogeneous time-varying ordinary differential equations. Note that
it is necessary to understand the results on Lyapunov’s Second Method here
in order to prove the results on Lyapunov’s First Method for nonautonomous
equations. In order to understand this material, the following material needs
to be read:

(a) time-invariant quadratic functions in Section 4.3.1.4;
(b) time-varying quadratic functions in Section 4.3.1.5;
(c) the results on Lyapunov’s Second Method in Section 4.3.5.

4. Time-invariant linear equations. Our final setting concerns linear homogeneous
time-invariant ordinary differential equations. Note that these results are re-
quired to understand the results on Lyapunov’s First Method for autonomous
equations. In this setting, one needs to read the following material:

(a) time-invariant quadratic functions in Section 4.3.1.4;
(b) the result on Lyapunov’s Second Method in Section 4.3.6;
(c) the theorems of Section 4.3.6 are corollaries of the more general theorems,

although we also give independent proofs. •

The first thing we do is discuss the various classes of functions that appear in
Lyapunov’s Second Method.

4.3.1 Positive-definite and decrescent functions

We will be considering functions that, intuitively, have the equilibrium point x0

as a maximum and whose derivative along solutions is nonincreasing. It is these
notions of “maximum” and “nonincreasing” that we are concerned with here. It
turns out that there is a great deal to say about these seemingly simple subjects.

4.3.1.1 Class K-, class L-, and class KL-functions It is convenient for many
of our characterisations and for many of our proofs concerning Lyapunov’s Second
Method to have at hand two classes of scalar functions of a real variable, which
leads to another class of scalar functions of two real variables.
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4.3.2 Definition (Class K, class L, and class KL) Let a ∈ R and b, b′ ∈ R>0 ∪ {∞}.
(i) A function φ : [0, b)→ R≥0 is of class K if

(a) φ is continuous,
(b) φ is strictly increasing, i.e., φ(x) < φ(y) if x < y, and
(c) φ(0) = 0.

By K([0, b); [0, b′)) we denote the set of functions of class K with domain [0, b)
and codomain [0, b′).

(ii) A function ψ : [a,∞)→ R≥0 is of class L if
(a) ψ is continuous,
(b) ψ is strictly decreasing, i.e., ψ(x) > ψ(y) is x < y, and
(c) limx→∞ψ(x) = ∞.

ByL([a,∞); [0, b′)) we denote the set of functions of classLwith domain [a,∞)
and codomain [0, b′).

(iii) A function ψ : [0, b) × [a,∞)→ R≥0 is of class KL if
(a) x 7→ ψ(x, y) is of class K for each y ∈ [a,∞) and
(b) y 7→ ψ(x, y) is of class L for each x ∈ [0, b).

By KL([0, b) × [a,∞); [0, b′)) we denote the set of functions of class KL with
domain [0, b) × [a,∞) and codomain [0, b′). •

These sorts of functions are often collectively referred to as “comparison func-
tions.”

Let φ ∈ K([0, b);R≥0). Since φ is strictly increasing, the limit limx→b φ(b) exists,
allowing that the limit mat be ∞. For this reason, we can unambiguously write
φ(b), although b is not in the domain of φ.

In Exercises 4.3.1, 4.3.3, and 4.3.4 the reader can sort through some examples
of functions that are or are not in these classes. Here we shall enumerate a few
useful properties of such functions.

4.3.3 Lemma (Properties of class K-, class L-, and class KL-functions) Let b, b′ ∈
R>0 ∪ {∞} and a ∈ R. Then the following statements hold:

(i) if φ ∈ K([0, b);R≥0, then φ−1
∈ K([0, φ(b));R≥0) is well-defined and is of class K;

(ii) if φ1 ∈ K([0, b); [0, b′)) and φ2 ∈ K([0, b′);R≥0), then φ2 ◦ φ1 is of class K;
(iii) if φ1 : [0, b) → [0, b′) and φ2 : [0, b′) → R≥0 are of class K, and if ψ : [0, b) ×

[a,∞)→ [0, b′) is of class KL, then the function

[0, b) × [a,∞) 3 (x,y) 7→ φ2(ψ(φ1(x),y)) ∈ R≥0

is of class KL.
Proof These are all just a matter of working through definitions, and we leave this
to the reader as Exercise 4.3.2. �

One often encounters functions that are “almost” of class K, and in this case it
is sometimes possible to bound them from below by a class K-function.
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4.3.4 Lemma (Bounding nondecreasing functions by strictly increasing functions)
Let b ∈ R>0 ∪ {∞} and let f : [0, b)→ R≥0 have the following properties:

(i) f is continuous;
(ii) f is nondecreasing, i.e., f(x1) ≤ f(x2) for x1 < x2;
(iii) f(x) ∈ R>0 for x ∈ (0, b);
(iv) f(0) = 0.

Then there exist φ1, φ2 ∈ K([0, b);R≥0) such that φ1(x) ≤ f(x) ≤ φ2(x) for x ∈ [0, b).
Moreover, φ1 can be chosen to be locally Lipschitz.

Proof Let (x j) j∈Z be the strictly increasing doubly infinite sequence in (0, b) given
by

x j =

 b
22 j, j ≤ 0,
b(1 − 2− j−1), j > 0,

noting that lim j→−∞ x j = 0 and lim j→∞ x j = b. Define a doubly infinite sequence
(α j) j∈Z by

α j =

2 j−1, j ≤ 0,
1 − 2− j−1, j > 0.

Note that both sequences are strictly increasing and that

lim
j→−∞

α j = 0, lim
j→∞

α j = 1.

Let N1 ∈ Z>0 be sufficiently large that x j+1−x j < 1 for j ≤ −N1. This is possible since
(x− j) j∈Z>0 converges to 0, and so is Cauchy. Let N2 ∈ Z≥0 be the smallest positive
integer such that

f (x j) − f (x j−1) < 1, j ≤ −N2.

This is possible since ( f (x− j)) j∈Z>0 converges to 0 (by continuity of f ) and so is
Cauchy. Let N = max{N1,N2}. Now define

φ1, j =

(x j+1 − x j)α j f (x j), | j| ≥ N,
α j f (x j), | j| < N,

and
φ2, j = (1 + α j) f (x j), j ∈ Z.

Here are the key observations about the doubly infinite sequences (φ1, j) j∈Z and
(φ2, j) j∈Z.
1. We have φ1, j−1 < φ1, j for j ∈ Z. This follows because

(a) x j − x j−1 < x j+1 − x j < 1 for j ≤ −N,
(b) α j < α j−1 for j ∈ Z, and
(c) f (x j−1) ≤ f (x j) for j ≤ −N.
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2. f (x) ≥ φ j,1 for x ∈ [x j, x j+1) and j ∈ Z. This follows because

(a) x j+1 − x j < 1 for j ≤ −N,
(b) α j < 1 for j ∈ Z, and
(c) f (x) ≥ f (x j) for x ∈ [x j, x j+1).

3. φ2, j < φ2, j for j ∈ Z. This follows because

(a) 1 + α j < 1 + α j+1 for j ∈ Z and
(b) f (x j) ≤ f (x j+1) for j ∈ Z.

4. f (x) ≤ φ2, j for x ∈ [x j−1, x j) and j ∈ Z. This follows because

(a) 1 + α j > 1 for j ∈ Z and
(b) f (x) ≤ f j(x) for x ∈ [x j−1, x j) and j ∈ Z.

Now define

φ1(x) =

0, x = 0,
φ1, j−1 +

x−x j

x j+1−x j
(φ1, j − φ1, j−1), x ∈ [x j, x j+1),

and

φ2(x) =

0, x = 0,
φ2, j +

φ2, j+1−φ2, j

x j−x j−1
(x − x j−1), x ∈ [x j−1, x j).

One can then directly verify that φ1, φ2 ∈ K([0, b);R≥0) and that

φ2(x) ≤ f (x) ≤ φ2(x)

for all x ∈ [0, b).
Let us now show that φ1 is locally Lipschitz. Note that both φ1 and φ2 are

piecewise linear on (0, b), which means they are locally Lipschitz on (0, b). In order
to show that φ1 can be chosen to be locally Lipschitz on [0, b), we show that the
slopes of the linear segments comprising φ1 are bounded as we approach 0. The
set of such slopes is {

φ1, j − φ1, j−1

x j+1 − x j

∣∣∣∣∣∣ j ∈ Z
}
,

and we will verify that

lim sup
j→−∞

φ1, j − φ1, j−1

x j+1 − x j
< ∞.

We first note that all of these slopes are positive, as can be seen from the properties
of φ1, j, j ∈ Z. By definition of N, if j ≤ −N,

φ1, j − φ1, j−1

x j+1 − x j
= (1 − α j) f (x j), 1 − (1 − α j−1) f (x j−1)

≤ (1 − α j) f (x j) ≤ (1 − αN) f (xN).
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Therefore,

lim sup
j→−∞

φ1, j − φ1, j−1

x j+1 − x j
< ∞,

as claimed. Now let x′, x′′ ∈ [0, b) satisfy x′ < x′′ and let N ∈ Z be such that
[x′, x′′] ⊆ [0, xN). Letting

M = sup
{
φ1, j − φ1, j−1

x j+1 − x j

∣∣∣∣∣∣ j ≤ N
}
,

we have
|φ1(x1) − φ1(x2)| ≤M|x1 − x2|,

which gives the desired conclusion. �

A useful relationship between functions of class K and class KL is given by the
following lemma.

4.3.5 Lemma (Solutions of differential equations with class K right-hand side) Let
φ ∈ K([0, b);R≥0) be locally Lipschitz. Then there exists ψ ∈ KL([0, b) × R≥0;R≥0) such
that, if x ∈ [0, b) and t0 ∈ R, then the solution to the initial value problem

ξ̇(t) = −φ(ξ(t)), ξ(t0) = x,

is ψ(x, t − t0) for t ≥ t0.

Proof Using the method of Section 2.1, for x ∈ (0, b) and for t0 ∈ R, the solution to
the initial value problem

ξ̇(t) = φ(ξ(t)), ξ(t0) = x,

satisfies ∫ t

t0

dτ = −

∫ ξ(t)

x

dy
φ(y)

.

To encode the dependence of this solution on the initial data, we shall denote it by
ξt0,x. Let us fix x0 ∈ (0, b) and define

α : [0, b)→ R

x 7→ −
∫ x

x0

dy
φ(y),

and note that α has the following properties.
1. α is continuously differentiable: This is due to the Fundamental Theorem of Cal-

culus.
2. α is strictly decreasing: This is because φ is positive on (0, b).
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3. limx→0 α(x) = ∞: Here we note that α(ξ0,x0(t)) = t. Because φ is positive on (0, b),
it follows that limt→∞ ξ0,x0(t) = 0. Moreover, again since φ is positive on (0, b),
we cannot have ξ0,x0(t) = 0 for any finite t. Thus we have

lim
x→0

α(x) = lim
t→∞

α(ξ0,x0(t)) = lim
t→∞

t = ∞,

as asserted.
Now let c = − limx→b α(x), allowing that c = ∞. Thus image(α) = (−c,∞) and, since
α is strictly decreasing, we have a well-defined map α−1 : (−c,∞)→ (0, b). Since

α(ξt0,x(t)) − α(x) = t − t0,

we have
ξt0,x(t) = α−1(α(x) + t − t0).

Then define

ψ(x, s) =

α−1(α(x) + s), x ∈ (0, b),
0, x = 0.

It is clear that ψ is continuous on (0, b) × R>0. Moreover, since

lim
(x,s)→(0,0)

ψ(x, s) = lim
(x,s)→(0,0)

α−1(α(x) + s) = lim
(x,s)→(0,0)

ξ0,x(s) = 0,

we conclude continuity of ψ on its domain, and so we have continuity is each
argument. Because ξ0,x(s) = ψ(x, s), we have

∂ψ

∂s
(x, s) = ξ̇0,x(s) = −φ(ξ0,x(s)) = −φ(ψ(x, s)) < 0

for s ∈ R>0, and so ψ is strictly decreasing in its second argument. It is also strictly
increasing in its first argument since

∂ψ

∂x
(x, s) =

∂α−1

∂y
(α(x) + s)

∂α
∂y

(x)

=

(
∂α
∂y

(α−1(α(x) + s))
)−1

∂α
∂y

(x)

=
φ(ψ(x, s))
φ(x)

> 0,

using the Inverse Function Theorem (missing stuff ). Finally,

lim
s→∞

ψ(x, s) = lim
t→∞

ξ(t) = 0,

and we have verified that ψ ∈ KL([0, b) × R≥0;R≥0) �

4.3.1.2 General time-invariant functions Now we give some definitions that,
while simple, are not as simple as they seem.
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4.3.6 Definition (Locally definite, locally semidefinite, decrescent I) Let U ⊆ Rn be
an open set and let x0 ∈ U. A function f : U→ R is:

(i) locally positive-definite about x0 if

(a) it is continuous,
(b) f (x0) = 0,
(c) there exists r ∈ R>0 such that f (x) ∈ R>0 for x ∈ B(r, x0) \ {x0};

(ii) locally positive-semi definite about x0 if

(a) it is continuous,
(b) f (x0) = 0,
(c) there exists r ∈ R>0 such that f (x) ∈ R≥0 for x ∈ B(r, x0) \ {x0};

(iii) locally negative-definite about x0 if − f is positive-definite about x0;
(iv) locally negative-semidefinite about x0 if − f is positive-semidefinite about x0;
(v) locally decrescent about x0 if there exists a locally positive-definite function

g : U→ R around x0 and r ∈ R>0 such that f (x) ≤ g(x) for every x ∈ B(r, x0). •

If f : U → R is locally positive-definite (resp. locally positive-semidefinite)
about x0 and if r ∈ R>0 is such that f (x) ∈ R>0 for x ∈ B(r, x0), we shall say that f is lo-
cally positive-semidefinite about x0 in B(r, x0) (resp. locally positive-semidefinite
about x0 in B(r, x0)). Similar terminology applies, of course, for functions that are
locally negative-definite or locally negative-semidefinite. In like manner, if f is
locally decrescent about x0, and if r ∈ R>0 and g, locally positive-definite about x0

in B(r, x0), are such that f (x) ≤ g(x) for x ∈ B(r, x0), then we say that f is locally
decrescent about x0 in B(r, x0).

We introduce the following notation:

LPDr(x0) set of locally positive-definite functions about x0 in B(r, x);
LPSDr(x0) set of locally positive-semidefinite functions about x0 in B(r, x0);
LDr(x0) set of locally decrescent functions about x0 in B(r, x0)

and we also denote

LPD(x0) = ∪r∈R>0LPDr(x0), LPSD(x0) = ∪r∈R>0LPSDr(x0), LD(x0) = ∪r∈R>0LDr(x0).

The following lemma characterises some of the preceding types of functions by
class K-functions.

4.3.7 Lemma (Positive-definite and decrescent in terms of class K II) For U ⊆ Rn

open, a continuous function f : U→ R, and r ∈ R>0, the following statements hold:
(i) f ∈ LPDr(x0) if and only if there exist φ1, φ2 ∈ K([0, r);R≥0) such that

φ1(‖x − x0‖) ≤ f(x) ≤ φ2(‖x − x0‖)

for all x ∈ B(r, x0);
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(ii) f ∈ LDr(x0) if and only if there exists φ ∈ K([0, r);R≥0) such that

f(x) ≤ φ(‖x − x0‖)

for all x ∈ B(r, x0).

Proof (i) Suppose that f ∈ LPDr(x0). We first define ψ1 : [0, r)→ R≥0 by

ψ1(s) = inf{ f (x) | ‖x − x0‖ ∈ [s, r)}.

We claim that (1) ψ1 is continuous, (2) ψ1(0) = 0, (3) ψ1(s) ∈ R>0 for s ∈ (0, r), (4) ψ1

is nonincreasing, and (5) f (x) ≥ ψ1(‖x−x0‖). The only one of these that is not rather
obvious is the continuity of ψ1.

This we prove as follows. Let s0 ∈ [0, r) and let ε ∈ R>0. For x ∈ B(r, x0), let
δx ∈ R>0 be such that, if x′ ∈ B(r, x0) satisfies ‖x′ − x‖ < δx, then | f (x′) − f (x)| < ε.
Now, by compactness of

S(s0, x0) = {x ∈ B(r, x0) | ‖x − x0‖ = s0},

let x1, . . . , xk ∈ S(x0, x0) be such that S(s0, x0) ⊆ ∪k
j=1B(δx j , x j). Define

ds0 : S(s0, x0)→ R>0

x 7→ min{‖x − x1‖, . . . , ‖x − xk‖}.

Being a min of continuous functions, ds0 is continuous (by missing stuff ). Being a
continuous function on a compact set, there exists δ ∈ R>0 such that ds0(x) ≥ δ for
every x ∈ S(s0, x0). Now, let s ∈ [0, r) be such that |s − s0| < δ. First suppose that
s > s0. Since ψ1 is nondecreasing, ψ1(s) − ψ1(s0) ≥ 0. Now, if x ∈ S(s0, x0), there
exists x′ ∈ S(s, x0) such that | f (x′) − f (x)| < ε. Thus

−ε < f (x′) − f (x) < ε.

Since
ψ1(s) ≤ f (x′), −ψ(s0) ≥ − f (x),

we have
ψ1(s) − ψ(s0) ≤ f (x′) − f (x) < ε.

In like manner, if s < s0, we have

ψ(s0) − ψ(s) < ε,

which gives |ψ(s) − ψ(s0)| < ε. This gives the asserted continuity of ψ1.
Now, by Lemma 4.3.4, there exists φ1 ∈ K([0, r);R≥0) such that

φ1(‖x − x0‖) ≤ ψ1(‖x − x0‖) ≤ f (x)

for x ∈ B(r, x0).
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Next define ψ2 : [0, r)→ R≥0 by

ψ2(s) = sup{ f (x) | ‖x − x0‖ ≤ s}.

We can see that (1) ψ2 is continuous, (2) ψ2(0) = 0, (3) ψ2(s) ∈ R>0 for s ∈ (0, r),
(4) ψ2 is nondecreasing, and (5) f (x) ≤ ψ2(‖x − x0‖). Again, continuity is the only
not completely trivial assertion, and an argument like that above for ψ1 can be
easily made to prove this continuity assertion. Now, by Lemma 4.3.4, there exists
φ2 ∈ K([0, r);R≥0) such that

φ2(‖x − x0‖) ≥ ψ1(‖x − x0‖) ≥ f (x)

for x ∈ B(r, x0).
Next suppose that there exist ψ1, φ2 ∈ K([0, r);R≥0) such that

φ1(‖x − x0‖) ≤ f (x) ≤ φ2(‖x − x0‖)

for all x ∈ B(r, x0). The left inequality immediately gives f ∈ LPDr(x0).
(ii) Suppose that f ∈ LDr(x0). Let g ∈ LPDr(x0) be such that f (x) ≤ g(x) for

x ∈ B(r, x0). By part (i) let φ ∈ K([0, r);R≥0) be such that

φ(‖x − x‖) ≥ g(x) ≥ f (x),

as desired.
Finally, suppose that there exists φ ∈ K([0, r);R≥0) such that f (x) ≤ φ(‖x − x0‖)

for x ∈ B(r, x0). Since the function g defined on B(r, x0) by g(x) = φ(‖x−x0‖) is locally
positive-definite about x0 in B(r, x0), the proof of the lemma is concluded. �

4.3.1.3 General time-varying functions Next we generalise the constructions
of the preceding section to allow functions that depend on time.

4.3.8 Definition (Locally definite, locally semidefinite, decrescent II) Let U ⊆ Rn be
an open set, let T ⊆ R be an interval, and let x0 ∈ U. A function f : T ×U→ R is:

(i) locally positive-definite about x0 if

(a) it is continuous,
(b) f (t, x0) = 0 for all t ∈ T, and
(c) there exist r ∈ R>0 and f0 ∈ LPDr(x0) such that f (t, x) ≥ f0(x) for every

(t, x) ∈ T × B(r, x).

(ii) locally positive-semi definite about x0 if

(a) it is continuous,
(b) f (t, x0) = 0 for all t ∈ T, and
(c) there exist r ∈ R>0 and f0 ∈ LPSDr(x0) such that f (t, x) ≥ f0(x) for every

(t, x) ∈ T × B(r, x).
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(iii) locally negative-definite about x0 if − f is positive-definite about x0;
(iv) locally negative-semidefinite about x0 if − f is positive-semidefinite about x0;
(v) locally decrescent about x0 if there exist r ∈ R>0 and g ∈ LPDr(x0) such that

f (t, x) ≤ g(x) for every (t, x) ∈ T × B(r, x0). •

Let us introduce some notation for these classes of functions. As for time–
invariant functions, we have all of the preceding notions of definiteness about x0

“in B(r, x0),” with the obvious meaning. Let us not use all of the words required
to make this obvious terminology precise. We also have the following symbols,
keeping in mind that functions now are defined on T ×U:

TVLPDr(x0) set of locally positive-definite functions about x0 in B(r, x);
TVLPSDr(x0) set of locally positive-semidefinite functions about x0 in B(r, x0);
TVLDr(x0) set of locally decrescent functions about x0 in B(r, x0)

and we also denote

TVLPD(x0) = ∪r∈R>0TVLPDr(x0), TVLPSD(x0) = ∪r∈R>0TVLPSDr(x0),
TVLD(x0) = ∪r∈R>0TVLDr(x0).

An application of the definitions and of Lemma 4.3.7 gives the following
lemma.

4.3.9 Lemma (Positive-definite and decrescent in terms of class K I) For U ⊆ Rn

open, an interval T ⊆ R, a continuous function f : T ×U→ R, and r ∈ R>0, the following
statements hold:

(i) f ∈ TVLPDr(x0) if and only if there exist φ1, φ2 ∈ K([0, r);R≥0) such that

φ1(‖x − x0‖) ≤ f(t, x) ≤ φ2(‖x − x0‖)

for all t ∈ T and x ∈ B(r, x0);
(ii) f ∈ TVLDr(x0) if and only if there exists φ ∈ K([0, r);R≥0) such that

f(t, x) ≤ φ(‖x − x0‖)

for all t ∈ T and x ∈ B(r, x0).

4.3.10 Remark (The uniformity in time of time-varying definitions) The reader will
note that, in the definition of TVLPD(x0), etc., the characterisations are in terms of
time-invariant functions from LPD(x0), etc., and are required to hold for every t ∈ T.
One says, in this case, that the bounds required for elements of TVLPD(x0), etc.,
hold uniformly in t. One might imagine conditions that are not uniform in t,
but just what is required of such a definition is rather complicated. Our lack
of consideration of these cases reflected in Sections 4.3.3 and 4.3.5, where we
only consider Lyapunov’s Second Method for characterising uniform stability, since
nonuniform counterparts are more complicated. •
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4.3.1.4 Time-invariant quadratic functions When we apply Lyapunov’s Sec-
ond Method to linear differential equations, we will use locally positive-definite
functions as in the general case. However, because of the extra structure of lin-
ear equations, it is natural to consider locally positive-definite functions of a very
particular form. In this section we shall consider the time-invariant case.

As we do when talking about linear ordinary differential equations, we shall
work with equations whose state space is a finite-dimensional R-vector space V. In
such a case, the definitions of locally positive-definite, etc., are modified to account
for the fact that we are principally interested in what is happening with the zero
vector when talking about linear systems. The appropriate definitions require
having at hand an inner product that generalises the Euclidean inner product.8

That is, we suppose that we assign to each pair of vectors v1, v2 ∈ V a number
〈v1, v2〉 ∈ R, and this assignment has the following properties:
1. for fixed v2 ∈ V, the function v1 7→ 〈v1, v2〉 is linear;
2. for fixed v1 ∈ V, the function v2 7→ 〈v1, v2〉 is linear;
3. 〈v1, v2〉 = 〈v2, v1〉 for all v1, v2 ∈ V;
4. 〈v, v〉 ∈ R≥0 for all v ∈ V;
5. 〈v, v〉 = 0 only if v = 0.
We think of 〈v1, v2〉 as being the “angle” between v1 and v2. The following are
terminology and facts we shall require about inner products.

1. The assignment v 7→
√
〈v, v〉 defines a norm on V that we shall simply denote

by ‖·‖.
2. Given L ∈ L(V; V), the transpose of L is the linear map LT

∈ L(V; V) defined by

〈LT(v1), v2〉 = 〈v1,L(v2)〉, v1, v2 ∈ V.

A linear map L is symmetric if LT = L.
3. If V is n-dimensional and if L ∈ L(V; V) is symmetric, then

(a) its eigenvalues are real and
(b) there is an orthonormal basis {e1, . . . , en} of eigenvectors, i.e., (i) each of the

vectors e j, j ∈ {1, . . . ,n}, is an eigenvector for some eigenvalue, (ii) 〈e j, ek〉 = 0
for j , k, and (iii) ‖e j‖ = 1, j ∈ {1, . . . ,n}.

The functions of interest to us are then those prescribed by the following defi-
nition.

8Children call the Euclidean inner product the “dot” product, and it is defined by

(x1, x2) 7→
n∑

j=1

x1, jx2, j.

The expression on the right is often denoted x1 · x2. However, we eschew the “·”-notation, which is
for babies, and instead write it as 〈x1, x2〉Rn .
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4.3.11 Definition (Quadratic function) Let V be an n-dimensional R-vector space, let 〈·, ·〉
be an inner product on V, and let Q ∈ L(V; V) be a symmetric linear map. The
quadratic function associated to Q is

fQ : V→ R
v 7→ 〈Q(v), v〉.

•

Now we classify various sorts of quadratic functions.

4.3.12 Definition (Locally definite, locally semidefinite, decrescent III) Let V be an
n-dimensional R-vector space, let 〈·, ·〉 be an inner product on V, and let Q ∈ L(V; V)
be a symmetric linear map. The linear map Q is:

(i) positive-definite if fQ(v) ∈ R>0 for v ∈ V \ {0};
(ii) positive-semi definite if fQ(v) ∈ R≥0 for v ∈ V;
(iii) negative-definite if −Q is positive-definite;
(iv) negative-semidefinite if −Q is positive-semidefinite;
(v) decrescent if there exists a positive-definite symmetric linear map Q0 ∈ L(V; V)

such that fQ(v) ≤ fQ0(v) for v ∈ V. •

Let us relate these notions to local definiteness notions for general functions,
and also to the eigenvalues of Q.

4.3.13 Lemma (Characterisations of definite, semidefinite, and decrescent symmet-
ric linear maps) Let V be an n-dimensional R-vector space, let 〈·, ·〉 be an inner product
on V, and let Q ∈ L(V; V) be a symmetric linear map. Then the following statements hold.

(i) The following statements are equivalent:

(a) Q is positive-definite;
(b) fQ ∈ LPD(0);
(c) spec(Q) ⊆ R>0.

(ii) The following statements are equivalent:

(a) Q is positive-semidefinite;
(b) fQ ∈ LPSD(0);
(c) spec(Q) ⊆ R≥0.

(iii) Q is decrescent.

Proof First of all, because Q is symmetric, all eigenvalues of Q are real and there
is an orthonormal basis {e1, . . . , en} of eigenvectors. Thus there exist λ1, . . . , λn ∈ R
such that

Q(e j) = λ je j, j ∈ {1, . . . ,n}.
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Therefore, if v =
∑n

j=1 v jev, then

fQ(v) =

〈
Q

 n∑
j=1

v je j

 , n∑
k=1

vkek

〉
=

n∑
j,k=1

v jvk〈Q(e j), ek〉

=

k∑
j,k=1

λ jv jvk〈e j, ek〉 =

n∑
j=1

λ jv2
j .

With this formula in hand, we prove the lemma.
(i) If Q is positive-definite, then it is clear that fQ is locally positive-definite, from

the definition.
Now, we claim that, if spec(Q) 1 R>0, then fQ is not locally positive definite

about 0. Indeed, suppose that λ j ≤ 0 for some j ∈ {1, . . . ,n}. Then, for any ε ∈ R>0,

fQ(εe j) = λ jε
2
≤ 0.

Since, for any r ∈ R>0, we can choose ε = r
2 ∈ R>0 so that εe j ∈ B(r, 0) \ {0}, it cannot

be the case that fQ is locally positive-definite.
Finally, if spec(Q) ⊆ R>0, then the formula

fQ(v) =

n∑
j=1

λ jv2
j

ensures that Q is positive-definite.
(ii) The proof follows along the lines of the first part of the proof, mutatis mutandis.
(iii) As in the opening paragraph of the proof, we write

fQ(v) = λ jv2
j ,

where λ1, . . . , λ j are the eigenvalues of Q. We then let

C = max{1, λ1, . . . , λn}

and define Q0 ∈ L(V; V) so that

fQ0(v) = C
n∑

j=1

v2
j ,

and observe that Q0 is positive-definite (by part (i)) and that fQ(v) ≤ fQ0(v) for all
v ∈ V. �

The vacuous nature of the nature of decrescent symmetric linear maps (every
symmetric linear map is decrescent) arises simply because this notion is not really a
valuable one for time-invariant quadratic functions. We state the definition simply
for the sake of preserving symmetry of the definitions.

Along these lines, the following result will be helpful to us in the next section.
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4.3.14 Lemma (Upper and lower bounds for positive-definite quadratic functions)
Let V be an n-dimensional R-vector space, let 〈·, ·〉 be an inner product on V, and let
Q ∈ L(V; V) be a positive-definite symmetric linear map. Then there exists C ∈ R>0 such
that, for every v ∈ V, we have

C〈v,v〉 ≤ fQ(v) ≤ C−1
〈v,v〉.

Proof As in the proof of Lemma 4.3.13, for an orthonormal basis of eigenvectors
{e1, . . . , en}, we have

fQ(v) =

n∑
j=1

λ jv2
j

where λ1, . . . , λn are the eigenvalues. The result follows by taking requiring that

C ≤ min{λ1, . . . , λn}

and
C−1
≥ max{λ1, . . . , λn}. �

4.3.1.5 Time-varying quadratic functions The final collection of functions we
consider are those that are quadratic, as in the preceding section, and vary with
time. A reader who has been paying attention while reading the preceding sections
will likely be able to write down the definitions and characterisations we give next,
as these follow quite naturally from what we have done already.

4.3.15 Definition (Time-varying quadratic function) Let V be an n-dimensionalR-vector
space, let 〈·, ·〉 be an inner product on V, let T ⊆ R be an interval, and let Q : T →
L(V; V) be such that Q(t) is a symmetric linear map for every t ∈ T. The time-varying
quadratic function associated to Q is

fQ : T × V→ R
(t, v) 7→ 〈Q(t)(v), v〉.

•

4.3.16 Definition (Locally definite, locally semidefinite, decrescent IV) Let V be an
n-dimensional R-vector space, let 〈·, ·〉 be an inner product on V, let T ⊆ R be an
interval, and let Q : T → L(V; V) be such that Q(t) is a symmetric linear map for
every t ∈ T. The function Q is:

(i) positive-definite if there exists a positive-definite symmetric linear map Q0 ∈

L(V; V) such that fQ(t, v) ≥ fQ0(v) for (t, v) ∈ T × V;
(ii) positive-semi definite if there exists a positive-definite symmetric linear map

Q0 ∈ L(V; V) such that fQ(t, v) ≥ fQ0(v) for (t, v) ∈ T × V;
(iii) negative-definite if −Q is positive-definite;
(iv) negative-semidefinite if −Q is positive-semidefinite.
(v) decrescent if there exists a positive-definite symmetric linear map Q0 ∈ L(V; V)

such that fQ(t, v) ≤ fQ0(v) for (t, v) ∈ T × V. •
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4.3.17 Lemma (Characterisations of definite, semidefinite, and decrescent time-
varying symmetric linear maps) Let V be an n-dimensional R-vector space, let 〈·, ·〉
be an inner product on V, let T ⊆ R be an interval, and let Q: T → L(V; V) be such that
Q(t) is a symmetric linear map for every t ∈ T. Then the following statements hold.

(i) The following statements are equivalent:
(a) Q is positive-definite;
(b) fQ ∈ TVLPD(0);
(c) there exists ` ∈ R>0 such that

` ≤ inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T}.

(ii) The following statements are equivalent:
(a) Q is positive-semidefinite;
(b) fQ ∈ TVLPSD(0);
(c) there exists ` ∈ R≥0 such that

` ≤ inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T}.

(iii) The following statements are equivalent:
(a) Q is decrescent;
(b) fQ ∈ TVLD(0);
(c) there exists µ ∈ R>0 such that

µ ≥ sup{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T}.

Proof (i) First suppose that Q is positive-definite. By definition, by
Lemma 4.3.13(i), and by Definition 4.3.8(i), fQ ∈ TVLPD(0).

Next, suppose that

inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T} ≤ 0.

For t ∈ T, let λ1(t), . . . , λn(t) ⊆ R be the eigenvalues of Q(t). Without loss of
generality, suppose that

λ1(t) = min{λ1(t), . . . , λn(t)}, t ∈ T.

For t ∈ T, let v1(t) ∈ V be an eigenvector for the eigenvalue λ1(t), and suppose that
‖v1(t)‖ = 1, and note that

fQ(t, v1(t)) = 〈Q(t)(v1(t)), v1(t)〉 = λ1(t)〈v1(t), v1(t)〉 = λ1(t).

By assumption inf{ fQ(t, v1(t)) | t ∈ T} ≤ 0. This means that there exists a sequence
(t j) j∈Z>0 such that

lim
j→∞

fQ(t j, v1(t j)) ≤ 0.
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Now let r ∈ R>0 and g ∈ TVLPDr(0). By Lemma 4.3.9(i), let φ ∈ K([0, r);R≥0) be
such that φ(|x|) ≤ g(x) for all x ∈ B(r, 0). For ε ∈ R>0 such that ε2 < r, we have

lim
j→∞

f (t j, ε
2v1(t j)) = ε lim

j→∞
f (t j, v1(t j)) ≤ 0 < φ(ε2) ≤ g(ε2v)

for every v ∈ V for which ‖v‖ = 1. This means that there exists N ∈ Z>0 such that

f (t j, ε
2v1(t j)) < g(ε2v1(t j)), j ≥ N.

Since g and r were arbitrary, this prohibits f from being in TVLPD(0).
Finally, suppose that

inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T} > 0.

Let ` ∈ R>0 be such that

inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T} ≥ `

and define the symmetric positive-definite linear map Q0 so that fQ0(v) = `〈v, v〉
for all v ∈ V. Then, for t ∈ T, let λ1(t), . . . , λn(t) be the eigenvalues for Q(t) and let
{e1(t), . . . , en(t)} be an orthonormal basis of eigenvectors. If v ∈ V, write

v =

n∑
j=1

v j(t)e j(t)

for uniquely defined v1(t), . . . , vn(t) ∈ R. Then, recalling the calculations from the
proof of Lemma 4.3.13,

fQ(t, v) =

n∑
j=1

λ j(t)v j(t)2
≥ `

n∑
j=1

v j(t)2 = `〈v, v〉 = fQ0(v),

and so Q is positive-definite.
(ii) This follows, mutatis mutandis, as does the preceding part of the lemma.
(iii) This also follows, mutatis mutandis, from the proof of part (i). �

4.3.18 Lemma (Upper and lower bounds for time-varying positive-definite and de-
crescent quadratic functions) Let V be an n-dimensional R-vector space, let 〈·, ·〉 be
an inner product on V, let T ⊆ R be an interval, and let Q: T→ L(V; V) be such that Q(t)
is symmetric for every t ∈ T. Then the following statements hold:

(i) Q is positive-definite if and only if there exists C ∈ R>0 such that C〈v,v〉 ≤ fQ(t,v)
for every (t,v) ∈ T × V;

(ii) Q is decrescent if and only if there exists C ∈ R>0 such that fQ(t,v) ≤ C〈v,v〉 for
every (t,v) ∈ T × V.
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Proof As in the proof of Lemma 4.3.17, for t ∈ T we let λ1(t), . . . , λ j(t) be the
eigenvalues for Q(t) and let {e1(t), . . . , en(t)} be an orthonormal basis of eigenvectors
for Q(t). If we write

v =

n∑
j=1

v j(t)e j(t),

we then have

fQ(t, v) =

n∑
j=1

λ j(t)v j(t)2.

Then Q is positive-definite if and only if there exists C ∈ R>0 such that

C ≤ λ j(t), j ∈ {1, . . . ,n}, t ∈ T,

and Q is decrescent if and only if there exists C ∈ R>0 such that

λ j(t) ≤ C, j ∈ {1, . . . ,n}, t ∈ T.

The result then follows by a simple computation, mirroring many we have already
done. �

4.3.2 Stability in terms of class K- and class KL-functions

In this section, whose content consists of a single lemma with its lengthy proof,
we characterise various notions of stability in terms of class K- and class KL-
functions. While it is possible to prove some of our results relating to Lyapunov’s
Second Method, the characterisations we give in the lemma are useful in capturing
the essence of some of the proofs, and of uniting their style.

Here is the lemma of which we speak.

4.3.19 Lemma (Stability of equilibria for nonautonomous equations in terms of
class K- and class KL-functions) Let F be a system of ordinary differential equations
with right-hand side

F̂ : T ×U→ Rn

with supT = ∞ and satisfying Assumption 4.1.1. For an equilibrium point x0 ∈ U for F,
the following statements hold:

(i) x0 is stable if and only if, for each t0 ∈ T, there exist δ ∈ R>0 and α ∈ K([0, δ);R≥0)
such that, for every x ∈ U satisfying ‖x − x0‖ < δ, the solution ξ to the initial value
problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ α(‖x − x0‖) for t ≥ t0;
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(ii) x0 is uniformly stable if and only if there exist δ ∈ R>0 and α ∈ K([0, δ);R≥0) such
that, for every (t0, x) ∈ T × U satisfying ‖x − x0‖ < δ, the solution ξ to the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t) − x0‖ ≤ α(‖x − x0‖) for t ≥ t0;
(iii) x0 is asymptotically stable if and only if, for every t0 ∈ T′, there exist δ ∈ R>0 and

β ∈ KL([0, δ) × [t0,∞);R≥0) such that, if x ∈ U satisfies ‖x − x0‖ < δ, then the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t) − ξ0(t)‖ ≤ β(‖x − x0‖, t) for t ≥ t0;
(iv) x0 is uniformly asymptotically stable if and only if there exist δ ∈ R>0 and β ∈

KL([0, δ) × [0,∞);R≥0) such that, if (t0, x) ∈ T ×U satisfies ‖x − x0‖ < δ, then the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t) − ξ0(t)‖ ≤ β(‖x − x0‖, t − t0) for t ≥ t0.

Proof (i) First suppose that, for each t0 ∈ T, there exist δ ∈ R>0 andα ∈ K([0, δ);R≥0)
such that, for every x ∈ U satisfying ‖x − x0‖ < δ, the solution ξ to the initial value
problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ ≤ α(‖x − x0‖) for t ≥ t0. Let t0 ∈ T and let δ and α be as above.
Let ε ∈ R>0 and let ε′ = min{ε, α(δ)}. Let δ′ = min{δ, α−1( ε

′

2 )}. Let x ∈ U satisfy
‖x − x0‖ < δ′ ≤ δ and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Since
‖ξ(t) − x0‖ ≤ α(‖x − x0‖) ≤ α(δ′) ≤ α(α−1( ε

′

2 )) = ε′

2 < ε,

we conclude stability of x0.
Next suppose that x0 is stable and let t0 ∈ T. For ε ∈ R>0, let A(ε) ⊆ R>0 be the

set of positive numbers δ such that, for every x ∈ U satisfying ‖x − x0‖ < δ, the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ < ε for t ≥ t0. Then denote δ(ε) = sup A(ε). This then defines, for
some ε0 ∈ R>0, a function δ : [0, ε0) → R≥0 that is nondecreasing. By missing stuff
there exists α ∈ K([0, ε0);R≥0) such that α(ε) ≤ δ(ε) for every ε ∈ [0, ε0). We can
suppose that ε0 is sufficiently small that image(α) = [0, δ0) for δ0 ∈ R>0. Define
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α = α−1, which is of class K by Lemma 4.3.3(i). Now, let x ∈ U satisfies ‖x−x0‖ < δ0

and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then let ε = α(‖x − x0‖) note that

‖x − x0‖ = α(ε) ≤ δ(ε).

Therefore,
‖ξ(t) − x0‖ < ε = α(‖x − x0‖),

completing this part of the proof.
(ii) First suppose that there exist δ ∈ R>0 and α ∈ K([0, δ);R≥0) such that, for

every (t0, x) ∈ T×U satisfying ‖x−x0‖ < δ, the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)−x0‖ ≤ α(‖x−x0‖) for t ≥ t0. Let δ and α be as above. Let ε ∈ R>0 and let
ε′ = min{ε, α(δ)}. Let δ′ = min{δ, α−1( ε

′

2 )}. Let (t0, x) ∈ T ×U satisfy ‖x − x0‖ < δ′ ≤ δ
and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Since
‖ξ(t) − x0‖ ≤ α(‖x − x0‖) ≤ α(δ′) ≤ α(α−1( ε

′

2 )) = ε′

2 < ε,

we conclude uniform stability of x0.
Next suppose that x0 is uniformly stable. For ε ∈ R>0, let A(ε) ⊆ R>0 be the set

of positive numbers δ such that, for every (t0, x) ∈ T×U satisfying ‖x− x0‖ < δ, the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)‖ < ε for t ≥ t0. Then denote δ(ε) = sup A(ε). This then defines, for
some ε0 ∈ R>0, a function δ : [0, ε0) → R≥0 that is nondecreasing. By missing stuff
there exists α ∈ K([0, ε0);R≥0) such that α(ε) ≤ δ(ε) for every ε ∈ [0, ε0). We can
suppose that ε0 is sufficiently small that image(α) = [0, δ0) for δ0 ∈ R>0. Define
α = α−1, which is of class K by Lemma 4.3.3(i). Now, let x ∈ U satisfy ‖x − x0‖ < δ0

and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then let ε = α(‖x − x0‖) note that

‖x − x0‖ = α(ε) ≤ δ(ε).
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Therefore,
‖ξ(t) − x0‖ < ε = α(x − x0),

completing this part of the proof.
(iii) First suppose that, for every t0 ∈ T′, there exist δ ∈ R>0 and βKL([0, δ) ×

[t0,∞);R≥0) such that, if x ∈ U satisfies ‖x− x0‖ < δ, then the solution ξ to the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t)−ξ0(t)‖ ≤ β(‖x− x0‖, t) for t ≥ t0. Let t0 ∈ T and let δ and β be as above.
If x ∈ U satisfies ‖x − x0‖ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
‖ξ(t) − ξ0(t)‖ ≤ β(‖x − x0‖, t) ≤ β(‖x − x0‖, t0)

for t ≥ t0. By (ii) we conclude that x0 is stable. Also, let ε ∈ R>0 and let T ∈ R>0 be
sufficiently large that β( δ2 , t0 + T) < ε. Then, if (t0, x) ∈ T × U satisfy ‖x − x0‖ < δ

2 ,
then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
‖ξ(t) − x0‖ ≤ β( δ2 , t) ≤ β( δ2 , t0 + T) < ε

for t ≥ t0 + T. This gives asymptotic stability of x0.
Next suppose that x0 is asymptotically stable. Let t0 ∈ T. Since x0 is stable (by

definition), by part (i) there exists δ0 ∈ R>0 and α ∈ K([0, δ0);R≥0) such that, for
δ ∈ [0, δ0], if x ∈ U satisfies ‖x − x0‖ < δ, then the solution ξ of the initial value
problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
‖ξ(t) − x0‖ ≤ α(‖x − x0‖) < α(r).

Now, if (δ, ε) ∈ [0, δ0] × R>0, then let A(δ, ε) ⊆ R>0 be the set of T ∈ R>0 such that, if
x ∈ U satisfies ‖x − x0‖ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t) = x0‖ < ε for t ≥ t0 + T, this being possible by asymptotic stability.
Then define T(δ, ε) = inf A(δ, ε).

Let us record some useful properties of T.
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1 Lemma
(i) T(δ, ε) ∈ R≥0 for all (δ, ε) ∈ [0, δ0] × R>0;

(ii) δ 7→ T(δ, ε) is nondecreasing for every ε ∈ R>0, i.e., T(δ1, ε) ≤ T(δ2, ε) for δ1 < δ2;

(iii) ε 7→ T(δ, ε) is nonincreasing for every δ ∈ [0, δ0], i.e., T(δ, ε1) ≥ T(δ, ε2) for ε1 < ε2;

(iv) T(δ, ε) = 0 if ε > α(δ).

Proof (i) This follows since, if T ∈ A(δ, ε), then T ∈ R≥0.
(ii) Let δ1 < δ2. By definition, if T ∈ A(δ2, ε) then it is also the case that T ∈ A(δ1, ε).

That is, A(δ2, ε) ⊆ A(δ1, ε) and so inf A(δ1, ε) ≤ inf A(δ2, ε).
(iii) Let ε1 < ε2. Here, if T ∈ A(δ, ε1) then T ∈ A(δ, ε2), and this gives the result.
(iv) If ε > α(δ), then, if (t0, x) ∈ T ×U satisfies ‖x − x0‖ < δ, the solution ξ of the

initial value problem
ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
‖ξ(t) − x0‖ ≤ α(‖x − x0‖) < α(δ) < ε

for all t ≥ t0. Thus 0 ∈ A(δ, ε). H

For (δ, ε) ∈ [0, δ0] × R>0, define

τ(δ, ε) =
2
ε

∫ ε

ε/2
T(δ, x),dx +

δ
ε
.9

Let us record some properties of τ.

2 Lemma
(i) τ(δ, ε) ∈ R>0 for every (δ, ε) ∈ [0, δ0] × R>0;
(ii) ε 7→ τ(δ, ε) is continuous for every δ ∈ [0, δ0];
(iii) limε→∞ τ(δ, ε) = 0 for every δ ∈ [0, δ0];
(iv) δ 7→ τ(δ, ε) is strictly increasing for every ε ∈ R>0;
(v) ε 7→ τ(δ, ε) is strictly decreasing for every δ ∈ [0, δ0];

(vi) τ(δ, ε) ≥ T(δ, ε) + δ
ε .

Proof (i) This follows since T is R≥0-valued by Lemma 1(i).
(ii) By the Fundamental Theorem of Calculus, the function

ε 7→

∫ ε

ε/2
T(δ, x),dx

is continuous, and from this the continuity of τ follows.

9There is a fussy little point here about whether T is locally integrable in ε. This follows since T
is nonincreasing, and so of “bounded variation.”
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(iii) For fixed δ, we have T(δ, ε) = 0 for ε > α(δ) by Lemma 1(iv), and so

lim
ε→∞

τ(δ, ε) = lim
ε→∞

δ
ε

= 0.

(iv) This follows since

δ 7→
2
ε

∫ ε

ε/2
T(δ, x) dx

is nondecreasing by Lemma 1(ii) and since δ 7→ δ
ε is strictly increasing.

(v) This follows since ε 7→ 2
ε is strictly decreasing, since∫ ε

ε/2
T(δ, x) dx

is nonincreasing by Lemma 1(iii) and since ε 7→ ε
δ is strictly decreasing.

(vi) We have

τ(δ, ε) ≥
2
ε

∫ ε

ε/2
T(δ, ε) dx +

δ
ε
≥ T(δ, ε) +

δ
ε
,

as claimed. H

Now, for (δ, s) ∈ [0, δ0] × R>0, define σ(δ, s) ∈ R≥0 by asking that σ(δ, τ(δ, ε)) = ε,
i.e., s 7→ σ(δ, s) is the inverse of ε 7→ τ(δ, ε). We have the following properties of σ.

3 Lemma
(i) δ 7→ σ(δ, s) is strictly increasing for every s ∈ R>0;
(ii) s 7→ σ(δ, s) is strictly decreasing for every δ ∈ [0, δ0];
(iii) s 7→ σ(δ, s) is continuous for every δ ∈ [0, δ0];
(iv) lims→∞ σ(δ, s) = 0 for δ ∈ [0, δ0];

(v) s = τ(δ, σ(δ, s)) > T(δ, σ(δ, s)) for every δ ∈ [0, δ0].

Proof (i) and (ii) follows from parts (iv) and (v) of Lemma 2.
(iii) This follows from Lemma 2(ii).
(iv) This follows from Lemma 2(iii).
(v) This follows from Lemma 2(vi). H

To complete the proof, we let δ0 ∈ R>0 be as above and define

β : [0, δ) × [t0,∞)→ R≥0

(δ, t) 7→
√
α(δ)σ( δ0

2 , t − t0).

The following lemma gives the essential feature of β.
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4 Lemma β ∈ KL([0, δ0
2 ) × [t0,∞);R≥0).

Proof For fixed t ∈ [t0,∞), the function

δ 7→
√
α(δ)σ( δ0

2 , t − t0)

is in K([0, δ0
2 );R≥0) because:

1. δ 7→ α(δ) is continuous and strictly increasing since α ∈ K([0, δ0);R≥0);
2. the product of strictly increasing functions is and strictly increasing;
3. x 7→

√
x is continuous and strictly increasing on R≥0;

4. the composition of continuous strictly increasing functions is continuous and
strictly increasing;

5. α(0) = 0 since α ∈ K([0, δ0);R≥0).
For fixed δ ∈ [0, δ0

2 ), the function

t 7→
√
α(δ)σ( δ0

2 , t − t0)

is in L([t0,∞);R≥0) because:
1. t 7→ σ(δ, t − t0) is continuous and strictly decreasing by parts (ii) and (iii) of

Lemma 3;
2. limt→∞ σ(δ, t − t0) = 0 by Lemma 3(iv). H

Now let x ∈ U satisfy ‖x − x0‖ <
δ0
2 and let ξ be the solution to the initial value

problem
ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then
‖ξ(t) − x0‖ ≤ α(‖x − x0‖), t ≥ t0.

Also, for t > t0 and δ ∈ [0, δ0
2 ], if x ∈ U satisfies ‖x − x0‖ < δ, and if ξ is the solution

to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

then we have

t − t0 = τ(δ, σ(δ, t − t0)) ≥ T(δ, σ(δ, t − t0)) +
δ

t − t0
> T(δ, σ(δ, t − t0)).

By definition of T, this means that

‖ξ(t) − x0‖ ≤ σ(δ, t − t0).

Continuity of σ in the second argument means that this relation holds, not just for
t > t0, but for t ≥ t0. Combining the inequalities

‖ξ(t) − x0‖ ≤ α(‖x − x0‖), ‖ξ(t) − x0‖ ≤ σ(δ, t − t0) < σ( δ0
2 , t − t0)
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which we have shown to hold for (t0, x) ∈ T × U satisfying ‖x − x0‖ <
δ0
2 and for

t ≥ t0, we have

‖ξ(t) − x0‖ ≤

√
α(‖x − x0‖)σ( δ0

2 , t − t0) = β(‖x − x0‖, t − t0),

which gives this part of the lemma.
(iv) First suppose that there exist δ ∈ R>0 and β ∈ KL([0, δ) × [0,∞);R≥0) such

that, if (t0, x) ∈ T × U satisfy ‖x − x0‖ < δ, then the solution ξ to the initial value
problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t) − ξ0(t)‖ ≤ β(‖x − x0‖, t − t0) for t ≥ t0. Let δ and β be as above. If
(t0, x) ∈ T ×U satisfies ‖x − x0‖ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
‖ξ(t) − ξ0(t)‖ ≤ β(‖x − x0‖, t − t0) ≤ β(‖x − x0‖, 0)

for t ≥ t0. By (ii) we conclude that x0 is uniformly stable. Also, let ε ∈ R>0 and
let T ∈ R>0 be sufficiently large that β( δ2 ,T) < ε. Then, if (t0, x) ∈ T × U satisfy
‖x − x0‖ < δ

2 , then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
‖ξ(t) − x0‖ ≤ β( δ2 , t − t0) ≤ β( δ2 ,T) < ε

for t ≥ t0 + T. This gives uniform asymptotic stability of x0.
Next suppose that x0 is uniformly asymptotically stable. Since x0 is uniformly

stable (by definition), by part (ii) there exists δ0 ∈ R>0 and α ∈ K([0, δ0);R≥0) such
that, for δ ∈ [0, δ0], if (t0, x) ∈ T ×U satisfies ‖x − x0‖ < δ, then the solution ξ of the
initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
‖ξ(t) − x0‖ ≤ α(‖x − x0‖) < α(r).

Now, if (δ, ε) ∈ [0, δ0] × R>0, then let A(δ, ε) ⊆ R>0 be the set of T ∈ R>0 such that, if
(t0, x) ∈ T ×U satisfies ‖x − x0‖ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ‖ξ(t) = x0‖ < ε for t ≥ t0 + T, this being possible by uniform asymptotic
stability. Then define T(δ, ε) = inf A(δ, ε).
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The properties of Lemma 1 also hold for T in this case. For (δ, ε) ∈ [0, δ0] × R>0,
define

τ(δ, ε) =
2
ε

∫ ε

ε/2
T(δ, x),dx +

δ
ε
.

The properties of Lemma 2 also hold for τ in this case. Now, for (δ, s) ∈ [0, δ0]×R>0,
define σ(δ, s) ∈ R≥0 by asking that σ(δ, τ(δ, ε)) = ε, i.e., s 7→ σ(δ, s) is the inverse of
ε 7→ τ(δ, ε). The properties of Lemma 3 also hold for σ in this case.

To complete the proof, we let δ0 ∈ R>0 be as above and define

β : [0, δ) × R≥0 → R≥0

(δ, s) 7→
√
α(δ)σ( δ0

2 , s).

The following lemma gives the essential feature of β.

5 Lemma β ∈ KL([0, δ0
2 ) × R≥0;R≥0).

Proof For fixed s ∈ R≥0, the function

δ 7→
√
α(δ)σ( δ0

2 , s)

is in K([0, δ0
2 );R≥0) because:

1. δ 7→ α(δ) is continuous and strictly increasing since α ∈ K([0, δ0);R≥0);
2. the product of strictly increasing functions is and strictly increasing;
3. x 7→

√
x is continuous and strictly increasing on R≥0;

4. the composition of continuous strictly increasing functions is continuous and
strictly increasing;

5. α(0) = 0 since α ∈ K([0, δ0);R≥0).
For fixed δ ∈ [0, δ0

2 ), the function

s 7→
√
α(δ)σ( δ0

2 , s)

is in L(R≥0;R≥0) because:
1. s 7→ σ(δ, s) is continuous and strictly decreasing by parts (ii) and (iii) of Lemma 3;
2. lims→∞ σ(δ, s) = 0 by Lemma 3(iv). H

Now let (t0, x) ∈ T×U satisfy ‖x− x0‖ <
δ0
2 and let ξ be the solution to the initial

value problem
ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then
‖ξ(t) − x0‖ ≤ α(‖x − x0‖), t ≥ t0.
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Also, for t > t0 and δ ∈ [0, δ0
2 ], if (t0, x) ∈ T × U satisfies ‖x − x0‖ < δ, and if ξ is the

solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

then we have

t − t0 = τ(δ, σ(δ, t − t0)) ≥ T(δ, σ(δ, t − t0)) +
δ

t − t0
> T(δ, σ(δ, t − t0)).

By definition of T, this means that

‖ξ(t) − x0‖ ≤ σ(δ, t − t0).

Continuity of σ in the second argument means that this relation holds, not just for
t > t0, but for t ≥ t0. Combining the inequalities

‖ξ(t) − x0‖ ≤ α(‖x − x0‖), ‖ξ(t) − x0‖ ≤ σ(δ, t − t0) < σ( δ0
2 , t − t0)

which we have shown to hold for (t0, x) ∈ T × U satisfying ‖x − x0‖ <
δ0
2 and for

t ≥ t0, we have

‖ξ(t) − x0‖ ≤

√
α(‖x − x0‖)σ( δ0

2 , t − t0) = β(‖x − x0‖, t − t0),

which gives this part of the lemma. �

4.3.3 The Second Method for nonautonomous equations

Now, after that lengthy diversion concerning sort of elementary properties of
functions, we come to Lyapunov’s Section Method. We shall consider this method
in four settings, nonautonomous/autonomous and nonlinear/linear. We begin with
the most general setting, that for nonautonomous nonlinear equations.

In Lyapunov’s Second Method, we will need to evaluate the derivative of a
function along the solutions of an ordinary differential equation. To facilitate this,
we make the following definition.

4.3.20 Definition (Lie derivative of a function along an ordinary differential equation)
Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and let f : T ×U→ R be of class C1. The Lie derivative of f along F is

LF f : T ×U→ R

(t, x) 7→
∂ f
∂t

(t, x) +

n∑
j=1

F̂ j(t, x)
∂ f
∂x j

(t, x).
•
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4.3.21 Lemma (Essential property of the Lie derivative I) Let F be an ordinary differential
equation with right-hand side

F̂ : T ×U→ Rn

and let f : T ×U→ R be of class C1. If ξ : T′ → U is a solution for F, then

d
dt

f(t, ξ(t)) = LFf(t, ξ(t)).

Proof Using the Chain Rule and the fact that

ξ̇(t) = F̂(t, ξ(t)),

we have

d
dt

f (t, ξ(t)) =
∂ f
∂t

(t, ξ(t)) +

n∑
j=1

∂ f
∂x j

(t, ξ(t))
dξ j

dt
(t)

=
∂ f
∂t

(t, ξ(t)) +

n∑
j=1

∂ f
∂x j

(t, ξ(t))F̂ j(t, ξ(t))

= LF f (t, ξ(t)),

as desired. �

We collect our basic results on Lyapunov’s Second Method in this case in the
following result.

4.3.22 Theorem (Lyapunov’s Second Method for nonautonomous ordinary differen-
tial equations) Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞ and that F satisfies
Assumption 4.1.1. Then the following statements hold.

(i) The equilibrium point x0 is stable if there exists V: T × U → R with the following
properties:

(a) V is of class C1;
(b) V ∈ TVLPD(x0);
(c) −LFV ∈ TVLPSD(x0).

(ii) The equilibrium point x0 is uniformly stable if there exists V: T ×U→ R with the
following properties:

(a) V is of class C1;
(b) V ∈ TVLPD(x0);
(c) V ∈ TVLD(x0);
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(d) −LFV ∈ TVLPSD(x0).

(iii) The equilibrium point x0 is asymptotically stable if there exists V: T ×U→ R with
the following properties:

(a) V is of class C1;
(b) V ∈ TVLPD(x0);
(c) −LFV ∈ TVLPD(x0).

(iv) The equilibrium point x0 is uniformly asymptotically stable if there exists V: T×U→
R with the following properties:

(a) V is of class C1;
(b) V ∈ TVLPD(x0);
(c) V ∈ TVLD(x0);
(d) −LFV ∈ TVLPD(x0).

Proof (i) Let t0 ∈ T. Let r ∈ R>0 be such that

1. B(2r, x0) ⊆ U,
2. V ∈ TVLPD2r(x0), and
3. −LFV ∈ TVLPSD2r(x0).
By definition of time-varying locally positive, let f ∈ LPD2r(x0) be such that

f (x) ≤ V(t, x) (4.16)

for all (t, x) ∈ T × B(r, x0). Also let g ∈ LPSDr(x0) be such that

LFV(t, x) ≤ −g(x) ≤ 0

for (t, x) ∈ T × B(r, x0). Let c ∈ R>0 be such that

c < inf{ f (x) | ‖x − x0‖ = r}

and then define
f −1(≤ c) = {x ∈ B(r, x0) | f (x) ≤ c}.

Also, for t ∈ T, denote

V−1
t (≤ c) = {x ∈ B(r, x0) | V(t, x) ≤ c}.

By (4.16), we have

V−1
t (≤ c) ⊆ f −1(≤ c) ⊆ B(r, x0), t ∈ T.

Define α2 : [0, 2r]→ R by

β(s) = sup{V(t0, x) | ‖x − x0‖ ≤ s}.
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A reference to the proof of Lemma 4.3.7(i) gives α2 ∈ K([0, 2r);R≥0) such that and

V(t0, x) ≤ β(‖x − x0‖) ≤ α2(‖x − x0‖), x ∈ B(r, x0).

Note that lims→0 α2(s) = 0, and so there exists δ ∈ R>0 such thatα2(s) < c for s ∈ [0, δ].
Note that

x ∈ B(δ, x0) =⇒ V(t0, x) ≤ c.

Let x ∈ B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x. (4.17)

The following technical lemmata are required to proceed with the proof, and will
recur a number of times for proofs relating to Lyapunov’s Second Method.

1 Lemma The solution ξ satisfies ξ(t) ∈ B(r, x0) for t ≥ t0.

Proof Suppose this is not true. Then, by continuity of ξ, there exists a largest
T ∈ R>0 such that ξ(t) ∈ B(r, x0) for all t ∈ [t0, t0 + T]. This implies, by continuity of
t 7→ V(t, ξ(t)), that

‖ξ(T) − x0‖ = r. (4.18)

Using the facts that
x ∈ B(δ, x0) ⊆ V−1

t0
(≤ c) ⊆ B(r, x0),

and that
d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ 0, t ∈ [t0, t0 + T]

(the leftmost equality by Lemma 4.3.21), we have

V(T, ξ(T)) = V(t0, ξ(t0)) +

∫ T

t0

V(t, ξ(t)) dt

= V(t0, ξ(t0)) +

∫ T

t0

LFV(t, ξ(t)) dt < c.
(4.19)

However, this contradicts (4.18) and the definition of c, and so we conclude the
lemma. H

The next lemma we state in some generality, since it asserts a generally useful
fact.
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2 Lemma Let F be an ordinary differential equation whose right-hand side

F̂ : T ×U→ Rn

satisfies supT = ∞ and Assumption 4.1.1. Let K ⊆ U be compact and assume that, for
every (t0, x) ∈ T × K, the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0,

satisfies ξ(t) ∈ K for t ≥ t0.
Then, for every (t0, x) ∈ T × K, the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0,

is defined on [t0,∞).
Proof Suppose the hypotheses of the lemma hold, but the conclusions do not.
Thus there exists (t0, x) ∈ T×K for which the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0, (4.20)

in not defined for all t ∈ [t0,∞). Then there exists a largest T ∈ R>0 such that
the solution of the initial value problem is defined on [t0, t0 + T). Let (t j) j∈Z>0 be a
sequence in [t0, t0 + T) converging to t0 + T. By the Bolzano–Weierstrass Theorem,
the sequence (ξ(t j)) j∈Z>0 has a convergent subsequence (ξ(t jk))k∈Z>0 :

lim
k→∞

ξ(t jk) = y ∈ K.

Now, by Theorem 1.4.8(ii), there exists ε ∈ R>0 such that the solution η to the initial
value problem

η̇(t) = F̂(t,η(t)), η(t0 + T) = y,

is defined on t ∈ [t0 + T − ε, t0 + T + ε]. Moreover, by assumption, η(t) ∈ K for every
t ∈ [t0 + T − ε, t0 + T + ε]. Define ξ : [t0, t0 + T + ε]→ K by

ξ(t) =

ξ(t), t ∈ [t0, t0 + T),
η(t), t ∈ [t0 + T, t0 + T + ε].

Note, then, that ξ is a solution to the differential equation and satisfies the initial
condition ξ(t0) = x. Thus we have arrived at a contradiction to the solution to the
initial value problem (4.20) being defined only on [t0, t0 + T). H

By combining the preceding two lemmata, we conclude that the solution ξ to
the initial value problem (4.17) with x ∈ B(δ, x0) satisfies (1) ξ(t) ∈ B(r, x0) for all
t ≥ t0 and (2) it is defined on [t0,∞). Moreover, by the computation (4.19),

ξ(t) ∈ V−1
t (≤ c) ⊆ f −1(≤ c).
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By Lemma 4.3.7, there exists α1 ∈ K([0, 2r);R≥0) such that

α1(‖x − x0‖) ≤ f (x), x ∈ B(r, x0).

Let x ∈ B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Since x ∈ B(δ, x0), our arguments above imply that ξ is defined on [t0,∞) and that
ξ(t) ∈ B(r, x0) for t ≥ t0. Moreover,

α1(‖ξ(t) − x0‖) ≤ f1(ξ(t)) ≤ V(t, ξ(t)) ≤ V(t0, ξ(t0)) ≤ α2(‖ξ(t0) − x0‖)

for t ≥ t0. Thus
‖ξ(t) − x0‖ ≤ α

−1
1
◦ α2(‖ξ(t0) − x0‖)

for t ≥ t0. Since α−1
1
◦ α2 ∈ K([0, 2r);R≥0) by Lemma 4.3.3, we can now conclude

uniform stability from Lemma 4.3.19(ii).
(ii) Let r ∈ R>0 be such that

1. B(2r, x0) ⊆ U,
2. V ∈ TVLPD2r(x0),
3. V ∈ TVLD2r(x0), and
4. −LFV ∈ TVLPSD2r(x0).
By definition of time-varying locally positive and locally decrescent, let f1, f2 ∈

LPD2r(x0) be such that
f1(x) ≤ V(t, x) ≤ f2(x) (4.21)

for all (t, x) ∈ T × B(r, x0). Also let g ∈ LPSDr(x0) be such that

LFV(t, x) ≤ −g(x) ≤ 0

for (t, x) ∈ T × B(r, x0). Let c ∈ R>0 be such that

c < inf{ f1(x) | ‖x − x0‖ = r}

and then define
f −1
1 (≤ c) = {x ∈ B(r, x0) | f1(x) ≤ c}

and
f −1
2 (≤ c) = {x ∈ B(r, x0) | f2(x) ≤ c}.

Also, for t ∈ T, denote

V−1
t (≤ c) = {x ∈ B(r, x0) | V(t, x) ≤ c}.

By (4.21), we have

f −1
2 (≤ c) ⊆ V−1

t (≤ c) ⊆ f −1
1 (≤ c) ⊆ B(r, x0), t ∈ T.

Let x ∈ f −1
2 (≤ c), let t0 ∈ T, and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x. (4.22)

The following lemma is an adaptation of Lemma 1 to our current setting.
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3 Lemma The solution ξ satisfies ξ(t) ∈ B(r, x0) for t ≥ t0.

Proof Suppose this is not true. Then, by continuity of ξ, there exists a largest
T ∈ R>0 such that ξ(t) ∈ B(r, x0) for all tı[t0, t0 + T]. This implies, by continuity of
t 7→ V(t, ξ(t)), that

‖V(T, ξ(T)) − x0‖ = r. (4.23)

Using the facts that

x ∈ f −1
2 (t0,≤ c) ⊆ V−1

t0
(≤ c) ⊆ B(r, x0),

and that
d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ 0, t ∈ [t0, t0 + T]

(the leftmost equality by Lemma 4.3.21), we have

V(T, ξ(T)) = V(t0, ξ(t0)) +

∫ T

t0

V(t, ξ(t)) dt

= V(t0, ξ(t0)) +

∫ T

t0

LFV(t, ξ(t)) dt < c.
(4.24)

However, this contradicts (4.23) and the definition of c, and so we conclude the
lemma. H

By combining the preceding lemma with Lemma 2, we conclude that the solu-
tion ξ to the initial value problem (4.22) with x ∈ f −1

2 (≤ c) satisfies (1) ξ(t) ∈ B(r, x0)
for all t ≥ t0 and (2) it is defined on [t0,∞). Moreover, by the computation (4.24),

ξ(t) ∈ V−1
t (≤ c) ⊆ f −1

1 (≤ c).

By Lemma 4.3.7, there exist α1, α2 ∈ K([0, 2r);R≥0) such that

α1(‖x − x0‖) ≤ f1(x), f2(x) ≤ α2(‖x − x0‖), x ∈ B(r, x0).

Now let δ ∈ (0, r] be sufficiently small that α2(s) ≤ c for s ∈ [0, δ]. Note that

x ∈ B(δ, x0) =⇒ α2(‖x − x0‖) ≤ c =⇒ x ∈ f −1
2 (≤ c).

Let (t0, x) ∈ T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Since x ∈ f −1
2 (≤ c), our arguments above imply that ξ is defined on [t0,∞) and that

ξ(t) ∈ B(r, x0) for t ≥ t0. Moreover,

α1(‖ξ(t) − x0‖) ≤ f1(ξ(t)) ≤ V(t, ξ(t)) ≤ V(t0, ξ(t0)) ≤ f2(ξ(t0)) ≤ α2(‖ξ(t0) − x0‖)
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for t ≥ t0. Thus
‖ξ(t) − x0‖ ≤ α

−1
1
◦ α2(‖ξ(t0) − x0‖)

for t ≥ t0. Since α−1
1
◦ α2 ∈ K([0, 2r);R≥0) by Lemma 4.3.3, we can now conclude

uniform stability from Lemma 4.3.19(ii).
(iii) Let t0 ∈ T. Let r ∈ R>0 be such that

1. B(2r, x0) ⊆ U,
2. V ∈ TVLPD2r(x0),
3. −LFV ∈ TVLPD2r(x0).
As in the proof of part (i), we let f1 ∈ LPD2r(x0) and α1 ∈ K([0, 2r);R≥0) be such that

α1(‖x − x0‖) ≤ f1(x) ≤ V(t, x)

for (t, x) ∈ T×B(r, x0). Also as in the proof of part (i), let α2 ∈ K([0, 2r);R≥0) be such
that

V(t0, x) ≤ α2(‖x − x0‖), x ∈ B(r, x0).

Also let f3 ∈ LPD2r(x0) and α3 ∈ K([0, 2r);R≥0) be such that

α3(‖x − x0‖) ≤ f3(x) ≤ −LFV(t, x)

for (t, x) ∈ T × B(r, x0).
Of course, we then conclude stability of x0 from part (i). We then have

V(t, x) ≤ α2(‖x − x0‖) =⇒ α3 ◦ α
−1
2 ◦ V(t, x) ≤ α3(‖x − x0‖) (4.25)

for (t, x) ∈ T × B(r, x0). By Lemma 4.3.3 we have α3 ◦ α−1
2 ∈ K([0, r);R≥0) and,

therefore, by Lemma 4.3.4, there exists a locally Lipschitz α ∈ K([0, r);R≥0) such
that α(s) ≤ α3 ◦ α−1

2 (x) for all x ∈ [0, r). Now let δ be as in the proof of part (i). Let
x ∈ B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Recall that
1. ξ(t) ∈ Br(x0,) for all t ∈ [t0,∞) by Lemma 1,
2. V(t, ξ(t)) ≤ c for all t ∈ [t0,∞) by definition of δ.
Using Lemma 4.3.21 and (4.25), we then have

d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ −α3(‖ξ(t) − x0‖) ≤ −α ◦ V(t, ξ(t)).

The following technical lemma is now required.
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4 Lemma Let F be a scalar ordinary differential equation with right-hand side

F̂ : T ×U→ R

where U ⊆ R is open. For (t0,y0) ∈ T ×U, let ξ, η : T′ → U be of class C1 and satisfy

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = y0

and
η̇(t) < F̂(t,η(t)), η(t0) = y0.

Then η(t) < ξ(t) for t > t0.

Proof We have
η̇(t0) < F̂(t0, y0) = ξ̇(t0).

Therefore, by continuity of the derivatives, there exists ε ∈ R>0 such that

η̇(t) < ξ̇(t), t ∈ [t0, t0 + ε].

Therefore, for t ∈ (t0, t0 + ε],

η(t) =

∫ t

t0

η̇(τ) dτ <
∫ t

t0

ξ̇(τ) dτ = ξ(t).

Now suppose that it does not hold that η(t) < ξ(t) for all t ≥ t0. Then let

T = inf{t ≥ t0 | η(t) ≥ ξ(t)} > t0 + ε.

By continuity, η(T) = ξ(T). Thus

η̇(T) = η̇(T) − F̂(T, η(T))︸              ︷︷              ︸
<0

+F̂(T, η(T))

< ξ̇(t) − F̂(T, ξ(T))︸             ︷︷             ︸
=0

+F̂(T, ξ(T)) = ξ̇(T).

On the other hand, for h ∈ R>0 (sufficiently small for the expression to be defined)
we have

η(T) − η(T − h)
h

>
ξ(T) − ξ(T − h)

h
,

and taking the limit as h→ 0 gives η̇(T) ≥ ξ̇(T), contradicting our computation just
proceeding. H

By Lemma 4.3.5, there exists ψ ∈ KL([0, r) × [t0,∞);R≥0) such that, if y ∈ [0, r),
then the solution to the initial value problem

η̇(t) = −α(η(t)), η(t0) = y,
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is ψ(y, t) for t ≥ t0. By Lemma 4 we have

V(t, ξ(t)) ≤ ψ(V(t0, x), t), t ≥ t0.

Therefore,

‖ξ(t) − x0‖ ≤ α
−1
1
◦ ψ(V(t0, x), t)

≤ α−1
1
◦ ψ(α2(‖x − x0‖), t).

By Lemma 4.3.3(iii), the mapping

β : [0, r) × [t0,∞)→ R
(s, τ) 7→ α−1

1
◦ ψ(α2(s), τ)

is of class KL. The asymptotic stability of x0 now follows from Lemma 4.3.19(iii).
(iv) Let r ∈ R>0 be such that

1. B(2r, x0) ⊆ U,
2. V ∈ TVLPD2r(x0),
3. V ∈ TVLD2r(x0), and
4. −LFV ∈ TVLPD2r(x0).
As in the proof of part (ii), we let f1, f2 ∈ LPD2r(x0) and α1, α2 ∈ K([0, 2r);R≥0) be
such that

α1(‖x − x0‖) ≤ f1(x) ≤ V(t, x) ≤ f2(x) ≤ α2(‖x − x0‖)

for (t, x) ∈ T × B(r, x0). Also let f3 ∈ LPD2r(x0) and α3 ∈ K([0, 2r);R≥0) be such that

α3(‖x − x0‖) ≤ f3(x) ≤ −LFV(t, x)

for (t, x) ∈ T × B(r, x0).
Of course, we then conclude uniform stability of x0 from part (ii). We then have

V(t, x) ≤ α2(‖x − x0‖) =⇒ α3 ◦ α
−1
2 ◦ V(t, x) ≤ α3(‖x − x0‖) (4.26)

for (t, x) ∈ T × B(r, x0). By Lemma 4.3.3 we have α3 ◦ α−1
2 ∈ K([0, r);R≥0) and,

therefore, by Lemma 4.3.4, there exists a locally Lipschitz α ∈ K([0, r);R≥0) such
that α(s) ≤ α3 ◦ α−1

2 (x) for all x ∈ [0, r). Now let δ be as in the proof of part (ii). Let
(t0, x) ∈ T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Recall that
1. ξ(t) ∈ Br(x0,) for all t ∈ [t0,∞) by Lemma 3,
2. V(t, ξ(t)) ≤ c for all t ∈ [t0,∞) by definition of δ.
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Using Lemma 4.3.21 and (4.26), we then have

d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ −α3(‖ξ(t) − x0‖) ≤ −α ◦ V(t, ξ(t)).

By Lemma 4.3.5, there exists ψ ∈ KL([0, r)×R≥0;R≥0) such that, if y ∈ [0, r) and
t0 ∈ R, then the solution to the initial value problem

η̇(t) = −α(η(t)), η(t0) = y,

is ψ(y, t − t0) for t ≥ t0. By Lemma 4 we have

V(t, ξ(t)) ≤ ψ(V(t0, x), t − t0), t ≥ t0.

Therefore,

‖ξ(t) − x0‖ ≤ α
−1
1
◦ ψ(V(t0, x), t − t0)

≤ α−1
1
◦ ψ(α2(‖x − x0‖), t − t0).

By Lemma 4.3.3(iii), the mapping

β : [0, r) × R≥0 → R
(s, τ) 7→ α−1

1
◦ ψ(α2(s), τ)

is of class KL. The uniform asymptotic stability of x0 now follows from
Lemma 4.3.19(iv). �

4.3.23 Terminology The function V in the statement of the preceding theorem is typically
called a Lyapunov function. It is not uncommon for this terminology to be used
imprecisely, in the sense that when one sees the expression “Lyapunov function,” it
is clear only from context whether one is in case (i), (ii), (iii), or (iv) of the preceding
theorem. Typically this is not to be thought of as confusing, as the context indeed
makes this clear. •

We also have the following sufficient condition for exponential stability (as
opposed to mere asymptotic stability) which comes with the flavour of Lyapunov’s
Second Method.

4.3.24 Theorem (Lyapunov’s Second Method for exponential stability of nonau-
tonomous ordinary differential equations) Let F be an ordinary differential equation
with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞ and F satisfies
Assumption 4.1.1. Then x0 is uniformly exponentially stable if there exists V: T×U→ R
with the following properties:

(i) V is of class C1;
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(ii) there exists C1, α1, r1 ∈ R>0 such that

C1‖x − x0‖
α1 ≤ V(t, x) ≤ C−1

1 ‖x − x0‖
α1

for all (t, x) ∈ T × B(r1, x0);
(iii) there exists C2, α2, r2 ∈ R>0 such that

LFV(t, x) ≤ −C2‖x − x0‖
α2

for all (t, x) ∈ T × B(r2, x0).

Proof Let r, α ∈ R>0 be such that
1. C1‖x − x0‖

α
≤ V(t, x) ≤ C−1

1 ‖x − x0‖
α for all (t, x) ∈ T × B(2r, x0) and

2. −LFV(t, x) ≥ C2‖x − x0‖
α for all (t, x) ∈ T × B(r, x0).

Let c ∈ R>0 be such that

c < inf{C1‖x − x0‖
α
| ‖x − x0‖ = r}.

We then let δ ∈ R>0 be such that, if x ∈ B(δ, x0), then C2‖x − x0‖ ≤ c. Let (t0, x) ∈
T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0 = x.

We then argue as in Lemmata 3 and 2 from the proof of Theorem 4.3.22 that
ξ(t) ∈ B(r, x0) for t ≥ t0 and that ξ is defined for all t ∈ [t0,∞). Now compute, using
Lemma 4.3.21 and the definitions of C1, C2, and α,

d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ −C2‖ξ(t) − x0‖
α
≤ −C1C2V(t, ξ(t)).

By Lemma 4 of Theorem 4.3.22,

V(t, ξ(t)) ≤ V(t0, ξ(t0))e−C1C2(t−t0)

for t ≥ t0. Now, again using the definition of C1 and α,

‖ξ(t) − x0‖ ≤

(
V(t, ξ(t))

C1

)1/α

≤

(
V(t0, ξ(t0))e−C1C2(t−t0)

C1

)1/α

≤
‖x − x0‖

C2α
1

e−C1C2(t−t0)/α

for all t ≥ t0. Recalling that the preceding estimates are valid for any (t0, x) ∈
T × B(δ, x0), we conclude uniform exponential stability of x0. �
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4.3.4 The Second Method for autonomous equations

In the preceding section we gave a quite general version of Lyapunov’s Sec-
ond Method applied to nonautonomous ordinary differential equations. As can be
seen, the proofs are lengthy and a little detailed. Here we consider the simpler au-
tonomous case, for which we give a self-contained proof for a reader wishing for a
“light” alternative. In stating the result in this case, we recall from Proposition 4.1.5
that “stability” and “uniform stability” are equivalent, and that “asymptotic sta-
bility” and “uniform asymptotic stability” are equivalent for nonautonomous or-
dinary differential equations.

Before we get to the statement of the main result, we first give the non-time-
varying version of the definition of Lie derivative.

4.3.25 Definition (Lie derivative of a function along an autonomous ordinary dif-
ferential equation) Let F be an autonomous ordinary differential equation with
right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x),

and let f : U→ R be of class C1. The Lie derivative of f along F is

LF0 f : U→ R

x 7→
n∑

j=1

F̂0, j(x)
∂ f
∂x j

(x).
•

4.3.26 Lemma (Essential property of the Lie derivative II) Let F be an autonomous ordi-
nary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(t, x),

and let f : U→ R be of class C1. If ξ : T′ → U is a solution for F, then

d
dt

f(ξ(t)) = LF0f(ξ(t)).

Proof Using the Chain Rule and the fact that

ξ̇(t) = F̂0(ξ(t)),
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we have

d
dt

f (ξ(t)) =

n∑
j=1

∂ f
∂x j

(ξ(t))
dξ j

dt
(t)

=

n∑
j=1

∂ f
∂x j

(ξ(t))F̂0, j(ξ(t))

= LF0 f (ξ(t)),

as desired. �

We can now state the main concerning Lyapunov’s Second Method in the nonau-
tonomous case.

4.3.27 Theorem (Lyapunov’s Second Method for autonomous ordinary differential
equations) Let F be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x),

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞ and that F satisfies
Assumption 4.1.1. Then the following statements hold.

(i) The equilibrium point x0 is stable if there exists V: U → R with the following
properties:

(a) V is of class C1;
(b) V ∈ LPD(x0);
(c) −LF0V ∈ LPSD(x0).

(ii) The equilibrium point x0 is asymptotically stable if there exists V: U→ R with the
following properties:

(a) V is of class C1;
(b) V ∈ LPD(x0);
(c) −LF0V ∈ LPD(x0).

We shall give two proofs of Theorem 4.3.27, one assuming Theorem 4.3.22 and
one independent of that more general theorem.

Proof of Theorem 4.3.27, assuming Theorem 4.3.22 In this case, the theorem is
an easy corollary of the more general Theorem 4.3.22. Indeed, the hypotheses of
parts (i) and (ii) of Theorem 4.3.27 immediately imply those of parts (ii) and (iv),
respectively, of Theorem 4.3.22. �

Independent proof of Theorem 4.3.27 (i) Let ε ∈ R>0. Let r ∈ (0, ε2 ] be chosen so
that
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1. B(2r, x0) ⊆ U,
2. V ∈ LPD2r(x0), and
3. −LF0V ∈ LPSD2r(x0).
Let c ∈ R>0 be such that

c < inf{V(x) | ‖x − x0‖ = r}

and define
V−1(≤ c) = {x ∈ B(r, x0) | V(x) ≤ c}.

Then V−1(≤ c) ⊆ B(r, x0) by continuity of V and the definition of c. By continuity of
V, let δ ∈ R>0 be such that, if x ∈ B(δ, x0), then V(x) < c. Therefore, we have

B(δ, x0) ⊆ V−1(≤ c) ⊆ B(r, x0).

Let (t0, x) ∈ T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x.

The following lemmata, which essentially appear in the proof of Theorem 4.3.22,
are repeated here for the purposes of making the proof self-contained.

1 Lemma The solution ξ satisfies ξ(t) ∈ B(r, x0) for t ≥ t0.

Proof Suppose this is not true. Then, by continuity of ξ, there exists a largest
T ∈ R>0 such that ξ(t) ∈ B(r, x0) for all t ∈ [t0, t0 + T]. This implies, by continuity of
t 7→ V(ξ(t)), that

‖V(ξ(T)) − x0‖ = r. (4.27)

Using the facts that
x ∈ B(δ, x0) ⊆ V−1(≤ c) ⊆ B(r, x0),

and that
d
dt

V(ξ(t)) = LF0V(ξ(t)) ≤ 0, t ∈ [t0, t0 + T]

(the leftmost equality by Lemma 4.3.26), we have

V(ξ(T)) = V(ξ(t0)) +

∫ T

t0

V(ξ(t)) dt

= V(ξ(t0)) +

∫ T

t0

LF0V(ξ(t)) dt < c.
(4.28)

However, this contradicts (4.27) and the definition of c, and so we conclude the
lemma. H
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2 Lemma Let F be an autonomous ordinary differential equation whose right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x)

satisfies supT = ∞ and Assumption 4.1.1. Let K ⊆ U be compact and assume that, for
every (t0, x) ∈ T × K, the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x0,

satisfies ξ(t) ∈ K for t ≥ t0.
Then, for every (t0, x) ∈ T × K, the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x0,

is defined on [t0,∞).

Proof Suppose the hypotheses of the lemma hold, but the conclusions do not.
Thus there exists (t0, x) ∈ T×K for which the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x0, (4.29)

in not defined for all t ∈ [t0,∞). Then there exists a largest T ∈ R>0 such that
the solution of the initial value problem is defined on [t0, t0 + T). Let (t j) j∈Z>0 be a
sequence in [t0, t0 + T) converging to t0 + T. By the Bolzano–Weierstrass Theorem,
the sequence (ξ(t j)) j∈Z>0 has a convergent subsequence (ξ(t jk))k∈Z>0 :

lim
k→∞

ξ(t jk) = y ∈ K.

Now, by Theorem 1.4.8(ii), there exists ε ∈ R>0 such that the solution η to the initial
value problem

η̇(t) = F̂0(η(t)), η(t0 + T) = y,

is defined on t ∈ [t0 + T − ε, t0 + T + ε]. Moreover, by assumption, η(t) ∈ K for every
t ∈ [t0 + T − ε, t0 + T + ε]. Define ξ : [t0, t0 + T + ε]→ K by

ξ(t) =

ξ(t), t ∈ [t0, t0 + T),
η(t), t ∈ [t0 + T, t0 + T + ε].

Note, then, that ξ is a solution to the differential equation and satisfies the initial
condition ξ(t0) = x. Thus we have arrived at a contradiction to the solution to the
initial value problem (4.29) being defined only on [t0, t0 + T). H

Since r ≤ ε
2 < ε, the preceding lemma immediately proves stability of x0.

(ii) Let r, δ ∈ R>0 be chosen so that
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1. B(2r, x0) ⊆ U,
2. V ∈ LPD2r(x0),
3. −LF0V ∈ LPD(x0), and
4. if (t0, x) ∈ T × B(δ, x0) and if ξ is the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x,

then ξ(t) ∈ B(r, x0) for t ≥ t0 and ξ is defined on [t0,∞).
The last condition is possible by virtue of our arguments in part (i).

Let (t0, x) ∈ T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x.

Since d
dtV(ξ(t)) < 0 for all t ≥ t0, it follows that t 7→ V(ξ(t)) is strictly decreasing.

Thus, since V is nonnegative, there exists γ ∈ R≥0 such that

lim
t→∞

V(ξ(t)) = γ.

We claim that γ = 0. Suppose otherwise, and that γ ∈ R>0. Let α ∈ R>0 be such
that, if x ∈ B(α, x0), then V(x) < γ. Therefore, ξ(t) ∈ B(r, x0) \ B(α, x0). Denote

β = inf{−LF0V(x) | ‖x − x0‖ ∈ [α, r]},

the infimum existing because it is over a compact set by missing stuff . Moreover,
since LF0V is negative definite, β ∈ R>0. Now we calculate

V(ξ(t)) = V(ξ(t0)) +

∫ t

t0

d
dτ

V(ξ(τ)) dτ

= V(ξ(t0)) +

∫ t

t0

LF0V(ξ(τ)) dτ

≤ V(ξ(t0)) − β(t − t0).

This implies that limt→∞V(ξ(t)) = −∞. This contradiction leads us to conclude that
γ = 0.

Finally, we must show that this implies that

lim
t→∞
‖ξ(t) − x0‖ = 0

(still supposing ξ to be the solution for initial condition (t0, x) ∈ T × B(δ, x0)). To
this end, let ε ∈ R>0 and let b ∈ R>0 be such that

b < inf{V(x) | ‖x − x0‖ = ε}.

Then, as we argued above that V−1(≤ c) ⊆ B(r, x0), here we conclude that V−1(≤ b) ⊆
B(ε, x0). Therefore, if we let T ∈ R>0 be sufficiently large that V(ξ(t)) ≤ b for t ≥ T,
then ξ(t) ∈ B(ε, x0) for all t ≥ T. �
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4.3.28 Terminology The function V in the statement of the preceding theorem is typically
called a Lyapunov function. It is not uncommon for this terminology to be used
imprecisely, in the sense that when one sees the expression “Lyapunov function,” it
is clear only from context whether one is in case (i) or (ii) of the preceding theorem.
Typically this is not to be thought of as confusing, as the context indeed makes this
clear. •

4.3.29 Remark (Automatic implications of Theorem 4.3.27) We recall from Proposi-
tion 4.1.5 that uniform stability and stability are equivalent for autonomous or-
dinary differential equations, and similarly that uniform asymptotic stability and
asymptotic stability are equivalent. •

4.3.30 Theorem (Lyapunov’s Second Method for exponential stability of au-
tonomous ordinary differential equations) Let F be an autonomous ordinary dif-
ferential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x),

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞ and F satisfies
Assumption 4.1.1. Then x0 is exponentially stable if there exists V: U → R with the
following properties:

(i) V is of class C1;
(ii) there exist C1, α1, r1 ∈ R>0 such that

C1‖x − x0‖
α1 ≤ V(x) ≤ C−1

1 ‖x − x0‖
α1

for all x ∈ B(r1, x0);
(iii) there exist C2, α2, r2 ∈ R>0 such that

LF0V(x) ≤ −C2‖x − x0‖
α2

for all x ∈ B(r2, x0).

Proof Let r, α ∈ R>0 be such that
1. C1‖x − x0‖

α
≤ V(x) ≤ C−1

1 ‖x − x0‖
α for all x ∈ B(2r, x0) and

2. −LF0V(x) ≥ C2‖x − x0‖
α for all x ∈ B(r, x0).

Let c ∈ R>0 be such that

c < inf{C1‖x − x0‖
α
| ‖x − x0‖ = r}.

We then let δ ∈ R>0 be such that, if x ∈ B(δ, x0), then C2‖x − x0‖ ≤ c. Let (t0, x) ∈
T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x.
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We then argue as in Lemmata 1 and 2 from the proof of Theorem 4.3.27 that
ξ(t) ∈ B(r, x0) for t ≥ t0 and that ξ is defined for all t ∈ [t0,∞). Now compute, using
Lemma 4.3.26 and the definitions of C1, C2, and α,

d
dt

V(ξ(t)) = LFV(ξ(t)) ≤ −C2‖ξ(t) − x0‖
α
≤ −C1C2V(ξ(t)).

The following technical lemma is now required.

1 Lemma Let F be an autonomous scalar ordinary differential equation with right-hand side

F̂ : T ×U→ R

(t, x) 7→ F̂0(x),

where U ⊆ R is open. For (t0,y0) ∈ T ×U, let ξ, η : T′ → U be of class C1 and satisfy

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = y0

and
η̇′(t) < F̂0(η(t)), η(t0) = y0.

Then η(t) < ξ(t) for t > t0.
Proof We have

η̇(t0) < F̂(y0) = ξ̇(t0).

Therefore, by continuity of the derivatives, there exists ε ∈ R>0 such that

η̇(t) < ξ̇(t), t ∈ [t0, t0 + ε].

Therefore, for t ∈ (t0, t0 + ε],

η(t) =

∫ t

t0

η̇(τ) dτ <
∫ t

t0

ξ̇(τ) dτ = ξ(t).

Now suppose that it does not hold that η(t) < ξ(t) for all t ≥ t0. Then let

T = inf{t ≥ t0 | η(t) ≥ ξ(t)} > t0 + ε.

By continuity, η(T) = ξ(T). Thus

η′(T) = η′(T) − F̂(η(T))︸            ︷︷            ︸
<0

+F̂(T, η(T))

< ξ′(t) − F̂(ξ(T))︸           ︷︷           ︸
=0

+F̂(ξ(T)) = ξ′(T).

On the other hand, for h ∈ R>0 (sufficiently small for the expression to be defined)
we have

η(T) − η(T − h)
h

>
ξ(T) − ξ(T − h)

h
,

and taking the limit as h → 0 gives η′(T) ≥ ξ′(T), contradicting our computation
just proceeding. H
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By the lemma,
V(ξ(t)) ≤ V(ξ(t0))e−C1C2(t−t0)

for t ≥ t0. Now, again using the definition of C1 and α,

‖ξ(t) − x0‖ ≤

(
V(ξ(t))

C1

)1/α

≤

(
V(ξ(t0))e−C1C2(t−t0)

C1

)1/α

≤
‖x − x0‖

C2α
1

e−C1C2(t−t0)/α

for all t ≥ t0. Recalling that the preceding estimates are valid for any (t0, x) ∈
T × B(δ, x0), we conclude exponential stability of x0. �

4.3.5 The Second Method for time-varying linear equations

The next two sections will be concerned with Lyapunov’s Second Method for
systems of linear homogeneous ordinary differential equations. In this section we
treat the time-varying case, and in the next we treat the time-invariant case. While it
is relatively easy to prove the theorems in this case using the general, not for linear
equations, results of Sections 4.3.3 and 4.3.4, we instead give self-contained proofs
that illustrate the special character of stability for linear differential equations that
we studied in Section 4.2.

In the study of Lyapunov’s Second Method for linear equations, one works
with Lyapunov functions that are especially adapted to the linear structure of
the equations, namely the quadratic functions of Sections 4.3.1.4 and 4.3.1.5.
In working with such functions, the derivatives along solutions, called the “Lie
derivative” in Definitions 4.3.20 and 4.3.25, take a particular form that leads to
the following definition and associated following result.

4.3.31 Definition (Lyapunov pair for time-varying linear ordinary differential equa-
tions) Let F be a system of linear homogeneous ordinary differential equations in
an n-dimensional R-vector space V and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

for A : T → L(V; V). Suppose that V has an inner product 〈·, ·〉. A Lyapunov pair
for F is a pair (P,Q) where

(i) P,Q : T→ L(V; V) are such that P is of class C1, Q is continuous, and P(t) and
Q(t) are symmetric, and

(ii) Ṗ(t) + P(t) ◦ A(t) + AT(t) ◦ P(t) = −Q(t) for all t ∈ T. •

Note that, with the notion of a Lyapunov pair, one can think of (1) P as being
given, and part (ii) of the definition prescribing Q or (2) Q as being given, in which
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case part (ii) prescribing a linear differential equation for P. Both ways of thinking
about this will be useful.

At first encounter, such a definition seems to come from nowhere. However, the
motivation for it is straightforward, as the following lemma shows, and its proof
makes clear.

4.3.32 Lemma (Derivative of quadratic function along solutions of a linear ordinary
differential equation) Let F be a system of linear homogeneous ordinary differential
equations in an n-dimensional R-vector space V and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

for A: T → L(V; V). Suppose that V has an inner product 〈·, ·〉. Let P: T → L(V; V) be
of class C1 and such that P(t) is symmetric for every t ∈ T and let fP be the corresponding
time-varying quadratic function as in Definition 4.3.15. Then, for any solution ξ : T→ V
for F, we have

d
dt

fP(t, ξ(t)) = −fQ(t, ξ(t)),

where (P,Q) is a Lyapunov pair for F.

Proof We shall represent solutions using the state transition map as in Sec-
tion 3.2.2.2. Thus, if (t0, x) ∈ T × V, the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

is ξ(t) = ΦA(t, t0)(x). Now we directly compute

d
dt

fP(t,ΦA(t, t0)(x)) =
d
dt
〈P(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)〉

= 〈Ṗ(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)〉 + 〈P(t) ◦ d
dtΦA(t, t0)(x),ΦA(t, t0)(x)〉

+ 〈P(t) ◦ΦA(t, x0)(x), d
dtΦA(t, t0)(x)〉

= 〈Ṗ(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)〉 + 〈P(t) ◦ A(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)〉
+ 〈P(t) ◦ΦA(t, x0)(x)),A(t) ◦ΦA(t, t0)(x)〉

= − 〈Q(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)〉,

where (P,Q) is a Lyapunov pair, i.e.,

Q(t) = −Ṗ(t) − P(t) ◦ A(t) − AT(t) ◦ P(t), t ∈ T. �

The lemma allows us to provide the following connection to the Lie derivative
characterisations of Lemmata 4.3.21 and 4.3.26.
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4.3.33 Corollary (Lie derivative of quadratic function along a linear ordinary differ-
ential equation) Let F be a system of linear homogeneous ordinary differential equations
in an n-dimensional R-vector space V and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

for A: T → L(V; V). Suppose that V has an inner product 〈·, ·〉. Let P: T → L(V; V) be
of class C1 and such that P(t) is symmetric for every t ∈ T and let fP be the corresponding
time-varying quadratic function as in Definition 4.3.15. Then,

LFfP(t, x) = −fQ(t, x), (t, x) ∈ T × V.

Proof From the proof of the preceding lemma we have

d
dt

fP(t,ΦA(t, t0)(x)) = − fQ(t,ΦA(t, t0)(x)).

Evaluating at t = t0 gives the result. �

We can now state and prove our main result concerning Lyapunov’s Second
Method for time-varying linear ordinary differential equations.

4.3.34 Theorem (Lyapunov’s Second Method for linear time-varying ordinary differ-
ential equations) Let F be a system of linear homogeneous ordinary differential equations
in an n-dimensional R-vector space V and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

for A: T→ L(V; V). Suppose that A is continuous and that supT = ∞. Suppose that V
has an inner product 〈·, ·〉. Then the following statements hold.

(i) The equation F is stable if there exists P,Q: T→ L(V; V) with the following proper-
ties:

(a) P is of class C1 and Q is continuous;
(b) P(t) and Q(t) are symmetric for every t ∈ T;
(c) (P,Q) is a Lyapunov pair for F;
(d) P is positive-definite;
(e) Q is positive-semidefinite.

(ii) The equation F is uniformly stable if there exists P,Q: T → L(V; V) with the
following properties:

(a) P is of class C1 and Q is continuous;
(b) P(t) and Q(t) are symmetric for every t ∈ T;
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(c) (P,Q) is a Lyapunov pair for F;
(d) P is positive-definite;
(e) P is decrescent;
(f) Q is positive-semidefinite.

(iii) The equation F is asymptotically stable if there exists P,Q: T → L(V; V) with the
following properties:

(a) P is of class C1 and Q is continuous;
(b) P(t) and Q(t) are symmetric for every t ∈ T;
(c) (P,Q) is a Lyapunov pair for F;
(d) P is positive-definite;
(e) Q is positive-definite.

(iv) The equation F is uniformly asymptotically stable if there exists P,Q: T→ L(V; V)
with the following properties:

(a) P is of class C1 and Q is continuous;
(b) P(t) and Q(t) are symmetric for every t ∈ T;
(c) (P,Q) is a Lyapunov pair for F;
(d) P is positive-definite;
(e) P is decrescent;
(f) Q is positive-definite.

We shall give two proofs of Theorem 4.3.34, one assuming Theorem 4.3.22 and
the other an independent proof. The independent proof is interesting in and of
itself because it makes use of methods particular to linear equations.

Proof of Theorem 4.3.34, assuming Theorem 4.3.22 If we collect together the
conclusions of Lemma 4.3.17 and Corollary 4.3.33, we see that the hypotheses
of parts (i)–(iv) of Theorem 4.3.34 imply those of the corresponding parts of Theo-
rem 4.3.22, and thus the conclusions also correspond. �

Independent proof of Theorem 4.3.34 (i) Let t0 ∈ T. Since P is positive-definite,
by definition and by Lemma 4.3.14, there exists C1 ∈ R>0 such that

C1‖x‖2 ≤ fP(t, x), t ∈ T, x ∈ V.

By Lemma 4.3.14, there exists C2 ∈ R>0 such that

fP(t0, x) ≤ C1‖x‖2, x ∈ V.

Since Q is positive-semidefinite, by Lemma 4.3.32 we have

d
dt

fP(t,ΦA(t, t0)(x)) ≤ 0
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for all x ∈ V and t ≥ t0. Therefore, we have

C1‖ΦA(t, t0)(x)‖2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2‖x‖2

for every x ∈ V and t ≥ t0. Thus

‖ΦA(t, t0)(x)‖ ≤
√

C2/C1‖x‖,

which gives stability.
(ii) Here, since P is positive-definite and decrescent, by definition and by

Lemma 4.3.14, we have C1,C2 ∈ R>0 such that

C1‖x‖2 ≤ fP(t, x) ≤ C2‖x‖2, t ∈ T.

As in the proof of part (i),

d
dt

fP(t,ΦA(t, t0)(x)) ≤ 0

for all (t0, x) ∈ T × V and t ≥ t0. Therefore,

C1‖ΦA(t, t0)(x)‖2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2‖x‖2

for all (t0, x) ∈ T × V and t ≥ t0. Thus,

‖ΦA(t, t0)(x)‖ ≤
√

C2/C1‖x‖

for every (t0, x) ∈ T × V and t ≥ t0. This gives uniform stability, as desired.
(iii) Let t0 ∈ T. Here we have stability from part (i). From that part of the proof

we also have C1,C2 ∈ R>0 (with C2 possibly depending on t0) such that

C1‖ΦA(t, t0)(x)‖2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2‖x‖2

for every x ∈ V and t ≥ t0. Since Q is positive-definite, by definition and by
Lemma 4.3.14, there exists C3 ∈ R>0 such that

C3‖x‖2 ≤ fQ(t, x), (t, x) ∈ T × V.

Thus, by Lemma 4.3.32, we have

d
dt

fP(t,ΦA(t, t0)(x)) = − fQ(t,ΦA(t, t0)) ≤ −C3‖ΦA(t, t0)(x)‖2.

for all x ∈ V and t ≥ t0. Therefore, there exists γ ∈ R≥0 such that

lim
t→∞

fP(t,ΦA(t, t0)(x)) = γ.
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We claim that γ = 0. Suppose otherwise, and that γ ∈ R>0. We then have

fP(t,ΦA(t, t0)(x)) = fP(t0, x) +

∫ t

t0

d
dτ

fP(τ,ΦA(τ, t0)(x)) dτ

= fP(t0, x) −
∫ t

t0

fQ(τ,ΦA(τ, t0)) dτ

≤ fP(t0, x) − C3

∫ t

t0

‖ΦA(τ, t0)(x)‖2 dτ

≤ fP(t0, x) −
C3

C1

∫ t

t0

fP(τ,ΦA(τ, t0)(x)) dτ

≤ fP(t0, x) −
C3

C1
γ(t − t0).

This implies that limt→∞ fP(t,ΦA(t, t0)(x)) = −∞. This contradiction leads us to
conclude that γ = 0. Finally, we then have

lim
t→∞
‖ΦA(t, t0)(x)‖2 ≤ lim

t→∞
C−1

1 fP(t,ΦA(t, t0)(x)) = 0,

which gives asymptotic stability.
(iv) Here we have uniform stability from part (i). From that part of the proof we

also have C1,C2 ∈ R>0 such that

C1‖ΦA(t, t0)(x)‖2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2‖x‖2

for every (t0, x) ∈ T × V and t ≥ t0. Since Q is positive-definite by definition and by
Lemma 4.3.14, there exists C3 ∈ R>0 such that

C3‖x‖2 ≤ fQ(t, x), (t, x) ∈ T × V.

Thus, by Lemma 4.3.32, we have

d
dt

fP(t,ΦA(t, t0)(x)) = − fQ(t,ΦA(t, t0)) ≤ −C3‖ΦA(t, t0)(x)‖2.

for all (t0, x) ∈ T × V and t ≥ t0. Therefore, there exists γ ∈ R≥0 such that

lim
t→∞

fP(t,ΦA(t, t0)(x)) = γ.
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We claim that γ = 0. Suppose otherwise, and that γ ∈ R>0. We then have

fP(t,ΦA(t, t0)(x)) = fP(t0, x) +

∫ t

t0

d
dτ

fP(τ,ΦA(τ, t0)(x)) dτ

= fP(t0, x) −
∫ t

t0

fQ(τ,ΦA(τ, t0)) dτ

≤ fP(t0, x) − C3

∫ t

t0

‖ΦA(τ, t0)(x)‖2 dτ

≤ fP(t0, x) −
C3

C1

∫ t

t0

fP(τ,ΦA(τ, t0)(x)) dτ

≤ fP(t0, x) −
C3

C1
γ(t − t0).

This implies that limt→∞ fP(t,ΦA(t, t0)(x)) = −∞. This contradiction leads us to
conclude that γ = 0. Finally, we then have

lim
t→∞
‖ΦA(t, t0)(x)‖2 ≤ lim

t→∞
C−1

1 fP(t,ΦA(t, t0)(x)) = 0,

which gives uniform asymptotic stability, since C1, C2, and C3 are independent of
t0. �

4.3.35 Remark (Automatic implications of Theorem 4.3.34) We recall from Theo-
rem 4.2.3 that the conclusions of stability, uniform stability, asymptotic stability,
and uniform asymptotic stability are actually of the global sort given in Defini-
tion 4.2.1. Moreover, from Proposition 4.2.6 we see that uniform stability and
stability are equivalent for linear homogeneous equations with constant coeffi-
cients, and similarly that uniform asymptotic stability and asymptotic stability are
equivalent. •

4.3.6 The Second Method for linear equations with constant coefficients

The final setting in which we consider conditions for stability using Lyapunov’s
Second Method is that for linear homogeneous ordinary differential equations with
constant coefficients.

As in the time-varying setting of the preceding section, in this section we work
with Lyapunov functions that are especially adapted to the linear structure of
the equations, namely the quadratic functions of Sections 4.3.1.4. In working
with such functions, the derivatives along solutions, called the “Lie derivative” in
Definitions 4.3.20 and 4.3.25, take a particular form that leads to the following def-
inition and associated following result. What we have, of course, is a specialisation
Definition 4.3.31.
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4.3.36 Definition (Lyapunov pair for linear ordinary differential equations with con-
stant coefficients) Let F be a system of linear homogeneous ordinary differential
equations in an n-dimensional R-vector space V with constant coefficients and with
right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that V has an inner product 〈·, ·〉. A Lyapunov pair for F
is a pair (P,Q) where

(i) P,Q ∈ L(V; V) are symmetric, and
(ii) P ◦ A + AT

◦ P = −Q. •

As in the time-varying case, one can think of (1) P as being given, and part (ii) of
the definition prescribing Q or (2) Q as being given, and (ii) of the definition giving
a linear algebraic equation for P. Both ways of thinking about this will be useful.

Let us indicate the significance of the notion of a Lyapunov pair in this context.

4.3.37 Lemma (Derivative of quadratic function along solutions of a linear ordinary
differential equation with constant coefficients) Let F be a system of linear homoge-
neous ordinary differential equations in an n-dimensional R-vector space V with constant
coefficients and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that V has an inner product 〈·, ·〉. Let P ∈ L(V; V) be symmetric
and let fP be the corresponding quadratic function as in Definition 4.3.11. Then, for any
solution ξ : T→ V for F, we have

d
dt

fP(ξ(t)) = −fQ(ξ(t)),

where (P,Q) is a Lyapunov pair for F.
Proof We shall represent solutions using the state transition map as in Sec-
tion 3.2.2.2. Thus, if (t0, x) ∈ T × V, the solution to the initial value problem

ξ̇(t) = A(ξ(t)), ξ(t0) = x,

is ξ(t) = ΦA(t, t0)(x). Now we directly compute

d
dt

fP(ΦA(t, t0)(x)) =
d
dt
〈P ◦ΦA(t, t0)(x),ΦA(t, t0)(x)〉

= 〈P ◦ d
dtΦA(t, t0)(x),ΦA(t, t0)(x)〉

+ 〈P ◦ΦA(t, x0)(x), d
dtΦA(t, t0)(x)〉

= 〈P ◦ A ◦ΦA(t, t0)(x),ΦA(t, t0)(x)〉
+ 〈P ◦ΦA(t, x0)(x)),A ◦ΦA(t, t0)(x)〉

= − 〈Q ◦ΦA(t, t0)(x),ΦA(t, t0)(x)〉,
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where (P,Q) is a Lyapunov pair, i.e.,

Q = −P ◦ A − AT
◦ P. �

The lemma allows us to provide the following connection to the Lie derivative
characterisation Lemma 4.3.26.

4.3.38 Corollary (Lie derivative of quadratic function along a linear ordinary differ-
ential equation with constant coefficients) Let F be a system of linear homogeneous
ordinary differential equations in an n-dimensional R-vector space V with constant coeffi-
cients and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that V has an inner product 〈·, ·〉. Let P ∈ L(V; V) be symmetric
and let fP be the corresponding quadratic function as in Definition 4.3.11. Then,

LFfP(x) = −fQ(x), x ∈ V.

Proof From the proof of the preceding lemma we have

d
dt

fP(ΦA(t, t0)(x)) = − fQ(ΦA(t, t0)(x)).

Evaluating at t = t0 gives the result. �

We may now state our first result.

4.3.39 Theorem (Lyapunov’s Second Method for linear ordinary differential equa-
tions with constant coefficients) Let F be a system of linear homogeneous ordinary
differential equations in an n-dimensional R-vector space V with constant coefficients and
with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that supT = ∞. Suppose that V has an inner product 〈·, ·〉.
Then the following statements hold.

(i) The equation F is stable if there exists P,Q ∈ L(V; V) with the following properties:

(a) P and Q are symmetric;
(b) (P,Q) is a Lyapunov pair for F;
(c) P is positive-definite;
(d) Q is positive-semidefinite.

(ii) The equation F is asymptotically stable if there exists P,Q ∈ L(V; V) with the
following properties:

(a) P and Q are symmetric;
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(b) (P,Q) is a Lyapunov pair for F;
(c) P is positive-definite;
(d) Q is positive-definite.

We shall give two proofs of Theorem 4.3.39, one assuming Theorem 4.3.27 and
the other an independent proof. The independent proof is interesting in and of
itself because it makes use of methods particular to linear equations.

Proof of Theorem 4.3.39, assuming Theorem 4.3.27 If we collect together the
conclusions of Lemma 4.3.13 and Corollary 4.3.38, we see that the hypotheses
of parts (i) and (ii) of Theorem 4.3.39 imply those of the corresponding parts of
Theorem 4.3.27, and thus the conclusions also correspond. �

Independent proof of Theorem 4.3.39 (i) Let t0 ∈ T. Since P is positive-definite,
by Lemma 4.3.14, there exists C1,C2 ∈ R>0 such that

C1‖x‖2 ≤ fP(x) ≤ C2‖x‖2, x ∈ V.

Since Q is positive-semidefinite, by Lemma 4.3.37 we have

d
dt

fP(ΦA(t, t0)(x)) ≤ 0

for all x ∈ V and t ≥ t0. Therefore, we have

C1‖ΦA(t, t0)(x)‖2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2‖x‖2

for every x ∈ V and t ≥ t0. Thus

‖ΦA(t, t0)(x)‖ ≤
√

C2/C1‖x‖,

which gives stability.
(ii) Let t0 ∈ T. Here we have stability from part (i). From that part of the proof

we also have C1,C2 ∈ R>0 such that

C1‖ΦA(t, t0)(x)‖2 ≤ fP(ΦA(t, t0)(x)) ≤ fP(x) ≤ C2‖x‖2

for every x ∈ V and t ≥ t0. Since Q is positive-definite, by Lemma 4.3.14, there
exists C3 ∈ R>0 such that

C3‖x‖2 ≤ fQ(x), x ∈ V.

Thus, by Lemma 4.3.37, we have

d
dt

fP(ΦA(t, t0)(x)) = − fQ(ΦA(t, t0)) ≤ −C3‖ΦA(t, t0)(x)‖2.
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for all x ∈ V and t ≥ t0. Therefore, there exists γ ∈ R≥0 such that

lim
t→∞

fP(ΦA(t, t0)(x)) = γ.

We claim that γ = 0. Suppose otherwise, and that γ ∈ R>0. We then have

fP(ΦA(t, t0)(x)) = fP(x) +

∫ t

t0

d
dτ

fP(ΦA(τ, t0)(x)) dτ

= fP(x) −
∫ t

t0

fQ(ΦA(τ, t0)) dτ

≤ fP(x) − C3

∫ t

t0

‖ΦA(τ, t0)(x)‖2 dτ

≤ fP(x) −
C3

C1

∫ t

t0

fP(ΦA(τ, t0)(x)) dτ

≤ fP(x) −
C3

C1
γ(t − t0).

This implies that limt→∞ fP(ΦA(t, t0)(x)) = −∞. This contradiction leads us to con-
clude that γ = 0. Finally, we then have

lim
t→∞
‖ΦA(t, t0)(x)‖2 ≤ lim

t→∞
C−1

1 fP(ΦA(t, t0)(x)) = 0,

which gives asymptotic stability. �

4.3.40 Remark (Automatic implications of Theorem 4.3.39) We recall from Theo-
rem 4.2.3 that the conclusions of stability, uniform stability, asymptotic stability,
and uniform asymptotic stability are actually of the global sort given in Defini-
tion 4.2.1. •

4.3.41 Example (Example 4.2.10 cont’d) We again look at the linear homogeneous ordi-
nary differential equation F on V = R2 defined by the 2 × 2 matrix

A =

[
0 1
−b −a

]
.

The inner product we use is the standard one:

〈(u1,u2), (v1, v2)〉R2 = u1v1 + u2v2.

In this case, the induced norm is the standard norm for R2. Note that, if L ∈
L(R2;R2), then the transpose with respect to the standard inner product is just the
usual matrix transpose.

For this example, there are various cases to consider, and we look at them
separately in view of Theorem 4.3.39. In the following discussion, the reader
should compare the conclusions with those of Example 4.2.10.
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1. a = 0 and b = 0: In this case, we know the system is unstable. Thus we
will certainly not be able to find a Lyapunov pair (P,Q) for F with P positive-
definite and Q positive-semidefinite. Note, however, that without knowing
more, just the lack of existence of such a (P,Q) does not allow us to conclude
anything about stability in this case. We shall have more to say about this case
in Example 4.3.53–1.

2. a = 0 and b > 0: The matrices

P =

[
b 0
0 1

]
, Q =

[
0 0
0 0

]
have the property that (P,Q) is a Lyapunov pair for F. Since P is positive-definite
and Q is positive-semidefinite, stability follows from part (i) of Theorem 4.3.39.
Note that asymptotic stability cannot be concluded from this P and Q using
part (ii) (and indeed asymptotic stability does not hold in this case).

3. a = 0 and b < 0: We shall consider this case in Example 4.3.53–2, where we will
be able to use Lyapunov methods to conclude instability.

4. a > 0 and b = 0: Here we take

P =

[
a2 a
a 2

]
, Q =

[
0 0
0 2a

]
and verify that (P,Q) is a Lyapunov pair for F. The eigenvalues of P are
{

1
2 (a2 + 2 ±

√

a4 + 4)}. One may verify that a2 + 2 >
√

a4 + 4, thus P is positive-
definite. Since Q is positive-semidefinite, we conclude stability of F from part (i)
of Theorem 4.3.39. However, we cannot conclude asymptotic stability from
part (ii); indeed, asymptotic stability does not hold.

5. a > 0 and b > 0: Here we take

P =

[
b 0
0 1

]
, Q =

[
0 0
0 2a

]
having the property that (P,Q) is a Lyapunov pair for F. Since P is positive-
definite and Q is positive-semidefinite, from part (i) of Theorem 4.3.39 we can
conclude stability for F. However, we cannot conclude asymptotic stability
using part (ii). However, we do have asymptotic stability in this case. We can
rectify this in one of two ways.

(a) By choosing a different P and Q with both positive-semidefinite, we can
ensure asymptotic stability by part (ii) of Theorem 4.3.39. Theorem 4.3.52
guarantees that this is possible.

(b) By resorting to an invariance principle, we can rescue things for this partic-
ular P and Q. This is explained in Theorem 4.3.49, and in Example 4.3.50
for this example particularly.
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6. a > 0 and b < 0: We shall consider this case in Example 4.3.53–3, where we will
be able to use Lyapunov methods to conclude instability.

7. a < 0 and b = 0: This case is much like case 1 in that the system is unstable;
thus we cannot find a Lyapunov pair (P,Q) for F with P positive-definite and
Q positive-semidefinite. In Example 4.3.53–4 we shall have more to say about
this case.

8. a < 0 and b > 0: We shall consider this case in Example 4.3.53–5, where we will
be able to use Lyapunov methods to conclude instability.

9. a < 0 and b < 0: We shall consider this case in Example 4.3.53–6, where we will
be able to use Lyapunov methods to conclude instability. •

The reader can see from this example that, even for a simple linear ordinary dif-
ferential equation with constant coefficients, the sufficient conditions of Lyapunov’s
Second Method leave a great deal of room for improvement. In the subsequent
sections we shall address this somewhat, although it is still the case that the method
is one that is difficult to apply conclusively.

4.3.7 Invariance principles

We shall see in Section 4.3.9 that the sufficient conditions for asymptotic stability
of some of the flavours of Lyapunov’s Second Method are actually also necessary.
However, in practice, one often produces a locally positive-definite function whose
Lie derivative is merely negative-semidefinite, not negative-definite as one needs
for asymptotic stability. In order to deal with this commonly encountered situation,
we provide in this section a strategy that falls under a general umbrella of what
are know of as “invariance principles.” We prove two associated theorems, one
for autonomous, not necessarily linear, ordinary differential equations and one for
linear ordinary differential equations with constant coefficients.

4.3.7.1 Invariant sets and limit sets In order to prove our result for general
autonomous ordinary differential equations, we need a collection of preliminary
definitions and results.

4.3.42 Definition (Invariant set) Let F be an ordinary differential equation with right-
hand side

F̂ : T ×U→ Rn.

A subset A ⊆ U is:
(i) F-invariant if, for all (t0, x) ∈ T×A, the solution ξ : T′ → U to the initial value

problem
ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ξ(t) ∈ A for every t ∈ T′;
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(ii) positively F-invariant if, for all (t0, x) ∈ T × A, the solution ξ : T′ → U to the
initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ξ(t) ∈ A for every t ≥ t0. •

4.3.43 Definition (Positive limit set) Let F be an autonomous ordinary differential equa-
tion with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Suppose that supT = ∞ and that 0 ∈ T. Let x0 ∈ U and let ξ : T′ → U be the
solution to the initial value problem

ξ̇ = F̂0(ξ(t)), ξ(0) = x0,

and suppose that supT′ = ∞.
(i) A point x ∈ U is a positive limit point of x0 if there exists a sequence (t j) j∈Z>0 ⊆

R such that

(a) t j < t j+1, j ∈ Z>0,
(b) lim j→∞ t j = ∞, and
(c) lim j→∞ ξ(t j) = x.

(ii) The positive limit set of x0, denoted by Ω(F, x0), is the set of positive limit
points of x0. •

Positive limit sets have many interesting properties.

4.3.44 Lemma (Properties of the positive limit set) Let F be an autonomous ordinary
differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Let A ⊆ U be compact and positively F-invariant. If x0 ∈ A, then Ω(F, x0) is a nonempty,
compact, and positively F-invariant subset of A. Furthermore, if ξ : T′ → U is the solution
to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x0,

then
lim
t→∞

dΩ(F,x0)(ξ(t)) = 0.
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Proof Let (t j) j∈Z>0 ⊆ R>0 satisfy t j < t j+1, j ∈ Z>0, and lim j→∞ t j = ∞. The sequence
(ξ(t j)) j∈Z>0 ⊆ A has a convergence subsequence by the Bolzano–Weierstrass Theo-
rem.missing stuff By definition, the limit x will be in Ω(F, x0). Since A is closed and
positively-invariant, x ∈ A. Thus Ω(F, x0) is a nonempty subset of A.

If x ∈ A \ Ω(F, x0), then there exists ε ∈ R>0 and T ∈ R>0 such that B(ε, x) ∩
{ξ(t) | t ≥ T} = ∅. Therefore, A \Ω(F, x0) is open, and thus Ω(F, x0) is closed and so
compact since A is compact.missing stuff

Let x ∈ Ω(F, x0) and let t ∈ R≥0. There then exists a sequence (t j) j∈Z>0 such that

lim
j→∞

ξ(t j) = x.

Let η j, j ∈ Z>0, be the solution to the initial value problem

η̇ j(t) = F̂0(η j(t)), η(0) = ξ(t j).

Then
lim
j→∞

ξ(t + t j) = lim
j→∞

η j(t) = ξ(t),

by continuity of solutions with respect to initial conditions. This shows that ξ(t) ∈
Ω(F, x0), and so that Ω(F, x) is positively X-invariant.

Lastly, suppose that there exists ε ∈ R>0 and a sequence (t j) j∈Z>0 in R>0 such that
1. t j < t j+1, j ∈ Z>0,
2. lim j→∞ t j = ∞, and
3. dΩ(F,x0)(ξ(t j)) ≥ ε, j ∈ Z>0.
By the Bolzano–Weierstrass Theorem, since A is compact there exists a convergent
subsequence (t jk)k∈Z>0 such that (ξ(t jk))k∈Z>0 converges to, say x ∈ A. Note that
x ∈ Ω(F, x0). However, we also have dΩ(F,x0)(x) ≥ ε. This contradiction means that
we must have

lim
t→∞

dΩ(F,x0)(ξ(t)) = 0,

as claimed. �

4.3.7.2 Invariance principle for autonomous equations We are now ready to
present the LaSalle Invariance Principle on the asymptotic behavior of the integral
curves of vector fields.

4.3.45 Theorem (LaSalle Invariance Principle) Let F be an autonomous ordinary differential
equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Suppose that supT = ∞ and that 0 ∈ T. Let A ⊆ U be compact and positively F-invariant.
Let V: U → R be continuously differentiable and satisfy LF0V(x) ≤ 0 for all x ∈ A, and
let B be the largest positively F-invariant set contained in {x ∈ A | LF0V(x) = 0}. Then
the following statements hold:
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(i) for every x ∈ A, the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x,

satisfies limt→∞ dB(ξ(t)) = 0;
(ii) if B consists of a finite number of isolated points, then, for every x ∈ A, there exists

y ∈ B such that the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x,

satisfies limt→∞ ξ(t) = y.

Proof (i) The function V|A is bounded from below, because it is continuous on
the compact set A.missing stuff For x ∈ A, let ξ be the solution to the initial value
problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x.

The function t 7→ V ◦ ξ(t) is nonincreasing and bounded from below. Therefore,
limt→∞V ◦ ξ(t) exists and is equal to, say, α ∈ R. Now, let y ∈ Ω(F, x) and let (t j) j∈Z>0

satisfy lim j→∞ ξ(tk) = y. By continuity of V, α = lim j→∞V ◦ ξ(tk) = V(y). This
proves that V(y) = α for all y ∈ Ω(F, x). Because Ω(F, x) is positively F-invariant, if
y ∈ Ω(F, x) and if η is the solution to the initial value problem

η̇(t) = F̂0(η(t)), η(0) = y,

then η(t) ∈ Ω(F, x) for all t ∈ R>0. Therefore, V◦η(t) = α for all t ∈ R>0 and, therefore,
by Lemma 4.3.26, LF0V(y) = 0. Now, because LF0V(y) = 0 for all y ∈ Ω(F, x), we
know that

Ω(F, x) ⊆ {x ∈ A | LF0V(x) = 0}.

This implies that Ω(F, x) ⊆ B, and this proves this part of the theorem.
(ii) Let x ∈ A and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x.

Since B = {y1, . . . , yk} is comprised of isolated points, there exists ε ∈ R>0 such that

B(2ε, y j1
) ∩ B(2ε, y j2) = ∅

for all j1, j2 ∈ {1, . . . , k}. By assumption and by part (i), there exists T ∈ R>0 such that

ξ(t) ∈ ∪k
j=1B(ε, y j), t ≥ T.

Since ξ is continuous, ξ([T,∞)) is connected by missing stuff . This, however,
implies that there must exist y ∈ B such that ξ([T,∞)) ⊆ B(ε, y), giving this part of
the theorem. �

The following more or less immediate corollary provides a common situation
where the LaSalle Invariance Principle is used.
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4.3.46 Corollary (Barbashin–Krasovskiı̆ criterion) Let F be an autonomous ordinary differ-
ential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Suppose that supT = ∞ and that 0 ∈ T. Let x0 ∈ U be an equilibrium point for F. Assume
tha there exists a function V: U→ R with the following properties:

(i) V is of class C1;
(ii) V ∈ LPD(x0);
(iii) −LF0V ∈ LPSD(x0).

Let C = {x ∈ U | LF0V(x) = 0}. If there exists r ∈ R>0 such that the only positively
F-invariant subset of C ∩ B(r, x0) is {x0}, then x0 is asymptotically stable.

Proof As in the proof of Theorem 4.3.27(i), the fact that V ∈ LPD(x0) ensures that
there is a closed subset of some ball about x0 that is F-positively invariant. The
corollary then follows from Theorem 4.3.45. �

4.3.7.3 Invariance principle for linear equations with constant coefficients
Next we turn to an invariance principle specifically adapted to linear ordinary
differential equations with constant coefficients. Unsurprisingly, the construction
is linear algebraic in nature. The key to the construction is the following definition.

4.3.47 Definition (Observability operator, observable pair) Let V and W be finite-
dimensional R-vector spaces, and let A ∈ L(V; V) and C ∈ L(V; W).

(i) The observability operator for the pair (A,C) is the linear map

O(A,C) : V→ UdimR(V)

v 7→ (C(v),C ◦ A(v), . . . ,CdimR(V)−1
◦ A(v)).

(ii) The pair (A,C) is observable if rank(O(A,C)) = dimR(V). •

This definition, while clear, does not capture the essence of the attribute of
observability. The following result goes towards clarifying this.

4.3.48 Lemma (Characterisation of observability) Let V and W be finite-dimensional R-
vector spaces, and let A ∈ L(V; V) and C ∈ L(V; W). Let T ⊆ R be a time-domain for
which 0 ∈ T and int(T) , ∅. Then (A,C) is observable if and only if, given x1, x2 ∈ V with
ξ1, ξ2 : T→ V the solutions to the initial value problems

ξ̇a(t) = A(ξa(t)), ξa(0) = xa, a ∈ {1, 2},

we have C ◦ ξ1 = C ◦ ξ2 if and only if x1 = x2.
Moreover, ker(O(A,C)) is the largest A-invariant subspace contained in ker(C).
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Proof Let n = dimR(V).
First suppose that (A,C) is observable and that C ◦ ξ1 = C ◦ ξ2. Then, differenti-

ating successively with respect to t,

d j(C ◦ ξa)
dt j (0) = C ◦ A j(xa), j ∈ Z≥0, a ∈ {1, 2}.

Thus we have
C ◦ A j(x1) = C ◦ A j(x2), j ∈ Z≥0.

Thus x1 − x2 ∈ ker(O(A,C)), and so x1 = x2 since O(A,C) is observable.
Next suppose that (A,C) is not observable, and so O(A,C) is not injective.

Thus there exists a nonzero x0 ∈ ker(O(A,C)), meaning that C ◦ A j(x0) = 0, j ∈
{0, 1, . . . ,n − 1}. By the Cayley–Hamilton Theorem, this implies that C ◦ A j(x0) = 0
for j ∈ Z≥0. Therefore, for any t ≥ 0

∞∑
j=0

C ◦ A j

j!
(x0) = C ◦ eAt(x0) = 0.

Therefore, taking x1 = x0 and x2 = 0, C ◦ ξ1 = C ◦ ξ2 while x1 , x2.
Now we prove the final assertion of the lemma. First let us show that

ker(O(A,C)) ⊆ ker(C). If x ∈ ker(O(A,C)), then C ◦ A j(x) = 0 for j ∈ {0, 1, . . . ,n − 1}.
This holds in particular for j = 0, giving the desired conclusion in this case.

Next we show that the kernel of O(A,C) is A-invariant. Let x ∈ ker(O(A,C)) and
compute

O(A,C) ◦ A(x) = (C ◦ A(x), . . . ,C ◦ An(x)).

Since x ∈ ker(O(A,C)), we have

C ◦ A(x) = 0, . . . ,C ◦ An−1(x) = 0.

Also, by the Cayley–Hamilton Theorem, C ◦ An(x) = 0. This shows that

O(A, c) ◦ A(x) = 0,

or that A(x) ∈ ker(O(A,C)).
Finally, we show that, if S is an A-invariant subspace contained in ker(C), then

S is a subspace of ker(O(A,C)). Given such an S and x ∈ S, C(x) = 0. Since S is
A-invariant, A(x) ∈ V, and since S ⊆ ker(C), C ◦ A(x) = 0. Proceeding in this way
we see that

C ◦ A2(x) = · · · = C ◦ An−1(x) = 0.

But this means exactly that x is in ker(O(A,C)). �

The idea of observability is this. The linear map C we view as providing us
with “measurements” in W of the states in V. The pair (A,C) is observable if we can
deduce the state behaviour of the system merely by observing the measurements
via C.

With this brief discussion of observability, we can now state a version of Theo-
rem 4.3.45 adapted specially for linear differential equations.
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4.3.49 Theorem (Invariance principle for linear ordinary differential equations with
constant coefficients) Let F be a system of linear homogeneous ordinary differential
equations in an n-dimensional R-vector space V with constant coefficients and with right-
hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that supT = ∞. Suppose that V has an inner product 〈·, ·〉.
Then F is asymptotically stable if there exists P,Q ∈ L(V; V) with the following properties:

(i) P and Q are symmetric;
(ii) (P,Q) is a Lyapunov pair for F;
(iii) P is positive-definite;
(iv) Q is positive-semidefinite;
(v) (A,Q) is observable.

We shall offer two proofs of the preceding theorem, one assuming the more
general Theorem 4.3.45 and the other an independent proof.

Proof of Theorem 4.3.49, assuming Theorem 4.3.45 Under the hypotheses of
Theorem 4.3.49, the function V = fP satisfies the hypotheses of Corollary 4.3.46.
The subset C from the statement of Corollary 4.3.46 is then exactly the subspace
ker(Q). Since (A,Q) is observable, by Lemma 4.3.48 {0} is the largest A-invariant
subspace of ker(Q). Since any invariant subset is contained in an invariant sub-
space—namely the subspace generated by the subset—it follows that the only
F-invariant subset of C is {0}. Thus Theorem 4.3.49 follows from Theorem 4.3.45,
specifically its Corollary 4.3.46. �

Independent proof of Theorem 4.3.49 We suppose that P is positive-definite, Q is
positive-semidefinite, (A,Q) is observable, and that F is not asymptotically sta-
ble. By Theorem 4.3.27(i) we know that F is stable, so it must be the case that
A has at least one eigenvalue on the imaginary axis, and, therefore, a nontrivial
periodic solution ξ. From our characterisation of the operator exponential in Pro-
cedures 3.2.45 and 3.2.48, we know that this periodic solution takes values in a
two-dimensional subspace that we shall denote by L. What’s more, every solution
of F with initial condition in L is periodic and remains in L, i.e., L is F-invariant.
Indeed, if x ∈ L, then

A(x) = lim
t→0

eAt(x) − x
t

∈ L

since x, eAt(x) ∈ L. We also claim that the subspace L is in ker(Q). To see this, suppose
that the solutions in L have period T. We have, for any solution ξ : [0,T]→ L for F,
by Lemma 4.3.37,

0 = fP ◦ ξ(T) − fP ◦ ξ(0) =

∫ T

0

d fP ◦ ξ

dt
(t) dt = −

∫ T

0
fQ ◦ ξ(t) dt.
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Since Q is positive-semidefinite, this implies that fQ ◦ ξ(t) = 0 for t ∈ [0,T]. Thus
L ⊆ ker(Q), as claimed. Thus, with our initial assumptions, we have shown the
existence of a nontrivial A-invariant subspace of ker(Q). This is a contradiction,
however, since (A,Q) is observable. It follows, therefore, that F is asymptotically
stable. �

Let us resume our Example 4.3.41 to conclude asymptotic stability in the case
where this is possible.

4.3.50 Example (Example 4.3.41 cont’d) We continue with the linear homogeneous or-
dinary differential equation F on V = R2 defined by the 2 × 2 matrix

A =

[
0 1
−b −a

]
.

Again, we use the standard inner product.
We consider the case where a > 0 and b > 0, since we know that A is Hurwitz

in this case. We take

P =

[
b 0
0 1

]
, Q =

[
0 0
0 2a

]
,

noting that P is positive-definite, Q is positive-semidefinite, and (P,Q) is a Lya-
punov pair for F. Using Theorem 4.3.39, we can only conclude stability, and not
asymptotic stability. But we can compute

O(A,Q) =


0 0
0 2a
0 0
−2ab −2a2

 ,
implying that (A,Q) is observable. We can thus conclude from Theorem 4.3.49
that F is asymptotically stable. •

4.3.8 Instability theorems

In this section we provide two so-called instability theorems. While our results
above in this section give sufficient conditions for various flavours of stability, in-
stability theorems give sufficient conditions for instability. The instability results
we give fit under the umbrella of Lyapunov’s Second method since the characterisa-
tions we give involve functions having certain properties. While our sufficient con-
ditions for stability using Lyapunov’s Second Method in Sections 4.3.3, 4.3.4, 4.3.5,
and 4.3.6 are quite comprehensive, we shall back off from this level of exhaustive-
ness here, and only give two theorems, both for autonomous ordinary differential
equations, one in the linear case and one in the not necessarily linear case.
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4.3.8.1 Instability theorem for autonomous equations Let us state the more
general result first. Some notation is useful. Let U ⊆ Rn be open, let f : U → R be
continuous, and let x0 ∈ U. We suppose that r ∈ R>0 is such that B(r, x0) ⊆ U and
define, for a ∈ R,

f −1(r, > a) = {x ∈ B(r, x0) | f (x) > a}.

With this simple piece of notation, we then have the following result.

4.3.51 Theorem (An instability for autonomous ordinary differential equations) Let F
be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Suppose that supT = ∞. Then an equilibrium state x0 ∈ U is unstable if there exists a
function V: U→ R and r ∈ R>0 with the following properties:

(i) V is of class C1;
(ii) V(x0) = 0;
(iii) B(r, x0) ⊆ U;
(iv) V−1(s, > 0) , ∅ for every s ∈ (0, r);
(v) LF0V(x) ∈ R>0 for x ∈ B(r, x0).

Proof Let ε = r
2 and let δ ∈ R>0. We show that there exists (t0, x) ∈ T×B(δ, x0) such

that the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x

satisfiesξ(T) < B(ε, x0) for some T ≥ t0. Indeed, let δ ∈ R>0 and choose x ∈ V−1(s, > 0)
for s ≤ min{ε, δ}. We claim that ξ(T) < B(ε, x0) for some T ≥ t0. Suppose otherwise
and let

β = inf{LF0V(x′) | x′ ∈ B(ε, x0),V(x′) ≥ V(x)}.

Note that β ∈ R>0 since it is the infimum of a positive-valued function over the
compact set

B(ε, x0) ∩ {x′ ∈ B(ε, x0) | V(x′) ≥ V(x)}.

missing stuff Now we calculate, using Lemma 4.3.26,

V(ξ(t)) = V(ξ(t0)) +

∫ t

t0

d
dτ

V(ξ(τ)) dτ

= V(x) +

∫ t

t0

LF0V(ξ(τ)) dτ

≥ V(x) + β(t − t0).

Thus t 7→ V(ξ(t)) is unbounded as t→ ∞, which is a contradiction since x 7→ V(x)
is bounded on B(ε, x0). Thus we conclude that ξ(T) < B(ε, x0) for some T ≥ t0. This
gives the desired instability. �
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4.3.8.2 Instability theorem for linear equations with constant coefficients
Next we consider an instability theorem for linear homogeneous ordinary differen-
tial equations with constant coefficients. The result we give is one that makes use
of very particular attributes of linear ordinary differential equations, and, in par-
ticular, makes use of the notion of observability introduced in Definition 4.3.47.

4.3.52 Theorem (An instability theorem for linear ordinary differential equations
with constant coefficients) Let F be a system of linear homogeneous ordinary dif-
ferential equations in an n-dimensional R-vector space V with constant coefficients and
with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that supT = ∞. Suppose that V has an inner product 〈·, ·〉.
Then F is unstable if there exists P,Q ∈ L(V; V) with the following properties:

(i) P and Q are symmetric;
(ii) (P,Q) is a Lyapunov pair for F;
(iii) P is not positive-semidefinite;
(iv) Q is positive-semidefinite;
(v) (A,Q) is observable.

Proof Since Q is positive-semidefinite and (A,Q) is observable, the argument from
the proof of Theorem 4.3.49 shows that there are no nontrivial periodic solutions
for F. Thus this part of the theorem will follow if we can show that F is not
asymptotically stable. By hypothesis, there exists x0 ∈ V so that fP(x0) < 0. Let
ξ(t) = eAt(x0) be the solution of F with initial condition x0 at t = 0. As in the
proof of Theorem 4.3.39(i), we have fP ◦ ξ(t) ≤ fP(x0) < 0 for all t ≥ 0 since Q is
positive-semidefinite. Denote

r = inf{‖x‖ | fP(x) ≤ fP(x0)},

and observe that r ∈ R>0. We have shown that ‖ξ(t)‖ ≥ r for all t ≥ 0. This prohibits
internal asymptotic stability, and in this case, internal stability. �

Let us use this theorem to fill in a few gaps left by our treatment of Exam-
ple 4.3.41.

4.3.53 Example (Example 4.3.41 (cont’d)) We continue with the linear homogeneous
ordinary differential equation F on V = R2 defined by the 2 × 2 matrix

A =

[
0 1
−b −a

]
.

Again, we use the standard inner product.
We consider here the unstable cases.
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1. a = 0 and b = 0: In this case, by Exercise 4.3.5, if (P,Q) is a Lyapunov pair for
F with Q positive-semidefinite, then (A,Q) is not observable. This means that
we cannot conclude instability using Theorem 4.3.52.

2. a = 0 and b < 0: If we define

P =
1
2

[
0 1
1 0

]
, Q =

[
−b 0
0 1

]
,

then one verifies that (P,Q) is a Lyapunov pair for F. However, P is not positive-
semidefinite (its eigenvalues are {± 1

2 }), while Q is positive-definite. Since Q is
invertible, one can immediately conclude observability, and, therefore, conclude
instability from Theorem 4.3.52.

3. a > 0 and b < 0: We use the Lyapunov pair (P,Q) with

P =

[
b 0
0 1

]
, Q =

[
0 0
0 2a

]
.

Here we compute

O(A,Q) =


0 0
0 2a
0 0
−2ab −2a2

 .
Since P is not positive-semidefinite, since Q is positive-semidefinite, and since
(A,Q) is observable we conclude from Theorem 4.3.52 that F is unstable.

4. a < 0 and b = 0: In this case, as in case 1, if (P,Q) is a Lyapunov pair for F with
Q positive-semidefinite, then (A,Q) is not observable. Thus the instability that
holds in this case cannot be determined from Theorem 4.3.52.

5. a < 0 and b > 0: We note that, if

P =

[
−b 0
0 −1

]
, Q =

[
0 0
0 −2a

]
,

then (P,Q) is a Lyapunov pair for F. We also have

O(A,Q) =


0 0
0 −2a
0 0

2ab 2a2

 .
Thus (A,Q) is observable. Since P is not positive-definite and since Q is positive-
semidefinite, we conclude from Theorem 4.3.52 that F is unstable.

6. Here we again take

P =

[
−b 0
0 −1

]
, Q =

[
0 0
0 −2a

]
.

The same argument as in the previous case will tell us that F is unstable. •
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4.3.9 Converse theorems

The results of Sections 4.3.3, 4.3.4, 4.3.5, and 4.3.6 provide useful sufficient
conditions for stability and asymptotic stability of equilibria. However, if there are
lots of examples of ordinary differential equations that are stable, but for which
the hypotheses of these theorems do not hold, then this reduces their potential
effectiveness in practice. For this reason, in this section we give six so-called
“converse theorems,” i.e., theorems that assert the manner in which the converses
of conditions like those in the preceding sections also hold. One is for general,
nonautonomous, not necessarily linear ordinary differential equations. The next is
for exponential stability for nonautonomous ordinary differential equations. Both
of these results are mirrored for autonomous systems, with self-contained proof
for readers wishing to sidestep time dependence. The other two are results for
linear homogeneous ordinary differential equations, one a result for time-varying
equations and the other a result for equations with constant coefficients.

4.3.9.1 Converse theorems for nonautonomous equations We begin with
the most general result.

4.3.54 Theorem (A converse theorem for nonautonomous ordinary differential
equations) Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, T− , infT > −∞,
and that F satisfies Assumption 4.1.1. If x0 is uniformly asymptotically stable, then there
exists V: T ×U→ R such that

(i) V is of class C1,
(ii) V ∈ TVLPDs0(x0),
(iii) V ∈ TVLDs0(x0),
(iv) (t, x) 7→ ∂V

∂xj
(t, x) is in TVLDs0(x0), and

(v) −LFV ∈ TVLPDs0(x0).

Proof �

Next we specialise the preceding result to exponential stability, not just asymp-
totic stability.

4.3.55 Theorem (A converse theorem for exponential stability of nonautonomous
ordinary differential equations) Let F be an ordinary differential equation with right-
hand side

F̂ : T ×U→ Rn
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and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, T− , infT > −∞,
and that there exists M, r ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤M, j,k ∈ {1, . . . ,n}, (t, x) ∈ T × B(r, x0).

If there exist L, δ, σ ∈ R>0 such that, if x ∈ U satisfies ‖x − x0‖ < δ, then t 7→ ΦF(t, t0, x0)
is defined on [t0,∞) and satisfies

‖ΦF(t, t0, x) − x0‖ ≤ Le−σ(t−t0)
‖x − x0‖,

then there exist V: T ×U→ R and r0 ∈ R>0 such that
(i) V is of class C1;
(ii) there exists C1 ∈ R>0 such that∥∥∥∥∥∥∂V

∂xj
(t, x)

∥∥∥∥∥∥ ≤ C1‖x − x0‖, j ∈ {1, . . . ,n}, (t, x) ∈ T × B(r0, x0);

(iii) there exists C2 ∈ R>0 such that

C2‖x − x0‖
2
≤ V(t, x) ≤ C−1

2 ‖x − x0‖
2, (t, x) ∈ T × B(r0, x0);

(iv) there exists C3 ∈ R>0 such that

LFV(t, x) ≤ −C3‖x − x0‖
2, (t, x) ∈ T × B(r0, x0).

Proof We start with a few technical lemmata.

1 Lemma missing stuff If T is an interval and if γ : T→ Rn is of class C1, then

d
dt
‖γ(t)‖ ≤

∥∥∥∥∥dγ
dt

(t)
∥∥∥∥∥ .

Proof The first thing we need to do is understand what we mean by d
dt‖γ(t)‖, since

it may be that t 7→ ‖γ(t)‖ is not differentiable. We shall use the notion of weak
differentiability from missing stuff . First let us suppose that γ(t) , 0. Then, by
continuity, γ(τ) , 0 for τ nearby t. Then,

2
( d
dτ
‖γ(τ)‖

)
‖γ(t)‖ =

d
dτ
‖γ(τ)‖2 = 2

〈 d
dτ
γ(τ),γ(τ)

〉
Rn
.

Then, by the Cauchy–Bunyakovsky–Schwarz inequality,

2
( d
dτ
‖γ(τ)‖

)
‖γ(t)‖ = 2

〈 d
dτ
γ(τ),γ(τ)

〉
Rn
≤ 2

∥∥∥∥∥ d
dτ
γ(τ)

∥∥∥∥∥ ‖γ(τ)‖.
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Thus, when γ(t) , 0,
d
dt
‖γ(t)‖ ≤

∥∥∥∥∥ d
dτ
γ(τ)

∥∥∥∥∥ .
We need to account for the possibility that γ(t) may be zero. Note that

Γ , {t ∈ T | ‖γ(t)‖ > 0}

is open. Thus, by missing stuff , there exists a finite or countable set J and a
collection I j, j ∈ J, of open intervals such that Γ = ∪∞j=1I j. Let φ ∈ D(T;R). Then∫

T
‖γ(t)‖φ̇(t) dt =

∑
j∈J

∫
I j

‖γ(t)‖φ̇(t) dt

= −
∑
j∈J

∫
I j

〈
d
dtγ(t),γ(t)〉
‖γ(t)‖

φ(t) dt.

using integration by parts. Thus t 7→ ‖γ(t)‖ is differentiable in the sense of distri-
butions, and its derivative in this sense is given by

d
dt
‖γ(t)‖ =

 〈
d
dtγ(t),γ(t)〉
‖γ(t)‖ , γ(t) , 0,

0, γ(t) = 0.

The lemma now follows from our estimates above. H

2 Lemma Let T be an interval and let α, β, ξ : T→ R be such that
(i) α and β are continuous,
(ii) ξ is continuously differentiable, and
(iii) α(t)ξ(t) ≤ ξ̇(t) ≤ β(t)ξ(t), t ∈ T.

Then, for any t0 ∈ T,

ξ(t0)e
∫ t

t0
α(τ) dτ

≤ ξ(t) ≤ ξ(t0)e
∫ t

t0
β(τ) dτ

, t ≥ t0.

Proof Denote η : T→ R by

η(t) = exp
∫ t

t0
β(τ) dτ

.

A direct computation gives

dη
dt

(t) = β(t)η(t), t ∈ T.

Noting that η(t) > 0 for every t ∈ T, we then have

d
dt

(
ξ(t)
η(t)

)
=
η(t) d

dtξ(t) − ξ(t) d
dtη(t)

η(t)2 =
1
η(t)

(dξ
dt

(t) − β(t)ξ(t)
)
≤ 0
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for t ≥ t0. Thus we have

ξ(t)
η(t)
≤
ξ(t0)
η(t0)

= ξ(t0), t ≥ t0.

This gives the rightmost inequality in the statement of the lemma. The leftmost
inequality follows from this by replacing “ξ” with “−ξ” and “β” with “α.” H

3 Lemma Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U. If there exists L ∈ R>0 such that

‖̂F(t, x)‖ ≤ L‖x − x0‖, (t, x) ∈ T ×U,

then, for (t0, x) ∈ T ×U, the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
(i) | ddt‖ξ(t) − x0‖

2
| ≤ 2L‖ξ(t) − x0‖

2, t ≥ t0, and
(ii) ‖x − x0‖e−L(t−t0)

≤ ‖ξ(t) − x0‖ ≤ ‖x − x0‖eL(t−t0), t ≥ t0.

Proof We compute

d
dt
‖ξ(t) − x0‖

2 = 2
〈 d

dt
ξ(t), ξ(t) − x0

〉
Rn
.

Thus, by the Cauchy–Bunyakovsky–Schwarz inequality,∣∣∣∣∣ d
dt
‖ξ(t) − x0‖

2
∣∣∣∣∣ ≤ 2

∥∥∥∥∥ d
dt
ξ(t)

∥∥∥∥∥ ‖ξ(t) − x0‖

= 2‖̂F(t, ξ(t))‖‖ξ(t) − x0‖

≤ 2L‖ξ(t) − x0‖
2,

giving the first part of the result.
For the second part, we first note that, from the first part of the lemma,

−2L‖ξ(t) − x0‖
2
≤

d
dt
‖ξ(t) − x0‖

2
≤ 2L‖ξ(t) − x0‖

2.

The second part of the current lemma follows from Lemma 2. H
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Let r0 < min{δ, r
L } and let h = ln(2k2)

2σ . Define

V(t, x) =

∫ t+h

t
‖ΦF(τ, t, x) − x0‖

2 dτ.

Then we have

V(t, x) ≤ L2
‖x − x0‖

2
∫ t+h

t
e−2σ(τ−t) dτ =

L2
‖x − x0‖

2(1 − e−2σh)
2σ

.

By Lemma 3 we have

‖ΦF(τ, t, x) − x0‖
2
≥ e−2L(t−τ)

‖x − x0‖
2,

from which we conclude that

V(t, x) ≥ ‖x − x0‖
2
∫ t+h

t
e−2L(t−τ) dτ =

‖x − x0‖
2(1 − e−2Lh)
2L

.

Taking

C2 = min
{

L2(1 − e−2σh)
2σ

,
1 − e−2Lh

2L

}
gives condition (iii).

By Theorem 3.1.8, solutions depend continuously differentiably on initial con-
dition and time. Therefore, by missing stuff , we can differentiate V under the
integral sign:

∂V
∂t

(t, x) = ‖ΦF(t + h, t, x) − x0‖
2
− ‖ΦF(t, t, x)‖2

+ 2
∫ t+h

t

〈
ΦF(τ, t, x) − x0,

d
dt

ΦF(τ, t, x)
〉

dτ

and
∂V
∂x j

(t, x) = 2
∫ th

t

〈
ΦF(τ, t, x) − x0,

∂
∂x j

ΦF(τ, t, x)
〉

dτ.

By Exercise 1.4.5 and the preceding two equations we then deduce that

LFV(t, x) = ‖ΦF(t + h, t, x) − x0‖
2
− ‖x − x0‖

2

≤ − (1 − L2e−2σh)‖x − x0‖
2
≤ −

1
2
‖x − x0‖

2,

giving condition (iv).
Now we note, by the Chain Rule, that

d
dt

∂ΦF
j

∂xk
(τ, t, x)

 =

n∑
l=1

∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x), j ∈ {1, . . . ,n},
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and that
∂ΦF

j

∂xk
(t, t, x) =

1, j = k,
0, j , k.

That is to say, the Jacobian matrix of ΦF satisfies a linear ordinary differential
equation with initial condition being the identity matrix. We wish to use Lemma 3
with x0 being the zero matrix and x = In. To do so, we need to estimate the
right-hand side of the preceding equation: n∑

j,k=1

 n∑
l=1

∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x)


2

1/2

≤

 n∑
j,k=1

 n∑
l=1

∣∣∣∣∣∣∣∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣∣


2
1/2

≤

 n∑
j,k=1

M
n∑

l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣


2
1/2

≤

M2
n∑

j,k=1

 n∑
l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣


2
1/2

≤

M2
n∑

j,k=1

n∑
l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2


1/2

≤

M2n
n∑

k,l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

≤M
√

n

 n∑
k,l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

.

Here we have used the hypotheses on F̂. Now we can use Lemma 3 to conclude
that  n∑

j,k=1

∣∣∣∣∣∣∣∂Φ
F
j

∂xk
(τ, t, x)

∣∣∣∣∣∣∣
2

1/2

≤
√

neM
√

n(τ−t).

Therefore,  n∑
k=1

(
∂ΦF

k

∂x j
(τ, t, x)

)2
1/2

≤
√

neM
√

n(τ−t).

Thus, using the Cauchy–Bunyakovsky–Schwarz inequality,∣∣∣∣∣∣∂V
∂x j

(t, x)

∣∣∣∣∣∣ ≤ 2
∫ t+h

t

∣∣∣∣∣∣
〈
ΦF(τ, t, x) − x0,

∂
∂x j

ΦF(τ, t, x)
〉∣∣∣∣∣∣ dτ

≤ 2L
√

n‖x − x0‖

∫ t+h

t
e−σ(τ−t)eM

√
n(τ−t) dτ,
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giving condition (ii). �

4.3.9.2 Converse theorems for autonomous equations We now consider
converse theorems for autonomous ordinary differential equations. The results
essentially follow from those of the preceding section, but here we state and prove
them independently for readers not needing to deal with time-varying equations.

4.3.56 Theorem (A converse theorem for autonomous ordinary differential equa-
tions) Let F be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x),

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, T− , infT > −∞,
and that F satisfies Assumption 4.1.1. If x0 is asymptotically stable, then there exists
V: T ×U→ R such that

(i) V is of class C1,
(ii) V ∈ LPDs0(x0),
(iii) V ∈ LDs0(x0),
(iv) (t, x) 7→ ∂V

∂xj
(t, x) is in LDs0(x0), and

(v) −LFV ∈ LPDs0(x0).

4.3.57 Theorem (A converse theorem for exponential stability of autonomous ordi-
nary differential equations) Let F be an ordinary differential equation with right-hand
side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, T− , infT > −∞,
and that there exists M, r ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂F0,j

∂xk
(x)

∣∣∣∣∣∣∣ ≤M, j,k ∈ {1, . . . ,n}, x ∈ B(r, x0).

If there exist L, δ, σ ∈ R>0 such that, if x ∈ U satisfies ‖x − x0‖ < δ, then t 7→ ΦF(t, t0, x0)
is defined on [t0,∞) and satisfies

‖ΦF(t, t0, x) − x0‖ ≤ Le−σ(t−t0)
‖x − x0‖,

then there exist V: U→ R and r0 ∈ R>0 such that
(i) V is of class C1;
(ii) there exists C1 ∈ R>0 such that∥∥∥∥∥∥∂V

∂xj
(x)

∥∥∥∥∥∥ ≤ C1‖x − x0‖, j ∈ {1, . . . ,n}, x ∈ B(r0, x0);
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(iii) there exists C2 ∈ R>0 such that

C2‖x − x0‖
2
≤ V(x) ≤ C−1

2 ‖x − x0‖
2, x ∈ B(r0, x0);

(iv) there exists C3 ∈ R>0 such that

LFV(x) ≤ −C3‖x − x0‖
2, x ∈ B(r0, x0).

Proof We start with a few technical lemmata.

1 Lemma Let F be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F0(x)

and let x0 ∈ U. If there exists L ∈ R>0 such that

‖̂F0(x)‖ ≤ L‖x − x0‖, x ∈ U,

then, for t0, x) ∈ T ×U,
(i) | ddt‖Φ

F(t, t0, x) − x0‖
2
| ≤ 2L‖ΦF(t, t0, x) − x0‖

2, t ≥ t0, and
(ii) ‖x − x0‖e−L(t−t0)

≤ ‖ΦF(t, t0, x) − x0‖ ≤ ‖x − x0‖eL(t−t0), t ≥ t0.

Proof We compute

d
dt
‖ΦF(t, t0, x) − x0‖

2 = 2
〈 d

dt
ΦF(t, t0, x),ΦF(t, t0, x) − x0

〉
Rn
.

Thus, by the Cauchy–Bunyakovsky–Schwarz inequality,∣∣∣∣∣ d
dt
‖ΦF(t, t0, x) − x0‖

2
∣∣∣∣∣ ≤ 2

∥∥∥∥∥ d
dt

ΦF(t, t0, x)
∥∥∥∥∥ ‖ΦF(t, t0, x) − x0‖

= 2‖̂F(t,ΦF(t, t0, x))‖‖ΦF(t, t0, x) − x0‖

≤ 2L‖ΦF(t, t0, x) − x0‖
2,

giving the first part of the result.
For the second part, we first note that, from the first part of the lemma,

−2L‖ΦF(t, t0, x) − x0‖
2
≤

d
dt
‖ΦF(t, t0, x) − x0‖

2
≤ 2L‖ΦF(t, t0, x) − x0‖

2.

The second part of the current lemma follows from Lemma 2. H

Let r0 < min{δ, r
L } and let h = ln(2k2)

2σ . For some t ∈ T, define

V(x) =

∫ t+h

t
‖ΦF(τ, t, x) − x0‖

2 dτ.
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Note that V(x) is independent of t by Exercise 1.3.19. Then we have

V(x) ≤ L2
‖x − x0‖

2
∫ t+h

t
e−2σ(τ−t) dτ =

L2
‖x − x0‖

2(1 − e−2σh)
2σ

.

By Lemma 1 we have

‖ΦF(τ, t, x) − x0‖
2
≥ e−2L(t−τ)

‖x − x0‖
2,

from which we conclude that

V(x) ≥ ‖x − x0‖
2
∫ t+h

t
e−2L(t−τ) dτ =

‖x − x0‖
2(1 − e−2Lh)
2L

.

Taking

C2 = min
{

L2(1 − e−2σh)
2σ

,
1 − e−2Lh

2L

}
gives condition (iii).

By Theorem 3.1.8, solutions depend continuously differentiably on initial con-
dition and time. Therefore, by missing stuff , we can differentiate V under the
integral sign:

∂V
∂x j

(x) = 2
∫ t+h

t

〈
ΦF(τ, t, x) − x0,

∂
∂x j

ΦF(τ, t, x)
〉

dτ.

By Exercise 1.4.5 and the preceding two equations we then deduce that

LFV(x) = ‖ΦF(t + h, t, x) − x0‖
2
− ‖x − x0‖

2

≤ − (1 − L2e−2σh)‖x − x0‖
2
≤ −

1
2
‖x − x0‖

2,

giving condition (iv).
Now we note, by the Chain Rule, that

d
dt

∂ΦF
j

∂xk
(τ, t, x)

 =

n∑
l=1

∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x), j ∈ {1, . . . ,n},

and that
∂ΦF

j

∂xk
(t, t, x) =

1, j = k,
0, j , k.

That is to say, the Jacobian matrix of ΦF satisfies a linear ordinary differential
equation with initial condition being the identity matrix. We wish to use Lemma 1
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with x0 being the zero matrix and x = In. To do so, we need to estimate the
right-hand side of the preceding equation: n∑

j,k=1

 n∑
l=1

∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x)


2

1/2

≤

 n∑
j,k=1

 n∑
l=1

∣∣∣∣∣∣∣∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣∣


2
1/2

≤

 n∑
j,k=1

M
n∑

l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣


2
1/2

≤

M2
n∑

j,k=1

 n∑
l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣


2
1/2

≤

M2
n∑

j,k=1

n∑
l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2


1/2

≤

M2n
n∑

k,l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

≤M
√

n

 n∑
k,l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

.

Here we have used the hypotheses on F̂. Now we can use Lemma 1 to conclude
that  n∑

j,k=1

∣∣∣∣∣∣∣∂Φ
F
j

∂xk
(τ, t, x)

∣∣∣∣∣∣∣
2

1/2

≤
√

neM
√

n(τ−t).

Therefore,  n∑
k=1

(
∂ΦF

k

∂x j
(τ, t, x)

)2
1/2

≤
√

neM
√

n(τ−t).

Thus, using the Cauchy–Bunyakovsky–Schwarz inequality,∣∣∣∣∣∣∂V
∂x j

(t, x)

∣∣∣∣∣∣ ≤ 2
∫ t+h

t

∣∣∣∣∣∣
〈
ΦF(τ, t, x) − x0,

∂
∂x j

ΦF(τ, t, x)
〉∣∣∣∣∣∣ dτ

≤ 2L
√

n‖x − x0‖

∫ t+h

t
e−σ(τ−t)eM

√
n(τ−t) dτ,

giving condition (ii). �

4.3.9.3 Converse theorem for time-varying linear equations Next we turn
to converse results for linear ordinary differential equations. The first is for time-
varying equations.
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4.3.58 Theorem (A converse theorem for time-varying linear ordinary differential
equations) Let F be a system of linear homogeneous ordinary differential equations in an
n-dimensional R-vector space V with constant coefficients and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

for A: T → L(V; V) continuous and bounded. Suppose that supT = ∞. Suppose that V
has an inner product 〈·, ·〉. Let Q: T→ L(V; V) have the following properties:

(i) Q is continuous;
(ii) Q(t) is symmetric for every t ∈ T;
(iii) Q is positive-definite;
(iv) Q is decrescent.

Then there exists P: T→ L(V; V) with the following properties:
(i) P is of class C1;
(ii) P(t) is symmetric for every t ∈ T;
(iii) (P,Q) is a Lyapunov pair for F;
(iv) P is positive-definite;
(v) P is decrescent.

Proof By Exercise 4.2.2(f), let C1, σ ∈ R>0 be such that

|||ΦA(t, t0)||| ≤ C1e−σ(t−t0), t ∈ T, t ≥ t0. (4.30)

By Lemma 4.3.18, there exists C2 ∈ R>0 such that

C2〈x, x〉 ≤ fQ(t, x) ≤ C−1
2 〈x, x〉, (t, x) ∈ T × V. (4.31)

We define

P(t) =

∫
∞

t
ΦA(τ, t)T

◦Q(τ) ◦ΦA(τ, t) dτ.

The integral exists by the inequalities (4.30) and (4.31).
For (t, x) ∈ T × V we compute

fP(t, x) =

∫
∞

t
fQ(τ,ΦA(τ, t)(x)) dτ

≤ C−1
2

∫
∞

t
‖ΦA(τ, t)(x)‖2 dτ

≤ C−1
2 ‖x‖

2
∫
∞

t
|||ΦA(τ, t)|||2 dτ

≤
C1

C2
‖x‖2

∫
∞

t
e−σ(τ−t) dτ =

C1

C2σ
‖x‖2.
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Since A is bounded, there exists M ∈ R>0 such that |||A(t)||| ≤ M for each t ∈ T, by
Lemma 1 from the proof of Theorem 4.3.55 we have

‖ΦA(τ, t)(x)‖2 ≥ ‖x‖2e−2M(τ−t), τ ≥ t.

Therefore,

fP(t, x) =

∫
∞

t
fQ(τ,ΦA(τ, t)(x)) dτ

≥ C2

∫
∞

t
‖ΦA(τ, t)(x)‖2 dτ

≥ C2‖x‖2
∫
∞

t
e−2M(τ−t) dτ =

C2

2M
‖x‖2.

Letting C = min{ C2
2M ,

C2σ
C1
}, we thus have

C〈x, x〉 ≤ fP(t, x) ≤ C−1
〈x, x〉,

showing that P is positive-definite and decrescent, by Lemma 4.3.18.
By the Fundamental Theorem of Calculus, P is continuously differentiable. By

(3.8) we have
d
dt

ΦA(τ, t) = −ΦA(τ, t) ◦ A(t).

Thus

Ṗ(t) = −Q(t) +

∫
∞

t

( d
dt

ΦA(τ, t)T
)
◦Q(τ) ◦ΦA(τ, t) dτ

+

∫
∞

t
ΦA(τ, t)T

◦Q(τ) ◦
( d
dt

ΦA(τ, t)
)

dτ

= −Q(t) −
∫
∞

t
A(t)T

◦ΦA(τ, t)T
◦Q(τ) ◦ΦA(τ, t) dτ

−

∫
∞

t
ΦA(τ, t)T

◦Q(τ) ◦ΦA(τ, t) ◦ A(t) dτ

= −Q(t) − A(t)T
◦ P(t) − P(t) ◦ A(t),

which shows that (P,Q) is a Lyapunov pair for F, as desired. �

4.3.9.4 Converse theorem for linear equations with constant coefficients
Finally, we give a result for linear ordinary differential equations with constant
coefficients. Here the results we give are quite detailed, in keeping with our de-
tailed knowledge of such equations.
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4.3.59 Theorem (A converse theorem for linear ordinary differential equations with
constant coefficients) Let F be a system of linear homogeneous ordinary differential
equations in an n-dimensional R-vector space V with constant coefficients and with right-
hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that supT = ∞. Suppose that V has an inner product 〈·, ·〉. If
A is Hurwitz, then the following statements hold:

(i) for any symmetric Q ∈ L(V; V), there exists a unique symmetric P ∈ L(V; V) so that
(P,Q) is a Lyapunov pair for F;

(ii) if Q is positive-semidefinite with P the unique symmetric linear map for which (P,Q)
is a Lyapunov pair for F, then P is positive-semidefinite;

(iii) if Q is positive-semidefinite with P the unique symmetric linear map for which (P,Q)
is a Lyapunov pair for F, then P is positive-definite if and only if (A,Q) is observable.

Proof (i) We claim that, if we define

P =

∫
∞

0
eATt

◦Q ◦ eAt dt, (4.32)

then (P,Q) is a Lyapunov pair for F. First note that since A is Hurwitz, the integral
does indeed converge by missing stuff . We also have

AT
◦ P + P ◦ A = AT

◦

(∫
∞

0
eATt

◦Q ◦ eAt dt
)

+

(∫
∞

0
eATt

◦Q ◦ eAt dt
)
◦ A

=

∫
∞

0

d
dt

(
eATt

◦Q ◦ eAt
)

dt

= eATt
◦Q ◦ eAt

∣∣∣∞
0

= −Q,

as desired. We now show that P as defined is the only symmetric linear map for
which (P,Q) is a Lyapunov pair for F. Suppose that P̂ also has the property that
(P̂,Q) is a Lyapunov pair for F, and let ∆ = P̂ − P. Then one sees that

AT
◦ ∆ + ∆ ◦ A = 0.

If we let
Λ(t) = eATt

◦ ∆ ◦ eAt,

then
dΛ

dt
(t) = eATt

◦

(
AT

◦ ∆ + ∆ ◦ A
)
◦ eAt = 0.

Therefore, Λ is constant, and since Λ(0) = ∆, it follows that Λ(t) = ∆ for all t.
However, since A is Hurwitz, it also follows that limt→∞Λ(t) = 0. Thus ∆ = 0, so
that P̂ = P.
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(ii) If P is defined by (4.32), then we have

fP(x) =

∫
∞

0
〈Q ◦ eAt(x), eAt(x)〉dt.

Therefore, if Q is positive-semidefinite, it follows that P is positive-semidefinite.
(iii) Here we employ a lemma.

1 Lemma If Q is positive-semidefinite then (A,Q) is observable if and only if the linear map
P defined by (4.32) is invertible.

Proof First suppose that (A,Q) is observable and let x ∈ ker(P). Then∫
∞

0
〈Q ◦ eAt(x), eAt(x)〉dt = 0.

Since Q is positive-semidefinite, this implies that eAt(x) ∈ ker(Q) for all t. Differ-
entiating this inclusion k times with respect to t gives Ak

◦ eAt(x) ∈ ker(Q) for any
k ∈ Z>0. Evaluating at t = 0 shows that x ∈ ker(O(A,C)). Since (A,Q) is observable,
this implies that x = 0. Thus we have shown that ker(P) = {0}, or equivalently that
P is invertible.

Now suppose that P is invertible. Then the expression∫
∞

0
〈Q ◦ eAt(x), eAt(x)〉dt

is zero if and only if x = 0. Since Q is positive-semidefinite, this means that the
expression

〈Q ◦ eAt(x), eAt(x)〉

is zero if and only if x = 0. Since eAt is invertible, this implies that Q must be positive-
definite, and in particular, invertible. In this case, (A,Q) is clearly observable. H

With the lemma at hand, the remainder of the proof is straightforward. Indeed,
from part (ii), we know that P is positive-semidefinite. The lemma now says that P
is positive-definite if and only if (A,Q) is observable, as desired. �

Let us resume our example started as Example 4.3.41.

4.3.60 Example (Example 4.3.41 cont’d) We resume looking at the case where

A =

[
0 1
−b −a

]
.

Let us look at a few cases to flesh out some aspects of Theorem 4.3.59.
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1. a > 0 and b > 0: This is exactly the case when A is Hurwitz, so that part (i) of
Theorem 4.3.59 implies that, for any symmetric Q, there is a unique symmetric P
so that (P,Q) is a Lyapunov pair for F. As we saw in the proof of Theorem 4.3.59,
one can determine P with the formula

P =

∫
∞

0
eATtQeAt dt. (4.33)

However, to do this in this example is a bit tedious since we would have to deal
with the various cases of a and b to cover all the various forms taken by eAt. For
example, suppose we take

Q =

[
1 0
0 1

]
and let a = 2 and b = 2. Then we have

et = e−t

[
cos t + sin t sin t
−2 sin t cos t − sin t

]
In this case one can directly apply (4.33) with some effort to get

P =

[
5
4

1
4

1
4

3
8

]
.

If we let a = 2 and b = 1 then we compute

eAt = e−t

[
1 + t t
−t 1 − t

]
.

Again, a direct computation using (4.33) gives

P =

[
3
2

1
2

1
2

1
2

]
.

Note that our choice of Q is positive-definite and that (A,Q) is, therefore,
observable. Therefore, part (iii) of Theorem 4.3.59 implies that P is positive-
definite. It may be verified that the P’s computed above are indeed positive-
definite.
However, it is not necessary to make such hard work of this. After all, the
equation

ATP + PA = −Q

is nothing but a linear equation for P. That A is Hurwitz merely ensures a
unique solution for any symmetric Q. If we denote

P =

[
p11 p12

p12 p22

]
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and continue to use

Q =

[
1 0
0 1

]
,

then we must solve the linear equations[
0 −b
1 −a

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 1
−b −a

]
=

[
−1 0
0 −1

]
,

subject to a, b > 0. One can then determine P for general (at least nonzero) a
and b to be

P =

[
a2+b+b2

2ab
1
2b

1
2b

b+1
2ab

]
.

In this case, we are guaranteed that this is the unique P that does the job.
2. a ≤ 0 and b = 0: As we have seen, in this case there is not always a solution to

the equation
ATP + PA = −Q. (4.34)

Indeed, when Q is positive-semidefinite and (A,Q) is observable, this equation
is guaranteed to not have a solution (see Exercise 4.3.5). This demonstrates
that when A is not Hurwitz, part (i) of Theorem 4.3.59 can fail in the matter of
existence.

3. a > 0 and b = 0: In this case we note that, for any C ∈ R, the matrix

P0 = C
[
a2 a
a 1

]
satisfies ATP + PA = 0. Thus, if P is any solution to (4.34), then P + P0 is also a
solution. If we take

Q =

[
0 0
0 2a

]
,

then, as we saw in Theorem 4.3.39, if

P =

[
a2 a
a 2

]
,

then (P,Q) is a Lyapunov pair for F. What we have shown is that (P + P0,Q)
is also a Lyapunov pair for F. Thus part (i) of Theorem 4.3.59 can fail in the
matter of uniqueness when A is not Hurwitz. •

Notes and references

[Liapunov 1893]
[Bacciotti and Rosier 2005] for Lyapunov’s Second Method.
[Kellett 2014] for comparison functions.
The original reference for this work is [LaSalle 1968].
[Barbashin and Krasovskiı̆ 1952]
Theorem 4.3.51 is due to Chetaev.
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Exercises

4.3.1 Determine whether the following functions are or are not of class K:
(a) [0,∞) 3 x 7→ tan−1(x) ∈ R≥0;
(b) [0, b) 3 x 7→ xα ∈ R≥0 for b ∈ R>0 ∪ {∞} and α ∈ R>0;
(c) [0, b) 3 x 7→ min{φ1(x), φ2(x)} ∈ R≥0 for b ∈ R>0 ∪ {∞} and φ1, φ2 : [0, a)→

R≥0 of class K;
(d) [0, π) 3 x 7→ cos(x − π

2 ) + 1 ∈ R≥0;
(e) [0, 2π) 3 x 7→ cos(x − π

2 ) + 1 ∈ R≥0;

(f) [0, b) 3 x 7→

ln(x), x > 0,
0, x = 0

for b ∈ R>0 ∪ {∞}.

4.3.2 Prove Lemma 4.3.3.
4.3.3 Determine whether the following functions are or are not of class L:

(a) [a,∞) 3 y 7→ e−σy
∈ R≥0 for a ∈ R and σ ∈ R>0;

(b) [a,∞) 3 y 7→ yα for a ∈ R and α 1;
(c) (−π2 ,

π
2 ) 3 y 7→ tan−1(y);

(d) [a,∞) 3 y 7→ − ln(y) for a ∈ R.
4.3.4 Determine whether the following functions are or are not of class KL:

(a) [0, b) × [a,∞) 3 (x, y) 7→ φ(x)ψ(y), where φ is one of the functions from
Exercise 4.3.1 and ψ is one of the functions from Exercise 4.3.3;

(b) [0, b) × [0,∞) 3 (x, y) 7→
x

αxy + 1
for b ∈ R>0 ∪ {∞} and α ∈ R>0;

(c) [0, b) × [0,∞) 3 (x, y) 7→
x√

2x2y + 1
.

4.3.5 Let F be the system of linear ordinary differential equations in R2 defined by
the 2 × 2-matrix

A =

[
0 1
0 a

]
,

for a ≥ 0. Show that if (P,Q) is a Lyapunov pair for F for which Q is
positive-semidefinite, then (A,Q) is not observable.
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Section 4.4

Lyapunov’s First (or Indirect) Method

The First Method of Lyapunov relates the stability of an equilibrium point to
the stability of the linearisation about this equilibrium point. Therefore, in this
section we provide a concrete impetus for the process of linearisation developed
in Section 3.1. We shall discuss separately the First Method of Lyapunov in the
nonautonomous and autonomous situation, since the autonomous case is much
easier.

Let us briefly recall here the process of the linearisation of an ordinary differen-
tial equation F about an equilibrium state x0. We suppose that the right-hand side
F̂ is differentiable with respect to x. Then the linearisation is the linear ordinary
differential equation FL,x0 on Rn whose right-hand side is

F̂L,x0 : T × Rn
→ Rn

(t,v) 7→ DF̂t(x0) · v.

4.4.1 The First Method for nonautonomous equations

We shall work with a system of first-order ordinary differential equations F
with right-hand side

F̂ : T ×U→ Rn,

where U ⊆ Rn is the state space, i.e., an open subset of Rn. We shall consider an
equilibrium point x0 ∈ U; thus, by Proposition 3.1.5, F̂(t, x0) = 0 for all t ∈ T.

The main theorem for this setting is then the following.

4.4.1 Theorem (Uniform asymptotic stability for linearisation implies uniform ex-
ponential stability for equilibria I) Let F be an ordinary differential equation with
right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, that F̂ is
continuously differentiable, and that there exist r,L,M ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤M, (t, x) ∈ T × B(r, x0), j,k ∈ {1, . . . ,n}, (4.35)

and∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x1) −

∂̂Fj

∂xk
(t, x2)

∣∣∣∣∣∣∣ ≤ L‖x1 − x2‖, t ∈ T, x1, x2 ∈ B(r, x0), j,k ∈ {1, . . . ,n}.

(4.36)
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Then x0 is uniformly exponentially stable if its linearisation is uniformly asymptotically
stable.

Proof First let us deduce some consequences of F satisfying the hypotheses of the
theorem statement.

1 Lemma If F is an ordinary differential equation whose right-hand side

F̂ : T ×U→ Rn

satisfies:

(i) F̂ is continuously differentiable;
(ii) there exist r,L,M ∈ R>0 such that (4.35) and (4.36) hold.

Then there exists Ĝ : T × B(r, x0)→ Rn and C ∈ R>0 such that

F̂j(t, x) =

n∑
k=1

∂̂Fj

∂xk
(t, x0)(xk − x0,k) + Ĝj(t, x), (t, x) ∈ T × B(r, x0),

where
‖Ĝ(t, x)‖ ≤ C‖x − x0‖

2, (t, x) ∈ T × B(r, x0) (4.37)

Proof By the Mean Value Theorem, missing stuff , we can write

F̂ j(t, x) = F̂ j(t, x0) +

n∑
k=1

∂F̂ j

∂xk
(t, y)(xk − x0,k)

for some y = sx0 + (1 − s)x, s ∈ [0, 1]. Since x0 is an equilibrium point, we rewrite
this as

F̂ j(t, x) =

n∑
k=1

∂F̂ j

∂xk
(t, x0)(xk − x0,k) +

n∑
k=1

∂F̂ j

∂xk
(t, y) −

∂F̂ j

∂xk
(t, x0)

 (xk − x0,k).

If we define

Ĝ j =

n∑
k=1

∂F̂ j

∂xk
(t, y) −

∂F̂ j

∂xk
(t, x0)

 (xk − x0,k),

it only remains to verify the estimate (4.37) for a suitable C ∈ R>0. By the
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Cauchy–Bunyakovsky–Schwarz inequality, we have

‖Ĝ(t, x)‖ =

 n∑
j=1

 n∑
k=1

∂F̂ j

∂xk
(t, y) −

∂F̂ j

∂xk
(t, x0)

 (xk − x0,k)


2

1/2

≤

 n∑
j=1

 n∑
k=1

∂F̂ j

∂xk
(t, y) −

∂F̂ j

∂xk
(t, x0)


2

‖x − x0‖
2




1/2

≤

 n∑
j=1

L2
‖y − x0‖

2
‖x − x0‖

2


1/2

=
√

nL(1 − s)‖x − x0‖
2
≤
√

nL‖x − x0‖
2,

and the lemma follows taking C =
√

nL. H

For brevity, let us denote A(t) = DF̂(t, x0). The assumptions of the theorem en-
sure that A satisfies the hypotheses of Theorem 4.3.55. Thus, since the linearisation
is uniformly asymptotically stable, there exists P : T → L(Rn;Rn) such that (P, In)
is a Lyapunov pair for FL,x0 . We define

V : T ×U→ R
(t, x) 7→ fP(t, x − x0).

Let (t0, x) ∈ T × B(r, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then calculate, using the lemma above,

d
dt

V(t, ξ(t)) =
d
dt
〈P(t)(ξ(t) − x0), ξ(t) − x0〉Rn

= 〈Ṗ(t)(ξ(t)), ξ(t) − x0〉Rn + 〈P(t)(̂F(t, ξ(t))), ξ(t) − x0〉Rn

+ 〈P(t)(ξ(t) − x0), F̂(t, ξ(t))〉Rn

= 〈(Ṗ(t) + P(t)A(t) + AT(t)P(t))(ξ(t) − x0), ξ(t) − x0〉Rn

+ 2〈P(t)(ξ(t) − x0), Ĝ(t, ξ(t))〉Rn

= − ‖ξ(t) − x0‖
2 + 2〈P(t)(ξ(t) − x0), Ĝ(t, ξ(t))〉Rn .

Evaluating at t = t0 and using Lemma 4.3.21, this shows that

LFV(t0, x) = −‖x − x0‖
2 + 2〈P(t0)(x − x0), Ĝ(t0, x)〉Rn

for (t0, x) ∈ T × B(r, x0). By Lemma 4.3.18, let B ∈ R>0 be such that

B‖v‖2 ≤ ‖P(t)(v)‖2 ≤ B−1
‖v‖2, (t,v) ∈ T × Rn.
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We have

|〈P(t)(x − x0), Ĝ(t, x)〉Rn | ≤ ‖P(t)(x − x0)‖‖Ĝ(t, x)‖

≤ C
√

B−1‖x − x0‖
3
≤ C
√

B−1r‖x − x0‖
2,

where C is as in the lemma. Therefore, if we shrink r sufficiently that 1−2C
√

B−1r >
1
2 , then

LFV(t, x) ≤ −
1
2
‖x − x0‖

2, (t, x) ∈ T × B(r, x0).

Since we also have

B‖x − x0‖
2
≤ V(t, x) ≤ B−1

‖x − x0‖
2, (t, x) ∈ T × B(r, x0),

by Theorem 4.3.55, the theorem follows from Theorem 4.3.24. �

4.4.2 The First Method for autonomous equations

Next we turn to Lyapunov’s First Method for determining the stability of equi-
libria for nonautonomous ordinary differential equations.

4.4.2 Theorem (Asymptotic stability for linearisation implies exponential stability
for equilibria II) Let F be an autonomous ordinary differential equation with right-hand
side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x)

and let x0 ∈ U be an equilibrium point for F0. Assume that supT = ∞, that F̂ is
continuously differentiable, and that there exist r,L ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂F0,j

∂xk
(x1) −

∂̂F0,j

∂xk
(x2)

∣∣∣∣∣∣∣ ≤ L‖x1 − x2‖, x1, x2 ∈ B(r, x0), j,k ∈ {1, . . . ,n}. (4.38)

Then x0 is exponentially stable if its linearisation is asymptotically stable.

We offer two proofs of this theorem, one assuming Theorem 4.4.1 and the other
an independent proof.
Proof of Theorem 4.4.2, assuming Theorem 4.4.1 The hypotheses of Theo-
rem 4.4.2 clearly imply those of Theorem 4.4.1 since, in Theorem 4.4.2, F̂ is
independent of t. Therefore, the hypotheses of Theorem 4.4.2 imply the conclu-
sions of Theorem 4.4.1, i.e., that uniform asymptotic stability of the linearisation
implies uniform exponential stability of the equilibrium. The proof in this case is
concluded by recalling from Proposition 4.1.5 that the various flavours of uniform
stability are equivalent to the corresponding flavours of stability for autonomous
equations. �

Independent proof of Theorem 4.4.2 First let us deduce some consequences of F
satisfying the hypotheses of the theorem statement.
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1 Lemma If F is an autonomous ordinary differential equation whose right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x)

satisfies:

(i) F̂0 is continuously differentiable;
(ii) there exist r,L ∈ R>0 such that (4.38) holds.

Then there exists Ĝ0 : B(r, x0)→ Rn and C ∈ R>0 such that

F̂0,j(t, x) =

n∑
k=1

∂̂F0,j

∂xk
(x0)(xk − x0,k) + Ĝ0,j(x), x ∈ B(r, x0),

where
‖Ĝ0(x)‖ ≤ C‖x − x0‖

2, x ∈ B(r, x0) (4.39)

Proof By the Mean Value Theorem, missing stuff , we can write

F̂0, j(x) = F̂0, j(x0) +

n∑
k=1

∂F̂0, j

∂xk
(y)(xk − x0,k)

for some y = sx0 + (1 − s)x, s ∈ [0, 1]. Since x0 is an equilibrium point, we rewrite
this as

F̂0, j(x) =

n∑
k=1

∂F̂0, j

∂xk
(x0)(xk − x0,k) +

n∑
k=1

∂F̂0, j

∂xk
(y) −

∂F̂0, j

∂xk
(x0)

 (xk − x0,k).

If we define

Ĝ0, j =

n∑
k=1

∂F̂0, j

∂xk
(y) −

∂F̂0, j

∂xk
(x0)

 (xk − x0,k),

it only remains to verify the estimate (4.39) for a suitable C ∈ R>0. By the
Cauchy–Bunyakovsky–Schwarz inequality, we have

‖Ĝ0(x)‖ =

 n∑
j=1

 n∑
k=1

∂F̂0, j

∂xk
(y) −

∂F̂0, j

∂xk
(x0)

 (xk − x0,k)


2

1/2

≤

 n∑
j=1

 n∑
k=1

∂F̂0, j

∂xk
(y) −

∂F̂0, j

∂xk
(x0)


2

‖x − x0‖
2




1/2

≤

 n∑
j=1

L2
‖y − x0‖

2
‖x − x0‖

2


1/2

=
√

nL(1 − s)‖x − x0‖
2
≤
√

nL‖x − x0‖
2,

and the lemma follows taking C =
√

nL. H
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For brevity, let us denote A = DF̂(x0). Since the linearisation is asymptotically
stable, by Theorem 4.3.56 there exists P ∈ L(Rn;Rn) such that (P, In) is a Lyapunov
pair for FL,x0 . We define

V : U→ R
x 7→ fP(x − x0).

Let x ∈ B(r, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x.

Then calculate, using the lemma above,

d
dt

V(ξ(t)) =
d
dt
〈P(ξ(t) − x0), ξ(t) − x0〉Rn

= 〈P(̂F0(ξ(t))), ξ(t) − x0〉Rn + 〈P(ξ(t) − x0), F̂0(ξ(t))〉Rn

= 〈(PA + ATP)(ξ(t) − x0), ξ(t) − x0〉Rn

+ 2〈P(ξ(t) − x0), Ĝ0(ξ(t))〉Rn

= − ‖ξ(t) − x0‖
2 + 2〈P(ξ(t) − x0), Ĝ0(ξ(t))〉Rn .

Evaluating at t = 0 and using Lemma 4.3.21, this shows that

LFV(x) = −‖x − x0‖
2 + 2〈P(x − x0), Ĝ0(x)〉Rn

for x ∈ B(r, x0). By Lemma 4.3.14, let B ∈ R>0 be such that

B‖v‖2 ≤ ‖P(v)‖2 ≤ B−1
‖v‖2, v ∈ Rn.

We have

|〈P(x − x0), Ĝ0(x)〉Rn | ≤ ‖P(x − x0)‖‖Ĝ0(x)‖

≤ C
√

B−1‖x − x0‖
3
≤ C
√

B−1r‖x − x0‖
2,

where C is as in the lemma. Therefore, if we shrink r sufficiently that 1−2C
√

B−1r >
1
2 , then

LFV(x) ≤ −
1
2
‖x − x0‖

2, x ∈ B(r, x0).

Since we also have

B‖x − x0‖
2
≤ V(x) ≤ B−1

‖x − x0‖
2, x ∈ B(r, x0),

by Theorem 4.3.56, the theorem follows from Theorem 4.3.30. �

4.4.3 An instability theorem

In this section we give a result that allows one to determine instability of an
equilibrium from the linearisation. We shall work here only with autonomous
ordinary differential equations.



4.4 Lyapunov’s First (or Indirect) Method 441

4.4.3 Theorem (Spectral instability of linearisation implies instability for equilibria)
Let F be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x)

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, that F̂0 is
continuously differentiable. Then x0 is unstable if spec(̂FL,x0) ∩ C+ , ∅.

Proof For brevity, let us denote A = F̂L,x0 . First let us suppose that spec(A)∩ iR = ∅.
Then, according to Remark 3.2.36–5 �

4.4.4 A converse theorem

In this section we consider the extent to which stability of the linearisation
exactly characterises stability of an equilibrium point. As we know from the results
and examples above, it is definitely not the case that stability of an equilibrium
point necessitates stability of the linearisation. The following result shows that
this necessity holds when the type of stability we are discussing is exponential
stability.

4.4.4 Theorem (Exponential stability of an equilibrium implies exponential stability
of linearisation) Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, that F̂ is
continuously differentiable, and that there exist r,L,M ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤M, (t, x) ∈ T × B(r, x0), j,k ∈ {1, . . . ,n}, (4.40)

and∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x1) −

∂̂Fj

∂xk
(t, x2)

∣∣∣∣∣∣∣ ≤ L‖x1 − x2‖, t ∈ T, x1, x2 ∈ B(r, x0), j,k ∈ {1, . . . ,n}.

(4.41)
Then F̂L,x0 is globally exponentially stable if x0 is exponentially stable.
Proof Let us abbreviate A(t) = F̂L,x0(t). Let us write

A(t)x = F̂(t, x) − (̂F(t, x) − A(t)x)︸             ︷︷             ︸
Ĝ(t,x)

.

According to Lemma 1 from the proof of Theorem 4.4.1, there exists C, r ∈ R>0 such
that

‖Ĝ(t, x)‖ ≤ C‖x − x0‖
2, (t, x) ∈ T × B(r, x0).

Since �



Chapter 5

Transform methods for differential
equations

In this section we give a very brief and not very rigorous introduction to “trans-
form methods” for differential equations. We shall see a number of different trans-
forms and use them in a number of different contexts. The basic idea, in all cases we
shall consider, is that one applies a “transform” to a differential equation to convert
it, perhaps only partially, from a differential equation into an algebraic equation.
In all cases, this is a consequence of the transform converting the derivative of a
function with respect to some independent variable into an algebraic expression
in a new independent variable, which one might call the “transform variable.”
This algebraic equation, one hopes, is easier to solve than the original differential
equation. What one has then is a solution of the equation in the transform variable.
Then one applies an “inverse transform” to retrieve the solution in the original
independent variables. It is this last step that is typically the sticking point in
terms of obtaining a solution in closed form. However, even if one cannot obtain
a closed-form solution in the manner one might like, often the use of transform
methods is useful for arriving at forms for solutions, or for proving existence of
solutions, in cases where “direct” methods may not be as useful.

Let us outline what we present in this chapter. We shall discuss three transforms
in this text: the Laplace transform; the continuous-discrete Fourier transform; and
the continuous-continuous Fourier transform. These transforms are presented in
Section 5.1. We focus, in all cases, on giving the essential features of the transforms
that we shall use in treating differential equations. This primarily means two things:
(1) considering how the transforms interact with derivatives; (2) considering how
transforms interact with convolution. The former will seem obvious, since we are
dealing with differential equations. We shall see subsequently how convolution
arises when transform methods are used. After we present the transforms and
their properties, we see how they might be used to study differential equations.
We start in Section 5.2 by looking at Laplace transform methods for differential
equations. Among the methods we discuss are venerable methods for ordinary
differential equations, and are a rich source of tedious computational exercises for
students. We try to sidestep this facet of the techniques, focussing instead on some
principles that underlie transform methods in general. In Section 5.3 we consider
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Fourier transform methods for differential equations. While Laplace transform
methods are “standard” for ordinary differential equations, for partial differential
equations, the matter of what transform to use is often not as cut and dried as it
is for ordinary differential equations. We shall, therefore, see that one should treat
each problem separately and be open to what it requires.

As a closing comment, we note that transform methods are primarily useful for
linear differential equations with constant coefficients, be they ordinary differential
equations or partial differential equations. As we hope we have made clear in our
presentation of ordinary differential equations thus far, while linear equations
are important, they do not comprise anything like the entirety of all differential
equations. As a consequence of this, the transform methods we describe here,
while important, are about as broadly applicable as the methods we have seen thus
far for solving linear ordinary differential equations with constant coefficients.
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Section 5.1

The Fourier and Laplace transforms

In this section we shall introduce three transforms that we shall subsequently
use to study differential equations. The presentation of these transforms is made
with no discussion of differential equations themselves, in order to emphasise that
these transforms have life outside their being applicable to differential equations.
Unfortunately, our presentation is also very brief and not completely rigorous on
all points. A complete and rigorous presentation can be found in many places,
particularly as concerns the Fourier transforms we discuss.missing stuff

5.1.1 The continuous-discrete Fourier transform

The first transform we present applies to functions that are defined on a closed
and bounded interval, which we assume to be [0,L] for concreteness. The natural
domain for the transform we consider is the set

L1([0,L];C) =

{
f : [0,L]→ C

∣∣∣ ∫ L

0
| f (x)|dx < ∞

}
of functions whose modulus is integrable.

5.1.1.1 The transform Let us give the definition. Note that the definition we
give is for C-valued functions, as this is most natural. We shall subsequently see
how this specialises for R-valued functions.

5.1.1 Definition (Continuous-discrete Fourier transform I) The continuous-discrete
Fourier transform (CDFT) of f ∈ L1([0,L];C) is the function FCD( f ) : Z→ C defined
by

FCD( f )(n) =

∫ L

0
f (x)e−2πin x

L dx. •

One can see why this is called the “continuous-discrete” Fourier transform: it
takes a function of the continuous variable x ∈ [0,L] and returns a function of the
discrete variable n ∈ Z. Before we discuss specific features of the transform, let us
illustrate that this is something that can, in principle, be computed.

5.1.2 Examples (Continuous-discrete Fourier transform)
1. Let us take f (x) = cos(2πm x

L ) for m ∈ Z≥0. We then have, for n ∈ Z,

FCD( f )(n) =

∫ L

0
cos(2πm x

L )e−2πin x
L dx

=

∫ L

0
cos(2πm x

L ) cos(2πn x
L ) dx − i

∫ L

0
cos(2πm x

L ) sin(2πn x
L ) dx.
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Note that
cos(α) cos(β) = 1

2 (cos(α − β) + cos(α + β))

cos(α) sin(β) = 1
2 (sin(α − β) + sin(α + β)),

(5.1)

using some trigonometric identities you can look up. Now, since∫ L

0
sin(2πk x

L ) dx =

∫ L

0
cos(2πk x

L ) dx = 0, k ∈ Z>0,

and ∫ L

0
cos(2π0 x

L ) dx = L,

we have

FCD( f )(n) =

L
2 , n = m,
0, n , m.

2. Here we take f (x) = sin(2πm x
L ) for m ∈ Z>0, and compute

FCD( f )(n) =

∫ L

0
sin(2πm x

L )e−2πin x
L dx

=

∫ L

0
sin(2πm x

L ) cos(2πn x
L ) dx − i

∫ L

0
sin(2πm x

L ) sin(2πn x
L ) dx.

We now use the trigonometric identities

sin(2πm x
L ) cos(2πn x

L ) = 1
2 (sin(2π(m − n) x

L ) + sin(2π(m + n) x
L ))

sin(2πm x
L ) sin(2πn x

L ) = 1
2 (cos(2π(m − n) x

L ) − cos(2π(m + n) x
L )).

As in the preceding example, this then gives

FCD( f )(n) =

−iL
2 , n = m,

0, n , m.

3. Next we consider the function

f (t) =

1, x ∈ [0, L
2 ],

−1, x ∈ (L
2 ,L].

We have

FCD( f )(0) =

∫ L

0
f (x) dx = 0
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and, for n , 0,

FCD( f )(n) =

∫ L

0
f (x)e−2πn x

L dx

=

∫ L/2

0
e−2πin x

L dx −
∫ L

L/2
e−2πin x

L dx

= −
Le2πin x

L

2πin

∣∣∣∣∣∣
L/2

0

+
Le2πin x

L

2πin

∣∣∣∣∣∣
L

L/2

= i
L

2πn

(
e−πin

− 1
)
− i

L
2πn

(
1 − e−πin

)
.

Now note that
e−πin = cos(nπ) − i sin(nπ) = (−1)n.

Thus

FCD( f )(n) =

0, n = 0,
i L

nπ ((−1)n
− 1), n , 0.

•

Thus we can see that the CDFT is something that we might be able to calculate.
However, this does not explain our interest in the CDFT. Indeed, our interest in the
CDFT is a consequence of a few of its properties that we now enumerate.

First we demonstrate the linearity of the CDFT.

5.1.3 Proposition (Linearity of the CDFT) The CDFT is a linear map:

FCD(f1 + f2)(n) = FCD(f1)(n) + FCD(f2)(n), FCD(af)(n) = aFCD(f)(n)

for every f, f1, f2 ∈ L1([0,L];C) and a ∈ C.
Proof This follows by linearity of the integral. �

Next we consider how the CDFT interacts with differentiation, since this will
be an important part of how we use this transform with differential equations.

5.1.4 Proposition (CDFT and differentiation) Let f : [0,L] → C be continuously differen-
tiable and suppose that f(0) = f(L). Then

FCD( df
dx )(n) =

2πin
L

FCD(f)(n), n ∈ Z.

Proof Using integration by parts we compute

FCD(d f
dx )(n) =

∫ L

0

d f
dx (x)e−2πin x

L dx

= f (x)e−2πin x
L

∣∣∣∣L
0

+
2πin

L

∫ L

0
f (x)e−2πin x

L dx

=
2πin

L
FCD( f )(n),

as required. �
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Of course, the proposition can be applied recursively for higher-order deriva-
tives.

5.1.5 Corollary (CDFT and higher-order differentiation) Let f : [0,L] → C be k-times
continuously differentiable and suppose that djf

dxj (0) = djf
dxj (L), j ∈ {0, 1, . . . ,k − 1}. Then

FCD( dkf
dxk )(n) =

(2πin
L

)k

FCD(f)(n), n ∈ Z.

5.1.1.2 The inverse transform A crucial ingredient to the transform approach
to differential equations is the inversion step, wherein one goes from the transform
domain back to the original domain for the equation. A complete theory of inver-
sion for the transforms we consider is difficult in any generality. Thus we shall
present the theory in only a superficial (and not entirely correct) way. However,
what is true is that, after a full development of the theory, the main ideas we present
are correct in their essence, and, under suitable hypotheses, correct.

We motivate our constructions with an heuristic discussion. Suppose that one
wishes to represent a function f ∈ L1([0,L];R) as a linear combination of sine’s and
cosine’s:

f (x) =
a0( f )

2
+

∞∑
n=1

(an( f ) cos(2πn x
L ) + bn( f ) sin(2πn x

L )), (5.2)

for real coefficients an( f ), n ∈ Z≥0, and bn( f ), n ∈ Z>0. There seems to be no really
good reason to expect such a representation to be meaningful. However, this was
the hypothesis of Fourier in his efforts to understand heat flow, and it was an
hypothesis that was, in precise ways, validated by various mathematicians over
the years. We shall not do much to justify this hypothesis, and simply accept it
as valid. Now, having done so, let us convert from sine’s and cosine’s to complex
exponential functions by virtue of Euler’s formula: eiθ = cosθ + i sinθ. That is, let
us suppose that f is C-valued and instead seek to write

f (x) =
∑
n∈Z

cn( f )e2πn x
L ,

for complex coefficients cn( f ), n ∈ Z. Let us determine the coefficients cn( f ) by
performing the following calculation, done for m ∈ Z:

f (x) = lim
N→∞

N∑
n=−N

cn( f )e2πin x
L

=⇒

∫ L

0
f (x)e−2πim x

L dt = lim
N→∞

∫ L

0

 N∑
n=−N

cn( f )e2πin x
L

 e−2πim x
L dx

=⇒

∫ L

0
f (x)e−2πim x

L dt = lim
N→∞

N∑
n=−N

cn( f )
∫ L

0
e2πim x

L e−2πin x
L dx.
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Now, for k , 0, we have∫ L

0
e2πik x

L dx =
L

2πik
e2πik x

L

∣∣∣∣L
0

=
L

2πik
(1 − 1) = 0.

For k = 0 we have ∫ L

0
e2πi0 x

L dx = L.

Therefore,

lim
N→∞

N∑
n=−N

cn( f )
∫ L

0
e2πi(m−n) x

L dx = Lcm( f )

and so ∫ L

0
f (x)e−2πim x

L dt = Lcm( f ).

Thus, finally,

cm( f ) =
1
L

∫ L

0
f (x)e−2πim x

L dt =
FCD( f )(m)

L
.

Therefore, we have the formula

f (x) = lim
N→∞

1
L

N∑
n=−N

FCD( f )(n)e2πin x
L .

This formula, and the derivation we give of it, is not valid. The derivation, for example,
involves swapping an infinite sum and na integral, a swapping which is generally
not valid. Nonetheless, the infinite sum on the right-hand side of this formula,

1
L

∑
n∈Z

FCD( f )(n)e2πin x
L ,

is an interesting thing and is called the Fourier series for f .

5.1.6 Remarks (Convergence of Fourier series) Let us make a few comments on the
convergence of the Fourier series, i.e., the existence of the limit

lim
N→∞

1
L

N∑
n=−N

FCD( f )(n)e2πin x
L .

1. If f ∈ L1([0,L];C), then generally the series does not converge. Indeed, it can be
shown that there exists f ∈ L1([0,L];C) such that the Fourier series diverges for
each x ∈ [0,L].

2. Even if f is continuous, the Fourier series will not generally converge, although
it will converge at “most” x ∈ [0,L].
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3. If f is continuously differentiable and f (0) = f (L), then the Fourier series for f
converges (indeed uniformly) to f . •

The above computations, regardless of when they are precisely valid, do
nonetheless give the following inverse for the CDFT.

5.1.7 “Definition” (Inverse of the CDFT) The inverse of the CDFT is the mapping that
assigns to a map F : Z→ C the function F−1

CD(F) : [0,L]→ C defined by

F−1
CD(F)(x) =

1
L

∑
n∈Z

F(n)e2πin x
L . •

Note that the “definition” is really quite senseless since the sum defining F−1
CD(F)

will definitely not converge, in general. However, what is true is that, under
suitable hypotheses, F−1

CD
◦ FCD( f ) = f . That is to say, under suitable hypotheses,

one can use the Fourier series to recover f from FCD( f ); it is in this sense that we
mean that F−1

CD is an inverse for FCD.

5.1.1.3 Convolution and the continuous-discrete Fourier transform As we
have mentioned in our discussions of the philosophy of transform methods, one
of the consequences of their use is that a differential equation is converted, pos-
sibly only partially, into an algebraic equation. As a consequence of solving the
resulting algebraic equations, one often ends up needing to interpret the product of
transformed functions. The question that arises is: What operation in the original
variables corresponds to multiplication of functions in the transformed variables?
The answer, as we shall see in three different contexts is: convolution.

We consider this first in the case of the CDFT. The transformed variables in this
case reside in Z, and so transformed functions are functions from Z to C. Thus, in
this case, we have F,G : Z→ C and so the product of F and G is the function

FG : Z→ C
n 7→ F(n)G(n).

What we want to know is, if F = FCD( f ) and G = FCD(g), is there a function
h : [0,L]→ C for which FCD(h) = FG?

To answer this question, we make the following definition.

5.1.8 Definition (Periodic convolution) If f , g ∈ L1([0,L];C), the periodic convolution
of f and g is the function

f ∗ g : [0,L]→ C

x 7→
∫ L

0
f (x − y)g(y) dy.

•

The operation of convolution is a interesting one, and has many properties that
merit further exploration. For our purposes, we merely point out the following
result.
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5.1.9 Proposition (CDFT and convolution) If f,g ∈ L1([0,L];C), then

FCD(f ∗ g) = FCD(f)FCD(g).

Proof Let us extend f and g to be defined on R by requiring that they have period
L. This is a fairly straightforward application of Fubini’s Theorem, the change of
variables theorem, and periodicity of f :

FCD( f ∗ g)(n) =

∫ L

0
f ∗ g(x)e−2πin x

L dx =

∫ L

0

(∫ L

0
f (x − y)g(y) dy

)
e−2πin x

L dx

=

∫ L

0
g(y)

(∫ L

0
f (x − y)e−2πin x

L dx
)

dy

=

∫ L

0
g(σ)

(∫ L−σ

−σ

f (τ)e−2πin σ+τ
L dτ

)
dσ

=

(∫ L

0
g(σ)e−2πin σL dσ

) (∫ L

0
f (τ)e−2πin τ

L dτ
)

= FCD( f )(n)FCD(g)(n),

as claimed. �

5.1.1.4 Extension to higher-dimensions In this section we briefly consider
two things. First we consider the extension of the CDFT to functions whose domain
is not C, but Cn. This is quite straightforward, since one simply applies the existing
constructions component-wise. The second thing we do is extend the definition of
the CDFT to functions whose domain has more than one variable. In this case the
extension is still not that difficult, but does requite a tiny bit of thinking.

First we extend the CDFT to functions with values in Cn. To do so, we note that,
if f : [0,L]→ Cn, then we can write

f (x) = ( f1(x), . . . , fn(x))

for functions f1, . . . , fn : [0,L]→ C. We then denote

L1([0,L];Cn) =
{

f : [0,L]→ Cn
∣∣∣ f1, . . . , fn ∈ L1([0,L];C)

}
.

We can then make the following more or less obvious definition.

5.1.10 Definition (Continuous-discrete Fourier transform II) The continuous-discrete
Fourier transform (CDFT) of f ∈ L1([0,L];Cn) is the function FCD( f ) : Z → Cn

defined by
FCD( f )(n) = (FCD( f1)(n), . . . ,FCD( fn)(n)). •
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The inverse of the CDFT in this case is also made component-wise. Thus if
F : Z→ Cn, we denote

F−1
CD(F)(x) = (F−1

CD(F1)(x), . . . ,F−1
CD(Fn)(x)).

Of course, all of the caveats we made in Section 5.1.1.2 apply to the inverse in this
case as well.

Next we consider the case when we have a function of multiple variables. For
L1, . . . ,Ln ∈ R>0, we denote

C(L) = [0,L1] × · · · × [0,Ln];

thus C(L) is an n-dimensional cube. We also need to integrate functions of multiple
variables. To do this, if f : C(L)→ C, then we denote∫

C(L)
f (x) dx =

∫ Ln

0
· · ·

∫ L1

0
f (x1, . . . , xn) dx1 · · ·dxn.

We also denote

L1(C(L);C) =

{
f : C(L)→ C

∣∣∣ ∫
C(L)
| f (x)|dx < ∞

}
.

With this notation, we make the following definition.

5.1.11 Definition (Continuous-discrete Fourier transform III) The continuous-discrete
Fourier transform (CDFT) of f ∈ L1(C(L);C) is the function FCD( f ) : Zn

→ Cdefined
by

FCD( f )(k) =

∫
C(L)

f (x1, . . . , xn)e−2πi(k1
x1
L1

+···+kn
xn
Ln ) dx •

The inverse of the multivariable CDFT is then determined by analogy with the
single-variable case. Thus, if F : Zn

→ C, we denote

F−1
CD(F)(x) =

1
L1 · · · Ln

∑
k1∈Z

· · ·

∑
kn∈Z

F(k1, . . . , kn)e2πik1
x1
L1 · · · e2πikn

xn
Ln .

Of course, care must be taken with interpreting this multiple infinite sum, just as
in the single-variable case.

5.1.2 The continuous-continuous Fourier transform

The next transform we consider is one that will be applied to functions whose
domain is unbounded, and we shall take the domain to be R. In this case, the
natural domain for the transform is the set

L1(R;C) =

{
f : R→ C

∣∣∣ ∫
∞

−∞

| f (x)|dx < ∞
}

of functions whose modulus is integrable.

5.1.2.1 The transform As with the CDFT, we consider C-valued functions.
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5.1.12 Definition (Continuous-continuous Fourier transform I) The continuous-
continuous Fourier transform (CCFT) of f ∈ L1(R;C) is the function FCC( f ) : R→ C
defined by

FCC( f )(ν) =

∫
∞

−∞

f (x)e−2πiνx dx. •

Let us compute the CCFT of a few functions so as to see how it works.

5.1.13 Examples (Continuous-continuous Fourier transform)
1. We let L ∈ R>0, m ∈ Z≥0, and take

f (x) =

cos(2πm x
L ), |x| ≤ L

2 ,

0, |x| > L
2 .

We then calculate, for ν , ±m
L ,

FCC( f )(ν) =

∫
∞

−∞

f (x)e−2πiνx dx

=

∫ L/2

−L/2
cos(2πm x

L ) cos(2πνx) dx − i
∫ L/2

−L/2
cos(2πm x

L ) sin(2πνx) dx

=

∫ L/2

0
(cos(2π(m

L − ν)x) + cos(2π(m
L + ν)x)) dx

=

(
sin(2π(m

L − ν)x)
2π(m

L − ν)
+

sin(2π(m
L + ν)x)

2π(m
L + ν)

)∣∣∣∣∣∣
L/2

0

=

(
sin(π(m − Lν))

2π(m
L − ν)

+
sin(π(m + Lν))

2π(m
L + ν)

)
=

(
(−1)m+1 sin(πνL)

2π(m
L − ν)

+
(−1)m+1 sin(πνL)

2π(m
L + ν)

)
=

(−1)m+1mL sin(πνL)
2π(m2 − L2ν2)

,

using the fact that sin is odd and cos is even, using (5.1), and using as well as
the trigonometric identities

sin(α + β) = sin(α) cos(β) + cos(α) sin(β),
sin(α − β) = sin(α) cos(β) − cos(α) sin(β).

(5.3)

For ν = ±m
L we have

FCC( f )(±m
L ) =

∫ L/2

−L/2
cos2(2πm x

L ) dx ∓ i
∫ L/2

−L/2
cos(2πm x

L ) sin(2πm x
L ) dx

=

∫ L/2

0
(1 + cos(4πm x

L )) dx =
L
2
,
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using the trigonometric identity

cos2 α = 1
2 (1 + cos(2α)).

In summary,

FCC( f )(ν) =

 (−1)m+1mL sin(πνL)
2π(m2−L2ν2) , ν , ±m

L ,
L
2 , ν = ±m

L .

2. Next we take f (x) = sin(2πm x
L ) for m ∈ Z>0 and L ∈ R>0. We then have, for

ν , ±m
L ,

FCC( f )(ν) =

∫
∞

−∞

f (x)e−2πiνx dx

=

∫ L/2

−L/2
sin(2πm x

L ) cos(2πνx) dx + i
∫ L/2

−L/2
sin(2πm x

L ) sin(2πνx) dx

= i
∫ L/2

0
(cos(2π(m

L − ν)x) − cos(2π(m
L + ν)x) dx

= i
(

sin(2π(m
L − ν)x)

2π(m
L − ν)

−
sin(2π(m

L + ν)x)
2π(m

L + ν)

)∣∣∣∣∣∣
L/2

0

= i
(

(−1)m+1 sin(πνL)
2π(m

L − ν)
+

(−1)m+1 sin(πνL)
2π(m

L + ν)

)
= i

(−1)m+1mL sin(πνL)
2π(m2 − L2ν2)

,

using the fact that cos is even and sin is odd, and using (5.1) and (5.3). For
ν = ±m

L ,

FCC( f )(±m
L ) =

∫ L/2

−L/2
sin(2πm x

L ) cos(2πνx) dx ± i
∫ L/2

−L/2
sin2(2πm x

L ) dx

= i
∫ L/2

0
(1 − cos(4πm x

L )) dx = ±i
L
2
.

In summary,

FCC( f )(ν) =


i (−1)m+1mL sin(πνL)

2π(m2−L2ν2) , ν , ±m
L ,

iL
2 , ν = m

L ,

−iL
2 , ν = −m

L .

3. As a final example, let us take, for L ∈ R>0,

f (x) =


−1, x ∈ [−L

2 , 0],
1, x ∈ (0, L

2 ],
0, otherwise.
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Here we compute

FCC( f )(0) =

∫
∞

−∞

f (x) dx = 0

and, for ν , 0,

FCC( f )(ν) =

∫
∞

−∞

f (x)e−2πiνx dx

= −

∫ 0

−L/2
e−2πiνx dx +

∫ L/2

0
e−2πiνx dx

=
e−2πiνx

2πiν

∣∣∣∣∣0
−L/2
−

e−2πiνx

2πiν

∣∣∣∣∣L/2
0

=
1 − eπiνL

2πiν
−

e−πiνL
− 1

2πiν

= − i
2 − (eπiνL + e−πiνL)

2πν
= i

cos(πνL) − 1
πν

.

Thus, in summary,

FCC( f )(ν) =

0, ν = 0,
i cos(πνL)−1

πν , ν , 0.
•

While the CCFT may indeed, be something calculable, one does not often
want to calculate it. Instead, one is interested in its basic properties, to whose
consideration we now turn.

First we show the linearity of the CCFT.

5.1.14 Proposition (Linearity of the CCFT) The CCFT is a linear map:

FCC(f1 + f2)(ν) = FCC(f1)(ν) + FCC(f2)(ν), FCC(af) = aFCC(f),

for every f, f1, f2 ∈ L1(R;C) and a ∈ C.

Proof This follows by linearity of the integral. �

As with all of our transform, an essential matter to understand is how they
interact with differentiation. For the CCFT this is recorded by the following propo-
sition.

5.1.15 Proposition (CCFT and differentiation) Let f ∈ L1(R;C) be continuously differen-
tiable and such that df

dx ∈ L1(R;C). Then

FCC( df
dx )(x) = 2πiνFCC(f)(x).

Proof First we claim that lim|x|→∞ f (x) = 0. Indeed, note that

f (x) =

∫ x

0

d f
dx (y) dy.
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Since d f
dx ∈ L1(R;C), the limits

lim
x→∞

∫ x

0

d f
dx (y) dy, lim

x→−∞

∫ x

0

d f
dx (y) dy

exist. Moreover, since f ∈ L1(R;C),

lim
x→∞

∫ x

0

d f
dx (y) dy = 0, lim

x→−∞

∫ x

0

d f
dx (y) dy = 0.

Now, using integration by parts we compute

FCC(d f
dx )(ν) =

∫
∞

−∞

d f
dx (x)e−2πiνx dx

= f (x)e−2πiνx
∣∣∣∣∞
−∞

+ 2πiν
∫
∞

−∞

f (x)e−2πiνx dx

= 2πiνFCC( f )(ν),

as claimed. �

The proposition can be applied recursively to higher-order derivatives.

5.1.16 Corollary (CCFT and higher-order derivatives) Let f ∈ L1(R;C) be k-times contin-
uously differentiable and suppose that dkf

dxk ∈ L1(R;C). Then

FCC( dkf
dxk )(ν) = (2πiν)kFCC(f)(ν).

5.1.2.2 The inverse transform The inverse transform for the CCFT is even
more difficult to motivate than that for the CDFT. However, we shall outline a
process that is as valid as that we used for the CDFT in Section 5.1.1.2, which is to
say it is not valid at all.

We hypothesise that we can write

f (x) =

∫
−∞

cν( f )e2πiνx dν,

for some function ν 7→ cν, analogously to (5.2). Flatly assuming this, we then make
the following computations:

f (x) = lim
Ω→∞

∫ Ω

−Ω

cν( f )e2πiνx dν

=⇒

∫
∞

−∞

f (x)e−2πiµx dx = lim
Ω→∞

∫
∞

−∞

(∫ Ω

−Ω

cν( f )e2πiνx dν
)

e−2πiµx dx

=⇒

∫
∞

−∞

f (x)e−2πiµx dx = lim
Ω→∞

∫ Ω

−Ω

cν( f )
(∫

∞

−∞

e2πiνxe−2πiµx dx
)

dν.
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In the case of the CDFT, the integral underlined in the preceding formula makes
sense and can be given explicit form. This is not so for the CCFT, since the
underlined integral simply does not exist in the standard way. It does exist in a
certain sense, the precise characterisation of which resides somewhat beyond the
scope of our presentation. We can, however, sketch how this works. To do this, we
fix M ∈ R>0 and consider the computation for ν , µ:∫ M

−M
e2πiyx dx =

e2πiyx

2πiyx

∣∣∣∣∣M
−M

=
sin(2πMy)

πy
,

using the identity

sinθ =
1
2i

(eiθ
− ie−iθ).

Let us make a few observations without proof:

1.
∫
∞

−∞

sin(2πMy)
πy

dy = 1;

2. as M→ ∞, the function y 7→ sin(2πMy)
πy gets “focussed” about y = 0, as shown in

Figure 5.1.
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Figure 5.1 The focussing of sin(2πMy)
πy as M→∞

Now we compute

lim
Ω→∞

∫ Ω

−Ω

cν( f )
(∫

∞

−∞

e2πi(ν−µ)x dx
)

dν = lim
Ω→∞

∫ Ω

−Ω

cµ+y( f )
(

lim
M→∞

∫ M

−M
e2πiyx dx

)
dν

= lim
M,Ω→∞

∫ Ω

−Ω

cµ+y
sin(2πMy)

πy
dy.

As M → ∞, because of the behaviour we see in Figure 5.1, the integral outside a
small interval around y = 0 goes to zero. Moreover, because∫

∞

−∞

sin(2πMy)
πy

dy = 1
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and (assuming that ν 7→ cν( f ) is continuous) since continuous functions are ap-
proximately constant about any point, we have

lim
M→∞

(
lim
Ω→∞

∫ Ω

−Ω

cν( f )
(

lim
M→∞

∫ M

−M
e2πi(ν−µ)x dx

)
dν

)
= cµ( f ).

Putting this all together,

cν( f ) =

∫
∞

−∞

f (x)e−2πiνx dx = FCC( f )(ν).

Thus we conclude that

f (x) = lim
Ω→∞

∫ Ω

−Ω

FCC( f )(ν)e2πiνx dν.

The preceding conclusion, and its derivation, are complete nonsense. For example, we
cavalierly (and incorrectly) swapped limits and integrals multiple times without
justification and we made some unwarranted conclusions based on asserted (and
not entirely correct) properties of sin(2πMy)

πy . Nonetheless, the integral on the right-
hand side of this formula, ∫

∞

−∞

FCC( f )(ν)e2πiνx dν,

is important and is called the Fourier integral for f .

5.1.17 Remarks (Convergence of Fourier integrals) Let us make a few comments about
the existence of the limit

lim
Ω→∞

∫ Ω

−Ω

FCC( f )(ν)e2πiνx dν.

1. If f ∈ L1(R;C), then generally the integral does not converge. Indeed, as with
Fourier series, it can be shown that there exists f ∈ L1(R;C) such that the integral
does not converge for any x ∈ R.

2. Even if f ∈ L1(R;C) is continuous, the integral may diverge, although, some-
times, it will converge for “most” x ∈ R.

3. If f ∈ L1(R;C) is continuously differentiable, if its derivative is in L1(R;C), and
if, additionally, ∫

∞

−∞

| f (x)|2 dx < ∞,

then the Fourier integral converges to x for each x ∈ R. •

Although the derivation we give for the inverse of the CCFT is not always valid,
we make the following “definition.”
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5.1.18 “Definition” (Inverse of the CCFT) The inverse of the CCFT is the mapping that
assigns to a map F : R→ C the function F−1

CC(F) : R→ C defined by

F−1
CC(F)(x) =

∫
∞

−∞

F(ν)e2πiνx dν. •

Of course, the “definition” of the inverse makes no sense at all, since the integral
defining it will generally not exist. As with the inverse of the CDFT, what is true is
that, under suitable hypotheses on f , F−1

CC
◦FCC( f ) = f . In other words, the given

inverse allows us to sometimes recover a function f from its CCFT.

5.1.2.3 Convolution and the continuous-continuous Fourier transform In
this section we consider the relationship of convolution with products for the
CCFT. The transformed variables in this case reside in R, and so transformed
functions are functions from R to C. Thus, in this case, we have F,G : R → C and
so the product of F and G is the function

FG : R→ C
ν 7→ F(ν)G(ν).

What we want to know is, if F = FCC( f ) and G = FCC(g), is there a function
h : R→ C for which FCC(h) = FG?

To answer this question, we make the following definition.

5.1.19 Definition (Convolution) If f , g ∈ L1(R;C), the convolution of f and g is the
function

f ∗ g : R→ C

x 7→
∫
∞

−∞

f (x − y)g(y) dy.
•

The operation of convolution is a interesting one, and has many properties that
merit further exploration. For our purposes, we merely point out the following
result.

5.1.20 Proposition (CCFT and convolution) If f,g ∈ L1(R;C), then

FCC(f ∗ g) = FCD(f)FCD(g).

Proof This is a fairly straightforward application of Fubini’s Theorem and the
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change of variables theorem:

FCC( f ∗ g)(ν) =

∫
∞

−∞

f ∗ g(x)e−2πiνx dx =

∫
∞

−∞

(∫
∞

−∞

f (x − y)g(y) dy
)

e−2πiνx dx

=

∫
∞

−∞

g(y)
(∫

∞

−∞

f (x − y)e−2πiνx dx
)

dy

=

∫
∞

−∞

g(σ)
(∫

∞

−∞

f (τ)e−2πiν(σ+τ) dτ
)

dσ

=

(∫
∞

−∞

g(σ)e−2πiνσ dσ
) (∫

∞

−∞

f (τ)e−2πiντ dτ
)

= FCC( f )(ν)FCC(g)(ν),

as claimed. �

5.1.2.4 Extension to higher-dimensions In this section we extend the defini-
tion of the CCFT to (1) functions with values in Cn and (2) functions with multiple
independent variables.

First we extend the CCFT to functions with values in Cn. To do so, we note that,
if f : R→ Cn, then we can write

f (x) = ( f1(x), . . . , fn(x))

for functions f1, . . . , fn : R→ C. We then denote

L1(R;Cn) =
{

f : R→ Cn
∣∣∣ f1, . . . , fn ∈ L1(R;C)

}
.

We can then make the following more or less obvious definition.

5.1.21 Definition (Continuous-continuous Fourier transform II) The continuous-
continuous Fourier transform (CCFT) of f ∈ L1(R;Cn) is the function FCC( f ) : R→
Cn defined by

FCC( f )(ν) = (FCC( f1)(ν), . . . ,FCC( fn)(ν)). •

The inverse of the CCFT in this case is also made component-wise. Thus if
F : R→ Cn, we denote

F−1
CC(F)(x) = (F−1

CC(F1)(x), . . . ,F−1
CC(Fn)(x)).

Of course, all of the caveats we made in Section 5.1.2.2 apply to the inverse in this
case as well.

Next we consider the case when we have a function of multiple variables. To
do this, if f : Rn

→ C, then we denote∫
Rn

f (x) dx =

∫
∞

−∞

· · ·

∫
∞

−∞

f (x1, . . . , xn) dx1 · · ·dxn.
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We also denote

L1(Rn;C) =

{
f : Rn

→ C
∣∣∣ ∫

Rn
| f (x)|dx < ∞

}
.

With this notation, we make the following definition, recalling the notation 〈·, ·〉Rn

for the Euclidean inner product.

5.1.22 Definition (Continuous-continuous Fourier transform III) The continuous-
continuous Fourier transform (CCFT) of f ∈ L1(Rn;C) is the function FCC( f ) : Rn

→

C defined by

FCC( f )(ν) =

∫
Rn

f (x)e−2πi〈ν,x〉Rn dx •

The inverse of the multivariable CCFT is then determined by analogy with the
single-variable case. Thus, if F : Rn

→ C, we denote

F−1
CC(F)(x) =

∫
Rn

F(ν)e2πi〈ν,x〉Rn dx.

Of course, care must be taken with interpreting this multiple integral, just as in the
single-variable case.

5.1.3 The Laplace transform

Next we consider a transform that is a little different in flavour than the two
Fourier transforms we just discussed. The domain of this transform consists of the
following class of functions.

E(R≥0;C) =
{

f : R≥0 → C
∣∣∣ | f (x)| ≤Meσx, x ∈ R≥0, for some M ∈ R>0, σ ∈ R

}
.

For f ∈ E(R≥0;C) we denote

σ( f ) = inf
{
a ∈ R | | f (x)| ≤Meax for some M ∈ R>0

}
.

Also, for a ∈ R, we denote

C>a = {z ∈ C | Re(z) > a}.

We shall say a function in E(R≥0;C) is of exponential class. This is a convenient
class of functions to work with, for reasons that will be clear as we proceed.

5.1.3.1 The transform The transform we consider is the following.

5.1.23 Definition (Laplace transform I) The Laplace transform of f ∈ E(R≥0;C) is the
function L( f ) : C>σ( f ) → C defined by

L( f )(z) =

∫
∞

0
f (x)e−zx dx. •

Let us compute explicitly a few Laplace transforms.
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5.1.24 Examples (Laplace transform) We will consider Laplace transforms of the pretty
uninteresting functions considered in Definition 2.3.12. In all cases, functions are
defined on R≥0.
1. First let us consider f (x) = xk for k ∈ Z≥0. We note that f ∈ E(R≥0;C) with

σ( f ) = 0. To see this, note that, if σ ∈ R>0, then limx→∞ xke−σx = 0. Since
x 7→ xke−σx is continuous on R≥0, it is bounded. Therefore, there exists M ∈ R>0

such that
|xk
|e−σx

≤M, x ∈ R≥0.

Thus
| f (x)| = |xk

| ≤Meσx.

Also, if σ ∈ R≤0, then limx→∞ xke−σx = ∞. Thus, for any M ∈ R>0, for any
sufficiently large x we have

| f (x)|e−σx = |xk
|e−σx

≥M =⇒ | f (x)| ≥Meσx.

Thus the greatest lower bound of allσ’s for which | f (x)| ≤Meσx for some M ∈ R>0

is 0, i.e., σ( f ) = 0.
Next, we claim that

L( f )(z) =
k!

zk+1
.

We can prove this by induction on k. For k = 0 we have∫
∞

0
e−zx dx = −

e−zx

z

∣∣∣∣∣∞
0

=
1
z
,

and so our claim is true when k = 0. So suppose the claim is true for k = m and
let k = m + 1. We then have, using integration by parts,∫

∞

0
xm+1e−zx dx = −

xm+1e−zx

z

∣∣∣∣∣∞
0

+
m + 1

z

∫
∞

0
xme−zx dz

=
m + 1

z
m!

zm+1 =
(m + 1)!

zm+2 ,

as claimed.
2. Next we consider f (x) = eax for a ∈ R, noting that f ∈ E(R≥0;C) with σ( f ) = a.1

To see this, note that, if σ ≥ a, then limx→∞ eaxe−σx = 0. Since x 7→ eaxe−σx is
continuous on R≥0, it is bounded. Therefore, there exists M ∈ R>0 such that

|eax
|e−σx

≤M, x ∈ R≥0.

Thus
| f (x)| = |eax

| ≤Meσx.

1In fact, we can consider a ∈ C, in which case σ( f ) = Re(z).
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Also, if σ ≤ a, then limx→∞ eaxe−σx = ∞. Thus, for any M ∈ R>0, for any
sufficiently large x we have

| f (x)|e−σx = |eax
|e−σx

≥M =⇒ | f (x)| ≥Meσx.

Thus the greatest lower bound of allσ’s for which | f (x)| ≤Meσx for some M ∈ R>0

is a, i.e., σ( f ) = a.
In this case we can calculate

L( f )(z) =

∫
∞

0
eaxe−zx dx =

e(a−z)x

a − z

∣∣∣∣∣∣
∞

0

=
1

z − a
.

3. Let us “combine” the preceding two examples and consider f (x) = tkeax for
k ∈ Z≥0 and a ∈ R.2 Here we again have σ( f ) = a, by an argument rather like
that in part 2 above. In this case we have, by a change of variable ζ = z − a,

L( f )(z) =

∫
∞

0
xkeaxe−zx dx =

∫
∞

0
xke−ζx dx =

k!
ζk+1

=
k!

(z − a)k+1
.

4. Consider f (x) = sin(ωx) for ω ∈ R. Then f ∈ E(R≥0;C) and σ( f ) = 0. We have,
using integration by parts,

L( f )(z) =

∫
∞

0
sin(ωx)e−zx dz

= −
sin(ωx)e−zx

z

∣∣∣∣∣∞
0

+
ω
z

∫
∞

0
cos(ωx)e−zx dx

= −
ω
z

cos(ωx)e−zx

z

∣∣∣∣∣∞
0
−
ω2

z2

∫
∞

0
sin(ωx)e−zx dx

=
ω
z2

(
1 − ωL( f )(z)

)
.

Thus we can solve for L( f )(z) as

L( f )(z) =
ω

z2 + ω2 .

5. We can perform a similar computation for f (x) = cos(ωx). Here again, we have
σ( f ) = 0. We also compute

L( f )(z) =

∫
∞

0
cos(ωx)e−zx dx

= −
cos(ωx)e−zx

z

∣∣∣∣∣∞
0
−
ω
z

∫
∞

0
sin(ωx)e−zx dx

=
1
z

+
ω
z

sin(ωx)e−zx

z

∣∣∣∣∣∞
0
−
ω2

z2

∫
∞

0
cos(ωx)e−zx dx

=
1
z

+
ω2

z2 L( f )(z).

2As previous, we can consider a ∈ C.
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Solving for L( f ) gives
L( f )(z) =

z
z2 + ω2 .

6. Now we combine all of the preceding computations to derive the Laplace trans-
form of a general pretty uninteresting function. To do this, we first consider
the C-valued function f (x) = xke(σ+iω)x. Here σ( f ) = σ (forgiving the abuse of
notation). From 3 we have

L( f )(z) =
k!

((z − σ) + iω)k+1
=

k!((z − σ) − iω)k+1

((z − σ)2 + ω2)k+1

=

bk/2c∑
j=0

(
k
2 j

)
(−1) jk!(z − σ)k−2 jω2 j

((z − σ)2 + ω2)k+1

+ i
bk/2c∑
j=0

(
k

2 j + 1

)
(−1) j+1k!(z − σ)k−2 j−1ω2 j+1

((z − σ)2 + ω2)k+1
,

using the Binomial Formula and where bxc is the largest integer less than or
equal to x.
Since

e(σ+iω)x = eσx(cos(ωx) + i sin(ωx)),

we conclude that, if

f (x) = xkeσx cos(ωx), g(x) = xkeσx sin(ωx),

then

L( f )(z) =

bk/2c∑
j=0

(
k
2 j

)
(−1) j(z − σ)k−2 jω2 j

((z − σ)2 + ω2)k+1

and

L(g)(z) =

bk/2c∑
j=0

(
k

2 j + 1

)
(−1) j+1(z − σ)k−2 j−1ω2 j+1

((z − σ)2 + ω2)k+1
. •

Let us prove some useful results concerning the Laplace transform. We start
with the property of linearity, which we already used in some of the examples
above.

5.1.25 Proposition (Linearity of the Laplace transform) The space E(R≥0;C) is a C-vector
space, and the Laplace transform is a linear map:

L(f1 + f2)(z) = L(f1)(z) + L(f2)(z), L(af)(z) = aL(f)(z)

for every f, f1, f2 ∈ E(R≥0;C) and a ∈ C.
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Proof We claim that, if f1, f2 ∈ E(R≥0;C), then f1 + f2 ∈ E(R≥0;C) and

σ( f1 + f2) ≤ max{σ( f1), σ( f2)}.

Indeed, suppose that a > max{σ( f1), σ( f2)}. Then there exists M1,M2 ∈ R>0 such
that

| f j(x)| ≤M jeax, x ∈ R≥0, j ∈ {1, 2}.

Then
| f1(x) + f2(x)|e−ax

≤ | f1(x)|e−ax + | f2(x)|e−ax < (M1 + M2)eax.

Thus σ( f1 + f2) ≤ max{σ( f1), σ( f2)}.
Now, the linearity of L follows from linearity of integration. �

Next we illustrate how the Laplace transform interacts with differentiation. We
see in the next result the sometimes useful consequences of the Laplace transform
being defined for functions defined on R≥0.

5.1.26 Proposition (Laplace transform and differentiation) Let f ∈ E(R≥0;C) be contin-
uously differentiable and suppose that df

dx ∈ E(R≥0;C). Then

L

( df
dx

)
(z) = zL(f)(z) − f(0).

Proof Using integration by parts,∫
∞

0

d f
dx

(x)e−zx dx = f (x)e−zx + z
∫
∞

0
f (x)e−zx dx = zL( f )(z) − f (0),

as desired. �

The proposition can be applied recursively to obtain the following result.

5.1.27 Corollary (Laplace transform and higher-order derivatives) Let f ∈ E(R≥0;C) be
k-times continuously differentiable and suppose that djf

dxj ∈ E(R≥0;C) for j ∈ {1, . . . ,k}.
Then

L

(
dkf
dxk

)
(z) = zkL(f)(z) − f(0)zk−1

− · · · −
dk−2f
dxk−2

(0)z −
dk−1f
dxk−1

(0).

5.1.3.2 The inverse transform To construct the inverse of the Laplace trans-
form, we first make the following connection with the CCFT. If f ∈ E(R≥0;C) and
if z = σ + iω ∈ C>σ( f ), then, denoting ν = ω

2π ,

L( f )(σ + iω) =

∫
∞

0
f (x)e−(σ+iω)x dx

=

∫
∞

0
f (x)e−σξe−2πiνξ dξ

= FCC( f E−σ)(ν) = FCC( f E−σ)
(
ω
2π

)
,
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where, for a ∈ C, Ea : R→ C is the function Ea(x) = eax. (Note that, when computing
the CCFT of f E−σ, we extend f to be defined on all of R by taking f (x) = 0 for
x ∈ R<0.) Now we can use our “inverse” for the CCFT from Section 5.1.2.2 to
deduce

f (x)e−σx =

∫
∞

−∞

FCC( f E−σ)(ν)e2πiνx dν

=
1

2π

∫
∞

−∞

FCC( f E−σ)
(
ω
2π

)
eiωx dω

=
1

2π

∫
∞

−∞

L( f )(σ + iω)eiωx dω.

Note that this derivation is subject to all of the limitations of those for the inverse
of the CCFT, so this should be kept in mind, and we refer to Remark 5.1.17 for a
discussion of some things that are not true and some things that are true.

With these computations and caveats, we can now suggest what we mean by
the inverse of the Laplace transform.

5.1.28 “Definition” (Inverse of the Laplace transform) The inverse of the Laplace trans-
form is the mapping that assigns to a map F : C>a → C the functionL−1(F) : R≥0 → C
defined by

L−1(F)(x) =
eσx

2π

∫
∞

−∞

F(σ + iω)eiωx dω

for σ > a. •

As with our “definitions” of F−1
CD and F−1

CC, this “definition” of the inverse of the
Laplace transform makes no sense at all. It does make more sense when F = L( f ),
in which case the formula L−1

◦L( f ) = f is sometimes literally true, and other
times still useful. We also point out that there is another potential problem that
must be addressed, and that is the dependence of L−1 on σ > σ( f ). It is a fact—a
non-obvious one—that L−1 does not depend on σ > σ( f ). The reason is connected
with the fact that, for f ∈ E(R≥0;C), L( f ) is not just any C-valued function on
Cσ( f ), but is an holomorphic function. It is the particular properties of holomorphic
functions that leads to the independence on σ > σ( f ).

In cases where the inverse transform can be actually computed, one seldom
computes it using the explicit inversion formula. Rather, there are tables of Laplace
transforms and inverse Laplace transforms, and one’s first move should be for
such a table. In Example 5.1.24 we give some important examples of forward
Laplace transforms. Let us now produce some related examples for inverse Laplace
transforms.

5.1.29 Examples (Inverse Laplace transform)
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1. Let us consider the function
F : C>0 → C

z 7→
1
zk

for k ∈ Z>0. By Example 5.1.24–1 and linearity of the Laplace transform, we
have

L−1(F)(x) =
xk−1

(k − 1)!
.

2. Next we consider the function

F : C>a → C

z 7→
1

(z − a)k

for k ∈ Z>0 and a ∈ R.3 By Example 5.1.24–3 and linearity of the Laplace
transform we have

L−1(F)(x) =
xk−1eax

(k − 1)!
.

3. The next function we consider is

F : C>a → C

z 7→
z

(z − a)k

for k ≥ 2 and a ∈ R.4 Here we take G(z) = 1
(z−a)k and note from our previous

example that G(z) = L(g)(z), where g(x) = xk−1eax

(k−1)! . Now, by Proposition 5.1.26,
we have

L

(
dg
dx

)
(z) = zL(g)(z) − g(0) = F(z).

Thus F = L( f ), where f =
dg
dx . Thus, wrapping all this up,

L−1(F) =
xk−2eax

(k − 2)!
+

axk−1eax

(k − 1)!
.

4. Next we consider
F(z) =

1
(z − σ)2 + ω2

for σ ∈ R andω ∈ R>0. As per Example 5.1.24–6, the inverse Laplace transform
is

L−1(F)(x) =
1
ω

eσx sin(ωx).

3We can take a ∈ C, in which case the domain of F would be C>Re(a).
4As previously, we can take a ∈ C.
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In similar fashion, if
G(z) =

z
(z − σ)2 + ω2 ,

then
L−1(G)(x) = eσx cos(ωx).

5. Now we generalise the preceding example, considering

F(z) =
1

((z − σ)2 + ω2)k
,

for k ≥ 2, σ ∈ R, and ω ∈ R>0. Here we note that

F(z) =
1

(z − (σ + iω))k︸           ︷︷           ︸
F+(z)

1
(z − (σ − iω))k︸           ︷︷           ︸

F−(z)

.

Let F = L( f ), F+ = L( f+), and F− = L( f−). By 2 above,

f+(x) =
xk−1e(σ+iω)x

(k − 1)!
, f−(x) =

xk−1e(σ−iω)x

(k − 1)!
.

By Proposition 5.1.31, we have

f (x) = f+ ∗ f−(x) =

∫ x

0
f+(y) f−(x − y) dy

=
1

((k − 1)!)2

∫ x

0
yk−1(x − y)k−1e(σ+iω)ye(σ−iω)(x−y) dy

=
1

((k − 1)!)2

k−1∑
j=0

(
k − 1

j

)
xk− j−1e(σ−iω)x

∫ x

0
yk+ j−1e2iωy dy.

A simple inductive (on k) computation gives∫ x

0
ykeay dy = eax

k∑
j=0

(−1)k− jk!
j!ak− j+1

x j
−

(−1)kk!
ak+1

.

Thus

f (x) =
1

((k − 1)!)2

k−1∑
j=0

(
k − 1

j

)
xk− j−1e(σ−iω)x

∫ x

0
yk+ j−1e2iωy dy

=
1

((k − 1)!)2

k−1∑
j=0

(
k − 1

j

)
xk− j−1e(σ−iω)x

×

e2iωx
k+ j−1∑

l=0

(−1)k+ j−l−1(k − j − 1)!
l!(2iω)k+ j−l

xl +
(−1)k+ j(k − 1)!

(2iω)k


=
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5.1.3.3 Convolution and the Laplace transform In this section we consider
the relationship of convolution with products for the Laplace transform. The
transformed variables in this case reside in C>a for some a ∈ R, and so transformed
functions are functions from C>a to C. Thus, in this case, we have F,G : C>a → C
and so the product of F and G is the function

FG : C>a → C
z 7→ F(z)G(z).

What we want to know is, if F = L( f ) and G = L(g), is there a function h : R≥0 → C
for which L(h) = FG?

To answer this question, we make the following definition.

5.1.30 Definition (Causal convolution) If f , g ∈ E(R≥0;C), the causal convolution of f
and g is the function

f ∗ g : R≥0 → C

x 7→
∫ x

0
f (x − y)g(y) dy.

•

Note that, for f , g : R≥0 → C, we have g(y) = 0 for y < 0 and f (x − y) = 0 for
y > x. Thus ∫ x

0
f (x − y)g(y) dy =

∫
∞

−∞

f (x − y)g(y) dy,

and so this establishes the relationship between convolution and causal convolu-
tion. Note, however, that we do not need to require that f and g be in L1(R≥0;C)
for the definition to make sense.

The operation of convolution is a interesting one, and has many properties that
merit further exploration. For our purposes, we merely point out the following
result.

5.1.31 Proposition (Laplace transform and convolution) If f,g ∈ E(R≥0;C), then f ∗ g ∈
E(R≥0;C), σ(f ∗ g) ≤ max{σ(f), σ(g)}, and

L(f ∗ g)(z) = L(f)(z)L(g)(z)

for z ∈ C>a, and for any a > max{σ(f), σ(g), σ(f ∗ g)}.

Proof Let a > max{σ( f ), σ(g)} and let b ∈ R be such that

a > b > max{σ( f ), σ(g)}.

Let M ∈ R>0 be such that | f (x)|, |g(x)| ≤Mebx for x ∈ R≥0. Then

| f ∗ g(x)| ≤
∫ x

0
| f (x − y)g(y)|dy ≤M2

∫ x

0
eb(x−y)eby dy ≤M2xebx.
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Since limx→∞ xe(b−a)x = 0, there exists R ∈ R>0 such that

xe(b−a)x
≤ 1, x ≥ R.

Next let
C = sup{xe(b−a)x

| x ∈ [0,R]}.

Then, for x ∈ R≥0, we have xe(b−a)x
≤ max{1,C}. Thus

| f ∗ g(x)| ≤M2xebx
≤M2 max{1,C}eax, x ∈ R≥0.

This shows that σ( f ∗ g) ≤ max{σ( f ), σ(g)}.
The remainder of the proof is a fairly straightforward application of Fubini’s

Theorem and the change of variables theorem:

L( f ∗ g)(z) =

∫
∞

0
f ∗ g(x)e−zx dx =

∫
∞

0

(∫ x

0
f (x − y)g(y) dy

)
e−zx dx

=

∫
∞

0
g(y)

(∫
∞

y
f (x − y)e−zx dx

)
dy

=

∫
∞

0
g(σ)

(∫
∞

0
f (τ)e−z(σ+τ) dτ

)
dσ

=

(∫
∞

0
g(σ)e−zσ dσ

) (∫
∞

−∞

f (τ)e−zτ dτ
)

= L( f )(z)L(g)(z),

as claimed. �

5.1.3.4 Extension to higher-dimensions In this section we extend the defini-
tion of the Laplace transform to (1) functions with values in Cn and (2) functions
with multiple independent variables.

First we extend the Laplace transform to functions with values in Cn. To do so,
we note that, if f : R≥0 → Cn, then we can write

f (x) = ( f1(x), . . . , fn(x))

for functions f1, . . . , fn : R≥0 → C. We then denote

E(R≥0;Cn) =
{

f : R≥0 → Cn
∣∣∣ f1, . . . , fn ∈ E(R≥0;C)

}
.

We also denote σ( f ) = max{σ( f1), . . . , σ( fn)}. We can then make the following more
or less obvious definition.
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5.1.32 Definition (Laplace transform II) The Laplace transform of f ∈ E(R≥0;Cn) is the
function L( f ) : C>σ( f ) → Cn defined by

L( f )(z) = (L( f1)(z), . . . ,L( fn)(z)). •

The inverse of the Laplace transform in this case is also made component-wise.
Thus if F : C>a → Cn, we denote

L−1(F)(x) = (L−1(F1)(x), . . . ,L−1(Fn)(x)).

Of course, all of the caveats we made in Section 5.1.2.2, which apply to the inversion
of the Laplace transform, apply to the inverse in this case as well.

Next we consider the case when we have a function of multiple variables. To
do this, if f : Rn

≥0 → C, then we denote∫
Rn
≥0

f (x) dx =

∫
∞

0
· · ·

∫
∞

0
f (x1, . . . , xn) dx1 · · ·dxn.

We also denote

E(Rn
≥0;C) =

{
f : Rn

≥0 → C
∣∣∣ | f (x)| ≤Mea‖x‖ for some M ∈ R>0, a ∈ R

}
.

For f ∈ E(Rn
≥0;C), denote

σ( f ) = inf
{
a ∈ R | | f (x)| ≤Mea‖x‖ for some M ∈ R>0

}
.

With this notation, we make the following definition.

5.1.33 Definition (Laplace transform III) The Laplace transform of f ∈ E(Rn
≥0;C) is the

function L( f ) : Cn
>σ( f ) → C defined by

L( f )(z) =

∫
Rn
≥0

f (x)e−〈z,x〉Rn dx •

The inverse of the multivariable Laplace transform is then determined by anal-
ogy with the single-variable case. Thus, if F : C>a → C, we denote

L−1(F)(x) =

∫
Rn

F(σ + iω)ei〈ω,x〉Rn dω.

Of course, care must be taken with interpreting this multiple integral, just as in the
single-variable case.
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Exercises

5.1.1 Determine whether the following functions f : R≥0 → C are of exponential
class, and, if they are, determine σ( f ).

(a) f (x) =

 1
x , x ∈ R>0,

0, x = 0.

(b) f (x) = ex2 .
(c) f (x) = e−x2 .
(d) f (x) = akxk + · · · + a1x + a0, a0, a1, . . . , ak ∈ R.

5.1.2 Answer the following questions.
(a) Given that the Laplace transform for f (x) = cos(ωx) is L( f )(z) = z

z2+ω2 ,
use Proposition 5.1.26 to determine L(g), where g(x) = sin(ωx).

(b) Given that the Laplace transform for f (x) = sin(ωx) is L( f )(z) = ω
z2+ω2 ,

use Proposition 5.1.26 to determine L(g), where g(x) = cos(ωx).
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Section 5.2

Laplace transform methods for linear ordinary differential
equations with constant coefficients

Laplace transforms can be used to study various sorts of differential equations,
both partial and ordinary. In this section, we will stick to considering the appli-
cation of Laplace transform techniques to the study of linear ordinary differential
equations with constant coefficients. This can be thought of as the prototypical
application of transform methods in the theory of differential equations and, more-
over, is one of the more elementary applications of transform theory. Thus this
section can be seen as having a twofold purpose: (1) to demonstrate the basic phi-
losophy of transform analysis in the study of differential equations; (2) to develop
fully an application of the Laplace transform to ordinary differential equations.
To both ends, the emphasis will be on seeing how transforms can be helpful in
understanding differential equations, rather than in solving differential equations
(although we shall see that the latter is a part of the story).

We shall apply the Laplace transform to the full spectrum of linear ordinary dif-
ferential equations with constant coefficients, homogeneous and inhomogeneous,
and scalar and multiple dependent variables.

5.2.1 Scalar homogeneous equations

We begin our discussion with scalar linear homogeneous ordinary differential
equations with constant coefficients, first considered in detail in Section 2.2.2.
Thus, as in that section we are working with differential equations

F : T × R ⊕ L≤k
sym(R;R)→ R

with right-hand side

F̂(t, x, x(1), . . . , x(k)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x (5.4)

for a0, a1, . . . , ak−1 ∈ R. Given Corollary 5.1.27, the Laplace transform is particularly
well suited for working with ordinary differential equations with initial conditions.
Thus we shall consider the initial value problem

dkξ(t)
dtk

(t) + ak−1
dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = 0,

ξ(0) = x0,
dξ
dt

(0) = x(1)
0 , · · · ,

dk−1ξ

dtk−1
(0) = x(k−1)

0 . (5.5)

We shall now take the Laplace transform of this initial value problem. To do so,
it is, of course, tacitly assumed that all members of Sol(F) are of exponential class.
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This is true, however, since all members of Sol(F) are also pretty uninteresting
functions, and so are of exponential class when restricted to the domain R≥0 as we
saw in Example 5.1.24. Another way to think of taking the Laplace transform of
the equation, were one to not know a priori that solutions were of exponential class,
would be to go ahead and take the transform assuming this is so, and then see if
the assumption is valid by seeing if the equation can be solved (or by some other
means). In any case, the following result records what happens when we take the
Laplace transform of the initial value problem.

5.2.1 Proposition (Laplace transform of scalar homogeneous equation) If ξ̂ is the
Laplace transform of the initial value problem (5.5), then

ξ̂(z) =

∑k
j=0

∑j−1
l=0 ajzlξ(j−l−1)(0)

zk + ak−1zk−1 + · · · + a1z + a0
,

with the convention that ak = 1.

Proof By Corollary 5.1.27 we have

L

(
d jξ

dt j

)
(z) = z jξ̂(z) −

j−1∑
l=0

zlξ( j−l−1)(0), j ∈ {0, 1, . . . , k}.

Therefore, with the stated convention that ak = 1,

L

 k∑
j=0

a j
d jξ

dt j

 =

k∑
j=0

a j

z jξ̂(z) −
j−1∑
l=0

zlξ( j−l−1)(0)

 ,
and solving this equation for ξ̂(z) gives the asserted conclusion. �

To obtain the solution to the initial value problem in the time-domain, we
should apply the inverse transform to the expression from the proposition. To do
this, one could, in principle, apply the definition of the inverse Laplace transform,
Definition 5.1.28. However, in cases where one can actually compute the inverse
transform, it is not typically done in this way. Indeed, typically one “looks up” the
answer. However, to do this requires a manipulation of the form of the expression
from the proposition, and we outline this in the following procedure.

5.2.2 Procedure (Partial fraction expansion) While we shall apply the procedure to a
C-valued function of a complex variable (namely, the Laplace transform of some-
thing), the construction is best explained in algebraic terms, so we present it in
this way. Algebraically, the problem we are considering is a way of expressing a
rational function, i.e., a quotient RN,D = N

D of polynomials N and D, in a manner
where the roots of D and their multiplicities are accounted for properly.

Given two polynomials N,D ∈ R[X] with real coefficients, with D monic, with
no common roots, and with deg(N) < deg(D), do the following.
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1. Find all roots of D and their multiplicities. Let the real roots be denoted by
r1, . . . , rl and let m(r j), j ∈ {1, . . . , l}, be the multiplicity of the root r j. Let the
complex roots be denote by ρ j = σ j + iω j, σ j ∈ R, ω j ∈ R>0, j ∈ {1, . . . , p} (along
with the complex conjugate roots σ j − iω j) and let m(ρ j), j ∈ {1, . . . , p}, be the
multiplicity of the root ρ j.

2. Write

RN,D =

l∑
j=1

m(r j)∑
k=1

a j,k

(X − r j)k
+

p∑
j=1

m(ρ j)∑
k=1

α j,kX + β j,k

((X − σ j)2 + ω2
j )

k
(5.6)

for constants a j,k ∈ R, j ∈ {1, . . . , l}, k ∈ {1, . . . ,m(r j)}, andα j,k, β j,k ∈ R, j ∈ {1, . . . , p},
k ∈ {1, . . . ,m(ρ j)}, that are to be determined.

3. Express the right-hand side of the preceding expression in the form

P
(X − r1)m(r1) · · · (X − rl)m(rl)((X − σ1)2 + ω2

1)m(ρ1) · · · ((X − σp)2 + ω2
p)m(ρp)

,

for some polynomial P ∈ R[X].
4. By matching coefficients of powers of the indeterminate X, arrive at a set of linear

algebraic equations for the constants a j,k ∈ R, j ∈ {1, . . . , l}, k ∈ {1, . . . ,m(r j)}, and
α j,k, β j,k ∈ R, j ∈ {1, . . . , p}, k ∈ {1, . . . ,m(ρ j)}. It is a fact that these linear algebraic
equations have a unique solution.

5. The partial fraction expansion of RN,D is then the right-hand side of the expres-
sion (5.6) with the constants as computed in the previous step. •

The idea of a partial fraction expansion in practice is straightforward, albeit
quite tedious.

5.2.3 Examples (Partial fraction expansion)
1. We take N = 5X + 4 and D = X2 + X − 2 so that

RN,D =
5X + 4

X2 + X − 2
.

We determine the roots of D to be r1 = 1 and r2 = −2, with m(r1) = m(r2) = 1.
We then write

5X + 4
X2 + X − 2

=
a1,1

X − 1
+

a2,1

X + 2
=

(a1,1 + a2,1)X + 2a1,1 − a2,1

(X − 1)(X + 2)
.

Thus, matching coefficients of powers of X in the numerator, we must have

a1,1 + a2,1 = 5, 2a1,1 − a2,1 = 4 =⇒ a1,1 = 3, a2,1 = 2.

Thus the partial fraction expansion is

RN,D =
3

X − 1
+

2
X + 2

.
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2. We take N = −3X2 + 5X + 2 and D = X3
− 3X2 + X − 3, so that

R =
−3X2 + 5X + 2

X3 − 3X2 + X − 3
.

The roots of the denominator polynomial are r1 = 3, ρ1 = i, and ρ̄1 = −i. We
then write

−3X2 + 5X + 2
X3 − 3X2 + X − 3

=
a1,1

X − 3
+
α1,1X + β1,1

(X − 0)2 + 1

=
(a1,1 + α1,1)X2 + (β1,1 − 3α1,1)X + a1,1 − 3β1,1

(X − 3)(X2 + 1)
.

Matching coefficients of powers of X in the numerator, we must have

a1,1 + α1,1 = −3, β1,1 − 3α1,1 = 5, a1,1 − 3β1,1 = 2
=⇒ a1,1 = −1, α1,1 = −2, β1,1 = −1.

The partial fraction expansion is

RN,D = −
1

X − 3
−

2X + 1
X2 + 1

.

3. We take N = 2X2 + 1 and D = X3 + 3X2 + 3X + 1 so that

RN,D =
2X2 + 1

X3 + 3X2 + 3X + 1
.

The denominator polynomial has a single root r1 = −1 which has multiplicity
m(r1) = 3. We write

2X2 + 1
X3 + 3X2 + 3X + 1

=
a1,1

X + 1
+

a1,2

(X + 1)2 +
a1,3

(X + 1)3

=
a1,1X2 + (2a1,1 + a1,2)X + a1,1 + a1,2 + a1,3

(X + 1)3 .

Thus, matching coefficients of powers of X in the numerator,

a1,1 = 2, 2a1,1 + a1,2 = 0, a1,1 + a1,2 + a1,3 = 1
=⇒ a1,1 = 2, a1,2 = −4, a1,3 = 3.

Thus the partial fraction expansion is

RN,D =
2

X + 1
−

4
(X + 1)2 +

3
(X + 1)3 . •
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There are complex function methods for computing the coefficients in a partial
fraction decomposition, but we shall not present this here, mainly because this
method for solving initial value problems offers very little in terms of insight,
and nothing over the methods we learned in Procedure 2.2.18 for solving scalar
linear homogeneous ordinary differential equations with constant coefficients. So
presenting multiple methods for computing partial fraction expansions seems a
little silly.

Now let us see how one uses the partial fraction expansion to compute the
inverse Laplace transform of the expression from Proposition 5.2.1. This is most
easily done via examples.

5.2.4 Examples (Solving scalar homogeneous equations using the Laplace trans-
form)
1. Consider the initial value problem

ξ̈(t) + ξ̇(t) − 2ξ(t) = 0, ξ(0) = 5, ξ̇(0) = −1.

Taking the Laplace transform of the initial value problem, with ξ̂ denoting the
Laplace transform of ξ, gives

z2ξ̂(z) − zξ(0) − ξ̇(0) + zξ̂(z) − ξ(0) − 2ξ̂(z) = 0 =⇒ ξ̂(z) =
5z + 4

z2 + z − 2
.

Borrowing our partial fraction expansion from Example 5.2.3–1 we have

ξ̂(z) =
3

z − 1
+

2
z + 2

.

Thus, referring to Example 5.1.29–2,

ξ(t) = 3et + 2e−2t.

2. Consider the initial value problem
...
ξ(t) − 3ξ̈(t) + ξ̇(t) − 3ξ(t) = 0, ξ(0) = −3, ξ̇(0) = −4, ξ̈(0) = −7.

Taking the Laplace transform of the initial value problem gives

z3ξ̂(z)− z2ξ(0)− zξ̇(0)− ξ̈(0)− 3z2ξ̂(z) + 3zξ(0) + 3ξ̇(0) + zξ̂(z)− ξ(0)− 3ξ̂(z) = 0

=⇒ ξ̂(z) =
−3z2 + 5z + 2

z3 − 3z2 + z − 3
.

Borrowing our partial fraction expansion from Example 5.2.3–1 we have

ξ̂(z) = −
1

z − 3
−

2z + 1
z1 + 1

.

Thus, referring to Example 5.1.29–2 and Example 5.1.29–4,

ξ(t) = −e3t
− 2 cos(t) − sin(t).
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3. Consider the initial value problem
...
ξ(t) + 3ξ̈(t) + 3ξ̇(t) + ξ(t) = 0, ξ(0) = 2, ξ̇(0) = −6, ξ̈(0) = 13.

Taking the Laplace transform of the initial value problem gives

z3ξ̂(z)− z2ξ(0)− zξ̇(0)− ξ̈(0) + 3z2ξ̂(z)− 3zξ(0)− 3ξ̇(0) + 3zξ̂(z)− 3ξ(0) + ξ̂(z) = 0

=⇒ ξ̂(z) =
2z2 + 1

z3 + 3z2 + 3z + 1
.

Borrowing our partial fraction expansion from Example 5.2.3–1 we have

ξ̂(z) =
2

z + 1
−

4
(z + 1)2 +

3
(z + 1)3 .

Thus, referring to Example 5.1.29–2,

ξ(t) = 2e−t
− 4te−t +

3
2

t2e−t. •

The above business about partial fraction expansions gives a reader who likes
doing algorithmic computations a venue to exercise this skill. However, it is not
really the point of the Laplace transform. The really useful feature of the Laplace
transform for linear differential equations, and not just those equations that are
scalar and homogeneous, is that initial value problems are converted into algebraic
expressions. The use of partial fraction expansions to determine the inverse Laplace
transform of these algebraic expressions is something of a novelty act.

5.2.2 Scalar inhomogeneous equations

We next consider scalar linear inhomogeneous ordinary differential equations,
first considered in Section 2.3.2. Thus we are working with scalar ordinary differ-
ential equations with right-hand sides given by

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + b(t) (5.7)

for a0, a1, . . . , ak−1 ∈ R and b : T→ R. The initial value problem we consider is then

dkξ(t)
dtk

(t) + ak−1
dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = b(t),

ξ(0) = x0,
dξ
dt

(0) = x(1)
0 , · · · ,

dk−1ξ

dtk−1
(0) = x(k−1)

0 . (5.8)

As with inhomogeneous equations above, we take the Laplace transform of this
equation. However, unlike in the homogeneous case, here taking the transform is
not generally valid; indeed, it is valid if and only if b ∈ E(R≥0;R).
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5.2.5 Proposition (Laplace transform of scalar inhomogeneous equation) Consider
the scalar ordinary differential equation with right-hand side (5.7), and suppose that b is
continuous and satisfies b ∈ E(R≥0;R). If b̂ is the Laplace transform of b and if ξ̂ is the
Laplace transform of the initial value problem (5.8), then

ξ̂(z) =

∑k
j=0

∑j−1
l=0 ajzlξ(j−l−1)(0) + b̂(z)

zk + ak−1zk−1 + · · · + a1z + a0
,

with the convention that ak = 1.

Proof This follows immediately from the computations of Proposition 5.2.1. �

There are two ways in which the proposition has value. One is theoretical
and one is that it provides another tedious algorithmic procedure—augmenting
the “method of undetermined coefficients”—for computing solutions when the
inhomogeneous term is an also pretty uninteresting function. Let us consider
these in turn.

First let us give an interpretation of Proposition 5.2.5 in terms of the Green’s
function from Section 2.3.1.3.

5.2.6 Proposition (Laplace transforms and the Green’s function) Consider the scalar
linear homogeneous ordinary differential equation F with right-hand side (5.4). Then the
following statements hold:

(i) the Laplace transform of the Green’s function GF,0 : R≥0 × R≥0 → R is given by
GF,0(t, τ) = HF(t − τ) where

L(HF)(z) =
1

zk + ak−1zk−1 + · · · + azz + a0
;

(ii) if b: R≥0 → R is continuous, then the solution to the initial value problem (5.8) is
given by ξ(t) = ξh(t) + HF ∗ b(t), where ξh satisfies the homogeneous initial value
problem

dkξh(t)
dtk

(t) + ak−1
dk−1ξh

dtk−1
(t) + · · · + a1

dξh

dt
(t) + a0ξh(t) = 0,

ξh(0) = x0,
dξh

dt
(0) = x(1)

0 , · · · ,
dk−1ξh

dtk−1
(0) = x(k−1)

0 .

Proof (i) According to Remark 2.3.11, GF,0(t, τ) = HF(t − τ), where HF satisfies the
initial value problem

dkHF

dtk
(t) + ak−1

dk−1HF

dtk−1
(t) + · · · + a1

dHF

dt
(t) + a0HF(t) = 0,

HF(0) = 0,
dHK

dt
(0) = 0, . . . ,

dk−2HF

dtk−2
(0) = 0,

dk−1HF

dtk−1
(0) = 1.
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Therefore, according to Proposition 5.2.1,

L(HF)(z) =
1

zk + ak−1zk−1 + · · · + azz + a0
,

as claimed.
(ii) This follows from Remark 2.3.11 and Exercise 2.3.2. However, let us also

see how it follows from Proposition 5.2.5 when b ∈ E(R≥0;R). Indeed, from
Proposition 5.2.5 and part (i), we have

ξ̂(z) = ξ̂h(z) + ĤF(z)b̂(z).

Now this part of the result follows from Proposition 5.1.31. �

The preceding result provides one of the most compelling reasons to work
with the Laplace transform, and additionally adds insight into the meaning of the
Green’s function that we saw in generality in Section 2.3.1.3.

Next let us turn to a less interesting but somehow more concrete application
of the Laplace transform in the study of scalar linear inhomogeneous ordinary
differential equations. Specifically, we consider such an equation F with right-
hand side (5.7), and where b is an also pretty uninteresting function. In this
case, as we see from Example 5.1.24, the Laplace transform b̂ of b will be a rational
function of the complex variable z whose numerator polynomial has degree strictly
less than that of the denominator polynomial. Therefore, as per Proposition 5.2.5,
the Laplace transform ξ̂ of the solution ξ of the initial value problem (5.8) will
itself be such a rational function of z. Thus we can perform a partial fraction
expansion of ξ̂ as per Procedure 5.2.2, and then perform the inversion of the Laplace
transform as per Example 5.2.4 to obtain the solution. This is not something to
be belaboured—not least because we already have the often easier “method of
undetermined coefficients” for such situations–and we content ourselves with an
illustration via a example.

5.2.7 Example (Solving scalar inhomogeneous equations using the Laplace trans-
form) We consider the initial value problem

ξ̈(t) + ω2ξ(t) = sin(ωt), ξ(0) = x0, ξ̇(0) = x(1)
0 ,

for ω ∈ R>0. Using Example 5.1.24–4 we compute the Laplace transform of this
initial value problem:

z2ξ̂(z) − zx0 − x(1)
0 + ω2ξ̂(z) =

ω
z2 + ω2

=⇒ ξ̂(z) =
ω

(z2 + ω2)2 +
zx0 + x(1)

0

z2 + ω2 .

Using Example 5.1.29–4 and Example 5.1.29–5 we have

ξ(t) = x0 cos(ωt) +
x(1)

0

ω
sin(ωt) −

t
2ω

cos(ωt) +
1

2ω2 sin(ωt). •
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5.2.3 Systems of homogeneous equations

Now we turn to studying systems of equations using the Laplace transform,
starting with the homogeneous case. As we did in Section 3.2, we shall work with
systems whose state space is a finite-dimensional R-vector space V. We should
indicate what we mean by the Laplace transform of a function taking values in
such a space.

5.2.8 Definition (Laplace transform for vector space-valued functions) Let V be an
n-dimensional R-vector space and let {e1, . . . , en} be a basis for V. For a function
ξ : R≥0 → V, write

ξ(t) = ξ1(t)e1 + · · · + ξn(t)en

for ξ j : R≥0 → R, j ∈ {1, . . . ,n}.
(i) Denote

E(R≥0; V) = {ξ : R≥0 → V | ξ1, . . . , ξn ∈ E(R≥0;R)}.

(ii) For ξ ∈ E(R≥0; V), denote

σ( f ) = max{σ(ξ1), . . . , σ(ξn)}.

(iii) A function in E(R≥0; V) will be said to be of exponential class.
(iv) For ξ ∈ E(R≥0; V), the Laplace transform of ξ is

L(ξ) : C>σ(ξ) → VC

z 7→L(ξ1)(z)e1 + · · · + L(ξn)(z)en.
•

Of course, one must verify that the preceding definitions are independent of
the choice of basis, and we leave this to the reader as Exercise 5.2.1.

Now we proceed with the principal constructions. We consider a system of lin-
ear ordinary differential equations F with constant coefficients in an n-dimensional
R-vector space V, and with right-hand side

F̂ : R≥0 × V→ V
x 7→ A(x)

for A ∈ L(V; V). The associated initial value problem we study is then

ξ̇(t) = A(ξ(t)), ξ(0) = x0. (5.9)

Let us take the Laplace transform of this initial value problem.
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5.2.9 Proposition (Laplace transform of system of homogeneous equations) If ξ̂ is
the Laplace transform of the initial value problem (5.9), then

ξ̂(z) = (z idV −A)−1x0,

and ξ̂ is defined on

{z ∈ C | Re(z) > Re(λ) for all λ ∈ spec(A)}.

Proof This is a direct computation using Proposition 5.1.26:

zξ̂(z) − ξ(0) = Aξ̂(z),

from which the result follows immediately after noting that z idV −A is invertible
if the real part of z exceeds the real part of any eigenvalue of A. �

As with scalar equations, the application of the Laplace transform permits a
solution for systems of linear homogeneous equations with constant coefficients
using just algebraic computations in the transformed variables. In order to under-
stand the inverse (z idV −A)−1, let us think about how one may compute this inverse.
We shall suppose that we have a basis {e1, . . . , en} for V and let A ∈ L(Rn;Rn) be the
matrix representative for A. Then the matrix representative for (z idV −A)−1 is
(zIn−A)−1. For B ∈ L(Rn;Rn), let us denote by Cof(B) the n×n-matrix whose ( j, k)th
entry is (−1) j+k det B̂( j, k), where B̂( j, k) is the (n − 1) × (n − 1)-matrix obtained by
deleting the jth row and kth column from B. Then, by missing stuff ,

Cof(B)TB = B Cof(B)T = (det B)In.

Therefore,

(zIn − A)−1 =
(zIn − A)T

det(zIn − A)
.

Note that the entries of Cof(zI−A) are determinants of (n−1)×(n−1)-matrices whose
entries are polynomials of degree at most 1 in z. Thus the entries of Cof(zIn − A)
are polynomials of degree at most n − 1. Thus, since det(zIn − A) is a monic
polynomial of degree n in z, the entries of (zIn − A)−1 are rational functions in z
whose numerator polynomial has degree strictly less than that of the denominator
polynomial. Therefore, the inverse Laplace transform of (zIn−A)−1 can be computed
by performing a partial fraction expansion on each of its entries, and then applying
the inverse Laplace transforms of Example 5.1.29.

However, the inverse Laplace transform of (z idV −A)−1 is known to us already.

5.2.10 Proposition (Laplace transform of operator exponential) For an n-dimensional
R-vector space V and for A ∈ L(V; V), denote

expA : R≥0 → L(V; V)

t 7→ eAt.

Then L(expA)(z) = (z idV −A)−1.
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Proof By Theorem 3.2.9(i) and since expA(t) = ΦA(t, 0), we note that expA satisfies
the initial value problem

d expA

dt
(t) = A ◦ expA(t), expA(0) = idV .

Taking the Laplace transform of this initial value problem gives

z êxpA(z) − idV = A ◦ êxpA(z) =⇒ êxpA(z) = (z idV −A)−1,

as claimed. �

Let’s illustrate this in a simple example.

5.2.11 Example (Operator exponential via the Laplace transform) We consider the
linear map A ∈ L(R2;R2) considered in Example 3.2.49:

A =

[
−7 4
−6 3

]
.

We compute

(zI2 − A)−1 =

[
z−3

z2+4z+3
4

z2+4z+3
−

6
z2+4z+3

z+7
z2+4z+3

]
.

We then use partial fraction expansions:

z − 3
z2 + 4z + 3

= −
2

z + 1
+

3
z + 3

,

4
z2 + 4z + 3

=
2

z + 1
−

2
z + 3

,

−
6

z2 + 4z + 3
= −

3
z + 1

+
3

z + 3
,

z + 7
z2 + 4z + 3

=
3

z + 1
−

2
z + 3

.

Using Example 5.1.29–2, we apply the inverse transform to get

eAt =

[
3e−3t

− 2e−t
−2e−3t + 2e−t

3e−3t
− 3e−t

−2e−3t + 3e−t

]
,

just as in Example 3.2.49. •

It is a matter of taste whether one thinks that using Laplace transforms to
compute the operator exponential is preferable to Procedure 3.2.48. It is, however,
not such an important matter to resolve in favour of one method or the other;
actually computing the operator exponential is seldom of interest per se. What
is certainly true is that with Laplace transforms one loses the insight offered by
invariant subspaces in Procedure 3.2.48. The benefits of the Laplace transform in
this context arises in system theory, where complex function techniques offer some
genuine insights. However, these topics are out of our scope here.
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5.2.4 Systems of inhomogeneous equations

Next we consider systems of homogeneous equations. Thus we have an ordi-
nary differential equation with state space V and with right-hand side

F̂ : R≥0 × V→ V
x 7→ A(x) + b(t),

(5.10)

for A ∈ L(V; V) and for b : R≥0 → V. The associated initial value problem we
consider is

ξ̇(t) = A(ξ(t)) + b(t), ξ(0) = x0. (5.11)

We can, of course, easily take the Laplace transform of this initial value problem to
get the following.

5.2.12 Proposition (Laplace transform of system of inhomogeneous equations) Con-
sider the system of scalar ordinary differential equations with right-hand side (5.10), and
suppose that b is continuous and satisfies b ∈ E(R≥0; V). If b̂ is the Laplace transform of
b and if ξ̂ is the Laplace transform of the initial value problem (5.11), then

ξ̂(z) = (z idV −A)−1(x0 + b̂(z)).

Proof The proof is an easy adaptation of that of Proposition 5.2.12. �

As was the case with our discussion of scalar inhomogeneous equations in
Section 5.2.2, the preceding result can be interpreted in two ways, one having
theoretical value and the other as a means of computing solutions. We shall
explore both.

The first result makes a connection with the formula given in Corollary 3.3.3
for solutions to systems of linear inhomogeneous equations, in the general setting
of time-varying systems.

5.2.13 Proposition (Laplace transforms and convolutions for solutions of linear in-
homogeneous equations) Consider the system of scalar ordinary differential equations
with right-hand side (5.10), and suppose that b is continuous. Then the solution to the
initial value problem (5.11) is

ξ(t) = eAt(x0) + expA ∗b(t).

Proof This follows immediately from Corollary 3.3.3, after understanding that

expA ∗b(t) =

∫ t

0
eA(t−τ)(b(τ)) dτ.

However, here we shall give a proof using Laplace transforms, valid when b ∈
E(R≥0; V).
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From Proposition 5.2.12 we have

ξ̂(z) = (z idV −A)−1(x0) + (z idV −A)−1b̂(z).

By Proposition 5.2.10 we have

(z idV −A)−1 = L(expA).

For x ∈ V, let us denote
evx : L(V; V)→ V

L 7→ L(x).

We then have, noting that evx0 is a linear map,

L(evx0
◦ expA)(z) = evx0

◦L(expA)(z) = (z idV −A)(x0).

Also, by Proposition 5.1.31,

L(expA ∗b)(z) = L(expA)(z)b̂(z) = (z idV −A)b̂(z).

Therefore,
ξ̂(z) = evx0

◦L(expA) + L(expA ∗b)(z).

Taking the inverse Laplace transform gives

ξ(t) = evx0
◦eAt + expA ∗b(t) = eAt(x0) + expA ∗b(t),

as claimed. �

Finally, in the base when b is an also pretty interesting function (meaning that,
in a basis for V, the components of b are also pretty uninteresting functions), we
can use Proposition 5.2.12, and partial fraction expansions, to compute solutions.
We only validate this by a simple example since, in reality, this is not something
one ever does.

5.2.14 Example (Solving systems of inhomogeneous equations using the Laplace
transform) We take V = R2 and

A =

[
0 1
−ω2 0

]
, b(t) =

[
0

sin(ωt)

]
.

We then calculate

(zI2 − A)−1 =

[ z
z2+ω2

1
z2+ω2

−
ω2

z2+ω2
z

z2+ω2

]
, b̂(z) =

[
0
ω

z2+ω2

]
.
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Thus, by Proposition 5.2.12,

ξ̂(z) =

[ z
z2+ω2

1
z2+ω2

−
ω2

z2+ω2
z

z2+ω2

] [
x01

x02

]
+

[ z
z2+ω2

1
z2+ω2

−
ω2

z2+ω2
z

z2+ω2

] [
0
ω

z2+ω2

]
=

 ω
(z2+ω2)2 + x01z+x02

z2+ω2

ωz
(z2+ω2)2 + x02z−x01ω2

z2+ω2

 .
The last line was arrived at by performing the matrix multiplication, then perform-
ing a partial fraction expansion of the entries of the resulting vector. This, then,
is a bit of effort that we do not fully illustrate. In any case, one can apply the
conclusions of Example 5.1.29–4 and Example 5.1.29–5 to arrive at

ξ(t) =

[
1

2ω2 sin(ωt) − t
2ω cos(ωt) + x01 cos(ωt) + x02

ω sin(ωt)
t
2 sin(ωt) + −ωx01 sin(ωt) + x02 cos(ωt)

]
.

We encourage the reader to understand the relationship between this answer and
the one from Example 5.2.7. •

As with systems of homogeneous equations, the use of the Laplace transform
to solve inhomogeneous equations does not have a lot to recommend it from a
computational point of view. The advantages it has come more from exploiting
the algebraic structure of the differential equation as a function of the transformed
independent variable z.

Exercises

5.2.1 Let V be a finite-dimensional R-vector space. Answer the following ques-
tions regarding Definition 5.2.8.
(a) Show that the definition of E(R≥0; V) is independent of choice of basis.
(b) For ξ ∈ E(R≥0; V), show that the definition of σ(ξ) is independent of

choice of basis.
(c) For ξ ∈ E(R≥0; V), show that the definition of L(ξ) is independent of

choice of basis.
Hint: Use the change of basis formula (1.24).

5.2.2 Determine the Laplace transform of the solution of the following initial value
problems:
(a) ξ̇(t) + 3ξ(t) = 0, ξ(0) = 4;
(b) ξ̈(t) − 4ξ̇(t) + 4ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 1;
(c) ξ̈(t) − 4ξ̇(t) − 4ξ(t) = 0, ξ(0) = 1, ξ̇(0) = 1;
(d)

...
ξ(t) − 7ξ̈(t) + 15ξ̇(t) − 9ξ(t) = 0, ξ(0) = 1, ξ̇(0) = 1, ξ̈(0) = 1;

(e)
...
ξ(t) + 3ξ̈(t) + 4ξ̇(t) + 2ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 1, ξ̈(0) = 2;

(f)
....
ξ(t) +

...
ξ(t) + ξ̈(t) + ξ̇(t) + ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 0, ξ̈(0) = 0,

...
ξ(0) = 0.
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NB. These are the same initial value problems you worked out in Exer-
cise 2.2.10.

5.2.3 Using partial fraction expansion, determine the solution to the initial value
problems from Exercise 5.2.2.

5.2.4 Determine the Laplace transform of the solution for the following scalar
linear inhomogeneous differential equations F with the stated initial condi-
tions:
(a) F(t, x, x(1), x(2)) = x(2) + 2x(1) + x − 3et, and ξ(0) = 1, ξ̇(0) = 1;
(b) F(t, x, x(1), x(2)) = x(2)

− 5x(1) + 6x − 2e3t
− cos(t), and ξ(0) = 0, ξ̇(0) = 1;

(c) F(t, x, x(1), x(2)) = x(2)
− 2x(1) + 5x − tet sin(2t), and ξ(0) = 1, ξ̇(0) = 0;

(d) F(t, x, x(1), x(2)) = x(2) + 4x − t cos(2t) + sin(2t), and ξ(0) = 2, ξ̇(0) = 1;
(e) F(t, x(1), x(2), x(3)) = x(3)

− x − tet, and ξ(0) = 1, ξ̇(0) = 1, ξ̈(0) = 1;
(f) F(t, x, x(1), . . . , x(4)) = x(4)+4x(2)+4x−cos(2t)−sin(2t), andξ(0) = 0, ξ̇(0) = 0,

ξ̈(t) = 0,
...
ξ(t) = 0.

NB. These are the same initial value problems you worked out in Exer-
cise 2.3.5.

5.2.5 Using partial fraction expansion, determine the solution to the initial value
problems from Exercise 5.2.4.

5.2.6 Determine the Laplace transform of the solution of the initial value problem

ξ̇(t) = Aξ(t), ξ(0) = x0,

for the following choices of A ∈ L(Rn;Rn) and x0 ∈ Rn:
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(a) A =

[
2 −5
0 3

]
,

x0 = (0, 1);

(b) A =

[
−1 −2
1 −3

]
,

x0 = (2,−3);

(c) A =

[
4 −1
4 0

]
,

x0 = (1, 1);

(d) A =

5 0 −6
0 2 0
3 0 −4

,
x0 = (−3,−1, 0);

(e) A =

5 0 −6
1 2 −1
3 0 −4

,
x0 = (1, 0, 1);

(f) A =

4 2 −4
2 0 −4
2 2 −2

,
x0 = (4, 1, 2);

(g) A =


2 1 0 1
1 3 −1 3
0 1 2 1
1 −1 −1 −1

,
x0 = (1,−1, 0, 1);

(h) A =


−7 0 0 −4
−13 −2 −1 −8

6 1 0 4
15 1 0 9

,
x0 = (−1,−1, 3,−2);

(i) A =


1 4 −2 0 9
0 −2 1 2 −6
−2 4 −1 3 0
−9 4 1 0 2
4 0 3 −1 3

,
x0 = (0, 0, 0, 0, 0).

NB. These are the same initial value problems you worked out in Exer-
cise 3.2.15.

5.2.7 Using partial fraction expansion, compute eAt for the linear transformations
A ∈ L(Rn;Rn) from Exercise 5.2.6.

5.2.8 Determine the Laplace transform of the solution of the initial value problem

ξ̇(t) = Aξ(t) + b(t), ξ(0) = 0,

for the choices of A ∈ L(Rn;Rn) from Exercise 5.2.6 and for the following b:

(a) b(t) = (0, 1);
(b) b(t) = (cos(t), 0);
(c) b(t) = (e2t, 0);
(d) b(t) = (sin(t), 0, 1);
(e) b(t) = (0, e−t, 0);

(f) b(t) = (sin(2t), 0, 1);
(g) b(t) = (1, 0, 0, 1);
(h) b(t) = (sin(t), 0, 0, cos(t));
(i) b(t) = (0, 0, 0, 0, 0).

NB. These are the same initial value problems you worked out in Exer-
cise 3.3.3.

5.2.9 Using partial fraction expansion, determine the solution to the initial value
problems from Exercise 5.2.8.
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Section 5.3

Fourier transform methods for differential equations



Chapter 6

An introduction to partial differential
equations

In this chapter we introduce the subject of partial differential equations. We
make no attempt whatsoever to provide a comprehensive treatment of partial dif-
ferential equations. Rather, we attempt to introduce the subject by touching on
some important ideas that arise in the theory, primarily through the use of targeted
examples. Our focus is on three facets of the theory of partial differential equa-
tions: (1) characteristics of partial differential equations; (2) properties of elliptic,
hyperbolic, and parabolic partial differential equations; (3) the notion of a weak
solution. We shall also consider a few partial differential equations that can be
solved. The only such equations we consider are those whose solution can be
obtained by solving ordinary differential equations.

We begin our discussion in Section 6.1 by considering the notion of a “charac-
teristic.” This notion is sometimes revealing about the general characteristics of
solutions of partial differential equations. It is also useful in understanding how
one prescribes for partial differential equations the analogue of initial conditions
for ordinary differential equations. For first-order partial differential equations
studied in Section 6.2, the characteristics of the equation often allow a reduction of
the finding of solutions to the finding of solutions for ordinary differential equa-
tions. We also work with first-order partial differential equations that come from
conservation laws, since these allow a useful geometric understanding of solutions.

Next we turn to three of the important second-order partial differential equa-
tions that arise in many applications: the heat equation, the wave equation, and
the potential equation. We shall apply the general ideas connected with trans-
form methods from Chapter 5 to study some concrete partial differential equations
with associated boundary value problems. As we shall see, there are three parts
of this analysis. First of all, we reduce the problem to an ordinary differential
equation connected with an eigenvalue/eigenvector problem. The solution of this
eigenvalue/eigenvector analysis motivates transform analysis to reduce the partial
differential equations to ordinary differential equations in the transformed vari-
ables. After obtaining a solution in the transformed variables, to get the solution in
the original variables, we must apply the inverse transform. A naı̈ve application
of the inverse gives a “formal” solution to the boundary value problem. But, as
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we commented upon at length for each of our transforms in Chapter 5, the matter
of just when and how the inverse transform works is a matter of some subtlety.
We shall provide some results in this chapter that show that, in fact, the “formal”
solution is often an actual solution. As we shall see, this typically requires some
difficult analysis.

The final main topic of the chapter is the important notion of a weak solution.
This idea arises since it is often advantageous to relax what is meant by a solution,
so that existence of solutions becomes easier. One than hopes that the existence of
these weak solutions can be used to infer solutions in the normal sense.

The reader will observe that the scope of this chapter is a little different than that
of our preceding chapters concerning the analysis of ordinary differential equations.
More precisely, we work quite hard to solve a few rather specific problems. This
is rather a feature of partial differential equations, in general. Indeed, a treatment
of partial differential equations at the level with which we have treated ordinary
differential equations thus far—and we should emphasise that this treatment of
ordinary differential equations is not comprehensive—is simply not possible, and
even a comprehensive treatment of such special cases as can be solved requires
a substantial effort, and appears quite fragmented by comparison with what one
can do with ordinary differential equations. Thus, the way in which this chapter
should be viewed is as a superficial introduction to certain aspects of the theory of
partial differential equations.
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Section 6.1

Characteristics of partial differential equations

In this section we engage in a general discussion of so-called characteristics of
partial differential equations. As we shall see, these permit a geometric under-
standing of some aspects of solutions of partial differential equations. Particularly,
discussions of characteristics sometimes allow a natural discussion of the sorts of
boundary conditions that are permitted by a differential equation.

6.1.1 Characteristic for linear partial differential equations

6.1.2 Characteristics for quasilinear partial differential equations

6.1.3 Characteristics for nonlinear partial differential equations

6.1.4 The Cauchy–Kovalevskaya Theorem



6.2 First-order partial differential equations 493

Section 6.2

First-order partial differential equations

We begin our detailed discussion of partial differential equations by considering
first-order equations. We concentrate on the

6.2.1 The Method of Characteristics for first-order equations

6.2.2 First-order conservation laws
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Section 6.3

The heat equation

The first partial differential equation we look at is an example of what is known
of as a “parabolic” equation; see Section 1.3.4.3. The specific parabolic equation
we work with is known as the “heat equation” or the “diffusion equation.” We
first considered this differential equation in Section 1.1.11, and there we derived
it as a model for heat flow in a one-dimensional medium, and also gave higher-
dimensional analogues. In this section we study the heat equation in a few different
ways. First we examine the characteristics of the heat equation. By doing this we
can understand some things about what “parabolic” means. We then consider par-
ticular instances of the equation, applying transform methods to obtain a “formal”
solution for the equation. We shall prove some results that indicate when and how
this “formal” solution is an actual solution. We shall work with two versions of the
heat equation, one where the spatial variable is restricted to a finite interval, and
the other where the spatial variable is unbounded.

6.3.1 Characteristics for the heat equation

6.3.2 The heat equation for a finite length rod

In this section we consider a particular physically meaningful instantiation of
the heat equation, namely the case in which we are modelling the temperature
distribution in a rod of finite length `. For ordinary differential equations, one
must specify an appropriate number of conditions, normally (but not always) all
at the same time in order to determine the solution. These are called “initial
conditions.” Similar circumstances arise in partial differential equations. On silly
considerations, one might speculate that three conditions are required for the heat
equation since the equation has three derivatives. Well, the heat equation is a
simple enough partial differential equation that the silly consideration suffices. The
conditions can come in many forms, and we seek to develop familiarity through
example. Let us suppose that the rod has finite length ` with the left end of the rod
being at x = 0. Perhaps it is the case that we know the temperature at the ends of
the rod:

u(0, t) = T0, u(`, t) = T1.

Let us reduce this to a simple special case. By defining

v(x, t) = u(x, t) +
T0 − T1

`
x − T0

We then see that
∂v
∂t

= k
∂2v
∂x
,
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and that
v(0, t) = 0, v(`, t) = 0.

Thus we may as well assume that T0 = T1 = 0. This gives us two boundary
conditions. To provide another we may specify the temperature distribution in the
rod at t = 0. Thus we may set

u(x, 0) = f (x),

for some function f . Thus we have arrived at the following boundary value
problem:

∂u
∂t

= k
∂2u
∂x2

u(0, t) = 0, u(`, t) = 0
u(x, 0) = f (x).

(6.1)

The exact nature of the function f we leave undetermined for the moment. Also,
we mention that other types of boundary conditions are possible. The reader may
explore one of these in Exercise 6.3.2.

6.3.2.1 Formal solution Let us now set about obtaining a solution for the prob-
lem (6.1). We shall reduce the partial differential equation to solving a bunch of
ordinary differential equations. Since this is the first time we are doing this, we
shall motivate the idea in several different ways. In all cases, the starting point for
the motivation is the assumption that we seek separable solutions for the heat equa-
tion, by which we mean solutions of the form u(x, t) = ξ(x)τ(t), i.e., we “separate”
the solution into a part depending on time and a part depending on displacement.
This is, of course, an assumption, and it is a good assumption if and only if it
works. Since we are talking about it, apparently it works.

Motivation using eigenvalues and eigenfunctions

In Section 3.2.3, we have carefully studied ordinary differential equations whose
solutions satisfy

ξ̇(t) = A(ξ(t)), ξ(t0) = x0,

where ξ(t) ∈ V and A ∈ L(V; V) for an n-dimensional R-vector space V. More-
over, we saw that, except for issues concerning the need to work with generalised
eigenvectors and complex eigenvalues, solutions were of the form

ξ(t) =

n∑
j=1

c jeλ jtv j,

where λ1, . . . , λn are the eigenvalues and v1, . . . , vn are corresponding eigenvectors.
The coefficients c1, . . . , cn are determined from the initial conditions, e.g.,

ξ(0) =

n∑
j=1

c jv j = x0,
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and these linear equations can be solved for c1, . . . , cn.
For the heat equation, we proceed in a similar spirit. Here, however, we

replace V with functions defined on the interval [0, `]. Additionally, because of the
boundary conditions, we only consider functions defined on the interval [0, `] that
are zero at the endpoints. That is to say, let us consider

V = {ξ : [0, `]→ C | ξ is infinitely differentiable, and ξ(0) = ξ(`) = 0}.

The linear map A is then A(ξ) = d2ξ
dx2 , and then the heat equation takes the form

du
dt

(t) = A(u(t)),

where we think of u as being a map u : R≥0 → V, i.e., for each time t, u(t) ∈ V is an
infinitely differentiable function on [0, `] vanishing at 0 and `. Now, motivated by
our work in Section 3.2.3, we look for eigenvalues and eigenvectors for A; we shall
call the eigenvectors eigenfunctions, since they are indeed functions. Eigenvalues
are then numbers λ satisfying

A(ξ) =
d2ξ
dx2 (x) = λξ(x) (6.2)

for some nonzero ξ ∈ V. Note that this is an ordinary differential equation! It is an
ordinary differential equation where the unknown parameter λ are the eigenvalues
of A.

To determine λ, we solve the differential equation and apply the conditions that
solutions must vanish at x = 0 and x = `. We do this according to three cases.
1. λ ∈ R>0: In this case the differential equation (6.2) has the solution

ξ(x) = A1 sinh(
√

λx) + A2 cosh(
√

λx).

Here, for those who for some reason have not seen them, sinh and cosh refer to
the hyperbolic sine and cosine functions defined by

sinh(x) = 1
2 (ex
− e−x), cosh(x) = 1

2 (ex + e−x).

Let us apply the boundary conditions. The condition ξ(0) = 0 gives A2 = 0. The
condition ξ(`) = 0 then gives

A1 sinh(
√

λ`) = 0.

This can only hold when A1 = 0. Thus the only way λ can be positive is if the
resulting solution is identically zero. Thus λ ∈ R>0 cannot be an eigenvalue,
since eigenfunctions are necessarily nonzero.
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2. λ = 0: In this case the solution for (6.2) is

ξ(x) = A1x + A2.

Again, an application of the boundary conditions gives A1 = A2 = 0, a situation
which precludes λ = 0 from being an eigenvalue.

3. λ ∈ R<0: You are either beginning to worry because we are running out of
options, or you think that I have cagily left the good case to the end. . . The
solution of the ordinary differential equation (6.2) is

ξ(x) = A1 sin(
√

−λx) + A2 cos(
√

−λx).

The boundary condition ξ(0) = 0 gives A2 = 0. The boundary condition ξ(`) = 0
gives

A1 sin(
√

−λ`) = 0.

Here we have an option other than A1 = 0. By a propitious choice of λ it can be
arranged that

sin(
√

−λ`) = 0.

Indeed, if √

−λ` = nπ

for some n ∈ Z>0, then we are set to go.
The above arguments indicate that any of the numbers

λn = −
n2π2

`2 , n ∈ Z>0,

are eigenvalues for A and that the corresponding eigenfunctions are the elements
of V given by

ξn(x) = sin(nπx
` ), n ∈ Z>0.

We then follow through with the method by analogy to what we did in Sec-
tion 3.2.3 when V is a finite-dimensional vector space, and seek a solution of the
form

u(x, t) =

∞∑
n=1

cnekλntξn(x) =

∞∑
n=1

cn e−
kn2π2

`2
t︸ ︷︷ ︸

τn(t)

sin(nπ x
` )︸    ︷︷    ︸

ξn(x)

.

Note that u is an infinite sum of separated functions, i.e., products of a function of
x with a function of t. To determine the coefficients cn, n ∈ Z>0, we use the initial
condition, again mimicking the finite-dimensional case. For our situation we have

u(x, 0) =

∞∑
n=1

cn sin(nπx
` ) = f (x).
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Motivated by our work with the inverse of the CDFT in Section 5.1.1.2, we attempt
to solve for the coefficients cn, n ∈ Z>0, by integration:

∞∑
n=1

cn sin(nπx
` ) = f (x)

=⇒

∞∑
n=1

cn

∫ `

0
sin(nπx

` ) sin(mπx
` ) dx =

∫ `

0
f (x) sin(mπx

` ) dx

=⇒ cm =
2
`

∫ `

0
f (x) sin(mπx

` ) dx,

using the fact that ∫ `

0
sin(nπx

` ) sin(mπx
` ) dx =

0, m , n,
`
2 , m = n.

Summarising, we have obtained the formula

u(x, t) =

∞∑
n=1

(
2
`

∫ `

0
f (x) sin(nπ x

` ) dx
)

e−
kn2π2

`2
t sin(nπx

` ) (6.3)

for a solution. This is what we call a formal solution, since (1) its derivation relies
on some operations like swapping sums and integrals that are not a priori valid and
(2) it comes to us as an infinite sum whose convergence is not necessarily known
to us.

Motivation using the CDFT

Next we consider applying an appropriate transform to the heat equation to convert
it into an algebraic equation. The idea here is motivated by the discussion of the
CDFT in Section 5.1.1, but we have to make some modifications particular to the
specific problem.

First let us see what is wrong with a “verbatim” application of the CDFT to the
problem. Let us, as in our eigenvalue method above, consider the space

V = {ξ : [0, `]→ C | ξ is infinitely differentiable, and ξ(0) = ξ(`) = 0}.

Because the problem is defined on [0, `], given ξ ∈ V, we can consider FCD(ξ) : Z→
C defined by

FCD(ξ)(n) =

∫ `

0
ξ(x)e−2πin x

` dx, n ∈ Z.

This is a perfectly valid thing to do. However, let us now begin to modify this,
given the specific nature of elements of V. Taking this into account, we may want to
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only consider applying the CDFT for the functions e2πin x
` that satisfy the boundary

conditions. Note, however, that

e2πin 0
` = e2πin `` = 1,

so none of these functions satisfy the boundary conditions at x = 0 and x = `.
However, the failure also suggests a kludge: we can consider appropriate linear
combinations of these functions. For example, the functions

en(x) = e2πin x
` − e−2πin x

` , n ∈ Z>0,

do satisfy the boundary conditions. Note that en(x) = 2i sin(2nπx
` ). That is to say,

our modified guess at an appropriate transform, which we denote by F̂CD, to apply
is F̂CD(ξ) : Z>0 → C defined by

F̂CD(ξ)(n) =

∫ `

0
ξ(x) sin(2πnx

` ) dx, n ∈ Z>0.

This, however, still has a defect. The defect is the formula

sin(2πnx−`/2
` ) = − sin(2πnx+`/2

` ),

reflecting the fact that the sine functions we are using have a symmetry when
reflected about x = `

2 . Thus these functions will not be capable of representing any
function that does not share this symmetry. Again, the failure suggests a kludge.
Keeping in mind this symmetry of the sine functions, we fictitiously extend our
functions to be defined on [0, 2`] by taking, for ξ ∈ V, the extension to satisfy

ξ(x) = −ξ(2` − x), x ∈ [`, 2`],

see Figure 6.1. Note that the extended function vanished at 0 and 2`. We now
apply our modified CDFT to these extended functions on [0, 2`]:

̂̂
FCD(ξ)(n) =

∫ 2`

0
ξ(x) sin(2nπ x

2` ) dx

=

∫ `

0
ξ(x) sin(nπx

` ) dx +

∫ 2`

`

ξ(x) sin(nπx
` ) dx

=

∫ `

0
ξ(x) sin(nπx

` ) dx +

∫ `

0
ξ(2` − x) sin(nπ2`−x

` ) dx

= 2
∫ `

0
ξ(x) sin(nπ x

` ) dx.

Next we claim that̂̂
FCD

(
d2ξ
dx2

)
(n) = −

n2π2

`2
̂̂
FCD(ξ)(n), n ∈ Z>0,
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ξ(x)

x
ℓ 2ℓ

Figure 6.1 “Oddly” extending a function from [0, `] to [`, 2`]

for every ξ ∈ V. Indeed,

̂̂
FCD

(
d2ξ
dx2

)
(n) = 2

∫ `

0

d2ξ
dx2 (x) sin(nπx

` ) dx

= 2
dξ
dx

(x) sin(nπx
` )
∣∣∣`
0
− 2

nπ
`

∫ `

0

dξ
dx

(x) cos(nπx
` ) dx

= − 2
nπ
`

∫ `

0

dξ
dx

(x) cos(nπx
` ) dx

= − 2
nπ
`
ξ(x) cos(nπ x

` )
∣∣∣`
0
− 2

n2π2

`2

∫ `

0
ξ(x) sin(nπx

` ) dx

= −
n2π2

`2
̂̂
FCD(ξ)(n),

using integration by parts twice.
Now, after some somewhat crazy machinations, we have arrived at an hopefully

appropriate transform to apply to the heat equation in this case. Let us go ahead
and do this:̂̂

FCD

(
∂u
∂t

)
(n) = k

̂̂
FCD

(
∂2u
∂x2

)
(n) = −

kn2π2

`2
̂̂
FCD(u)(n) =⇒

dûn

dt
= −

kn2π2

`2 ûn,

where we abbreviate
̂̂
FCD(u)(n) = ûn. We note now that this is an elementary

first-order ordinary differential equation for ûn which we can solve:

ûn(t) = cne−
kn2π2

`2
t,

for some constant cn to be determined. Note that the preceding expression gives
us the solution of the equation in the transformed variables, i.e., as a function of
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(n, t). To get this as a function of (x, t), we apply the inverse transform, following
Section 5.1.1.2. This means that we write

u(x, t) =

∞∑
n=1

̂̂
FCD(u)(n) sin(nπ x

` ) =

∞∑
n=1

cne−
kn2π2

`2
t sin(nπx

` ).

Now we are in the same situation as with our eigenvalue/eigenfunction method,
and we use the initial condition u(x, 0) = f (x) to obtain the unknown coefficients
cn, n ∈ Z>0:

cn =
2
`

∫ `

0
f (x) sin(nπx

` ) dx.

This then gives the same formal solution

u(x, t) =

∞∑
n=1

(
2
`

∫ `

0
f (x) sin(nπ x

` ) dx
)

e−
kn2π2

`2
t sin(nπx

` )

as with our eigenvalue/eigenfunction method. It has the same limitations as well,
of course.

A combination of the previous heuristics

We now have two methods of producing a formal solution to the problem (6.1).
Each method has some benefits and drawbacks. Let us discuss these.

The eigenvalue/eigenfunction method provides us with a well motivated (based
on our techniques of Section 3.2.3) problem that we can solve in some system-
atic way. It does, however, have the drawback of converting the problem into
one whose connection with what we know is a bit tenuous. That is to say, we
have moved from working with a linear ordinary differential equation in a finite-
dimensional vector space to a “linear ordinary differential equation” in the space

{ξ : [0, `]→ C | ξ is infinitely differentiable, and ξ(0) = ξ(`) = 0}

that is not finite-dimensional. The validity of extending our methods of Sec-
tion 3.2.3 is something one must question.

The method that adapts the CDFT to arrive at a formal solution has the benefit
of being a part of a general idea that seems compelling, and which we have seen
previously in Section 5.2: (1) apply a transform to a differential equation; (2) solve
the equation in the transformed variables; (3) apply the inverse transform to get the
solution in the original variables. However, the method is complex in that finding
the transform that one must apply is complicated. Indeed, it is difficult to imagine
how our machinations might be adapted to any general setting.

There is, however, a reasonable way of combining the two methods, and let us
outline how to do this. What we do is describe a procedure that is vague enough
that it has a chance of being applied in general settings, and then indicating how
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each step is applied in the solution of the specific boundary value problem (6.1).
In Sections 6.4 and 6.5 we apply the procedure to the wave equation and the
potential equation. The hope is that the vague procedure and a few illustrations
of it will provide the reader with enough background to attempt problems that are
amenable to this method.

Here is the “procedure.”

6.3.1 “Procedure” (A method for obtaining a formal solution to some boundary
value problems) We suppose that we are given a linear partial differential equation
with independent variables (x1, . . . , xn) ∈ D ⊆ Rn and with a single state u ∈ R.
1. (a) General strategy: Make a decision about which variable(s) you will use

to create an eigenvalue/eigenfunction problem, and define the space of
functions you will use that satisfies the boundary conditions. Let us sup-
pose, without loss of generality, that these variables are (x1, . . . , xm) for
m ∈ {1, . . . ,n}. We assume that these variables reside in

D0 = [0, `1] × · · · × [0, `m],

and we denote by V the space of smooth functions on D0 which satisfy the
boundary conditions is each variable, when all others are fixed.

(b) Application to the heat equation: For the heat equation, it is natural to select
the x variable as the candidate for the eigenvalue/eigenfunction problem,
since the boundary conditions at x = 0 and x = ` are well adapted to
defining the space

V = {ξ : [0, `]→ C | ξ is infinitely differentiable, and ξ(0) = ξ(`) = 0}.

Note that the initial condition in the t variable does not work well in this
respect, since the initial condition u(x, 0) = f (x) is difficult to translate into
a nice space of functions.

2. (a) General strategy: Associated with each of the chosen variables (x1, . . . , xm)
one will hopefully have an eigenvalue/eigenfunction problem in the form
of an ordinary differential equation and associated boundary conditions.
In order to make sense of the method, these equations must be decou-
pled, i.e., can be solved independently. With any luck, for each of the
variables x j, j ∈ {1, . . . ,m}, one has eigenvalues λ j,n, n ∈ Z>0, and associated
eigenfunctions ξ j,n, n ∈ Z>0.

(b) Application to the heat equation: This is the step where one has the ordinary
differential equation with boundary values

d2ξ
dx2 (x) = λξ(x), ξ(0) = ξ(`) = 0.

It is this equation with boundary values that leads to the eigenvalues
λn = −n2π2

`2 and eigenfunctions ξn(x) = sin(nπx
` ), n ∈ Z>0.
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3. (a) General strategy: Associated to the eigenfunctions ξ j,n, j ∈ {1, . . . ,m}, n ∈
Z>0, we have an eigenfunction transform. This we denote by E: V→ Zm

>0,
and define by

E( f )(n1, . . . ,nm) =

∫ `1

0
· · ·

∫ `m

0
f (x1, . . . , xm)ξ1,n1(x1) · · · ξm,nm(xm) dxm · · ·dx1.

This transform should satisfy some rules with respect to differantiation.
(b) Application to the heat equation: The transform here is

E(ξ)(n) =

∫ `

0
ξ(x) sin(nπ x

` ) dx.

It satisfies the condition

E

(
d2ξ
dx2

)
(n) = −

n2π2

`2 E(ξ)(n)

for the second derivative.
4. (a) General strategy: Apply the eigenfunction transform to the partial differen-

tial equation to get differential equations (hopefully an ordinary differential
equation) for the transformed variables

ûn1···nm , E(u)(n1, . . . ,nm), n1, . . . ,nm ∈ Z>0.

Note ûn1···nm are functions of xm+1, . . . , xn.
(b) Application to the heat equation: Here we have

ûn(t) =

∫ `

0
u(x, t) sin(nπ x

` ) dx,

and so

E

(
∂u
∂t

)
(n) = E

(
k
∂2u
∂x2

)
(n) = −

kn2π2

`2 E(u)(n)

=⇒
dûn

dt
= −

kn2π2

`2 ûn, n ∈ Z>0.

5. (a) General strategy: Hopefully solve the differential equation(s) for ûn1···nm , with
some unknown coefficients that will be determined using initial conditions.
This will give ûn1···nm as functions of xm+1, . . . , xn.

(b) Application to the heat equation: We have ûn(t) = cne−
kn2π2

`2
t.

6. (a) General strategy: Write the formal solution, with unknown coefficients, as

u(x1, . . . , xm, xm+1, xn) =

∞∑
n1=1

· · ·

∞∑
nm=1

ûn1···nm(xm+1, . . . , xn)ξn1(x1) · · · ξnm(xm).
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(b) Application to the heat equation: We have

u(x, t) =

∞∑
n=1

cne−
n2π2

`2
t sin(nπx

` ).

7. (a) General strategy: Use the remaining boundary conditions to determine the
unknown coefficients in the functions ûn1···nm . This produces the required
formal solution.

(b) Application to heat equation: Using the computations above, we have

cn =
2
`

∫ `

0
f (x) sin(nπ x

` ) dx,

giving the formal solution (6.3). •

There is a lot of “hopefullies” in the preceding procedure. However, there are
a variety of problems where the method works out more or less like it does for
the heat equation. One of the crucial steps is the determination of the eigenvalues
and eigenfunctions in Step 2. For this step there is a well-developed (and difficult)
theory that we present in Chapter 7.

6.3.2.2 Rigorous establishment of solutions In the previous section, we de-
veloped at length a methodology for arriving at a formal solution for (6.1). In
carrying out the procedure, we made some steps that are certainly open to ques-
tion. In this section we take the result of the manipulations, and show that it does
solve the problem. In this way, even though some of the steps in the method of
separation of variables are not strictly legit, we do not worry about it as the output
of the procedure is a solution to the initial boundary value problem.

The main result in this section is the following which tells us that the situation
is pretty good for the formal solution of the heat equation, even for very general
boundary functions f . Indeed, we allow such boundary functions in the space

L2([0, `];C) =

{
f : [0, `]→ C

∣∣∣ ∫ `

0
| f (x)|2 dx < ∞

}
,

which is equipped with the norm

‖ f ‖2 =

(∫ `

0
| f (x)|2 dx

)1/2

.

Just why this is a good space to work with is not something that ought to be clear
at this point, but will be developed in Chapter 7. In the statement of the result
we denote by fper : R → C the `-periodic extension of f : [0, `] → C defined by
fper(x) = f (x − k`) if x ∈ [k`, (k + 1)`).
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6.3.2 Theorem (Solutions for the heat equation on an interval) Consider the boundary
value problem

∂u
∂t

= k
∂2u
∂x2

u(0, t) = 0, u(`, t) = 0
u(x, 0) = f(x).

If f ∈ L2([0, `];C), then
(i) the series (6.3) converges uniformly on

{(x, t) ∈ [0, `] × R≥0 | t ≥ t0}

for each t0 ∈ R>0.
Moreover, u: [0, `] × R>0 → C as defined by (6.3) has the following properties:

(ii) u satisfies the heat equation and the first two of the boundary conditions in (6.1) on
[0, `] × R>0;

(iii) u is infinitely differentiable on (0, `) × R>0;
(iv) limt→0‖ut − f‖2 = 0 where ut : [0, `]→ C is defined by ut(x) = u(x, t).

Furthermore,
(v) if fper is continuous and if f′ is piecewise continuous, then the convergence of ut to

f is part (iv) is uniform;
(vi) if f is arbitrary, with only the property that, for x ∈ [0, `],

∞∑
n=1

cn sin(nπx
` ) = f(x)

i.e., the series converges pointwise at x, then limt→0 u(x, t) = f(x).

Proof (i) Consider the series for u:

u(x, t) =

∞∑
n=1

cne−
kn2π2

`2
t sin(nπx

` ),

with

cn =
2
`

∫ `

0
f (x) sin(nπx

` ) dx.

Since f ∈ L2([0, `];C) ⊆ L1([0, `];C), by definition of cn there exists M > 0 so that
|cn| < M for all n ∈ Z>0. For fixed t0 ∈ R>0 we have

|cne−
kn2π2

`2
t sin(nπx

` )| ≤Me−
kn2π2

`2
t0

for all t ≥ t0 and n ∈ Z>0. Thus uniform convergence in

{(x, t) ∈ [0, `] × R≥0 | t ≥ t0}
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will follow from the Weierstrass M-test if we can show that the series of real
numbers

∑
∞

n=1 e−
kn2π2

`2
t0 converges. This can be shown to be true using, for example,

the ratio test.
(ii) The series is uniformly convergent, as we saw in the preceding part of the

proof. Moreover, the series with terms differentiated with respect to x or t any
finite number of times will give a series whose terms have the form

P(n)e−
kn2π2

`2
t sin(nπx

` ) or P(n)e−
kn2π2

`2
t sin(nπx

` ),

for some polynomial P. Such a series will again be uniformly convergent, again by
the Weierstrass M-test. Therefore, by missing stuff , we can interchange any finite
number of derivatives of u with respect to x and t with the summation. Therefore,
we have

∂u
∂t

(x, t) =
∂
∂t

 ∞∑
n=1

cne−
kn2π2

`2
t sin(nπ x

` )


= −

∞∑
n=1

cnkn2π2

`2 e−
kn2π2

`2
t sin(nπx

` )

= k
∂2

∂x2

 ∞∑
n=1

cne−
kn2π2

`2
t sin(nπx

` )

 = k
∂2u
∂x2 (x, t),

i.e., u satisfies the heat equation.
(iii) Our arguments from part (ii) allows us to conclude that u is infinitely differ-

entiable on (0, `) × R>0 by successive applications of missing stuff .
(iv) We first note that

‖ut − f ‖22 =

∞∑
n=1

|cn|
2
(
1 − e−

kn2π2

`2
t
)2

by Parseval’s equality. Thus the result will follow if we can show that the series
on the right converges uniformly as a function of t. For, if this is the case, then the
function of t given by

g(t) =

∞∑
n=1

|cn|
2
(
1 − e−

kn2π2

`2
t
)2

is continuous, and thus the limit limt→0 g(t) exists, and is equal to zero. To prove
uniform convergence of this series we use Abel’s test, missing stuff , with x = t,

gn(t) = 1−e−
kn2π2

`2
t, and fn = |cn|

2. One directly verifies that, with these substitutions,
the hypotheses of Abel’s test are satisfied, and so the series converges uniformly.

(v) With the stated hypotheses, we saw in missing stuff that the series
∑
∞

n=1|cn|

converges. For fixed x we then have

| f (x) − u(x, t)| ≤
∞∑

n=1

|cn|

(
1 − e−

kn2π2

`2
t
)
. (6.4)
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By an application of Abel’s test, following the same lines as in the proof of part (iv),
it follows that limt→0 ut(x) = f (x). What’s more, since the right-hand side of (6.4) is
independent of x, this convergence is uniform.

(vi) Suppose that, for some x ∈ [0, `], we have

f (x) =

∞∑
j=1

cn sin(nπx
` ).

Then, using (6.4) and the Dominated Convergence Theorem,

lim
t→0
| f (x) − u(x, t)| ≤ lim

t→0

∞∑
n=1

|cn|

(
1 − e−

kn2π2

`2
t
)

=

∞∑
n=1

|cn| lim
t→0

(
1 − e−

kn2π2

`2
t
)

= 0,

as desired. �

Let us make some comments on the character of the solution to the heat equa-
tion.

6.3.3 Remarks (Solutions for the heat equation)
1. The heat equation does a remarkable thing. It will take an extremely general

class of functions, those in L2([0, `];C), and instantaneously “smooth” them.
This is a consequence of part (iii) of Theorem 6.3.2. This is due to the presence

of the term e−
kn2π2

`2
t in the series which decays to zero very quickly with n,

provided that t > 0.
2. Note also that the solution to the heat equation is continuous at t = 0, provided

that f is continuously differentiable, since in this case the series for x 7→ u(x, 0)
converges pointwise to f by missing stuff . Thus, what the equation does is
turns a continuously differentiable function f into an infinitely differentiable
function, and it does this in a continuous way.

3. The reason the heat equation is sometimes called the “diffusion equation” is left
for the reader to explore in Exercise 6.3.2. •

6.3.3 The heat equation for an infinite length rod

6.3.3.1 Formal solution

6.3.3.2 Rigorous establishment of solutions

Exercises

6.3.1 Suppose that a rod of length ` generates heat internally at a rate per unit
length specified by a function g : [0, `] → R. Derive the partial differential
equation governing the temperature in the rod as a function of time and
position along the rod.
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6.3.2 Consider the boundary value problem

∂u
∂t

= k
∂2u
∂x2

∂u
∂x

(0, t) = 0,
∂u
∂x

(`, t) = 0

u(x, 0) = f (x).

Answer the following questions.
(a) Use Procedure 6.3.1 to obtain a formal solution to the boundary value

problem.
(b) Do you think that the convergence results stated in Section 6.3.2.2 will

apply in this case?
(c) What is the behaviour of the temperature distribution in the rod as

t→∞?
(d) Contrast your answer from part (c) with the answer to the same question

for the boundary value problem (6.1). Explain why each case makes
sense based upon physical arguments.
Hint: What do the boundary conditions mean in each case?

(e) Why do you think the heat equation is sometimes called the diffusion
equation?

In the next exercise, you will consider an alternative to Procedure 6.3.1.

6.3.3 Consider the boundary value problem (6.1).
(a) Justify why, for fixed t > 0, it makes sense to expect that one can write

u(x, t) =

∞∑
n=1

cn(t) sin(nπx
` ).

(b) Obtain a differential equation for the coefficients cn(t), and solve the
differential equation.

(c) What parts of the above procedure are in need of justification? How
might this justification be provided?

6.3.4 Answer the following questions.
(a) Show that the boundary value problem (6.1) is equivalent (part of the

problem is to determine the nature of this equivalence) to the boundary
value problem

∂u
∂t

= k
∂2u
∂x2 + f

u(0, t) = 0, u(`, t) = 0
u(x, 0) = 0,

where f is a function of x.
In Exercise 6.3.1 you showed that the partial differential equation governing
the temperature distribution in a rod with a heat source is of the form given
in part (a).
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(b) What is the behaviour of the temperature distribution in a rod subject
to zero temperature at the endpoints, zero initial temperature, and heat
generation determined by a function g as in Exercise 6.3.1? Does this
make sense to you? Is it consistent with the heat equation being also
known as the diffusion equation?

(c) Consider the special case when f (x) = 2α for a constant α. Plot the
steady-state temperature distribution and make sure it makes intuitive
sense to you.

6.3.5 The drying of lumber can be described by the heat equation. We suppose
that we have a very long and very wide piece of lumber so that the moisture
content essentially varies as a function of the smallest cross-sectional dimen-
sion of the wood, denoted by 0 ≤ x ≤ `. If u is the moisture content of the
wood, then u is a function of x and t > 0. Assume that for t > 0 the outer
edge of the wood is “dry,” and that at t = 0 the piece of wood is uniformly
“wet” with “wetness” W.
(a) Write the boundary value problem with the boundary conditions deter-

mined by the above description.
(b) Show that the moisture content in the lumber is given by

u(x, t) =
4W
π

∞∑
n=1

e−
k(2n+1)2π2

`2
t
sin

(
(2n + 1)πx

`

)
2n + 1

,

where k is the diffusion constant appearing in the heat equation.
(c) Show that for t > 0 we have

|u(x, t)| ≤
4W
π

1

e
kπ2

`2
t
− 1

.

Hint: Use the following facts:
1. If the series

∑
∞

n=1 sn is convergent then we have∣∣∣∣∣∣∣
∞∑

n=1

sn

∣∣∣∣∣∣∣ ≤
∞∑

n=1

|sn|;

2. we have
∞∑

n=0

αn =
1

1 − α

provided that |α| < 1.
(d) Determine at expression for a time beyond which the wood is guaranteed

to be 99% dry.
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Section 6.4

The wave equation

In this section, we perform the manipulations of the previous section for the
“hyperbolic” representative of our three partial differential equations, the “wave
equation.” We first considered the wave equation in Section 1.1.12, deriving it
for the vibrations of a string and presenting higher-dimensional analogues of it.
We begin our discussion in this section by looking at characteristics for the wave
equation. Unlike the situation for the heat equation, the characteristics for the wave
equation are crucial to understanding the behaviour of solutions to the equation.
We then turn to solving the wave equation, first by obtaining a “formal” solution.
Since many of the moves here mirror those for the heat equation, we are somewhat
more brief with our treatment of how to obtain a formal solution to the wave
equation. Then we consider how to verify that the formal solution is a bone fide
solution. As we did for the heat equation, we shall consider both finite length and
infinite length versions of the wave equation.

6.4.1 Characteristics for the wave equation

6.4.2 The wave equation for a finite length string

We first consider the wave equation on an interval of length `. As we saw
in Section 1.1.12, this is the sort of model that comes up when considering the
transverse vibrations of a taut string. As with the heat equation, one needs some
boundary values in order to specify a solution to the wave equation. By applying
the silly, but apparently correct, argument involving the number of derivatives,
we deduce that one needs four boundary conditions. As we did for the heat
equation, we shall give an example of a set of boundary values, and leave others
to the exercises. We shall ask that the two ends of the string have a specified
displacement. By using the same argument as was used for the heat equation, we
may as well suppose that this displacement is zero at each end. At t = 0 we also
specify the initial displacement of the string, as well as its initial velocity. In the
usual scenario you have in mind, the initial velocity is zero, but it could be nonzero.
Putting this into the form of equations, we arrive at the boundary value problem

∂2u
∂t2 = c2∂

2u
∂x2

u(0, t) = 0, u(`, t) = 0

u(x, 0) = f (x),
∂u
∂t

(x, 0) = g(x).
(6.5)

We shall see as we go along what restrictions are required for the functions f and
g.



6.4 The wave equation 511

6.4.2.1 Formal solution In arriving at a formal solution for the wave equation,
we shall follow a strategy quite similar to that used for the heat equation. That is
to say, we shall follow Procedure 6.3.1. Indeed, we shall number the steps in this
procedure, just to further illustrate how it is applied.
1. We must first decide which of the independent variables, x or t, will be the

subject of our search for eigenvalues and eigenfunctions. It is pretty evident,
given the boundary/initial conditions of (6.5), that we ought to use the x-variable
as the one to which we will associate eigenvalues and eigenfunctions. Given
the boundary conditions at x = 0 and x = `, we work with the same space

V = {ξ : [0, `]→ C | ξ is infinitely differentiable, and ξ(0) = ξ(`) = 0}

as with the heat equation.
2. Associated with the wave equation

∂2u
∂t2 = c2∂

2u
∂x2 ,

we have the “ordinary differential equation”

d2u
dt2 = A(u(t)),

where A(u) = d2u
dx2 . Thus it is for A ∈ L(V; V) that we find eigenvalues and

eigenfunctions.
The eigenvalues λ satisfy

d2ξ
dx2 = λξ(x), ξ(0) = ξ(`) = 0.

This is exactly the same eigenvalue/eigenfunction problem as for the heat equa-
tion, and so has eigenvalues λn = −n2π2

`2 and eigenfunctions ξn(x) = sin(nπ x
` ),

n ∈ Z>0.
3. The eigenfunction transform is the same as we had for the heat equation:

E(ξ)(n) =

∫ `

0
ξ(x) sin(nπx

` ) dx.

It is also the case that

E

(
d2ξ
dx2

)
(n) = −

n2π2

`2 E(ξ)(n),

just as for the heat equation.
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4. We have

ûn(t) =

∫ `

0
u(x, t) sin(nπx

` ) dx.

Thus

E

(
∂2u
∂t2

)
(n) = E

(
c2∂

2u
∂x2

)
(n) = −

c2n2π2

`2 E(u)(n)

=⇒
d2ûn

dt2 = −
c2n2π2

`2 ûn, n ∈ Z>0.

5. We solve the preceding ordinary differential equation to get

ûn(t) = cn cos( cnπ
` t) + dn sin( cnπ

` t).

6. We then have

u(x, t) =

∞∑
n=1

(cn cos( cnπ
` t) + dn sin( cnπ

` t)) sin(nπx
` ).

7. The initial conditions are then

u(x, 0) =

∞∑
n=1

cn sin(nπ x
` ) = f (x),

∂u
∂t

(0, t) =

∞∑
n=0

dn
cnπ
`

sin(nπx
` ) = g(x).

Therefore,

cn =
2
`

∫ `

0
f (x) sin(nπ x

` ) dx,

dn =
4

cnπ

∫ `

0
g(x) sin(nπx

` ) dx,

for n ∈ Z≥0. Thus we have the formal solution

u(x, t) =

∞∑
n=1

((
2
`

∫ `

0
f (x) sin(nπx

` ) dx
)

cos( cnπ
` t)

+

(
4

cnπ

∫ `

0
g(x) sin(nπ x

` ) dx
)

sin( cnπ
` t)

)
sin(nπx

` ). (6.6)

6.4.2.2 Rigorous establishment of solutions Now let us examine the nature
of the formal solution we obtained in the preceding section, and see how it functions
as a solution to the boundary value problem (6.5). As we shall see, the nature of the
result is a little different from the corresponding situation with the heat equation.

The main result is the following, which only deals with an initial displacement
of the string. The reader is asked to consider the case where the initial velocity is
nonzero in Exercise 6.4.7.
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6.4.1 Theorem (Solutions for the wave equation on an interval) Consider the boundary
value problem

∂2u
∂t2 = c2∂

2u
∂x2

u(0, t) = 0, u(`, t) = 0

u(x, 0) = f(x),
∂u
∂t

(x, 0) = 0.

Let u be the function defined by (6.6). If f : [0, `]→ R has the property that fodd : R→ R is
twice continuously differentiable, then u is the unique solution satisfying the wave equation
and all boundary conditions. Furthermore,

u(x, t) =
1
2

(fodd(x + ct) + fodd(x − ct)).

Proof By missing stuff , the series (6.6) for ut converges uniformly in x for each t.
Using the trigonometric identity

2 sin a cos b = sin(a + b) + sin(a − b),

we note that

u(x, t) =

∞∑
n=1

cn sin(nπx
` ) cos( cnπ

` t)

=

∞∑
n=1

cn
1
2

(sin(nπx+ct
` ) + sin(nπx−ct

` ))

=
1
2

( fodd(x + ct) + fodd(x − ct)),

as stated in the result. We now show that this function satisfies the wave equation
and the boundary conditions. We compute

∂2u
∂t2 =

1
2

c2( f ′′odd(x + ct) + f ′′odd(x − ct)),
∂2u
∂t2 =

1
2

( f ′′odd(x + ct) + f ′′odd(x − ct)),

so the wave equation is satisfied. We also have

u(0, t) =
1
2

( fodd(ct) + fodd(−ct)) = 0

since fodd is odd. We also have

u(`, t) =
1
2

( fodd(` + ct) + fodd(` − ct))

=
1
2

( fodd(` + ct) − fodd(−` + ct))

=
1
2

( fodd(` + ct) − fodd(` + ct))

= 0
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since fodd is periodic with period 2`. Clearly u(x, 0) = f (x) and we also have

∂u
∂t

(x, 0) =
1
2

c( f ′odd(x) − f ′odd(x)) = 0,

verifying the zero velocity initial condition. �

6.4.2 Remarks (Solutions for the wave equation)
1. The name “wave equation” comes from the characterisation of the solution as

u(x, t) =
1
2

( fodd(x + ct) + fodd(x − ct)).

With this characterisation, the solution is a superposition of two “travelling
waves” moving with velocity c, one moving in the positive x-direction, and
the other in the negative x-direction. Thus, unlike the heat equation where the
initial condition is smoothed, the wave equation tends to simply propagate the
initial condition.

2. Note that, unlike the heat equation, the smoothness of the solution of the wave
equation is inherited from the initial condition f .

3. Given that the solution is defined explicitly in terms of the initial condition f ,
one is inclined to try to define solutions for initial condition functions f that are
not twice continuously differentiable. Indeed, this is often done, and one by
convention denotes the solution by

u(x, t) =
1
2

( fodd(x + ct) + fodd(x − ct)),

regardless of whether f is smooth enough to actually allow u to satisfy the wave
equation itself. •

6.4.3 The wave equation for an infinite length string

6.4.3.1 Formal solution

6.4.3.2 Rigorous establishment of solutions

Exercises

6.4.1 Suppose that the string used in the derivation of the wave equation has a
density that varies along the length of the string. Determine the partial dif-
ferential equation governing the vertical displacement of the string. Ignore
the effects of gravity and assume constant tension in the string.

6.4.2 In the derivation of the wave equation in describing the vertical displacement
of a vibrating string, the effects of gravity are ignored.
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(a) Derive the equations governing the vertical displacement of the string
when gravity is considered. Assume that the density of the string and
the tension in the string are independent of the displacement along the
string.

(b) What is the steady-state displacement of the string in this case?
6.4.3 Suppose that a cable of length ` dangles vertically and that we wish to mea-

sure the horizontal displacement of the cable after an initial displacement.
Let x denote the distance along the cable, with x = 0 denoting the bottom
end of the cable.
(a) What is the tension in the cable as a function of x?
(b) Derive the partial differential equation governing the horizontal dis-

placement of the cable, and setup a boundary value problem that de-
scribes the physical system.

6.4.4 In the derivation of the wave equation for the vibrating string, the effects of
energy dissipation were neglected. A simple model for energy dissipation
gives the equation

d2u
dt2 + 2δ

∂u
∂t

= c2∂
2u
∂x2

describing the vertical displacement of the string, with δ > 0 a constant.
(a) What is the appropriate boundary value problem given the same phys-

ical boundary conditions utilised in Section 6.4?
(b) Determine a formal solution for the boundary value problem of part (a).

For simplicity, assume that g = 0, i.e., that the initial velocity of the string
is zero. (Note that there are annoying complications that make the form
of the solution depend on the size of δ.)

(c) How does the solution differ from the “travelling wave” character de-
scribed by Theorem 6.4.1?

In the next exercise, you will show that the small longitudinal vibrations in a
rod are governed by the wave equation. To do this, you need the following physical
law.

Hooke’s Law The stress, i.e., the pressure exerted by the rod’s displacement, is
proportional to the strain, the latter being given by ∂u

∂x , with u the longitudinal
displacement. •

6.4.5 Use Hooke’s Law in combination with Newton’s First Law of Motion to
ascertain that the longitudinal vibrations in a rod satisfy the wave equation.

6.4.6 Consider the function f : [0, 1]→ R defined by

f (x) =

1, x ∈ [3
8 ,

5
8 ]

0, otherwise.



516 6 An introduction to partial differential equations

Following Remark 6.4.2–3, we let u denote the solution to the boundary
value problem (6.5) with c = 1, with f as given, and with g = 0, despite the
fact that f is not twice continuously differentiable.
(a) If ut : [0, 1] → R is defined by ut(x) = u(x, t), plot ut for t ∈
{0, 1

8 ,
1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8 , 1}.

(b) In what sense are there “travelling waves” in the solution?
6.4.7 Consider the wave equation boundary value problem (6.5), with zero initial

displacement f and nonzero initial velocity g.
(a) Show that the displacement of the string satisfies the equation

u(x, t) =
1
2c

(∫ x+ct

0
g(s) ds −

∫ x−ct

0
g(s) ds

)
.

(b) What are the conditions on g which ensure that this will, in fact, be a
solution of the boundary value problem?

(c) What is the solution of the boundary value problem when f and g are
both nonzero?

6.4.8 Why do we require the initial displacement function for the wave equation to
be twice continuously differentiable, whereas for the heat equation and the
potential equation we can obtain a solution for boundary functions that are
merely square integrable? (The idea of this question is that you understand
the proofs of Theorems 6.3.2, 6.4.1, and 6.5.1 sufficiently well that you can
extract the salient feature that answers the question.)
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Section 6.5

The potential equation

The final equation we look at is the potential equation, the “elliptic” of our
three representatives. We first considered this equation, illustrating various places
where it arises, in Section 1.1.13. As with the heat and wave equations, we
begin our discussion of the potential equation by discussing its relationship with
characteristics. We then turn to solving the potential equation for a few different
sorts of regions in the plane. As we did with the heat and wave equations, we
obtain formal solutions using transform methods, and then prove that these are
actually solutions to the problem.

6.5.1 Characteristics for the potential equation

6.5.2 The potential equation for a bounded rectangle

The first setting in which we consider the potential equation is a bounded
rectangle

D = {(x, y) ∈ R2
| x ∈ [0, a], y ∈ [0, b]}.

The boundary conditions we specify will be on the boundary of D (generally,
this need not be the case, although it often is). Thus we will consider boundary
conditions of the form

u(0, y) = g1(y), u(a, y) = g2(y), u(x, 0) = f1(x), u(x, b) = f2(x).

That is, we specify the value of u along the boundary of D. This gives the following
boundary value problem:

∂2u
∂x2 +

∂2u
∂y2 = 0

u(0, y) = g1(y), u(a, y) = g2(y)
u(x, 0) = f1(x), u(x, b) = f2(x).

(6.7)

The boundary conditions we give are known as Dirichlet boundary conditions. A
specification of the value of the derivative of u along the boundary gives what are
called Neumann boundary conditions. Mixed conditions are also allowable, and
those that specify that a linear combination of the displacement and the derivative
be zero are called Robin boundary conditions. Thus one can have a large set
of possible boundary conditions for the simple potential equation defined on a
rectangular domain. Although we stick with the Dirichlet boundary conditions,
the reader may explore some alternatives in the exercises.

6.5.2.1 Formal solution We employ the by now venerable method of separation
of variables. One can just go ahead and have at it, but it turns out that the easier



518 6 An introduction to partial differential equations

thing to do is to break the problem down into four boundary value problems:

∂2u1

∂x2 +
∂2u1

∂y2 = 0
u1(0, y) = g1(y), u1(a, y) = 0,
u1(x, 0) = 0, u1(x, b) = 0;

(6.8)

∂2u2

∂x2 +
∂2u2

∂y2 = 0
u2(0, y) = 0, u2(a, y) = g2(y),
u2(x, 0) = 0, u2(x, b) = 0;

(6.9)

∂2u3

∂x2 +
∂2u3

∂y2 = 0
u3(0, y) = 0, u3(a, y) = 0,
u3(x, 0) = f1(x), u3(x, b) = 0;

(6.10)

∂2u4

∂x2 +
∂2u4

∂y2 = 0
u4(0, y) = 0, u4(a, y) = 0,
u4(x, 0) = 0, u4(x, b) = f2(x).

(6.11)

Due to the linearity of the problem, if u1, u2, u3, and u4 satisfy the above boundary
value problems, then it is quite clear that u = u1 + u2 + u3 + u4 satisfies (6.7). Thus
we have traded one possibly annoying boundary value problem with four that we
hope are simpler.

Let us obtain the solutions to the four problems, starting with that for u1. We
apply Procedure 6.3.1, indexing everything with the subscript “1” to denote that
we are working with the first of the four boundary value problems.
1. For the problem (6.8) for u1, the natural choice for of the “eigenfunction variable”

is y, since the boundary condition at x = 0 involves the function g1. Thus, given
the boundary conditions at y = 0 and y = b, we take

V1 = {η1 : [0, b]→ C | η1 is infinitely differentiable, and η1(0) = η1(b) = 0}.

2. Associated to the potential equation

∂2u1

∂y2 +
∂2u1

∂x2 = 0,

we have the “ordinary differential equation”

−
∂2u1

∂x2 = A(u1(x)),

where A(u1) = d2u1
dy2 . Thus, as with the heat and wave equations, we find

eigenvalues and eigenfunctions for A ∈ L(V1; V1).
Note that there are some different choices here, in terms of sign. There were
also for the heat and wave equations; it’s just that for the potential equation,
there is a minus sign that one has to put somewhere. We could, for example,
have used instead the “ordinary differential equation”

∂2u1

∂x2 = A′1(u1(x)),
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where A′1(u1) = −d2u1
dy2 . Nothing would change with the final answer, of course.

Just the place where the minus sign is handled would change.
In any case, working with A1 as we have defined it, we have the same eigen-
values and eigenfunctions as for the heat and wave equations:

λ1,n = −
n2π2

b2 , η1,n(x) = sin(nπ
x
b

), n ∈ Z>0.

3. The eigenfunction transform is the same as we had for the heat and wave
equations:

E(η1)(n) =

∫ b

0
η1(y) sin(nπ y

b ) dy.

It is also the case that

E

(
d2η1

dy2

)
(n) = −

n2π2

b2 E(η1)(n),

just as for the heat and wave equations.
4. We have

û1,n(x) =

∫ b

0
u1(x, y) sin(nπ y

b ) dy.

Thus

− E

(
∂2u1

∂x2

)
(n) = E

(
∂2u1

∂y2

)
(n) = −

n2π2

b2 E(u1)(n)

=⇒
d2û1,n

dx2 =
n2π2

b2 û1,n, n ∈ Z>0.

5. We solve the preceding ordinary differential equation to get

û1,n(x) = c1,n cosh(nπx
b ) + d1,n sinh(nπ x

b ).

6. We then have

u1(x, y) =

∞∑
n=1

(c1,n cosh(nπx
b ) + d1,n sinh(nπx

b )) sin(nπ y
b ).

7. The boundary conditions at x = 0 and x = a are now employed:

u1(0, y) =

∞∑
n=1

c1,n sin(nπ y
b ) = g1(y),

u1(a, y) =

∞∑
n=1

(c1,n cosh(nπ a
b ) + d1,n sinh(nπ a

b )) sin(nπ y
b ) = 0.
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Let us work with the second condition first. If we apply the eigenfunction
transform to this condition, using the fact that∫ b

0
sin(mπ y

b ) sin(nπ y
b ) dy =

 b
2 , n = m,
0, n , m.

we obtain that

c1,n cosh(nπ a
b ) + d1,n sinh(nπ a

b ) = 0, n ∈ Z>0.

This will be satisfied if we select

c1,n = a1,n sinh
(
nπ a

b

)
, d1,n = −a1,n cosh

(
nπ a

b

)
,

for some as yet undetermined a1,n ∈ R. Now you dig into your bag of tricks for
hyperbolic functions, and observe that

sinh(α − β) = sinh(α) cosh(β) − cosh(α) sinh(β)

(this can simply be verified directly). This gives

c1,n cosh(nπx
b )+ d1,n sinh(nπ x

b )

= a1,n sinh
(
nπ a

b

)
cosh(nπx

b ) − cosh
(
nπ a

b

)
sinh(nπ x

b )

= a1,n sinh(nπ a−x
b ).

This gives

u1(x, y) =

∞∑
n=1

a1,n sinh(nπ a−x
b ) sin(nπ y

b ).

We now apply the boundary condition at x = 0:

a1,n sinh(nπ a
b ) =

2
b

∫ b

0
g1(y) sin(nπ y

b ) dy,

and finally obtain the formal solution for u1:

u1(x, y) =

∞∑
n=1

(
2

b sinh(nπ a
b )

∫ b

0
g1(y) sin(nπ y

b ) dy
)

sinh(nπ a−x
b ) sin(nπ y

b ). (6.12)

Now we apply Procedure 6.3.1 to obtain the solution u2 for the boundary value
problem (6.9).
1. Here, by the same reasoning as above for the boundary value problem as-

sociated with u1, we work with an eigenvalue problem associated with the
y-variable, and work with the vector space

V = {η2 : [0, b]→ C | η2 is infinitely differentiable, and η2(0) = η2(b) = 0}.
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2. Again, as with the u1 boundary value problem, we have

−
∂2u2

∂x2 = A(u2),

where A(u2) = d2u2
dx2 . We find the same eigenvalues and eigenvectors, of course:

λ2,n = −
n2π2

b2 , η2,n(x) = sin(nπ
x
b

), n ∈ Z>0.

3. The eigenfunction transform is the same as we had for the heat and wave
equations:

E(η2)(n) =

∫ b

0
η2(y) sin(nπ y

b ) dy.

It is also the case that

E

(
d2η2

dy2

)
(n) = −

n2π2

b2 E(η2)(n),

just as for the heat and wave equations.
4. We have

û2,n(x) =

∫ b

0
u2(x, y) sin(nπ y

b ) dy.

Thus

− E

(
∂2u2

∂x2

)
(n) = E

(
∂2u2

∂y2

)
(n) = −

n2π2

b2 E(u2)(n)

=⇒
d2û2,n

dx2 =
n2π2

b2 û2,n, n ∈ Z>0.

5. We solve the preceding ordinary differential equation to get

û2,n(x) = c2,n cosh(nπx
b ) + d2,n sinh(nπ x

b ).

6. We then have

u2(x, y) =

∞∑
n=1

(c2,n cosh(nπx
b ) + d2,n sinh(nπx

b )) sin(nπ y
b ).

7. The boundary conditions at x = 0 and x = a are now employed:

u2(0, y) =

∞∑
n=1

c2,n sin(nπ y
b ) = 0,

u2(a, y) =

∞∑
n=1

(c2,n cosh(nπ a
b ) + d2,n sinh(nπ a

b )) sin(nπ y
b ) = g2(y).
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Let us work with the first condition first. If we apply the eigenfunction trans-
form to this condition we immediately get c2,n = 0, n ∈ Z>0. Then we apply the
eigenfunction transform to the boundary condition at x = a to get

d2,n sinh(nπ a
b ) =

2
b

∫ b

0
g2(y) sin(nπ y

b ) dy, n ∈ Z>0.

This gives the formal solution for u2:

u2(x, y) =

∞∑
n=1

(
2

b sinh(nπ a
b )

∫ b

0
g2(y) sin(nπ y

b ) dy
)

sinh(nπx
b ) sin(nπ y

b ). (6.13)

That is two of the four boundary value problems solved. The remaining two
solutions can be obtained by a simple plausibility argument. Indeed, by symmetry
in x and y, one can obtain the solutions for u3 and u4. Let us just write the answers.
For u3 we have

u3(x, y) =

∞∑
n=1

 2
sinh(nπ b

a )a

∫ a

0
f1(x) sin

(
nπx

a

)
dx

 sinh
(
nπ b−y

a

)
sin

(
nπx

a

)
. (6.14)

and for u4 we have

u4(x, y) =

∞∑
n=1

 2
sinh(nπ b

a )a

∫ a

0
f2(x) sin

(
nπx

a

)
dx

 c4,n sinh
(
nπ y

a

)
sin

(
nπx

a

)
. (6.15)

The formal solution to the boundary value problem (6.7) is then u = u1 +u2 +u3 +u4.
Clearly, this will be a tedious solution to obtain in practise. If one adds to this the
fact that one can additionally have boundary conditions that involve the derivative
of u, one can see that there are myriad possibilities for solutions.

6.5.2.2 Rigorous establishment of solutions For the Dirichlet problem, (6.7),
we have the following result concerning the nature of the formal solution over
which we laboured.

6.5.1 Theorem (Solutions for the potential equation on a bounded rectangle) Con-
sider the boundary value problem (6.7), and let u = u1 + u2 + u3 + u4 be the series defined
by equations (6.12), (6.13), (6.14), and (6.15). The following statements hold.

(i) If f1, f2 ∈ L2([0, a];C) and g1,g2 ∈ L2([0, b];C), then

(a) the series expression for u converges uniformly on [ε, a− ε]× [ε, b− ε] for any
ε ∈ R>0,

(b) u is infinitely differentiable on (0, a) × (0, b),
(c) u satisfies the potential equation in (0, a) × (0, b), and
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(d) lim
y→0
‖uy − f1‖2 = 0 lim

y→b
‖uy − f2‖2 = 0

lim
x→0
‖ux − g1‖2 = 0 lim

x→a
‖ux − f2‖2 = 0,

where ux : [0, b] → R and uy : [0, a] → R are defined by ux(y) = uy(x) =
u(x,y).

(ii) If f1, f2, g1, and g2 are twice continuously differentiable and satisfy

f1(0) = f1(a) = f2(0) = f2(a) = g1(0) = g1(b) = g2(0) = g2(b) = 0,

then
(a) the series for u converges uniformly,
(b) u in continuous on [0, a] × [0, b],
(c) u is infinitely differentiable on (0, a) × (0, b),
(d) u satisfies the potential equation on (0, a) × (0, b), and
(e) u satisfies the boundary conditions.

Proof For simplicity, we assume that a = b = π and that g2 = f1 = f2 = 0. The first
assumption we can make by a change of independent variable, if necessary. The
second assumption we can make by linearity, as if part (ii) holds for all of u1, u2, u3,
and u4, it will hold for their sum.

(i) Consider the series solution for u:

u(x, t) =

∞∑
n=1

cn

sinh(nπ)
sinh(n(π − x)) sin(ny),

where

cn =
2
π

∫ π

0
g1(y) sin(ny) dy.

We will show that this series converges uniformly on [ε, π] × [0, π] for any ε ∈ R>0.
One easily sees that

sinh(n(π − x)) ≤ sinh(n(π − ε)), n ∈ Z>0, x ∈ [ε, π].

An easy application of the definition of sinh gives the estimates

2 sinh(n(π − ε)) < en(π−ε), 2 sinh(nπ) ≥ enπ(1 − e−nπ)

for any ε > 0. Thus

sinh(n(π − x))
sinh(nπ)

≤
sinh(n(π − ε))

sinh(nπ)
≤

e−nε

1 − e−2π

for n ∈ Z>0 and x ∈ [ε, π]. By definition of cn and since g1 ∈ L2([0, π];C), there exists
M ∈ R>0 such that |cn| ≤M for n ∈ Z>0. Therefore,∣∣∣∣∣ cn

sinh(nπ)
sinh(n(π − x)) sin(ny)

∣∣∣∣∣ ≤ M
1 − e−2πe−nε, n ∈ Z>0, (x, y) ∈ [ε, π] × [0, π].
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One can now use the same arguments involving the Weierstrass M-test as in the
proof of Theorem 6.3.2(i) to prove uniform convergence of the series definition u
on [ε, π]× [0, π]. Moreover, the arguments from the proof of Theorem 6.3.2(iii) also
apply here to show that u is infinitely differentiable on (0, π) × (0, π). Also, one
can swap derivatives and sums, just as in the proof of Theorem 6.3.2(ii) to show
that u satisfies the potential equation on (0, π) × (0, π) and satisfies the boundary
conditions at y = 0, y = π, and x = π. Finally, the argument from Theorem 6.3.2(iv)
involving uniform convergence (as a function of x) of the series for ‖ux−g1‖2 implies
that limx→0‖ux − g1‖2 = 0.

(ii) The parts that do not follow from part (i) are parts (ii a), (ii b), and (ii e). By
missing stuff (applied to g1 and g′1), the two series∑

n=1

cn sin(ny),
∑
n=1

ncn sin(nx)

converge uniformly to g1 and g′1, respectively. We prove the uniform convergence of
the series for u using Abel’s Test with fn(x, y) = cn sin(ny) and gn(x, y) = sinh(n(π−x))

sinh(nπ) ,
n ∈ Z>0. To show that the hypotheses of Abel’s Test apply, we must show that
gn+1(x, y) ≤ gn(x, y), n ∈ Z>0. This follows from the following lemma.

1 Lemma If β > 0 and β ≥ α and

ψ(x) =
sinh(αx)
sinh(βx)

,

then ψ′(x) ≤ 0 for x ≥ 0.
Proof This is pure trickery. We compute

sinh2(βx)ψ′(x) = α sinh(βx) cosh(αx) − β cosh(βx) sinh(αx)

= −
β2
− α2

2

(sinh((α + β)x)
α + β

−
sinh((β − α)x)

β − α

)
,

where we have used sinh(ξ + η) = sinh(ξ) cosh(η) + cosh(ξ) sinh(η), and have
skipped some steps. Now note that if we define

ρ(x) =
sinh((α + β)x)

α + β
−

sinh((β − α)x)
β − α

,

then ρ(0) = 0 and
ρ′(x) = sinh((α + β)x) − sinh((β − α)x),

which is positive since β ≥ α and since sinh is an increasing function. Thus ρ(x) ≥ 0
for x ≥ 0. This, along with the fact that β ≥ α, ensures that ψ′(x) ≤ 0 for x ≥ 0 as
claimed. H

Now, since g1(x, y) ≤ 1, it follows that the sequence (gn)n∈Z>0 is uniformly bounded.
This shows that the series for u converges uniformly by Abel’s test. Thus
gives parts (ii a) and (ii b). The continuity of u at the boundaries follows as per
Remark 6.3.3–2. That u satisfies the boundary conditions is trivial. �
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6.5.2 Remarks (Solutions for the potential equation)
1. The solution to the Dirichlet problem shares many of the features of the heat

equation in terms of smoothing the boundary functions. The reason this works
is the presence in the series solutions of the hyperbolic sine function, which
near the boundary behaves like a negative exponential. This gives the smooth-
ing property of the coefficients that we use to employ the Weierstrass M-test
infinitely often.

2. As interesting as is the infinite smoothness of the solutions to the potential
equation on the interior of the domain, they are further analytic. This property
of the potential equation contributes to (or arises from, depending on your point
of view) the value of the potential equation in the nontrivial subject of complex
potential theory. •

6.5.3 The potential equation for a semi-unbounded rectangle

6.5.3.1 Formal solution

6.5.3.2 Rigorous establishment of solutions

6.5.4 The potential equation for an unbounded rectangle

6.5.4.1 Formal solution

6.5.4.2 Rigorous establishment of solutions

Exercises

6.5.1 The steady-state heat distribution in a disk of radius R is governed by the
potential equation, and due to the geometry of the problem, it is convenient
to use polar coordinates to describe the problem.
(a) Write the potential equation in polar coordinates (r, θ) defined by x =

r cosθ and y = r sinθ.
(b) Suppose that the heat flow from the outer edge of the disk is specified

by a function f (θ). Mathematically express the boundary condition
determined by this physical description.

(c) Why should f satisfy the constraint∫ 2π

0
f (θ) dθ = 0?

(d) If f ∈ L2([0, 2π];R), describe the nature of the temperature distribution
on the interior of the disk, given what you know about the behaviour of
the solution to the potential equation.



526 6 An introduction to partial differential equations

6.5.2 Consider a heat exchanger tube with inner radius R0 and outer radius R1.
Suppose that at steady state the temperature of the fluid inside the tube is
T0 and outside the tube is T1. The temperature distribution in the tube as
it varies from the inner wall to the outer wall is governed by the potential
equation.
(a) Write the potential equation in polar coordinates (r, θ) defined by x =

r cosθ and y = r sinθ.
(b) Using the above description of the problem, setup a boundary value

problem describing the temperature distribution in the heat exchanger
tube as it varies from the inner wall to the outer wall.

(c) Argue that the solution will be independent of θ, and use this conclusion
to obtain the desired distribution of temperature.
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Section 6.6

Weak solutions of partial differential equations
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Section 7.1

Linear maps on Banach and Hilbert spaces

It is expected that students using this text will have at least one course in linear
algebra, and so will be acquainted with basic concepts from the subject. However,
we will push quite far beyond the basic ideas in linear algebra, as this is necessitated
by the subject matter. While some of the basic concepts of linear algebra in finite-
dimensions will provide some valuable intuition, it will be important to remember
that things can get significantly more complicated in infinite-dimensions. Further-
more, as we shall see in Sections 7.2 and 7.3, these differences have meaning in
terms of physical applications.

7.1.1 Linear maps on normed vector spaces

In the preceding introductory discussion, the properties of linear maps were
purely algebraic. In applications, to ensure that one is doing something meaningful,
one also needs to pay attention to matters of convergence and continuity, thus
necessitating a discussion of the rôle played by norms in discussing linear maps.
As we shall see, the basic dichotomy is that between continuous and discontinuous
linear maps, with the discontinuous version being the one of most interest.

7.1.1.1 Continuous linear maps If (U, ‖·‖U) and (V, ‖·‖V) are normed vector
spaces, then one can certainly have the usual notion for linear maps from U to V.
However, as U and V have norms defined on them, there are additional notions
one can define. In order to put these notions into context, it is useful to talk about
maps of a general nature from U to V, or perhaps more generally, from subsets of U
to V. To this end, if A ⊆ U is an open set, a map φ : A→ V is continuous at u0 if for
each ε > 0 there exists δ > 0 so that ‖u − u0‖U < δ implies that ‖φ(u) − φ(u0)‖V < ε.
The map φ is continuous if it is continuous at each point u ∈ A. Note that this
generalises the usual notion of continuity for functions on R, or more generally for
functions on Rn. For linear maps, we say that L ∈ L(U; V) is bounded if there exists
M > 0 so that

‖L(u)‖V ≤M‖u‖U

for every u ∈ U. In finite-dimensions, it is quite easy to show that all linear maps
are bounded (Example 7.1.3). However, in infinite-dimensions, this is not so, as
exhibited by the following example.

7.1.1 Example Let C1([0, 1];R) denote the set of continuously differentiable functions
on the interval [0, 1], and define a linear map L : C1([0, 1];R) → C0([0, 1];R) by
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L( f ) = f ′. On each vector space we use the norm1

‖ f ‖∞ = sup
x∈[0,1]
| f (x)|.

We claim that L is not bounded. We do so by showing that for any M > 0 there
exists a function fM with the property that ‖ f ′M‖∞ > M‖ fM‖. We proceed as follows.
For M > 0 let ε > 0 have the property that

|
cos 1

ε

ε2 | > M. (7.1)

Since |cos 1
x | < 1, it follows that there is some ε sufficiently small that (7.1) holds.

Now define

fM(x) =

−ε−3
(
cos 1

ε + ε sin 1
ε

)
x2 + ε−2

(
cos 1

ε + 2ε sin 1
ε

)
x, x ∈ [0, ε)

sin 1
x , x ∈ [ε, 1].

One may verify that fM ∈ C1([0, 1];R). Indeed, fM has been designed so that its
graph on [0, ε] is a parabola connecting the point (0, 0) with the point (ε, sin 1

ε ), and
does so in a way that the derivative agrees with that of sin 1

x at x = ε. In any event,
the essential fact is that ‖ fM‖∞ = 1 and that ‖ f ′M‖∞ > M. This shows that L is not
bounded. •

Thus not all linear maps are bounded, and our example shows that some
not very exotic linear maps are actually unbounded. This is why the study of
unbounded linear operators is a useful subject, and is undertaken in Section 7.1.1.2.
This notwithstanding, the following result gives an interesting characterisation of
bounded linear maps.

7.1.2 Theorem If (U, ‖·‖U) and (V, ‖·‖V) are normed vector spaces then L ∈ L(U; V) is bounded
if and only if it is continuous.

Proof First let us show that L is continuous if and only if it is continuous at 0. This
means that we need to show that L is continuous if and only if for every ε > 0 there
exists δ > 0 so that ‖L(u) − L(0)‖V = ‖L(u)‖V < ε provided that ‖u − 0‖U = ‖u‖U < δ.
Clearly, only the “if” part of this statement has nontrivial content. Thus assume
that L is continuous at 0, so it is desired to show that L is continuous at any u0 ∈ U.
The definition of continuity at u0 says that for every ε > 0 there exists δ > 0 so that

‖u − u0‖U < δ =⇒ ‖L(u) − L(u0)‖V < ε.
1Note that this is indeed a norm on both C0([0, 1];R) and C1([0, 1];R), but that with this norm,

C1([0, 1];R) is not a Banach space as C0([0, 1];R) is. To make C1([0, 1];R) a Banach space, one could
use the norm defined by

‖ f ‖1∞ = sup
x∈[0,1]

f (x) + sup
x∈[0,1]

f ′(x).

However, for the purposes of this example, we do not really care that C1([0, 1];R) is a Banach space.
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This simply means that L(B(δ,u0)) ⊆ B(ε,L(u0)). We have

B(δ,u0) = {u ∈ U | ‖u − u0‖U < ε}

= {u0 + u | ‖u‖U < δ}
= {u0 + u | u ∈ B(δ, 0)},

and similarly
B(ε,L(u0)) = {L(u0) + v | v ∈ B(ε, 0)}.

Now note that

L(B(δ,u0)) = {L(u0 + u) | u ∈ B(δ, 0)}
= {L(u0) + L(u) | u ∈ B(δ, 0)}.

Therefore, if ε > 0 and we choose δ > 0 so that L(B(δ, 0)) ⊆ B(ε, 0) then we have
L(B(δ,u0)) ⊆ B(ε,L(u0)), showing that L is continuous at u0, as desired.

First suppose that L is bounded with M > 0 having the property that ‖L(u)‖V ≤
M‖u‖U. For ε > 0 take δ = ε

M . For ‖u‖U < δ we then have

‖L(u)‖ ≤M‖u‖U = ε,

showing that L is continuous at 0, and hence continuous.
Now suppose that L is continuous. Then L is continuous at 0 ∈ U. Fix δ > 0

satisfying
‖u‖U ≤ δ =⇒ ‖L(u)‖V ≤ 1.

Then for any u ∈ U \ {0}we have

‖L(u)‖V =
∥∥∥ ‖u‖U

δ L
(

δ
‖u‖U

u
)∥∥∥

=
‖u‖U
δ

∥∥∥L
(

δ
‖u‖U

u
)∥∥∥

≤
‖u‖U
δ
,

since
∥∥∥ δ
‖u‖U

u
∥∥∥

U
= δ. This shows that L is bounded with M = 1

δ . �

Let us give some examples of continuous linear maps.

7.1.3 Examples
1. Let us show that a linear map from Rm to Rn is continuous. Suppose that the

linear map is represented by the n × m matrix L. Let C > 0 have the property
that |Li j| < C for i, j ∈ {1, . . . ,n}. For x ∈ Rn let jx ∈ {1, . . . ,m} have the property
that

|x jx | = sup
j∈{1,...,m}

|x j
|.
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Then we have (
sup

j∈{1,...,m}
|x j
|

)2
= (x jx)2

≤ ‖x‖2.

We then have

‖Lx‖2 =

m∑
i=1

( n∑
j=1

Li jx j
)2

≤

m∑
i=1

( n∑
j=1

C|x j
|

)2

≤

m∑
i=1

C2n
(

sup
j∈{1,...,n}

|x j
|

)2

≤

m∑
i=1

C2n‖x‖2.

Thus we have ‖Lx‖ ≤Mx if we take M = C
√

n.
2. The linear map L from C0([0, 1];R) to C0([0, 1];R) defined by

L( f )(x) =

∫ x

0
f (ξ) dξ

is, we claim, continuous in the ‖·‖∞ norm. Since f ∈ C0([0, 1];R) is continuous,
it is bounded. Thus there exists M > 0 so that | f (x)| ≤M for each x ∈ [0, 1]. Then
we have

|L( f )(x)| =
∣∣∣∣∫ x

0
f (ξ) dξ

∣∣∣∣ ≤ ∫ x

0
| f (ξ) dξ| ≤Mx.

Therefore we have ‖L( f )‖∞ ≤ ‖ f ‖∞, showing that L is bounded and so continu-
ous.

3. Let us show that the preceding linear map is also bounded on the normed vector
space (L2([0, 1];F, ‖·‖2). For f ∈ L2([0, 1];F) we compute

|L( f )(x)|2 =
∣∣∣∣∫ x

0
f (ξ) dξ

∣∣∣∣2
≤

∣∣∣∣∫ x

0
dξ

∣∣∣∣∣∣∣∣∫ x

0
| f (ξ)|2 dξ

∣∣∣∣
≤x‖ f ‖22,

where we have used the Cauchy-Bunyakovsky-Schwartz inequality. From this
we compute

‖L( f )‖22 =

∫ 1

0
|L( f )(ξ)|2 dξ ≤ 1

2‖ f ‖22,

thus showing that L is bounded, and so continuous. •
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A useful property of continuous linear maps is that the set of all such things is
itself a normed vector space. We have already seen in the preamble of this chapter
that it is a vector space, so we need only provide a norm for the set of continuous
linear maps from (U, ‖·‖U) to (V, ‖·‖V). This is given to us by the following result.

7.1.4 Theorem If (U, ‖·‖U) to (V, ‖·‖V) are normed vector spaces, and L(U; V) ⊆ L(U; V) denotes
the set of continuous linear maps, then, for L ∈ L(U; V), the object ‖L‖U,V defined by

‖L‖U,V = sup
‖u‖U=1

‖L(u)‖V

defines a norm on L(U; V). Furthermore, this norm is complete if ‖·‖V is complete.

Proof The norm properties missing stuff and missing stuff are easily seen. Also,
for any u of norm 1 we have ‖L(u)‖V ≤ ‖L‖U,V giving for any u ∈ U, ‖L(u)‖V ≤
‖L‖U,V‖u‖U. Therefore, if ‖L‖U,V = 0 it follows that ‖L(u)‖V = 0 for all u ∈ U, so that
L = 0, thus verifying missing stuff . For the triangle inequality we have

‖L1 + L2‖U,V = sup
‖u‖=1
‖L1(u) + L2(v)‖V

≤ sup
‖u‖=1
‖L1(u)‖ + sup

‖u‖=1
‖L2(u)‖

= ‖L1‖ + ‖L2‖.

This verifies that ‖·‖U,V is indeed a norm.
Now suppose that V is a Banach space and let {L j} j∈N be a Cauchy sequence in

L(U; V) with respect to the norm ‖·‖U,V. We claim that the sequence {L j(u)} j∈N is a
Cauchy sequence for each u ∈ U. Indeed, we have ‖L j(u)− Lk(u)‖V ≤ ‖L j − Lk‖U,V‖u‖
for all j, k ∈ N, from which the claim follows. Therefore, for each u ∈ U the sequence
{L j(u)} j∈N converges. Let us denote by L(u) ∈ V the vector to which the sequence
converges, thus defining a map L : U→ V. It is easy to see that the map L is linear.

We still must show that L is continuous and that the sequence {L j(u)} j∈N con-
verges to L. Let ε > 0 and let N ∈ N have the property that ‖L j − Lk‖U,V < ε for all
j, k ≥ N. If ‖u‖ = 1 then we have ‖L j(u) − Lk(u)‖V < ε giving

lim
k→∞
‖L j(u) − Lk(u)‖V = ‖L j(u) − L(u)‖V < ε,

this latter holding for all ‖u‖ = 1. This shows that the linear map L j − L maps open
balls around 0 to bounded balls around 0, and as we saw in Theorem 7.1.2, this
means exactly that L j − L is continuous. Since L j is continuous, this implies that L
is itself continuous. That the sequence {L j} j∈N converges to L also follows from this
computation. �

The norm ‖·‖U,V is sometimes called the operator norm.
For the linear maps of Example 7.1.3, we may explicitly compute the resulting

operator norms.
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7.1.5 Example (Example 7.1.3 cont’d)
1. We first consider the case of a linear map L : Rm

→ Rn. We claim that ‖L‖Rm,Rn is
equal to the largest eigenvalue of the matrix LTL. First note that LTL is a sym-
metric matrix, so its eigenvalues are all real. Furthermore, its eigenvalues are
nonnegative since LTL is positive-definite (we will be discussing such notions
in greater generality in Section 7.1.3.2). Let x ∈ Rm be an eigenvector for the
largest eigenvalue λ of LTL. We then compute

‖Lx‖2 = xTLTLx = λ2xTx = λ2
‖x‖2.

This shows that ‖L‖Rm,Rn ≥ λ. Now note that since LTL is symmetric we may
find an orthonormal basis {v1, . . . ,vm} for Rm comprised of eigenvectors of LTL.
We may then write

x = (x · v1)v1 + · · · + (x · vm)vm

for any x ∈ Rm. We then have

‖Lx‖2 = xTLTLx

=

m∑
i, j=1

(x · vi)(x · v j)vT
i LTLv j

=

m∑
i, j=1

(x · vi)(x · v j)λiλ jvT
i vi

=

m∑
i=1

λ2
i (x · vi)2

≤ λ2
m∑

i=1

(x · vi)2 = λ2‖x‖2,

thus showing that ‖L‖Rm,Rn ≤ λ.

2. For the linear map L( f )(x) =
∫ x

0
f (ξ) dξ defined on (C0([0, 1];R), ‖·‖∞) we claim

that the operator norm is 1. In Example 7.1.3 we showed that the operator
norm is at least 1. To show that it is at most 1, consider the function f (x) = c for
some nonzero constant c. We then have ‖L( f )‖∞ = c, giving our assertion. •

7.1.1.2 Linear operators In our applications of discontinuous linear maps, it
will be useful to consider linear maps defined not on an entire vector space, but only
on a subspace. Thus, given a normed vector space (V, ‖·‖), a linear operator on V is a
pair (L,dom(L)) where dom(L) ⊆ V is a subspace and L ∈ L(dom(L); V). Two linear
operators (L1,dom(L1)) and (L2,dom(L2)) on V are equal if dom(L1) = dom(L2) and
L1 = L2. We write (L1,dom(L1)) = (L2,dom(L2)) if the linear operators are equal.
A linear operator (L1,dom(L1)) is an extension of a linear operator (L2,dom(L2)) if
dom(L2) ⊆ dom(L1) and if L1|dom(L2) = L2. We write (L2,dom(L2)) ⊆ (L1,dom(L1))
is (L1,dom(L1)) is an extension of (L2,dom(L2)).

We are generally interested in the case when L is discontinuous and when
dom(L) is dense in V. In this case there are additional refinements one can impose
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on an linear operator that may not be continuous. A useful weaker notion is that
of closedness.

7.1.6 Definition Let (L,dom(L)) be a linear operator on V. A Cauchy sequence
{v j} j∈N ⊆ dom(L) is compatible with L if the sequence {A(v j)} j∈N converges. The
linear operator (L,dom(L)) is closed if for every sequence {v j} j∈N compatible with L
we have

(i) v0 = lim j→∞ v j ∈ dom(L) and
(ii) L(v0) = lim j→∞ L(v j). •

The distinction between continuity and closedness is subtle. First let us show
that certain continuous linear operators are closed.

7.1.7 Proposition A linear operator (L,dom(L)) on V with dom(L) closed and with L contin-
uous is closed.

Proof We note that since dom(L) is closed, every convergent sequence in dom(L)
converges to a point in dom(L). Thus condition (i) in Definition 7.1.6 is always
satisfied. What’s more, since the image of a convergent sequence under a contin-
uous function is convergent (Exercise 7.1.5), it also follows that condition (ii) of
Definition 7.1.6 holds under the hypotheses of the proposition. �

The way in which a closed linear operator may not be continuous is this: while
for a continuous linear operator we know that if {v j} j∈N converges to v0 then {L(v j)} j∈N
converges to L(v0), all we know for closed linear operators is that different sequences
converging to the same point in dom(L) will have images under L converging to
the same point in V.

It turns out that we will naturally encounter discontinuous linear operators
that, while they are not closed, they are nearly so. Let us describe these “nearly
closed” linear operators. Call a sequence {v j} j∈N in V a null sequence if it converges
to 0 ∈ V. Since the image of a convergent sequence under a continuous function
is convergent (see Exercise 7.1.5), it follows that there is a null sequence {v j} j∈N for
which the sequence {L(v j)} j∈N does not converge. There are then two possibilities:

1. the image of any null sequence under L either converges to 0 or does not
converge;

2. there exists a null sequence whose image under L converges to u0 ∈ V \ {0}.

We wish to disallow the second of these possibilities. Indeed, if a null sequence
{v j} j∈N has the property that {L(v j)} j∈N converges to u0, then the null sequence {av j} j∈N
has the property that {L(av j)} j∈N converges to au0. Thus sequences converging to
the same point in V, when mapped under L may converge to different points in V.
This is an odd circumstance, and thankfully applications do not normally involve
linear maps of this sort. Let us then formally classify the sort of discontinuous
linear map that is of interest to us.
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7.1.8 Definition A linear operator (L,dom(L)) is closable if for every null sequence {v j} j∈N
in dom(L) the sequence {L(v j)} j∈N satisfies either of the following two criterion:

(i) it converges to 0 or
(ii) it does not converge. •

The very term “closable” implies that there should be a way to go from a closable
linear operator to one that is closed. This is indeed the case, and let us describe
how this works by means of the following theorem.

7.1.9 Theorem Let (L,dom(L)) be a closable linear operator on a Banach space V. There then
exists a closed linear operator (L,dom(L)) which is an extension of (L,dom(L)).

Proof We first define dom(L). We take C(L) to be the collection of Cauchy se-
quences {v j} j∈N in dom(L) for which {L(v j)} j∈N converges. Let us say that two
elements {u j} j∈N and {v j} j∈N of C(L) are equivalent if {u j − v j} j∈N is a null sequence.
We take dom(L) to be the set of equivalence classes under this equivalence relation.
We must show first that dom(L) is a subspace of V. To see this, first note that if
{v j} j∈N converges to v0 ∈ V and {L(v j)} j∈N converges to u0 ∈ V, then {av j} j∈N converges
to av0 ∈ U and {L(av j)} j∈N converges to au0 for a ∈ R. Thus the equivalence class con-
taining {av j} j∈N is also in dom(L). In like manner, one shows that if the equivalence
classes containing {u j} j∈N and {v j} j∈N are in dom(L), then so too is the equivalence
class containing {u j + v j} j∈N. Thus dom(L) is indeed a vector space.

Next we need to define L. We take L(v) = L(v) for v ∈ dom(L). For v ∈ dom(L)
we define L(v) = lim j→∞ L(v j) where lim j→∞ v j = v. The only possible problem
with this definition is that it may depend on the choice of the sequence {v j} j∈N that
approaches u. However, using the fact that (L,dom(L)) is closable, one can show
that this is not the case. �

7.1.10 Remarks
1. The subspace dom(L) need not be closed. Indeed, if dom(L) is closed and

(L,dom(L)) is closed then one can show that it must be the case that L is in
fact continuous. Our interest is decidedly in discontinuous linear operators,
so we should not expect that dom(L) be closed.

2. Note that the preceding result does not indicate whether (L,dom(L)) is unique.
Indeed, there will generally be more than one closed linear operator satisfying
the hypotheses of the theorem. However, if we restrict to the closed linear
operator with the smallest domain, then this fixes the linear operator to an
linear operator we call the closure of (L,dom(L)). It is this linear operator that
is explicitly constructed in the proof of Theorem 7.1.9. •

There is a delicacy to the above considerations that is a bit bewildering to a
newcomer to analysis in infinite-dimensions. It is therefore useful to ground these
considerations with a simple example.
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7.1.11 Example Let us take V = L2([0, 1];F). We wish to consider differentiation as a
linear operator. Clearly this cannot be defined on all of V since L2([0, 1];F) contains
functions that are certainly not differentiable. We therefore take dom(L) to be the
collection of functions f : [0, 1]→ R of the form

f (x) =

∫ x

0
f ′(ξ) dξ, (7.2)

for some function f ′ ∈ L2([0, 1];F). The “prime” on f ′ should be interpreted
carefully; it does not necessarily mean the derivative in the usual sense, but de-
fines what is known as the L2-derivative of f .2 In any event, we define a map
L : dom(L)→ L2([0, 1];F) by assigning to f the function f ′ given by (7.2).

We claim that L is not continuous but is closed. To see that L is not continuous
consider the sequence of functions { f j} j∈N defined by f j(x) = (1 + j2)x j. We compute
‖ f j‖2 = 1, so that { f j} j∈N is a sequence of bounded functions. Were L to be continuous,
the image of this sequence under L should also be bounded. However, we compute
‖L( f j)‖2 = (1+ j2)1/2. Therefore we have lim j→∞‖L( f j)‖2 = ∞, so L cannot be bounded,
and so cannot be continuous. In Figure 7.1 we show the situation, illustrating the
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Figure 7.1 A bounded sequence (left) whose image under L
(right) is not bounded

cases when j ∈ {1, 5, 20}.
To show that L is closed, let { f j} j∈N be a Cauchy sequence of functions in dom(L)

having the property that {L( f j)} j∈N converges. We must show that lim j→∞ f j ∈

dom(L) and that L(lim j→∞ f j) = lim j→∞ L( f j) = L( f0). Since L2([0, 1];F) is complete
we know that g0 = lim j→∞ L( f j) ∈ L2([0, 1];F). Define

f0(x) =

∫ x

0
g0(ξ) dξ ∈ dom(L).

2More generally, one may define the Lp-derivative in an analogous manner. With this notion of
differentiability, a function may be Lp-differentiable for some p but not Lq-differentiable for q > p.
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We claim that lim j→∞ f j = f0. Since L2([0, 1];F) is complete we know that f̃0 =
lim j→∞ f j ∈ L2([0, 1];F). Thus we have

f0(x) =

∫ x

0
lim
j→∞

f ′j (ξ) dξ

and

f̃0(x) = lim
j→∞

∫ x

0
f ′j (ξ) dξ,

where f ′j = L( f j). That L is closed now follows immediately from the Dominated
Convergence Theorem. •

The linear operator in the preceding example was given to us as being closed. It
is possible, however, to define the same operator as being the closure of a closable
operator. Let us indicate how this might arise.

7.1.12 Example We define a linear operator (L̃,dom(L̃)) as follows. We let dom(L̃) be the
collection of differentiable functions on [0, 1] whose derivative lies in L2([0, 1];F).
If (L,dom(L)) denotes the linear operator of the preceding example, then dom(L̃) ⊂
dom(L). To see that the inclusion is strict, note that the function

f (x) =

x, x ∈ [0, 1
2 ]

1 − x, x ∈ (1
2 , 1]

(7.3)

is in dom(L) but is not in dom(L̃) since f is not differentiable at x = 1
2 . We then define

L̃ : dom(L̃)→ L2([0, 1];F) by L( f ) = f ′, where now f ′ really means the derivative in
the usual sense.

Let us show that (L̃,dom(L̃)) is closable. We let { f j} j∈N be a null sequence in
dom(L̃) for which {L̃( f j)} j∈N is convergent and converges to g ∈ L2([0, 1];F). For
h ∈ L2([0, 1];F) we have

lim
j→∞
〈h, f ′j 〉 = 〈h, g〉

since the inner product is continuous (Exercise 7.1.2). Now further suppose that
h is continuously differentiable and that h(0) = h(1) = 0. The collection of all such
functions is dense in L2([0, 1];F). To see this, note that any such function possesses
a uniformly convergent Fourier series, and since the Fourier basis functions are
dense, so too must be the collection of such functions. In any event, with h so
restricted we have

〈h, f ′j 〉 =

∫ 1

0
h(x) f ′j (x) dx = −

∫ 1

0
f j(x)h′(x) dx = −〈h′, f j〉,

by an integration by parts. Again using continuity of the inner product we infer
that lim j→∞〈h, f ′j 〉 = − lim j→∞〈h′, f j〉 = 0. Thus g is orthogonal to a dense subset of
L2([0, 1];F), and so must be zero. This shows that (L̃,dom(L̃)) is closable.
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It is not true, however, that (L̃,dom(L̃)) is closed. To see this, recall that the
function f defined in (7.3) has a uniformly convergent Fourier series. Thus for
this function there exists a sequence { f j} j∈N in dom(L̃) so that lim j→∞ f j = f in
L2([0, 1];F). It is also the case that the sequence {L( f j)} j∈N converges in this case.
However, f < dom(L̃), so the linear operator is not closed. This shows that in
practice the difference between a linear operator that is merely closable and one
that is closed is often a minor discrepancy that can be redressed by adding to the
domain of the closable operator a suitable collection of limit functions. •

7.1.1.3 Invertibility of linear operators The notion of invertibility of a linear
map L : Rn

→ Rn is well understood, and is equivalent to the condition that if we
think of L as an n × n matrix then det(L) , 0. As expected, for linear operators
defined on infinite-dimensional normed vector spaces, the issues are more compli-
cated. Indeed, as we shall see, there are various ways in which a linear operator
can be singular, and only some of the possibilities will be of interest to us.

Let us first consider injective linear operators. In the following discussion we
let (L,dom(L)) be a linear operator on V. The following result has likely been
encountered in a basic linear algebra course.

7.1.13 Lemma A linear operator (L,dom(L)) on V is injective if and only if ker(L) = {0}.

Proof First suppose that L is injective and that L(v) = 0. Since L(0) = 0 this implies
that v = 0. Next suppose that ker(L) = {0} and that L(v1) = L(v2). Then L(v1−v2) = 0
by linearity, implying that v1 = v2. �

If (L,dom(L)) is injective then L : dom(L)→ image(L) is necessarily an isomor-
phism. In this case we define a linear operator (L−1, image(L)) where L : image(L) ⊆
V → dom(L) ⊆ U. Note that L−1 defined in this manner is not defined on all of V,
only on image(L). We shall say that (L−1, image(L)) is the inverse of L, and so say
that (L,dom(L)) is invertible.

7.1.14 Definition Let (V, ‖·‖) be a normed vector space and let (L,dom(L)) be a linear
operator on V.

(i) (L,dom(L)) is essentially regular if

(a) L is injective,
(b) (L−1, image(L)) is continuous, and
(c) cl(image(L)) = V.

(ii) (L,dom(L)) is regular if it is essentially regular and if image(L) = V.
(iii) (L,dom(L)) is singular if it is neither regular nor essentially regular. •

In a manner resembling closed and closable linear operators, one can go from
an essentially regular linear operator to a regular linear operator in a natural way.
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7.1.15 Proposition Let (V, ‖·‖) be a Banach space and let (L,dom(L)) be a linear operator on V.
If (L,dom(L)) is essentially regular then there exists a regular linear operator (L,dom(L))
on V which is an extension of (L,dom(L)). (L,dom(L)) is called the regularisation of
(L,dom(L)).

Proof We proceed by defining L
−1

. For any v0 ∈ V there exists a Cauchy sequence
{v j} j∈N in image(L) and converging to v0. Since L−1 is continuous the sequence

{L−1(v j)} j∈N converges to u0 ∈ V. We define L
−1

(v0) = u0. One shows that the
collection of u ∈ V that are images under L−1 of Cauchy sequences in image(L)
form a subspace of V, and we denote this subspace by dom(L). One then defines

L = (L
−1

)−1. �

In Sections 7.2 and 7.3 we shall be interested in solutions of equations of the form
L(v) = u. To ensure the existence to such an equation, one wants u ∈ image(L); to
guarantee uniqueness of the solution, one wants L to be injective; and to ensure
that the solutions of the equation do not vary wildly as one varies u, one wants the
inverse to be continuous. This motivates our interest in regular linear operators.
However, we shall also be very interested in singular linear operators for reasons
that will not be clear at this time (although we shall see some reason for this in
Section 7.1.3). Nevertheless, let us say a few words about singular linear operators.
Our interest is in closed operators, and the following result gives some important
features of closed operators as concerns their invertibility.

7.1.16 Proposition Let (V, ‖·‖) be a normed vector space and suppose that (L,dom(L)) is a closed
linear operator on V. The following statements hold:

(i) if (L,dom(L)) is invertible then its inverse is closed;
(ii) if (L,dom(L)) is invertible and if its inverse is continuous then image(L) is closed

in V.

Proof (i) Suppose that the sequence {u j} j∈N converges to u0 and that {L−1(u j)} j∈N con-
verges to v0. Note that {L ◦ L−1(u j)} j∈N converges to u0. Therefore, since (L,dom(L))
is closed it follows that v0 ∈ dom(L) and that L(v0) = u0. From this we see that
v0 = L−1(u0) as desired.

(ii) Let {u j} j∈N be a sequence in image(L) converging to u0 ∈ V. There then exists
a sequence {v j} j∈N in dom(L) for which L(v j) = u j, j ∈ N. Since the sequence {u j} j∈N is
Cauchy and since L−1 is continuous the sequence {v j} j∈N must be Cauchy. Therefore,
the sequences {v j} j∈N and {L(v j) = u j} j∈N converge. Since L is closed it follows that
v0 = lim j→∞ v j ∈ dom(L) and L(v0) = lim j→∞ u j. Thus u0 ∈ image(L) as desired. �

The preceding result allows the following classification of closed operators.

7.1.17 Theorem Let (V, ‖·‖) be a normed vector space and suppose that (L,dom(L)) is a closed
linear operator on V. Then (L,dom(L)) falls into one of the following mutually exclusive
classes:
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(i) (L,dom(L)) is regular;
(ii) (L,dom(L)) is not invertible;
(iii) (L,dom(L)) is invertible, (L−1,dom(L)) is unbounded, image(L) ⊂ V, and

cl(image(L)) = V;
(iv) (L,dom(L)) is invertible and cl(image(L)) ⊂ V.

Proof Clearly (L,dom(L)) must be either regular, essentially regular, or singular.
If (L,dom(L)) is singular then it falls into exactly one of the last three classes. Thus
to prove the theorem, we need only assert that (L,dom(L)) cannot be essentially
regular if it is closed. This, however, follows from part (ii) of Proposition 7.1.16.�

Let us exhibit simple examples that fall into the classes enumerated in Theo-
rem 7.1.17.

7.1.18 Examples
1. On any normed vector space (V, ‖·‖) the linear operator (idV,V) is continuous

and invertible. Furthermore, image(idV) = V, so this linear operator is regular.
2. On any normed vector space (V, ‖·‖) the linear operator (L,V) defined by L(v) = 0

is continuous. It is certainly not invertible, however, so it represents an example
of case (ii) of the theorem.

3. On V = (L2([0, 1];F) consider the linear operator (L,dom(L)) given by dom(L) =
V and L( f )(x) = x f (x). It is clear that L is continuous since we have

‖L( f )‖22 =

∫ 1

0
|x f (x)|2 dx ≤

∫ 1

0
| f (x)|2 dx = ‖ f ‖22.

It is also evident that L is invertible since L( f ) = 0 obviously implies that f = 0
a.e. We note that image(L) ⊂ V since the function f (x) = 1 is not in the image
of L. Indeed, if this function were in image(L) then there would be a function
f ∈ L2([0, 1];F) so that x f (x) = 1. Thus f (x) = 1

x , but this function is not in
L2([0, 1];F). However, if we define

S = { f ∈ L2([0, 1];F) | there exists a neighbourhood of 0 on which f vanishes},

then clearly S ⊆ image(L). Furthermore, one easily sees that S is dense in V,
showing that image(L) is dense in V. This shows that (L,dom(L)) belongs to the
functions of case (iii) of the theorem.

4. Let (V, 〈·, ·〉) be an inner product space with {e j} j∈N a complete orthonormal family
in V. For v ∈ V let a j(v) be the components of v in the complete orthonormal
family so that

v =

∞∑
j=1

a j(v)e j.
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We define the shift operator on V to be the linear operator (L,dom(L) = V)
defined by

L(v) =

∞∑
j=1

a j(v)e j+1.

By Parseval’s inequality we have ‖L(v)‖ ≤ ‖v‖, thus L is continuous.
It is also evident that (L,dom(L)) is invertible. Indeed, suppose that L(v) = 0.
Then

0 =

∞∑
j=1

a j(v)e j+1 = 0e1 +

∞∑
j=1

a j(v)e j+1.

By missing stuff it follows that a j(v) = 0, j ∈ N, or that v = 0.
We also claim that image(L) is not dense in V. Indeed, it is clear that the function
e1 is orthogonal to image(L), which prohibits image(L) from being dense.
All this shows that L belongs to the class of linear operator described by case (iv)
of the theorem. •

7.1.1.4 Linear functions For a normed vector space (V, ‖·‖) over F, the dual of
V is the collection of continuous F-valued linear maps in V. Thus the dual of V is
L(V;F), which we abbreviate as V∗. Of some interest to us will be the dual space of
a Hilbert space. The following result characterises such duals.

7.1.19 Theorem (Riesz representation theorem) Let (V, 〈·, ·〉) be a Hilbert space. For each
α ∈ V∗ there exists a unique vα ∈ V so that α(u) = 〈u,vα〉 for each u ∈ V.

Proof If α = 0 then we can take vα = 0. So let α ∈ V∗ \ {0}. We claim that ker(α) is a
closed subspace of V. It is certainly a subspace. To show that it is closed, let {v j} j∈N be
a Cauchy sequence in ker(α). Then the sequence {α(v j)} j∈N is certainly convergent.
Since α is continuous and V is complete, it follows that {v j} j∈N is convergent. Since
α , 0, ker(α) , V. Therefore, since ker(α) is closed, we can choose a nonzero vector
v0 ∈ ker(α)⊥, supposing this vector to further have length 1. Define ᾱ ∈ V∗ by
ᾱ(v) = α(v). We claim that we can take vα = ᾱ(v0)v0. Indeed note that for u ∈ V the
vector α(u)v0 − α(v0)u is in ker(α). Therefore

0 = 〈α(u)v0 − α(v0)u, v0〉 = α(u) − α(v0)〈u, v0〉.

Thus α(u) = 〈u, ᾱ(v0)v0〉. Thus vα as defined meets the desired criterion. Let us
show that this is the only vector satisfying the conditions of the theorem. Suppose
that v1, v2 ∈ V have the property that α(u) = 〈u, v1〉 = 〈u, v2〉 for all u ∈ V. Then
〈u, v1 − v2〉 = 0 for all u ∈ V. In particular, taking u = v1 − v2 we have ‖v1 − v2‖

2 = 0,
giving v1 = v2. �

Said in more sophisticated language, the Riesz representation theorem says that
V∗ is isomorphic to V, the isomorphism being given as α 7→ vα.
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7.1.2 Linear maps on inner product spaces

The structure of certain linear maps on inner product spaces will be of great
interest to us. In the case of continuous linear maps, the Riesz representation
theorem makes this discussion quite simple. For discontinuous linear maps—our
concern will be with linear operators—one must be careful as the types of possible
behaviour are various, differing in sometimes subtle ways.

7.1.2.1 The adjoint of a continuous linear map Consider twoF-inner product
spaces (U, 〈·, ·〉U) and (V, 〈·, ·〉V). For fixed v ∈ V consider the map from U to F given
by u 7→ 〈L(u), v〉. Since the inner product is continuous (Exercise 7.1.2) this map
is an element of U∗. In this way we assign to each v ∈ V an element αv ∈ U∗. By
the Riesz representation theorem this therefore defines an element uv ∈ U. In other
words, we have defined a map L∗ : V → U. It is a straightforward exercise, given
as Exercise 7.1.8, to show that L∗ is linear. We call L∗ the adjoint of L in this case.

Let us consider an example of an adjoint defined on an infinite-dimensional
vector space.

7.1.20 Example On L2([0, 1];F) we consider the linear transformation defined by L( f )(x) =
x f (x), as in Example 7.1.18–3. We showed in that preceding example that L is
continuous, so it certainly possesses an adjoint as we describe here. Let f , g ∈ V
and compute

〈L( f ), g〉 =

∫ 1

0
x f (x)g(x) dx =

∫ 1

0
f (x)xg(x) dx = 〈 f ,L∗(g)〉

where L∗(g)(x) = xg(x). Thus we see in this case that L∗ = L. •

The following results might help in understanding the adjoint, telling us what
it looks like in Fn with the inner product being the dot product.

7.1.21 Proposition Consider the inner product on Fn given by the dot product:

〈x,y〉 = x · ȳ =

n∑
j=1

xiȳi.

If L ∈ L(Fn;Fm) is a linear map (i.e., an m × n matrix with entries in F), then L∗ = L̄T.
That is, the matrix corresponding to the linear map L∗ is obtained by taking the conjugate
of all entries in the transpose LT.
Proof One may write the dot product in terms of matrix multiplication like this:

x · ȳ = xT ȳ.

The definition of adjoint is then as follows. For x ∈ Fm, L∗x ∈ Fn satisfies

(L∗x) · ȳ = x ·
(
Ly

)
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for every y ∈ Fn. Using the matrix multiplication characterisation of the dot
product, this gives, for every y ∈ Fn,

(L∗x)T ȳ = xT
(
Ly

)
=⇒

(
xT(L∗)T

)
ȳ = xT

(
L̄ȳ

)
=⇒

(
xT(L∗)T

)
ȳ =

(
xTL̄

)
ȳ.

Since this must be true for every y ∈ Fn we can assert that

xT(L∗)T = xTL̄

=⇒ L∗x = L̄Tx.

Thus we have shown that L∗ = L̄T, as desired. �

Thus, if F = R, a self-adjoint linear on Rn is simply a symmetric matrix. However,
our principal interest is in understanding self-adjoint maps in the case when V is
infinite-dimensional.

7.1.2.2 The adjoint of a linear operator The discussion in the preceding sec-
tion was facilitated by the ability to use the Riesz representation theorem for contin-
uous F-valued linear maps. However, since much of our attention will be focused
on the investigation of discontinuous linear maps, we will also benefit from trying
to extend the notion of adjoint to this case. Thus in this section we let (V, 〈·, ·〉) be an
F-inner product space and we consider a linear operator (L,dom(L)) defined on V.
The problem arises that given u ∈ V, the map v 7→ 〈L(v),u〉may not be continuous.
We do, however, have the following result.

7.1.22 Lemma Let (V, 〈·, ·〉) be a Hilbert space and let (L,dom(L)) be a linear operator on V. The
following statements hold:

(i) the set

CL = {u ∈ V | ∃wu ∈ V so that 〈L(v),u〉 = 〈v,wu〉 ∀ v ∈ dom(L)}

is a nonempty subspace of V;
(ii) if dom(L) is dense in V and if u ∈ CL then the set

CL,u = {wu ∈ V | 〈L(v),u〉 = 〈v,wu〉, v ∈ dom(L)}

consists of a single element;
(iii) if dom(L) is dense in V then the map sending u ∈ CL to the unique element wu ∈ CL,u

is linear.
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Proof (i) That CL is empty follows since 0 is obviously in CL. Suppose that u ∈ CL

and a ∈ F. Then there exists wu ∈ V so that 〈L(v),u〉 = 〈v,wu〉 for all v ∈ dom(L).
Therefore 〈L(v), au〉 = 〈v, awu〉 for all v ∈ dom(L), showing that au ∈ CL. In like
manner one shows that if u1,u2 ∈ CL then u1 + u2 ∈ CL.

(ii) Let w1,w2 ∈ CL,u so that 〈v,w1〉 = 〈v,w2〉 for all v ∈ dom(L). Thus 〈v,w1−w2〉 =
0 for all v ∈ dom(L), showing that w1 = w2 since dom(L) is dense in V.

(iii) We must show that if u,u1,u2 ∈ CL and a ∈ R then we have

CL,au = {awu}, CL,u1+u2 = {wu1 + wu2}.

We have 〈L(v),u〉 = 〈v,wu〉 for all v ∈ dom(L) from which we assert that 〈L(v), au〉 =
〈v, awu〉 for all v ∈ dom(L). This shows that awu ∈ CL,au, showing that CL,au = {awu}

by (ii). In like manner one shows that CL,u1+u2 = {wu1 + wu2}. �

The above lemma is, in actuality not difficult, but it does require a moments
thought to understand the notation and the consequences. The important conse-
quence is the following result.

7.1.23 Corollary If (V, 〈·, ·〉) is a Hilbert space with (L,dom(L)) be a linear operator on V with
dom(L) dense in V, then there exists a linear operator (L∗,dom(L∗)) on V satisfying
〈L(v),u〉 = 〈v,L∗(u)〉 for all v ∈ dom(L) and u ∈ dom(L∗). The operator (L∗,dom(L∗))
is the adjoint of (L,dom(L)).

Proof The result follows by transcribing the notation of Lemma 7.1.22. Indeed,
we take dom(L∗) = CL and L∗ to be the map that assigns to u ∈ dom(L∗) the unique
element wu ∈ CL,u. �

Let us enumerate some of the useful properties of the adjoint.

7.1.24 Proposition Let (V, 〈·, ·〉) be a Hilbert space with (L,dom(L)) and (M,dom(M)) linear
operators on V for which dom(L) and dom(M) are dense in V. If (L∗,dom(L∗)) is the
adjoint of (L,dom(L)) then the following statements hold:

(i) (L∗,dom(L∗)) is closed;
(ii) if (L,dom(L)) ⊆ (M,dom(M)) then (M∗,dom(M∗)) ⊆ (L∗,dom(L∗));
(iii) if dom(L) = V and L is continuous then dom(L∗) = V and L∗ is continuous;
(iv) if dom(L∗) is dense in V then (L,dom(L)) ⊆ (L∗∗,dom(L∗∗));

(v) if (L,dom(L)) is closable with closure (L,dom(L)) then (L
∗

,dom(L
∗

)) =
(L∗,dom(L∗));

(vi) if (L,dom(L)) is closed then dom(L∗) is dense in V and (L,dom(L)) =
(L∗∗,dom(L∗∗)).

Proof (i) Let {u j} j∈N be a sequence in dom(L∗) converging to u0 ∈ V and suppose that
{L(u j)} j∈N converges to v0 ∈ V. Since the inner product is continuous (Exercise 7.1.2)
we have

lim
j→∞
〈L(v),u j〉 = 〈L(v),u0〉, lim

j→∞
〈v,L∗(u j)〉 = 〈v, v0〉
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for all v ∈ dom(L). Since 〈L(v),u j〉 = 〈v,L∗(u j)〉, j ∈ N we ascertain that 〈L(v),u0〉 =
〈v, v0〉 for all v ∈ dom(L). Therefore, by Lemma 7.1.22, u0 ∈ dom(L∗) and v0 = L∗(u0).
This shows that (L∗,dom(L∗)) is closed.

(ii) Let u0 ∈ dom(M) and let v0 = M∗(u0). Thus we have 〈M(v),u0〉 = 〈v, v0〉

for all v ∈ dom(M). Since (L,dom(L)) ⊆ (M,dom(M)) this implies that 〈L(v),u0〉 =
〈v, v0〉 for all v ∈ dom(L). This shows that u0 ∈ dom(L∗) and that L∗(u0) = v0 by
Lemma 7.1.22.

(iii) This follows directly from the construction of Section 7.1.2.2.
(iv) First note that if dom(L∗) is dense in V then the construction of Corol-

lary 7.1.23 applies and we may actually define (L∗∗,dom(L∗∗)). Let v0 ∈ dom(L∗∗).
Thus we have 〈L∗(u), v0〉 = 〈u,L∗∗(v0)〉 for all u ∈ dom(L∗). If u ∈ dom(L∗) then
〈L(v),u〉 = 〈v,L∗(u)〉 for each v ∈ dom(L∗). missing stuff

(v) From part (ii) we have (L
∗

,dom(L
∗

)) ⊆ (L∗,dom(L∗)), thus it is the opposite
“inclusion” we must show. Thus let u0 ∈ dom(L∗) and let v0 = L∗(u0). Thus
〈L(v),u0〉 = 〈v, v0〉 for all v ∈ dom(L). Let {v j} j∈N be a sequence in dom(L) converging
to v, and suppose that {L(v j)} j∈N converges to u. Since (L,dom(L)) is closable we
have v ∈ dom(L) and L(v) = u. By continuity of the inner product we also have

lim
j→∞
〈L(v j),u0〉 = 〈u,u0〉, lim

j→∞
〈v j, v0〉 = 〈v, v0〉,

giving 〈L(v),u0〉 = 〈v, v0〉. Since this can be done for each v ∈ dom(L) this shows
that u0 ∈ dom(L

∗

) and that v0 = L
∗

(u0), as desired.
(vi) missing stuff �

Let us give some examples of adjoints so that we may appreciate that the
subtleties in the definition do arise in simple situations.

7.1.25 Examples In each of the next three examples we consider the Hilbert space
(L2([0, 1];F), 〈·, ·〉2). The subspace of this Hilbert space that will be basis for the do-
main of all linear operators we consider is the subset S of functions f ∈ L2([0, 1];F)
for which there exists a function f ′ ∈ L2([0, 1];F) so that

f (x) =

∫ x

0
f ′(ξ) dξ.

The examples we consider differ by their imposing on functions in S various
boundary conditions. In all cases the operator is the L2-differentiation operator
which assigns to f ∈ S the function f ′ ∈ L2([0, 1];F).
1. Here we take dom(L1) = S. As we saw in Example 7.1.11, the linear operator

assigning to f ∈ S the L2-derivative f ′ is a closed linear operator. Since, the
differentiable functions on [0, 1] are dense in L2([0, 1];F) (by part missing stuff
of missing stuff ), it follows that S = dom(L1) is dense in L2([0, 1];F). Let us
determine the adjoint of the linear operator (L1,dom(L1)).
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Lemma If (L∗1,dom(L∗1)) is the adjoint of (L1,dom(L1)) then

dom(L∗1) = {g ∈ S | g(0) = g(1) = 0}

and L∗1(g) = −g′.

Proof Let us denote by (L,dom(L)) the linear operator defined by

dom(L) = {g ∈ S | g(0) = g(1) = 0}, L( f ) = − f ′.

Now let f ∈ dom(L1)

〈L1( f ), g〉2 =

∫ 1

0
f ′(x)g(x) dx

= f (x)g(x)|10 −
∫ 1

0
f (x)g′(x) dx

= 〈 f ,L(g)〉2,

showing that (L,dom(L)) ⊆ (L∗1,dom(L∗1)).
To show the converse “inclusion” we proceed as follows. Let g, h ∈ L2([0, 1];F)
satisfy 〈L( f ), g〉2 = 〈 f , h〉2 for each f ∈ dom(L1). We compute

〈 f , h〉2 =

∫ 1

0
f (x)h(x) dx

= f (x)
(∫ x

0
h(ξ) dξ

)∣∣∣∣1
0
−

∫ 1

0
f ′(x)

(∫ x

0
h(ξ) dξ

)
dx. (7.4)

Define f1(x) = 1 so that f1 ∈ dom(L1) and L1( f1) = 0. Then we have

0 = 〈L1( f1), g〉2 = 〈 f1, h〉2 =

∫ 1

0
h(x) dx. (7.5)

Thus the first term in (7.4) vanishes and we have

〈 f , h〉2 = −

∫ 1

0
f ′(x)

(∫ x

0
h(ξ) dξ

)
dx,

this holding for all f ∈ dom(L1). Since 〈L( f ), g〉 = 〈 f , h〉 for all f ∈ dom(L1) we
see that ∫ 1

0
f ′(x)

(
g(x) +

∫ x

0
h(ξ) dξ

)
dx = 0

for all f ∈ dom(L1). Taking

f (x) =

∫ x

0

(
g(ξ) +

∫ ξ

0
h(s) dx

)
dξ
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we readily compute∫ 1

0
f ′(x)

(
g(x) +

∫ x

0
h(ξ) dξ

)
dx =

∫ 1

0

∣∣∣∣g(x) +

∫ x

0
h(ξ) dξ

∣∣∣∣2 dx = 0.

This implies that

g(x) = −

∫ x

0
h(ξ) dξ,

giving h = g′ and g(0) = 0. From (7.5) we also have g(1) = 0, giving the desired
“inclusion.” �

2. Next we take
dom(L2) = { f ∈ S | f (0) = 0}.

Although it is not completely obvious, one can readily show that dom(L2) is
dense in S, and therefore that dom(L2) is dense in V. (This is done formally and
more generally as part of the proof of Theorem 7.2.18, and involves showing
that small changes at the endpoint to satisfy the endpoint can be chosen to
affect the L2-norm in an arbitrarily small way.) The following lemma records
the adjoint in this case.

Lemma If (L∗2,dom(L∗2)) is the adjoint of (L2,dom(L2)) then

dom(L∗2) = {g ∈ S | g(1) = 0}

and L∗2(g) = −g′.

Proof This is Exercise 7.1.18. �

3. Finally we consider

dom(L3) = { f ∈ S | f (0) = f (1)}.

The adjoint in this case turns out to be the same as the linear operator itself.

Lemma If (L∗3,dom(L∗3)) is the adjoint of (L3,dom(L3)) then (L∗3,dom(L∗3)) =
(−L3,dom(L3)).

Proof This is Exercise 7.1.19. �

The examples illustrate how the definition of the adjoint depends on the exact
nature of not only the operator, but the domain on which the operator is defined. •

Of significant interest to us will be operators that are “self-adjoint.” There are
various notions related with this idea, so we state these notions formally.
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7.1.26 Definition Let (V, 〈·, ·〉) be a Hilbert space with (L,dom(L)) a linear operator for
which dom(L) is dense in V.

(i) (L,dom(L)) is self-adjoint if (L,dom(L)) = (L∗,dom(L∗)).
(ii) (L,dom(L)) is symmetric if 〈L(v),u〉 = 〈v,L(u)〉 for each u, v ∈ dom(L). •

7.1.2.3 Alternative theorems

7.1.3 Spectral properties of linear operators

While eigenvalues and eigenvectors for linear maps L : Rn
→ Rn are easy to

characterise, eigenvalues, or more generally the spectrum, for a linear operator
takes significantly more care. We should mention at this time that this careful
consideration lies at the very heart of what culminates in Sections 7.2 and 7.3.
Indeed, students wishing to truly understand that the subjects of Fourier series
and Fourier transforms are united should know that this understanding starts
with the content of this section.

7.1.3.1 Spectral properties for operators on Banach spaces We begin with a
general discussion of the spectrum of a closed linear operator (L,dom(L)) defined on
a Banach space (V, ‖·‖), assuming that dom(L) is dense in V. We assume that V is aC-
vector space since we shall be dealing with complex scalar multiplication. Indeed, if
λ ∈ C then denote (Lλ,dom(Lλ)) as the linear operator defined by dom(Lλ) = dom(L)
and Lλ(v) = L(v)−λ idV(v). Recall that if L is closed then L is either regular or singular
(i.e., it cannot be essentially regular). With this in mind, one defines the spectral
properties of L as follows.

7.1.27 Definition Let (V, ‖·‖) be a Banach space with (L,dom(L)) a linear operator for which
dom(L) is dense in V.

(i) λ ∈ C is in the resolvent set for (L,dom(L)) if (Lλ,dom(Lλ)) is regular.
(ii) λ ∈ C is in the spectrum for (L,dom(L)) if (Lλ,dom(Lλ)) is singular. We denote

the spectrum of (L,dom(L)) by spec(L).
(iii) If (Lλ,dom(Lλ)) is not invertible then λ is an eigenvalue for (L,dom(L)) and

nonzero vectors in ker(Lλ) are eigenvectors for (L,dom(L)) corresponding
to the eigenvalue λ. The dimension of ker(Lλ) is the multiplicity of λ. The
collection of eigenvalues is the point spectrum of (L,dom(L)) which we denote
by spec0(L).

(iv) If (Lλ,dom(Lλ)) is invertible but
(a) L−1

λ is unbounded,
(b) image(Lλ) ⊂ V, and
(c) cl(image(Lλ)) = V

then λ is in the continuous spectrum of (L,dom(L)). The continuous spectrum
of (L,dom(L)) is denoted spec1(L).
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(v) If (Lλ,dom(Lλ)) is invertible but cl(image(Lλ)) ⊂ V then λ is in the residual
spectrum of (L,dom(L)). The residual spectrum of (L,dom(L)) is denoted
spec

−1(L). The dimension of V/ cl(image(Lλ)) is the deficiency of λ. •

Note that our definition of deficiency in part (v) requires the notion of a quotient
V/U of a vector space V by a subspace U. Readers unfamiliar with the notion of a
quotient space need not despair since, as we shall shortly see, the linear operators
of interest to us have empty residual spectrum. Let us give an example to illustrate
our notions of spectrum.

7.1.28 Example On (V = L2([0, 1];F), ‖·‖2) we consider the linear operator (L,dom(L) = V)
defined by

L( f )(x) =

∫ x

0
f (ξ) dξ. (7.6)

To examine the spectrum of L we need to consider the operator Lλ = L−λ idV. First
we take λ = 0 where Lλ = L. We note that image(L) consists of functions which
vanish at x = 0 and which possess an L2-derivative. The collection of all such
functions is dense in L2([0, 1];F). Indeed, note that the differentiable functions
vanishing at x = 0 are dense in image(L) by missing stuff . One can also easily
see that the differentiable functions vanishing at x = 0 are dense in the set of
all differentiable functions. Thus image(L) is dense in V by missing stuff . We
claim that (L,dom(L)) is invertible and that (L−1, image(L)) is unbounded. That L is
invertible is clear since∫ x

0
f (ξ) dξ = 0 =⇒ f (ξ) = 0 a.e.

The unboundedness of L−1 follows since if f possess an L2-derivative and vanishes
at x = 0 then L−1( f ) = f ′. We have seen in Example 7.1.11 that this map in
unbounded. This shows that image(L0) ⊂ V, cl(image(L0)) = V, and that L−1

0 is
unbounded. Thus 0 ∈ spec1(L).

Now we consider λ , 0. Here we claim that (Lλ,dom(Lλ)) is regular. First let
us show that it is invertible. Let Lλ( f ) = 0. Thus∫ x

0
f (ξ) dξ − λ f (x) = 0 =⇒ f ′(x) −

1
λ

f (x) = 0.

The solution to this ordinary differential equation is f (x) = Cex/λ. Using the initial
condition f (0) = 0 we see that C = 0, thus showing that Lλ is invertible. Next we
show that image(Lλ) = V. For f ∈ V we must find g ∈ dom(L) so that Lλ(g) = f , or
equivalently ∫ x

0
g(ξ) dξ − λg(x) = f (x).
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Define h(x) = f (x) + λg(x) so that

h(x) =

∫ x

0
g(ξ) dξ.

In particular, it follows that h possesses an L2-derivative and that h(0) = 0. Therefore

g(x) = h′(r) =⇒ h′(x) −
1
λ

h(x) = −
1
λ

f (x).

This equations can now be solved using an integrating factor, as you learned when
you were a child, and the solution is

h(x) = −
f (x)
λ
−

ex/λ

λ

∫ x

0
f (ξ)e−ξ/λ dξ,

using the fact that h(0) = 0. Differentiating this then gives a function g satisfying
Lλ(g) = f :

g(x) = −
f (x)
λ
−

ex/λ

λ2

∫ x

0
f (ξ)e−ξ/λ dξ. (7.7)

Thus image(Lλ) = V. Finally, we show that L−1
λ is continuous. We compute,

using (7.7),

|L−1
λ ( f )(x)|2 =

∣∣∣∣ f (x)
λ

+
ex/λ

λ2

∫ x

0
f (ξ)e−ξ/λ dξ

∣∣∣∣2
≤

1
|λ|2
| f (x)|2 +

2M
|λ3|
| f (x)|

∣∣∣∣∫ x

0
f (ξ)e−ξ/λ dξ

∣∣∣∣
+

M
|λ|4

∣∣∣∣∫ x

0
f (ξ)e−ξ/λ dξ

∣∣∣∣2
where

M = sup
x∈[0,1]
{|ex/λ

|}.

Now we use the Cauchy-Schwartz-Bunyakovsky inequality to further compute

|L−1
λ ( f )(x)|2 ≤

1
|λ|2
| f (x)|2 +

2M
|λ3|
| f (x)|

(∫ x

0
| f (ξ)|2 dξ

)(∫ x

0
|e−ξ/λ|dξ

)
+

M
|λ|4

(∫ x

0
| f (ξ)|2 dξ

)2(∫ x

0
|e−ξ/λ|dξ

)2

≤ a| f (x)|2 + b| f (x)|‖ f ‖ + c‖ f ‖2,
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where a, b, c > 0 are messy constants that are independent of f . Then we compute,
again using the Cauchy-Schwartz-Bunyakovsky inequality,

‖L−1
λ ( f )‖2 =

∫ 1

0
|L−1
λ ( f )(x)|2 dx

≤

∫ 1

0

(
a| f (x)|2 + b| f (x)|‖ f ‖ + c‖ f ‖2

)
dx

= a‖ f ‖2 + b‖ f ‖
(∫ 1

0
dx

)1/2( ∫ 1

0
| f (x)|2 dx

)1/2
+ c‖ f ‖2

= (a + b + c)‖ f ‖2.

This shows that L−1
λ is continuous for λ , 0.

Thus, all of the above shows the following: On (L2([0, 1];F), 〈·, ·〉2) the linear L
given in (7.6) satisfies

1. spec0(L) = ∅,

2. spec1(L) = {0}, and

3. spec
−1(L) = ∅.

While some of the computations used to deduce these conclusions may be tedious,
they are not essentially difficult. •

7.1.3.2 Spectral properties for operators on Hilbert spaces The eigenvalues
and eigenvectors of a self-adjoint or symmetric linear operator have some useful
properties. Let us first consider eigenvalues for symmetric linear operators. Note
that the following result does not say that a symmetric linear has eigenvalues.

7.1.29 Theorem Let (V, 〈·, ·〉) be an F-inner product space and let (L,dom(L)) be a symmetric
linear transformation on V. The following statements hold:

(i) 〈L(v),v〉 is real for each v ∈ dom(L);
(ii) spec0(L) ⊆ R;
(iii) spec1(L) ⊆ R;
(iv) if λ1 and λ2 are distinct eigenvalues for L, and if vi is an eigenvector for λi, i = 1, 2,

then 〈v1,v2〉 = 0.

Proof (i) We have
〈L(v), v〉 = 〈v,L(v)〉 = 〈L(v), v〉,

using the fact that L is symmetric.
(ii) Suppose that λ ∈ spec0(L) and that λ , 0, otherwise the result is trivial. Let

v be an eigenvector for λ and note that

〈L(v), v〉 = 〈λv, v〉 = λ〈v, v〉.



554 7 Second-order boundary value problems

We also have, using the properties of the inner product,

〈L(v), v〉 = 〈v,L(v)〉

= 〈L(v), v〉

= λ〈v, v〉
= λ̄〈v, v〉,

since 〈v, v〉 is real. This shows that

λ〈v, v〉 = λ̄〈v, v〉,

giving λ̄ = λ as 〈v, v〉 , 0.
(iii) This is the most difficult part of the theorem, and to prove it we use two

technical lemmas.

1 Lemma If (L,dom(L)) is an invertible linear operator on a normed vector space (V, ‖·‖) for
which (L−1, image(L)) is unbounded, then there exists a sequence {vj}j∈N with the following
properties:

(i) ‖vj‖ = 1, j ∈ N;
(ii) ‖L(vj)‖ < 1

j , j ∈ N.

Proof Let S = {v ∈ image(L) | ‖v‖ = 1}. We claim that L−1(S) ⊆ V is unbounded. To
see this, suppose that L−1(S) is bounded. Denote by B(r, 0) = {v ∈ V | ‖v‖ ≤ r} the
closed ball of radius r centred at 0 ∈ V. Since L−1(S) is bounded there exists M > 0
with the property that L−1(B(1, 0)) ⊆ B(M, 0). Now let ε > 0. Choosing δ = ε

M we see
that L−1(B(δ, 0)) ⊆ B(ε, 0) by linearity of L−1. This shows that if L−1(S) is bounded
then L−1 is bounded.

Now, since L−1(S) is unbounded there exists a sequence {uk}k∈N in S so that
limk→∞‖L−1(uk)‖ = ∞. Since u j ∈ image(L) there exists a sequence {ṽ j} j∈N in dom(L)
so that L(ṽ j) = u j, j ∈ N. Therefore L−1

◦ L(ṽ j) = ṽ j = L−1(u j). Thus lim j→∞‖ṽ j‖ = ∞.
Defining

{
v j =

ṽ j

‖v j‖

}
j∈N

we see that lim j→∞‖L(v j)‖ = lim j→∞
‖u j‖

‖ṽ j‖
= 0. Thus there exists

a subsequence {v jk}k∈N of {v j} j∈N having the property as asserted in the lemma. H

2 Lemma If (L,dom(L)) is a symmetric linear operator on an inner product space (V, 〈·, ·〉)
and if λ = ξ + iη ∈ C then ‖(L − λ idV)(v)‖2 ≥ η2

‖v‖2 for each v ∈ dom(L).
Proof We compute

‖(L − λ idV)(v)‖2 = 〈(L − λ idV)(v), (L − λ idV)(v)〉

= ‖L(v)‖2 − 〈L(v), λv〉 − 〈λv,L(v)〉 + ‖λv‖2

= ‖L(v)‖2 − λ〈L(v), v〉 − λ〈L(v), v〉 + (ξ2 + η2)‖v‖2

= ‖L(v)‖2 − 2ξ〈L(v), v〉 + ξ2
‖v‖2 + η2

‖v‖2

= ‖(L(v) − ξ idV)(v)‖2 + η2
‖v‖2

≥ η2
‖v‖2,
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as desired. H

We now proceed with the proof by showing that if Im(λ) , 0 then L − λ idV is
bounded. Let us write λ = ξ + iη. For any sequence {v j} j∈N with the property that
‖v j‖ = 1, j ∈ N, by Lemma 2 we have ‖(L − λ idV)(v j)‖ ≥ |η| for j ∈ N. Thus there
exists N ∈ N so that ‖(L − λ idV)(v j)‖ > 1

j provided that j ≥ N. By Lemma 1 this
means that (L−λ idV)−1 must be bounded if Im(λ) , 0, meaning that no such λ can
lie in the continuous spectrum of L.

(iv) Let λ1, λ2 ∈ R and v1, v2 ∈ dom(L) be as specified. Then we compute

(λ1 − λ2)〈v1, v2〉 = 〈λ1v1, v2〉 − 〈v1, λ2v2〉

= 〈L(v1), v2〉 − 〈v1,L(v2)〉
= 0,

using properties of the inner product and self-adjointness of L. Since λ1 , λ2, it
follows that v1 and v2 are orthogonal as stated. �

With part (i) of the theorem at hand, the following definition makes sense.

7.1.30 Definition Suppose that (L,dom(L)) is a symmetric linear operator on (V, 〈·, ·〉).
(i) (L,dom(L)) is positive-definite if 〈L(v), v〉 ≥ 0 for each v ∈ V and 〈L(v), v〉 = 0

only if v = 0.
(ii) (L,dom(L)) is negative-definite if (−L,dom(L)) is positive-definite. •

Now let us consider a further refinement that can be made for linear operators
that are not only symmetric, but self-adjoint.

7.1.31 Theorem If (L,dom(L)) is a self-adjoint linear operator on a Hilbert space (V, 〈·, ·〉) then
spec(L) ⊆ R and spec

−1(L) = ∅.

Proof Since a self-adjoint linear operator is symmetric, from Theorem 7.1.29 we
need only show that spec

−1(L) = ∅. We begin with a lemma that is of interest in its
own right.

1 Lemma Let (L,dom(L)) be a linear operator, not necessarily self-adjoint, on a Hilbert
space (V, 〈·, ·〉) with dom(L) dense in V, and let λ ∈ spec

−1(L) have deficiency m. Then λ̄
is an eigenvalue of L∗ with multiplicity m.

Proof Note that dim(V/ cl(image(Lλ))) = dim(image(Lλ)⊥). Indeed, for those
familiar with the notation involved with quotient spaces, the map sending
v + cl(image(Lλ)) ∈ V/ cl(image(Lλ)) to the orthogonal projection of v onto
image(Lλ)⊥ is an isomorphism of V/ cl(image(Lλ)) with image(Lλ)⊥. For v ∈ dom(L)
and u ∈ image(Lλ)⊥ we have 〈(L − λ idV)(v),u〉 = 0 = 〈v, 0〉. This shows that
0 ∈ dom((L−λ idV)∗) and that (L−λ idV)∗(u) = 0. Now note that (L−λ idV)∗ = L∗−λ̄ idV

(this is Exercise 7.1.9). This shows that u ∈ image(Lλ)⊥ is an eigenvector for L∗ with
eigenvalue λ̄, as desired. H
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Now we proceed with the proof. If λ ∈ spec
−1(L) then, since (L,dom(L)) is

self-adjoint and by Lemma 1, we know that λ ∈ spec0(L). Thus spec
−1(L) ⊆ R.

However, if λ ∈ R is in spec
−1(L) then Lemma 1 implies that λ is an eigenvalue of

L∗ and so an eigenvalue of L. However, points in spec
−1(L) cannot be eigenvalues,

so the result follows. �

This theorem is an important one, and we shall make use of it in Section 7.2
when talking about boundary value problems. The reader might also recall that if V
is a finite-dimensional inner product space, then there is always a basis of orthogonal
eigenvectors for a self-adjoint linear transformation. The reader is led through a
proof of this in Exercise 7.1.12. In infinite-dimensions, things are more subtle.
Indeed, in infinite dimensions it is possible that there be no eigenvalues, that there
be finitely many eigenvalues, or that there be infinitely many eigenvalues. The first
two of these possibilities is exhibited in Exercises 7.1.14 and 7.1.15.

Exercises

7.1.1 For (V, ‖·‖) a normed vector space, show that the function V 3 v 7→ ‖v‖ ∈ R is
continuous.

7.1.2 For (V, 〈·, ·〉) an inner product space, show that the function (v1, v2) 3 V×V 7→
〈v1, v2〉 ∈ F is continuous.

7.1.3 On C0([0, 1];R) consider the linear transformation L defined by

L( f )(x) =

∫ x

0
ξ f (ξ) dξ.

Answer the following questions, using as a norm ‖·‖∞.
(a) Show that L is continuous.
(b) Show that ‖L‖ = 1, with ‖·‖ the operator norm.

7.1.4 Show that the operator norm ‖·‖Rm,Rn defined in Example 7.1.5–1 is not de-
rived from an inner product on L(Rm;Rn).

7.1.5 Let (U, ‖·‖U) and (V, ‖·‖V) be normed vector spaces. Show that ifφ : A ⊆ U→ V
is a continuous map, then for every convergent sequence {u j} j∈N in A, the
sequence {L(u j)} j∈N is also convergent.

It is a priori not clear why a closed linear operator is referred to as “closed,”
particularly in light of the fact that we already have in mind a notion of closedness.
In the next exercise you provide motivation for this terminology. You will need the
following definition. For a map f : S → T between sets S and T, the graph if f is
the set graph f = {(x, f (x)) | x ∈ S}.

7.1.6 Show that a linear operator (L,dom(L)) on a normed vector space (V, ‖·‖) is
closed if and only if graph L ⊆ dom(L) × V is closed.missing stuff

7.1.7 Show that the kernel of a closed linear operator is a closed subspace.
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7.1.8 Let L be a continuous linear transformation of an inner product space
(V, 〈·, ·〉). Show that the resulting map L∗ is linear.

7.1.9 Let (V, 〈·, ·〉) be a Hilbert space and let λ ∈ F. What is the adjoint of the linear
operator (Iλ,V) defined by Iλ(v) = λv?

7.1.10 On (V = L2([0, 1];F), 〈·, ·〉) consider the linear operator (L,dom(L) = V)
defined by

L( f )(x) =

∫ x

0
f (ξ) dξ.

Show that dom(L∗) = V and that

L∗( f )(x) =

∫ 1

x
f (ξ) dξ.

7.1.11 If (V, 〈·, ·〉) is an inner product space and if L ∈ L(V; V) is a self-adjoint linear
map, continuous with respect to the norm defined by the inner product,
show that the operator norm, which we denote by ||| · |||, satisfies

|||L||| = sup
‖v‖=1
〈L(v), v〉.

In the following exercise you will be led through an unconventional proof that a
self-adjoint linear transformation on a finite-dimensional vector space possesses
a basis of eigenvectors. The proof we lead you through is designed to assist you
when we come to the technical material in Section 7.2.

7.1.12 Let (V, 〈·, ·〉) be a finite-dimensional R-inner product space and let L : V→ V
be a self-adjoint linear map. Define

S1 = {v ∈ v | ‖v‖ = 1}

to be the sphere of radius r in V in the norm ‖·‖ defined by the inner product
〈·, ·〉.
(a) Show that S is closed and bounded.
Consider the function φ1 : V→ R defined by φ1(v) = |〈L(v), v〉|.
(b) Argue that the restriction of φ1 to S1 attains its maximum on S1.
Now recall the Lagrange multiplier theorem.

Lagrange multiplier theorem On the finite-dimensional R-inner product space
(V, 〈·, ·〉) let f,g: V → R be functions with g having the property that for every
v ∈ g−1(0), g′(v) , 0. Then the derivative of the restriction of f to g−1(0) vanishes
at a point v0 ∈ g−1(0) if and only if there exists λ ∈ R so that the derivative of the
function

V 3 v 7→ f(v) + λg(v) ∈ R

vanishes at v0.
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Motivated by this, define ψ1 : V→ R by ψ1(v) = 〈v, v〉−1 so that S1 = ψ−1
1 (0).

(c) Show that ψ′1(v) , 0 for all v ∈ ψ−1
1 (0).

Hint: To differentiate a function on V, use an orthonormal basis for V to write
the function in terms of the components of a point v ∈ V, and then differentiate
in the usual manner (you may have seen before the derivative of a function on
a vector space as the “gradient” of the function).

Now note that by (b), the restriction of the function φ1 to S1 attains its
maximum on S1. Thus, at the point v1 ∈ S1 where the restriction of φ1 attains
its maximum, the derivative of the restriction must vanish.
(d) Show that the point v1 ∈ S1 where the restriction of φ1 attains its maxi-

mum is an eigenvector for L.
Hint: Use the Lagrange multiplier theorem, this being valid by (c).
Hint: There are two cases to consider: (1) 〈L(v1),v1〉 > 0 and 〈L(v1),v1〉 < 0.

Let v1 be as in part (d) and consider the subspace V2 = v⊥1 which is the
orthogonal complement to span(v1). Define φ2 : V→ R by

φ2(v) = φ1(v − 〈v, v1〉v1),

let S2 = S1 ∩ V2, and define ψ2 : V2 → R by

ψ2(v) = 〈v, v〉 − 1.

(e) Show that there exists a linear map L2 : V2 → R so that φ2(v) = |〈L2(v), v〉|
for v ∈ V2.

(f) Using part (e), argue that the above procedure can be emulated to show
that the point at which φ2 attains its maximum on S2 is an eigenvector
v2 for L2.

(g) Show that v2 ∈ V2 is an eigenvector for L, as well as being an eigenvector
for L2.

(h) Show that this process terminates after at most n = dim(V) applications
of the above procedure.
Hint: Determine what causes the process to terminate?

(i) Show that the procedure produces a collection, {v1, . . . , vn} of orthonor-
mal eigenvectors for L. Be careful that you handle properly the case
when the above process terminates before n steps.

7.1.13 Come to grips with Exercise 7.1.12 in the case when V = R2, 〈·, ·〉 is the “dot
product,” and for each of the following three self-adjoint linear maps.
(a) L(x, y) = (2x, y).
(b) L(x, y) = (−x, 2y).
(c) L(x, y) = (x, 0).
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Thus you should in each case identify the maps φ1 and φ2, and show ge-
ometrically why maximising these functions picks off the eigenvectors as
stated in Exercise 7.1.12.

7.1.14 Consider again the inner product space (L2([0, 1],R), 〈·, ·〉2), and define a
function k : [0, 1]→ R by k(x) = x. Now define a linear transformation Lk by
(Lk( f ))(x) = k(x) f (x). Show that Lk is self-adjoint, but has no eigenvalues.

7.1.15 Consider the inner product space (L2([0, 1],R), 〈·, ·〉2), and define a function
k : [0, 1]→ R by

k(x) =

0, x ∈ [0, 1
2 )

1, x ∈ [1
2 , 1].

Now define a linear transformation Lk as in Exercise 7.1.14. Show that
the only eigenvalues for Lk are λ1 = 0 and λ2 = 1, and characterise all
eigenvectors for each eigenvalue.

7.1.16 Let (L,dom(L)) be an invertible linear operator on a normed vector space
(V, ‖·‖). Show that λ ∈ F is an eigenvalue for L with eigenvector v if and only
if λ−1 is an eigenvalue for L−1 with eigenvector v.

7.1.17 Let L be a continuous linear transformation of an inner product space
(V, 〈·, ·〉). Show that L is self-adjoint if and only if it is symmetric.

7.1.18 Prove that the adjoint in Example 7.1.25–2 is as stated in the lemma of that
example.

7.1.19 Prove that the adjoint in Example 7.1.25–3 is as stated in the lemma of that
example.
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Section 7.2

Second-order regular boundary value problems

The discussion to this point has revolved around trigonometric polynomials. A
curious student will wonder, however, whether other expansions are possible, or
desirable. Indeed, we know that the set of L2-integrable functions on an interval
forms an separable Hilbert space, and as such admits a basis of orthogonal func-
tions. The only such functions so far considered are trigonometric functions. The
notion of separability does not suggest that there is a distinguished basis of orthog-
onal functions. Well, the trigonometric polynomials are, in fact, not the unique
polynomials with their properties of orthogonality and of forming a basis. In this
chapter we introduce other classes of polynomials, and some applications where
they arise.

While in the title of this chapter we describe the problems we deal with as
“regular,” we will not actually say what this means until Section 7.3. This, however,
will not be an impediment to understanding the content of the chapter.

7.2.1 Introductory examples

Before we launch off into fun generalities, it is worth looking at two simple
examples. With each example, we attempt to accomplish something different. In
Section 7.2.1.1 we look at a simple boundary value problem, one that we have
seen before, and reveal some additional structure in this simple problem. The
problem we look at in Section 7.2.1.2 is a simple problem along the lines of those in
Chapter 6, but that exhibits some odd behaviour. This latter problem suggests that
the problems we encountered in Chapter 6 are merely simple examples of a class
of problems, and that a study of this class may be worth undertaking. (Worth it or
not, we spend the remainder of the chapter, after this section, in this endeavour.)

7.2.1.1 Some structure for a simple boundary value problem In each of the
partial differential equations of Chapter 6 we encountered a differential equation
of the form

y′′(x) = λy(x),

with the boundary conditions y(0) = y(`) = 0. This is an example of a “second-
order boundary value problem.” We shall give a general definition for these as
part of our general development that is to follow; our intention here is to provide
a glimpse into the nature of such problems. Our first manoeuvre is to pose the
problem as an eigenvalue problem. To do this, we define a linear map L from a
subset of L2([0, `];R) into L2([0, 1];R). The subset on which L is defined is called
the domain of L and is denoted dom(L). The definition of dom(L) is an integral
part of the definition of L, and this is one area where the development is somewhat
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different than you are used to when dealing with linear maps in finite-dimensions.
In any event, we define dom(L) to be the set of those functions f ∈ L2([0, `];R)
which satisfy

1. f is differentiable, i.e., f ∈ C1([0, `];R);

2. there exists a function f ′′ ∈ L2([0, `],R) so that

f ′(x) = f ′(0) +

∫ x

0
f ′′(ξ) dξ; (7.8)

3. f (0) = f (`) = 0.
Note that C2([0, `];R) ⊆ dom(L), but there are technical reasons, not discussed in
detail here, for using the more general definition for dom(L).3 With this definition
for dom(L), we define L : dom(L)→ L2([0, `];R) by L( f ) = f ′′ with f ′′ the function
(not necessarily the second derivative of f !) satisfying (7.8). It is clear that dom(L)
is a subspace of L2([0, `];R), and that L is a surjective linear map.

The linear map L has some interesting properties with respect to the inner
product 〈·, ·〉2 on L2([0, `];R). For example, if g ∈ dom(L) then we compute

〈L( f ), g〉2 =

∫ `

0
L( f )(x)g(x) dx

=

∫ `

0
f ′′(x)g(x) dx

= f ′(x)g(x)
∣∣∣`
0
−

∫ `

0
f ′(x)g′(x) dx

= −

∫ `

0
f ′(x)g′(x) dx

= − f (x)g′(x)
∣∣∣`
0

+

∫ `

0
f (x)g′′(x) dx

= 〈 f ,L(g)〉2,

where we have twice used integration by parts. This implies that, when restricted
to dom(L), L is self-adjoint with respect to the inner product 〈·, ·〉2. Therefore,
missing stuff suggests that the eigenvalues for L, if there be any at all, will be
real, and that eigenvectors for distinct eigenvalues will be orthogonal. However,
it is perhaps not clear that L has eigenvalues, although if one thinks about it for a
moment, it clearly does. Indeed, if λ is an eigenvalue with eigenvector f then we
have

f ′′ = λ f , f (0) = f (`) = 0.
3If we were to take dom(L) = C2([0, `];R), then L is not a closed operator, meaning that L does

not map closed sets to closed sets. Also, if we take this restricted definition for dom(L), then L as
we define it is not surjective. It turns out that either of these provide adequate reason for taking a
more general definition for dom(L).
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But we have seen this already with the partial differential equations of Chapter 6!
Indeed, there we determined that there were infinitely many such eigenvalues, and
these were of the form

λn = −
n2π2

`2 , n ∈ N.

Corresponding to these eigenvalues were the eigenvectors

fn(x) =

√
2
`

sin
(
nπx

`

)
, n ∈ N.

Here we add a normalisation factor of
√

2
` to ensure that these eigenvectors have

norm 1 with respect to the inner product 〈·, ·〉2. Although we glossed over this in
Chapter 6, let us show that these eigenvectors are complete in L2([0, `];R).

7.2.1 Proposition The functions {fn}n∈N are a complete orthonormal family in L2([0, `];R).

Proof Bymissing stuff it suffices to show that if f ∈ L2([0, `];R) is orthogonal to all
of the functions fn, n ∈ N, then f = 0. Let fn,odd be the odd extension of fn and let
fodd be the odd periodic extension of an arbitrary function f . Also define

e0 =
1
√
`
, en(x) =

√
2
`

cos
(
nπx

`

)
, n ∈ N,

with en,even the even extension. Bymissing stuff the family of functions { fn,odd}n∈N ∪

{en,even}n∈N0 is a complete orthonormal family in Lper
2 ([0, 2`];R). Therefore, if fodd is

orthogonal to all of the functions in the family { fn,odd}n∈N ∪ {en,even}n∈N0 , it must be
the zero function. However, since fodd is odd, it is orthogonal to en,even, n ∈ N0 by
missing stuff . Thus we may conclude that if fodd is orthogonal to fn,odd, n ∈ N, then
fodd is zero. However, since∫ 2`

0
fodd(x) fn,odd(x) dx = 2

∫ `

0
f (x) fn(x) dx

by oddness of fodd and fn,odd, it then follows that if f is orthogonal to fn, n ∈ N, then
it must be zero. This completes the proof. �

Thus we see that in this case, the self-adjoint linear transformation L has a
property like self-adjoint transformations on finite-dimensional vector spaces: it
possess a basis (in the appropriate sense) of eigenvectors. However, as we saw in
Exercises 7.1.14 and 7.1.15, this property cannot be expected on the basis of L being
merely self-adjoint. There must be some additional structure in the definition of L
that guarantees its possessing a basis of eigenvectors. Let us begin to unlock some
of this structure by characterising dom(L) in terms of Fourier series. The following
characterisation of dom(L) is also useful.
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7.2.2 Proposition dom(L) consists exactly of those functions f ∈ L2([0, `];R) which satisfy

∞∑
n=1

n4
|〈f, fn〉|

2 < ∞.

Idea of Proof This result follows in the mold of the statements ofmissing stuff . �

With this result at hand, if we write f ∈ dom(L) as

f (x) =

∞∑
n=1

cn fn,

where cn = 〈 f , fn〉, then we can differentiate this expression term-by-term to get

L( f ) = f ′′ = −

∞∑
n=1

n2π2

`2 cn fn. (7.9)

Thus, in the basis { fn}n∈N for L2([0, `];R), L works “diagonally.” This is hardly
surprising since the functions fn, n ∈ N, are eigenvectors for L.

A further key to understanding why L should possess a basis of eigenvectors
comes from looking at the inverse of L. First we should show that L is indeed
invertible.

7.2.3 Proposition The map L: dom(L)→ L2([0, `];R) as defined is invertible.

Proof By the very construction of L, it is surjective, as the function f ′′ in (7.8)
is arbitrary in L2([0, `];R). To show that L is injective we need only show that
ker(L) = {0} (why?). But for this we note that if L( f ) = 0 then f ′′ = 0, which gives
f ′ as a constant function by (7.8). This means that f = ax + b for some a, b ∈ R.
However, the only such function satisfying the boundary conditions is f = 0, thus
showing that L is injective, and so invertible. �

Note that there is something going on here that cannot happen in finite-
dimensional vector spaces. The situation we have is a linear mapping defined
on a proper subspace U of a vector space V, mapping into V itself: L : U ⊂ V → V.
In finite-dimensions it is not possible for L to be invertible as dim(U) < dim(V).
However, apparently this scenario is possible in infinite-dimensions. This is per-
haps counterintuitive. Nonetheless, let us press on. An essential part of why the
linear map L should possess a basis of eigenvectors is not only the existence of an
inverse to L, but the nature of this inverse. For reasons of convention, let us denote
G = −L−1 : L2([0, `]→ dom(L). The following result gives the form of G.
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7.2.4 Proposition Let f ∈ L2([0, `];R) and suppose that u ∈ dom(L) satisfies u = G(f). Then

u(x) =

∫ `

0
G(x,y)f(y) dy,

where G: [0, `] × [0, `]→ R is the function defined by

G(x,y) =

(` − x)y, y < x
x(` − y), y ≥ x.

Furthermore,

G(x,y) =

∞∑
n=1

2`2

n2π2 sin
(
nπx

`

)
sin

(
nπy

`

)
.

Proof Note that u satisfies

L(u) = L ◦ G( f ) = − f .

Thus u′′ = − f and u(0) = u(`) = 0. We may determine u by integrating. First we
have

u′(x) = u′(0) −
∫ x

0
f (y) dy,

givingmissing stuff

u(x) = u(0) + u′(0)x −
∫ x

0

(∫ y

0
f (z) dz

)
dy

= u′(0)x −
∫ x

0
(x − y) f (y) dy.

Substituting x = ` and noting that u(`) = 0 this gives

u′(0) =

∫ `

0
(` − y) f (y) dy.

Now we substitute this into our expression for u(x) to get

u(x) = u′(0)x −
∫ x

0
(x − y) f (y) dy

=

∫ `

0
x(` − y) f (y) dy −

∫ x

0
(x − y) f (y) dy

=

∫ x

0

(
x(` − y) − (x − y)

)
f (y) dy +

∫ `

x
x(` − y) f (y) dy

=

∫ x

0
(` − x)y f (y) dy +

∫ `

x
x(` − y) f (y) dy

=

∫ `

0
G(x, y) f (y) dy,
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giving the first part of the result.
For the second part of the result we use (7.9), and submit to glossing over details

of convergence. Suffice it to say that all the operations we perform are legal. In
any case, if we look at (7.9), we can simply read off G = −L−1 in terms of the basis
functions { fn}n∈N:

G( f ) =

∞∑
n=1

`2

n2π2 cn fn.

Now we compute

G( f )(x) =

∞∑
n=1

`2

n2π2 〈 f , fn〉 fn(x)

=

∞∑
n=1

`2

n2π2 fn(x)
∫ `

0
f (y) fn(y) dy

=

∫ `

0

( ∞∑
n=1

2`2

n2π2 sin
(
nπx

`

)
sin

(
nπ y

`

))
f (y) dy.

Our result now follows by comparing this last expression with that derived in the
first part of the proof. �

Let us summarise what we have done in this section, as we shall encounter
these ideas in general in Section 7.2.2, and there you will probably want to refer
back to this simple example to ground yourself.
1. We have constructed a linear mapping L from a domain dom(L) into L2([0, `];R),

with the domain being specified by the character of the operator, as well as by
boundary conditions.

2. L is shown to possess a countable set of eigenvalues, tending to infinity.
3. The corresponding eigenvectors are shown to form a complete orthonormal

family.
4. Corresponding to L is its (essentially) inverse G. This is defined by the use of the

function G which is known as the Green function for the mapping L, after George
Green (1793–1841). The Green function is represented in two ways, one coming
from a more or less direct computation, and the other from a representation of
L is the basis of its own eigenvectors. At this point, the significance of the Green
function should be lost on you. However, in our general development, it will
play a key rôle.

7.2.1.2 A boundary value problem with peculiar eigenvalues The example
we give arises from a partial differential equation with boundary conditions. We
shall not get into the details of the physical setup, as that is peripheral to our
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intentions at the moment. Let us simply produce the problem:

∂2u
∂t2 =

∂2u
∂x2

u(0, t) = 0, −u(1, t) =
∂u
∂x

(1, t)

u(x, 0) = f (x),
∂u
∂t

(x, 0) = g(x).

Thus the equation is a wave equation with a rather peculiar boundary condition
at x = 1. Physically the boundary condition arises when the string at x = 1 is
not fixed, but is attached to a spring that allows vertical movement of the string.
Obviously, for simplicity we have set some of the physical constants to 1. Let us
not go through all the details of the separation of variables, but simply produce
that part of it that is relevant to our discussion here. If we take u(x, t) = X(x)T(t) in
the usual manner, then the problem for X reduces to

X′′(x) = λX(x), X(0) = 0, −X(1) = X′(1).

To solve this boundary value problem for X, we go through the various possibilities
for λ.
1. λ > 0. Here the solutions to the differential equation have the form

X(x) = A sinh(
√

λx) + B cosh(
√

λx).

The boundary condition X(0) = 0 gives B = 0. The boundary condition −X(1) =
X′(1) gives

− A sinh
√

λ = A
√

λ cosh
√

λ

=⇒
√

λ = − tanh
√

λ,

assuming that we do not allow A = 0. Note that for x > 0 the function tanh x is
positive. Thus we are allowed to disavow λ from being positive.

2. λ = 0: In this case the differential equation for X has solutions X(x) = Ax + B.
The boundary condition X(0) = 0 gives B = 0. The boundary condition for
−X(1) = X′(1) gives A = −A, which is clearly nonsense. Thus λ is nonzero.

3. λ < 0: We seek resort in the last case; funny how that always works out. In any
case, the solutions to the differential equation for X are

X(x) = A sin(
√

−λx) + B cos(
√

−λx).

The boundary condition X(0) = 0 gives B = 0 and the boundary condition
−X(1) = X′(1) reads

− A sin
√

−λ = A
√

−λ cos
√

−λ

=⇒ −

√

−λ = tan
√

−λ,
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Figure 7.2 Roots for tan x = −x

if we assume that A , 0. This equation has roots, although we cannot give a
useful closed-form expression for them. Indeed, in Figure 7.2 we graph tan x
and x on the same axes, and one readily sees that there are an infinite number
of solutions to the equation tan x = −x for x > 0.
If we adopt the notation of Section 7.2.1.1 we define L in the same way, but

now we take dom(L) to be the set of those functions f ∈ L2([0, 1];R) which satisfy

1. f is differentiable, i.e., f ∈ C1([0, 1];R);

2. there exists a function f ′′ ∈ L2([0, 1],R) so that

f ′(x) = f ′(0) +

∫ x

0
f ′′(ξ) dξ;

3. f (0) = 0 and − f (1) = f ′(1).

What we determined above is that the eigenvalues are the solutions {λn}n∈N which
satisfy −

√
−λn = tan

√
−λn. Again, we have no closed-form expression for these.

The eigenvectors corresponding to these eigenvalues are the functions { fn}n∈N in
dom(L) of the form

fn = An sin(
√
−λnx), n ∈ N,

where the constant An is defined so that 〈 fn, fn〉 = 1. One can compute

An =
(1
2
−

sin(2
√
−λn)

4
√
−λn

)−1/2
, n ∈ N.

Thus the form of the eigenvectors resembles those for the simple boundary value
problem of Section 7.2.1.1, but the frequencies of the sinusoids are no longer as
nice as nπ

` . It is now not so easy to argue that the analogue of Proposition 7.2.1 is
true. In fact, it is downright difficult. What we will now do is formulate a general
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problem, of which the problem in this section is an example, and show that the
situation of Section 7.2.1.1 is repeated for all problems in this class. This is a rather
remarkable turn of events, as I hope you can realise by thinking about the examples
in this section.

7.2.2 Sturm-Liouville problems

We shall formulate in this section a class of second-order boundary value prob-
lems known as Sturm-Liouville problems, after the two French mathematicians
Jacques Charles François Sturm (1803–1855) and Joseph Liouville (1809–1882). It
is possible to formulate more general boundary value problems with, for example,
higher-order differential equations. Such problems do come up in applications,
and are common in optimal control, for example. However, our focus on second-
order problems is motivated by the frequency of their appearance in describing
problems such as those encountered in Chapter 6. This also allows us to be slightly
more concrete, and the more ambitious reader will have no problem imaging the
generalisations, then going to references.

7.2.2.1 Second-order boundary value problems In this section we formulate
general boundary value problems, then reduce these to problems that are self-
adjoint, as these will be most interesting for us. The differential equations we
consider are of the form

p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = 0, (7.10)

and are defined on the interval [a, b]. We suppose that pk : [a, b]→ R, k ∈ {0, 1, 2}, is k
times continuously differentiable, and that p2(x) , 0 for x ∈ [a, b]. In Section 7.3 we
shall consider cases where this latter assumption is dropped, as these do arise in
practise. As a second-order differential equation, (7.10) is entitled to two subsidiary
conditions to fully determine its solutions. The conditions we consider are of the
form

α1y′(a) + α0y(a) = 0, β1y′(b) + β0y(b) = 0, α2
1 + α2

0, β
2
1 + β2

0 , 0. (7.11)

Thus we allow the specification of any nontrivial linear combination of the function
and its derivatives at each endpoint of the interval [a, b]. This certainly includes
all examples and exercises of Chapter 6, although more general possibilities can
be introduced which permit, for example, mixing the conditions from the two
boundary points. However, we shall stick to the conditions (7.11). The differential
equation (7.10) and the boundary conditions (7.11) arise from a linear mapping,
just as we saw in Section 7.2.1.1. We denote this mapping by L, and as expected,
we first need to define its domain dom(L). We take dom(L) to be the set of functions
f : [a, b]→ R having the properties

1. f is differentiable;
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2. there exists a function f ′′ ∈ L2([0, `],C) so that

f ′(x) = f ′(0) +

∫ x

0
f ′′(ξ) dξ; (7.12)

3. α1 f ′(a) + α2 f (a) = 0 and β1 f ′(b) + β2 f (b) = 0.

With dom(L) thus defined, we define L : dom(L)→ L2([a, b];R) by

L( f )(x) = p2(x) f ′′(x) + p1(x) f ′(x) + p0 f (x),

where f ′′ ∈ L2([a, b];R) is given by (7.12).
In the preceding discussion, no mention has been made of self-adjointness,

a notion that figured prominently in Section 7.2.1.1. In fact, the linear map L
that we just defined will not generally be self-adjoint. In order to ensure that
it is self-adjoint, some conditions are needed on the coefficients p0, p1, and p2.
A complete classification of self-adjointness does not seem to be easy to come
by, and is not necessary for our purposes in any case. What we do is give a
class of self-adjoint problems. First comes the definition of a new linear map
L+ : C2([a, b];R)→ L2([a, b];R) given by

L+( f ) = (p2 f )′′ − (p1 f )′ + (p0 f ).

It is not the case that L+ is the adjoint of L. However, it is a mapping that is related
to the adjoint in a manner given to us by the following result.

7.2.5 Proposition For f,g ∈ C2([a, b];R) we have

gL(f) − fL+(g) = [fg]′

where
[fg] = p1fg + p2f′g − f(p2g)′.

Proof This is a direct, if tedious, computation. �

The upshot of this that is of value for us is the following result, which follows from
integrating the conclusion of the proposition.

7.2.6 Corollary (Green’s formula) 〈f,L(g)〉2 − 〈g,L+(f)〉2 = [fg](b) − [fg](a).

Thus this provides a somewhat easy to understand class of boundary value
problems that are self-adjoint. Indeed, if L = L+4 and if f , g ∈ dom(L) ensures that
[ f g](a) = [ f g](b) = 0, then L is self-adjoint. The following result gives the form of L
in such cases.

4Here we abuse notation a little. When we write L = L+ we mean that both expressions give the
same result when applied to functions in C2([a, b];R). The abuse of notation is that L, as defined,
only takes as argument functions in dom(L).
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7.2.7 Proposition L = L+ if and only if p1 = p′2. Furthermore, if L = L+ then the boundary
conditions (7.11) ensure that L is self-adjoint.
Proof L = L+ if and only if

p2 f ′′ + 2p′2 f ′ + p′′2 f − p1 f ′ − p′1 f + p0 f = p2 f ′′ + p1 f ′ + p0 f
⇐⇒ 2p′2 f ′ + p′′2 f − 2p1 f ′ − p′1 f = 0.

If this is to be true for all f ∈ C2([a, b];R) then we should have 2p′2 = 2p1 and p′′2 = p′1,
thus giving the first assertion of the proposition. For the second assertion we use
the fact that p1 = p′2 so that

[ f g] = p′2 f g + p2 f ′g − p2 f g′ − p′2 f g′ = p2 f ′g − p2 f g′.

We then have, for f , g ∈ dom(L),

[ f g](a) = p2(a)
(

f ′(a)g(a) − f (a)g′(a)
)
.

Now, since f , g ∈ dom(L) we have

α1 f ′(a) + α0 f (a) = 0, α1g′(a) + α0g(a) = 0

=⇒

[
f ′(a) f (a)
g′(a) g(a)

] [
α1

α0

]
=

[
0
0

]
=⇒ det

[
f ′(a) f (a)
g′(a) g(a)

]
= 0

=⇒ f ′(a)g(a) − f (a)g′(a) = 0,

sinceα2
1+α2

0 , 0. From this we conclude that [ f g](a) = 0. We similarly conclude that
[ f g](b) = 0, and so from Corollary 7.2.6 and from the first part of the proposition
that L is self-adjoint. �

7.2.8 Remark It is possible to arrive at the consequences of the preceding proposition
via “direct” means, involving integration by parts. While this seems to involve
less trickery than the above slick derivation, the above derivation is preferable
for a few reasons, including that it is easily generalised to provide conditions for
self-adjointness of a general class of boundary value problems, that it is less yucky
than successive applications of integration by parts, and because it introduces the
generally interesting linear mapping L+. •

Tradition dictates that we write p2 = p, p1 = p′2 (this by Proposition 7.2.7), and
p0 = −q. We have thus arrived at a class of self-adjoint second-order boundary
value problems. Let us restate this, using the notation Lp,q for L, reflecting the form
for the linear mapping arrived at above:

Lp,q(y) = (py′)′ − qy = 0
α1y′(a) + α0y(a) = 0
β1y′(b) + β0y(b) = 0.
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We denote by dom(Lp,q) the domain as defined above. This problem forms the basis
for the discussion of this section.

Before we launch into the details of the properties of the above self-adjoint
boundary value problem, or more properly the slight generalisation of it formulated
in Section 7.2.2.2, let us explore a way in which a problem not in the form of Lp,q = 0
can be transformed into a problem of that type. That is to say, we wish to ascertain
if there are differential equations of the form

p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = 0 (7.13)

which are not of the form Lp,q(y) = 0 (in other words, we do not a priori have p1 = p′2)
but which may be transformed into an equation of that type. The following result
records an instance when this is possible.

7.2.9 Proposition Consider the differential equation (7.13) defined on the interval I ⊆ R and
suppose that p2(x) > 0 for all x ∈ I. If p1

p2
is integrable on I, then y is a solution to this

differential equation if and only if Lp,q(y) = 0 where

p(x) = exp
(∫ x

x0

p1(ξ)
p2(ξ)

dξ
)
, q(x) = −

p0(x)
p2(x)

p(x).

Proof Suppose that y is a solution to (7.13), and let p be as specified in the statement
of the proposition. Then

p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = 0

⇐⇒ y′′(x) +
p1(x)
p2(x)

y′(x) +
p0(x)
p2(x)

y(x) = 0

⇐⇒ p(x)
(
y′′(x) +

p1(x)
p2(x)

y′(x) +
p0(x)
p2(x)

y(x)
)

= 0

⇐⇒
d

dx

(
p(x)y′(x)

)
− q(x)y(x) = 0,

using the fact that

p′(x) =
p1(x)
p2(x)

p(x). �

This tells us that a large number of systems can be put into the form of Lp,q = 0,
thereby improving the applicability of the techniques we discuss.

7.2.2.2 A general eigenvalue problem The optimist would think that the
eigenvalue problem of interest would simply be that of finding eigenvalues for the
linear mapping Lp,q discussed in the preceding section. But nooo, this is far too easy.
More to the point, however, is that it would omit a class of problems of physical
relevance. The good news is that the linear mapping Lp,q : dom(Lp,q)→ L2([a, b];R)
forms the starting point for our slightly more general problem.
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We let r : [a, b]→ R be a continuous function that is nowhere zero on [a, b]. We
may as well suppose, therefore, that r(x) > 0 for all x ∈ [a, b]. The problem we now
consider is the following:

Lp,q,r(y) = r−1
(
(py′)′ − qy

)
= 0

α1y′(a) + α0y(a) = 0
β1y′(b) + β0y(b) = 0.

(7.14)

Note that the solutions of the differential equation Lp,q,r(y) = 0 are the same as
the solutions of the differential equation Lp,q(y) = 0. Thus we are justified in
denoting dom(Lp,q,r) = dom(Lp,q). However, what is different is the eigenvalues
and eigenvectors for Lp,q,r and Lp,q. First we should verify that Lp,q,r is self-adjoint.
To see this, we need to define a special inner product by

〈 f , g〉r =

∫ b

a
f (x)g(x)r(x) dx.

This does indeed define an inner product on L2([a, b];R), as was essentially verified
in Exercise 7.2.1. Let ‖·‖r denote the norm defined by this inner product. One
readily verifies that ‖ f ‖r < ∞ if and only if ‖ f ‖2 < ∞. Thus the set of functions
bounded in the norm of 〈·, ·〉2 is the same as the set of functions bounded in the
norm 〈·, ·〉r. With respect to the inner product 〈·, ·〉r, Lp,q,r is self-adjoint.

7.2.10 Proposition For all f,g ∈ dom(Lp,q,r), 〈Lp,q,r(f),g〉r = 〈f,Lp,q,r(g)〉r.

Proof This is a simple computation:

〈Lp,q,r( f ), g〉r =

∫ b

a
Lp,q,r( f )(x)g(x)r(x) dx

=

∫ b

a
r−1(x)Lp,q( f )(x)g(x)r(x) dx

=

∫ b

a
Lp,q( f )(x)g(x) dx

=

∫ b

a
f (x)Lp,q(g)(x) dx

=

∫ b

a
r−1(x) f (x)Lp,q(g)(x)r(x) dx

=

∫ b

a
f (x)Lp,q,r(g)(x)r(x) dx

= 〈 f ,Lp,q,r(g)〉r,

as desired. �
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Thus, even though Lp,q,r is not self-adjoint with respect to the usual inner product
〈·, ·〉2, it is nonetheless self-adjoint, and so we can apply missing stuff , and deduce
that all eigenvalues are real, and that eigenvectors for distinct eigenvalues are
orthogonal with respect to 〈·, ·〉r. Let us denote the eigenvalue problem by P so that
P is the problem defined by

(py′)′ − qy = λry
α1y′(a) + α0y(a) = 0
β1y′(b) + β0y(b) = 0.

(7.15)

We denote by spec0(P) the set of all λ ∈ R so that (7.15) has a nontrivial solution
y. Such a solution y is an eigenvector, but let us adopt the traditional terminology
by calling it an eigenfunction. However, we are still not guaranteed that Lp,q,r even
has eigenvalues, since the matter of existence of eigenvalues for linear maps on
Hilbert spaces is nontrivial (cf. Exercises 7.1.14 and 7.1.15). We shall deal with
the matter of existence of eigenvalues in Section 7.2.3.2. However, let us here state
some properties of the collection of eigenvalues, should they exist. We recall that
if {x j} j∈N is a sequence in R, a cluster point for the sequence is a point x for which
there is a subsequence {x jk}k∈N converging to x.

7.2.11 Theorem spec0(P) is either a finite or a countable set. If it is a countable set, then it has
no finite cluster point.

Proof For fixed l ∈ R, not necessarily an eigenvalue for Lp,q,r, we consider the
differential equation

Lp,q(y) − lry = 0. (7.16)

This, being a second-order linear equation, possesses two linearly independent
solutions, y1(l, x) and y2(l, x), satisfying the initial conditions

y1(l, a) = 1, y′1(l, a) = 0, y2(l, a) = 0, y′2(l, a) = 1.

Note that y1 and y2 are functions of l, so we explicitly denote this dependence.
What’s more, in a sufficiently interesting course in differential equations, you will
learn that since the differential equation depends on l in an analytic manner, so too
will the solutions of the differential equation depend on l in an analytic manner.5

Since any solution of the differential equation (7.16) is a linear combination of
y1 and y2, it follows that l ∈ R is an eigenvalue for Lp,q,r with an eigenfunction in
dom(Lp,q,r) if and only if there exists c1, c2 ∈ R, not both zero, so that c1y1(l, x) +
c2y2(l, x) is a solution of (7.16), and so that the boundary conditions for dom(Lp,q,r)
are satisfied. The boundary conditions when applied to such a function take the
form [

α1y′1(l, a) + α0y1(l, a) α1y′2(l, a) + α0y2(l, a)
β1y′1(l, a) + β0y1(l, a) β1y′2(l, a) + β0y2(l, a)

] [
c1

c2

]
=

[
0
0

]
.

5We will assume this fact without proof, hoping that it is at least believable. Readers interested
in a proof are referred to the references. Let us proceed with the proof, with this fact assumed.
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For this to have a nontrivial solution for c1, c2 ∈ R then the coefficient matrix should
have zero determinant. Let us denote the determinant by ∆. Sinceα2

1+α
2
0, β

2
1+β

2
0 , 0,

∆ is not identically zero.missing stuff Thus ∆ will be a nonzero analytic function
for l, and the zeroes of ∆ correspond exactly to eigenvalues for P. Now recall that
a nonzero analytic function, if it vanishes at l ∈ R, must be nonzero on some open
subset of R containing l. From this we conclude that spec0(P) is either finite or
countable. Now we show that if spec0(P) is countable then it has no finite cluster
point. Suppose that there is a finite cluster point l0. Then this implies that there is
a sequence {l j} j∈N ⊆ spec0(P) converging to l0. Since ∆ is analytic, this implies that
∆ is identically zero.6 This is a contradiction, showing that spec0(P) has no finite
cluster point, as claimed. �

Let us make sure that we appreciate the impact of this result. It does not tell us
that spec0(P) , ∅. But it does tell us something about the nature of spec0(P). One
of the advantages to the form of spec0(P) is that we can assume without loss of
generality that 0 < spec0(P). Indeed, suppose that 0 ∈ spec0(P), and consider the
modified problem P(c) defined by

(py′)′ − (q − cr)y = λry
α1y′(a) + α0y(a) = 0
β1y′(b) + β0y(b) = 0

(7.17)

for some c ∈ R. The following trivial result relates the eigenvalues for P and P(c).

7.2.12 Lemma Let (λ, f) ∈ R × dom(Lp,q,r). Then λ is an eigenvalue for P with eigenfunction f
if and only if λ − c is an eigenvalue for P(c) with eigenfunction f.

The significance of the lemma is that there is a simple correspondence between
the eigenvalues and eigenfunctions for P and P(c). In particular, if 0 ∈ spec0(P),
then by Theorem 7.2.11 we may choose c ∈ R so that 0 < spec0(P(c)). Once one
has the eigenvalues and eigenfunctions for P(c), those for P are readily recovered.
What’s more, and this is the punchline as far as we are concerned, the number of
eigenvalues are the same for spec0(P) and spec0(P(c)), and the eigenfunctions for P
are dense in L2([a, b];R) if and only if those for P(c) are dense in L2([a, b];R). This
is all relevant as in the next assumption we shall assume that 0 < spec0(P), and we
should realise that this is not at all a restrictive assumption.

7.2.3 The Green function and completeness of eigenfunctions

Throughout this subsection, we assume that 0 < spec0(P). As we saw in the closing
remarks of the preceding subsection, this is not a substantive restriction.

To actually prove things about the eigenvalue problem P in equation (7.15) is,
as one may imagine, nontrivial. One way to get to such proofs is via the Green
function, which is, of course, a generalisation of the Green function introduced in

6Here we use another fact that we do not prove, namely that the value of an analytic function is
determined by its value on a convergent sequence of points.
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the example of Section 7.2.1.1. The Green function is an extraordinarily useful
feature of the boundary value problems we consider, and it appears in contexts
more general than we present it here. Our principal interest in the Green function
is due to its value in proving a completeness result for the eigenvalue problem
P that mirrors missing stuff . However, the Green function is of further utility in
dealing with singular problems, as we shall see in Section 7.3.

7.2.3.1 The Green function We wish to pursue the possibility of generalising
the discussion in Section 7.2.1.1 surrounding the nature of the inverse of Lp,q,r.
Note that our tacit assumption in this section that 0 < spec0(P) at least allows the
possibility of an inverse. That is to say, if 0 ∈ spec0(P), then Lp,q,r is guaranteed to
not be invertible (why?). The following nontrivial result gives the existence of the
generalisation of the function G of Section 7.2.1.1.

7.2.13 Theorem Consider the linear map Lp,q,r : dom(Lp,q,r) → L2([a, b];R) defined by (7.14).
There exists a unique function Gp,q,r : [a, b]×[a, b]→ R so that the function gξ : [a, b]→ R
defined by gξ(x) = Gp,q,r(x, ξ) has the following properties:

(i) Gp,q,r is continuous;

(ii) the partial derivatives ∂j

∂xj Gp,q,r, j ∈ {1, 2}, are continuous on the set

{(x, ξ) ∈ [a, b] × [a, b] | x , ξ};

(iii) g′ξ(ξ+) − g′ξ(ξ−) = 1
p(ξ) ;

(iv) Lp,q,r(gξ) = 0 for x , ξ;
(v) the boundary conditions

α1g′ξ(a) + α0gξ(a) = 0, β1g′ξ(b) + β0gξ(b) = 0

are satisfied for ξ ∈ [a, b].
Furthermore, the function Gp,q,r has the property that the mapping Gp,q,r : L2([a, b];R)→
dom(Lp,q,r) defined by

Gp,q,r(u)(x) =

∫ b

a
Gp,q,r(x, ξ)u(ξ) dξ

is exactly −L−1
p,q,r.

Proof The proof of the theorem revolves around a description of the solutions
of the differential equation Lp,q,r(y) = − f , where f ∈ L2([a, b];R) is some fixed but
arbitrary function. The following result records this solution. The result will
be known to students having had a good introductory course in linear differential
equations, except perhaps for the fact that f is merely integrable, and not something
stronger like continuous. The proof is not difficult, but requires some buildup that
constitutes a significant diversion.
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1 Lemma Consider the initial value problem

y′′(x) + a1(x)y′(x) + a0(x)y(x) = b(x), y(a) = y0, y′(a) = v0. (7.18)

Let y1 and y2 be solutions to the homogeneous problem (i.e., that with b = 0) satisfying the
initial conditions

y1(a) = 1, y′1(a) = 0, y2(a) = 0, y′2(a) = 1,

and define the corresponding Wronskian7 W(y1,y2) : [a, b]→ R by

W(y1,y2)(x) = det
[
y1(x) y2(x)
y′1(x) y′2(x)

]
.

Then the solution to (7.18) is

y(x) = y0y1(x) + v0y2(x) +

∫ x

a

1
W(y1,y2)(ξ)

det
[
y1(ξ) y2(ξ)
y1(x) y2(x)

]
b(ξ) dξ.

Proof Note that the proposed solution has the form

y(x) = yh(x) + u1(x)y1(x) + u2(x)y2(x)

where yh solves the homogeneous equation, and where

u1(x) = −

∫ x

a

y2(ξ)b(ξ)
W(y1, y2)(ξ)

dξ, u2(x) =

∫ x

a

y1(ξ)b(ξ)
W(y1, y2)(ξ)

dξ. (7.19)

Let us therefore determine the expressions for a general u1 and u2 so that the
function y(x) = u1(x)y1(x) + u2(x)y2(x) satisfies the equation

y′′(x) + a1(x)y′(x) + a0(x)y(x) = b(x).

We compute
y′ = (u′1y1 + u′2y2) + (u1y′1 + u1y′2).

Let us impose the condition that u′1y1 +u′2y2 = 0. Thus we seek u1 and u2 that satisfy
this condition, and which also satisfy the differential equation. With this condition
imposed we compute

y′′ = u′1y′1 + u′2y′2 + u1u′′1 + u2y′′2 .

Substituting y into the differential equation yields

u1(y′′1 + a1y′1 + a0y1) + u2(y′′2 + a1y′2 + a0y2) + u′1y′1 + u′2y′2 = b.

7After Josef Hoëné de Wronski (1778–1853). Wronski was a “philosopher mathematician,” and as
a consequence he (1) published a lot of rubbish and (2) had a high opinion of himself. Nevertheless,
he apparently had a few good days, and the Wronskian, one supposes, must be a result of one of
these.
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By virtue of y1 and y2 satisfying the homogeneous equation, the first two terms
vanish. Thus we have arrived at the two linear equations

u′1y1 + u′2y2 = 0
u′1y′1 + u′2y′2 = b

for u′1 and u′2. If u1 and u2 satisfy these equations, then our proposed solution solves
the equation as desired. However, solving the two linear equations shows that if
we choose u1 and u2 so that

u′1(x) =
y2(x)b(x)

W(y1, y2)(x)
, u′2(x) =

y1(x)b(x)
W(y1, y2)(x)

,

then we will have suitable functions u1 and u2. This computation establishes our
claim that with u1 and u2 as defined by (7.19), the function y = u1y1 +u2y2 solves the
differential equation. Now we merely note that the solution proposed by the lemma
is the sum of the solution we have just obtain and a solution of the homogeneous
problem. This sum thus solves the equation. Also, the initial conditions may be
checked immediately. H

Motivated by the lemma, let y1 and y2 be solutions to Lp,q,r(y) = 0 satisfying the
initial conditions

y1(a) = 1, y′1(a) = 0, y2(a) = 0, y′2(a) = 1.

Now define Kp,q,r : [a, b] × [a, b]→ R by

Kp,q,r(x, ξ) =
1

p(ξ)W(y1, y2)(ξ)
det

[
y1(ξ) y2(ξ)
y1(x) y2(x)

]
for ξ ≤ x and let Kp,q,r(x, ξ) = 0 for ξ > x. Since Kp,q,r(ξ+, ξ) = 0 it follows that Kp,q,r

is continuous on [a, b] × [a, b]. We also have

∂Kp,q,r

∂x
=

1
p(ξ)W(y1, y2)(ξ)

det
[
y1(ξ) y2(ξ)
y′1(x) y′2(x)

]
and

∂2Kp,q,r

∂x2 =
1

p(ξ)W(y1, y2)(ξ)
det

[
y1(ξ) y2(ξ)
y′′1 (x) y′′2 (x)

]
,

as may be verified by a direct computation. This shows that Kp,q,r is twice continu-
ously differentiable on the stated domain. Also note that

∂Kp,q,r

∂x
(ξ+, ξ) =

1
p(ξ)W(y1, y2)(ξ)

det
[

y1(ξ) y2(ξ)
y′1(ξ+) y′2(ξ+)

]
=

1
p(ξ)

,
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as per (iii). What’s more, by Lemma 1, the function u : [a, b]→ R defined by

u(x) = −

∫ b

a
Kp,q,r(x, ξ) f (ξ) dξ

satisfies Lp,q,r(u) = − f .
We shall now modify Kp,q,r so that it satisfies the boundary conditions. We seek

functions c1, c2 : [a, b]→ R so that the function

Gp,q,r(x, ξ) = −Kp,q,r(x, ξ) + c1(ξ)y1(x) + c2(ξ)y2(x)

satisfies (v). Since y1 and y2 are solutions to the homogeneous problem, it also
follows that Gp,q,r satisfies (iv). The boundary conditions applied to Gp,q,r take the
formα1

∂Gp,q,r

∂x (a, ξ) + α0Gp,q,r(a, ξ)
β1

∂Gp,q,r

∂x (b, ξ) + β0Gp,q,r(b, ξ)

 =α1
∂Kp,q,r

∂x (a, ξ) + α0Kp,q,r(a, ξ)
β1

∂Kp,q,r

∂x (b, ξ) + β0Kp,q,r(b, ξ)

 +

[
α1y′1(a) + α0y1(a) α1y′2(a) + α0y2(a)
β1y′1(a) + β0y1(a) β1y′2(a) + β0y2(a)

] [
c1

c2

]
We desire to choose c1 and c2 so that the right-hand side is identically zero. This
is possible since, referring to the proof of Theorem 7.2.11, the determinant of the
matrix [

α1y′1(a) + α0y1(a) α1y′2(a) + α0y2(a)
β1y′1(a) + β0y1(a) β1y′2(a) + β0y2(a)

]
is nonzero by virtue of 0 not being an eigenvalue for P. Thus, taking[

c1

c2

]
= −

[
α1y′1(a) + α0y1(a) α1y′2(a) + α0y2(a)
β1y′1(a) + β0y1(a) β1y′2(a) + β0y2(a)

]−1 α1
∂Kp,q,r

∂x (a, ξ) + α0Kp,q,r(a, ξ)
β1

∂Kp,q,r

∂x (b, ξ) + β0Kp,q,r(b, ξ)


gives Gp,q,r the property (iv). One can readily verify that since y1 and y2 are twice
continuously differentiable on [a, b], the continuity properties (i) and (ii) for Gp,q,r

are inherited from Kp,q,r. Also, since y1 and y2 are continuously differentiable on
[a, b] and since c1 and c2 are continuous, the property (iii) for Gp,q,r is also inherited
from Kp,q,r. Also, it is clear that Gp,q,r = −L−1

p,q,r by construction of Gp,q,r.
It only remains to show that Gp,q,r is the unique function with the proper-

ties (i)–(v). Suppose that there is another such function G̃p,q,r. Let g̃ξ be defined
by g̃ξ = G̃p,q,r(x, ξ). Since the derivatives of gξ and g̃ξ share the discontinuity at
x = ξ specified by (iii), it follows that their difference, gξ − g̃ξ, will be continuously
differentiable. It follows that gξ − g̃ξ satisfies the boundary conditions, Also, since
Lp,q,r(gξ) = 0 and Lp,q,r(g̃ξ) = 0, it follows that Lp,q,r(gξ − g̃ξ) = 0. From this we infer
that since g′ξ − g̃′ξ is continuous on [a, b] for all ξ, so too is g′′ξ − g̃′′ξ . However, since
0 is not an eigenvalue for P this implies that gξ − g̃ξ = 0. �
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This result is largely a technical one, although it is of some importance. It
provides us with a characterisation of the Green function Gp,q,r is terms of Lp,q,r. Also,
note that the proof is sort of constructive, and is actually constructive provided
that you can obtain all solutions of the homogeneous equation Lp,q,r(y) = 0. In
Exercise 7.2.10 you can use the procedure in the proof to construct the Green
function for the example of Section 7.2.1.1.

Let us now note an important property of the linear mapping Gp,q,r, or more
precisely its image in dom(Lp,q,r). To state our result, we need some terminology. Let
A be an arbitrary index set, not necessarily finite or countable, and let F= { fa}a∈A be
a collection ofR-valued functions on [a, b]. The set of functions Fis equicontinuous
if for every ε > 0 there exists a δ > 0 so that | fa(x1)− fa(x2)| < ε for all a ∈ A, provided
that |x1 − x2| < δ. Similarly, the set of functions is uniformly bounded if there exists
M > 0 so that | fa(x)| < M for all x ∈ [a, b] and for all a ∈ A. The key property here is
that δ and M may be chosen independent of a ∈ A.

7.2.14 Proposition The set of functions

{Gp,q,r(u)}u∈L2([a,b];R)
‖u‖r≤1

is equicontinuous and uniformly bounded.
Proof Since Gp,q,r is continuous on the closed and bounded domain [a, b] × [a, b] it
is uniformly continuousmissing stuff and so, for any ε > 0 there exists δ > 0 so
that, provided |x1 − x2| < δ,

|Gp,q,r(x1, ξ) − Gp,q,r(x2, ξ)| < ε,

for any ξ ∈ [a, b]. Since r is continuous and positive, and since [a, b] is closed and
bounded there exists r > 0 so that r(x) ≥ r for every x ∈ [a, b]. A simple computation
then gives ‖ f ‖2 ≤ 1

√
r‖ f ‖2 for any f ∈ L2([a, b];R). Thus for any u ∈ L2([a, b];R) and

for any ε > 0 there exists δ > 0 so that if |x1 − x2| < δ we have

|Gp,q,r(u)(x1) − Gp,q,r(u)(x2)| =
∣∣∣∣∫ b

a
Gp,q,r(x1, ξ)u(ξ) dξ −

∫ b

a
Gp,q,r(x2, ξ)u(ξ) dξ

∣∣∣∣
=

∣∣∣∣∫ b

a

(
Gp,q,r(x1, ξ) − Gp,q,r(x2, ξ)

)
u(ξ) dξ

∣∣∣∣
≤

∫ b

a

∣∣∣Gp,q,r(x1, ξ) − Gp,q,r(x2, ξ)
∣∣∣|u(ξ)|dξ

≤ ε
√

b − a‖u‖2

≤
ε
√

b − a
√

r
‖u‖r.

where we have used the Cauchy-Bunyakovsky-Schwartz inequality in the penulti-
mate step. This shows that the set of functions given in the statement of the result is
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indeed equicontinuous. Since Gp,q,r is bounded on [a, b]× [a, b] (being a continuous
function on a closed bounded set) we can choose an M > 0 so that |Gp,q,r(x, ξ)| ≤ M
for all (x, ξ) ∈ [a, b] × [a, b]. A computation much like that in the first part of the
proof then gives

|Gp,q,r(u)(x)| ≤M
√

b − a‖u‖2.

This shows that the set of functions given in the statement of the result is bounded
in the norm ‖·‖∞. That this set is also bounded in the norm ‖·‖2, and hence the norm
‖·‖r, now follows frommissing stuff . �

This result says that Gp,q,r is a bounded, and therefore continuous bymissing
stuff , linear map with respect to the norm ‖·‖r. Thus we may define the operator
norm of Gp,q,r as inmissing stuff :

‖Gp,q,r‖r→r = sup
‖u‖r=1
‖Gp,q,r(u)‖r.

This, you should understand, is a nontrivial assertion. Indeed, the map Lp,q,r is
itself not continuous, so continuity of Gp,q,r, which is essentially the inverse of Lp,q,r,
does not follow in any easy way.

7.2.3.2 Completeness of eigenfunctions We continue with the assumption that
0 < spec0(Lp,q,r) so that we may define the Green function Gp,q,r. We again mention that
this can be done without loss of generality by a simple modification of the problem.

The Green function introduced in the preceding section now becomes a valuable
tool for us in proving the existence of eigenvalues for Lp,q,r. The key fact is the
continuity of Gp,q,r proved in Proposition 7.2.14. We first note that it is easy to
show that Gp,q,r is self-adjoint, referring the reader to Exercise 7.2.12 to work this
out. First we need to relate the eigenvalues and eigenfunctions for Lp,q,r to those
for Gp,q,r. The following result is Exercise 7.1.16, keeping in mind that Gp,q,r is not
L−1

p,q,r, but −L−1
p,q,r.

7.2.15 Lemma Let (λ, f) ∈ R × dom(Lp,q,r). Then λ is an eigenvalue for P with eigenfunction f
if and only if −λ−1 is an eigenvalue for Gp,q,r with eigenfunction f.

Thus the act of finding eigenvalues and eigenfunctions for the eigenvalue prob-
lem P is related in a simple way to funding eigenvalues and eigenfunctions for
Gp,q,r. The following theorem starts us off by providing a description of a single
eigenvalue and eigenvector for Gp,q,r.

7.2.16 Theorem One of the two numbers ‖Gp,q,r‖r→r or −‖Gp,q,r‖r→r is an eigenvalue for Gp,q,r.
Furthermore, define

Sr = {u ∈ L2([a, b];R) | ‖u‖r = 1}.

Then the collection of norm 1 eigenfunctions for the above eigenvalue are the functions
u ∈ Sr which maximise (if ‖Gp,q,r‖r→r is an eigenvalue) or minimise (if −‖Gp,q,r‖r→r is an
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eigenvalue) the function Qp,q,r : Sr → R defined by

Qp,q,r(u) =

∫ b

a

∫ b

a
Gp,q,r(x, ξ)u(ξ)r(x) dξdx.

Proof We refer to Exercise 7.1.11 to retrieve the fact that, since Gp,q,r is continuous
and self-adjoint (for the latter, refer to Exercise 7.2.12),

‖Gp,q,r‖r→r = sup
‖u‖=1
|〈Gp,q,r(u),u〉r|. (7.20)

This permits two possibilities:

1. ‖Gp,q,r‖r→r = sup
‖u‖=1〈Gp,q,r(u),u〉r;

2. ‖Gp,q,r‖r→r = − inf‖u‖=1〈Gp,q,r(u),u〉r.

Let us first suppose the first of these cases. Then, by the definition of supremum
there exists a sequence of functions {u j} j∈N with ‖u j‖r = 1, j ∈ N, so that

lim
j→∞
〈Gp,q,r(u j),u j〉r = ‖Gp,q,r‖r→r.

By Proposition 7.2.14 the sequence of functions {Gp,q,r(u j)} j∈N is equicontinuous
and uniformly bounded. For such a collection of functions, the following quite
nontrivial and non-obvious result applies.

1 Lemma (Arzela-Ascoli theorem) If F = {fa}a∈A is an equicontinuous, uniformly
bounded collection of R-valued functions on [a, b] then there is a mapping φ : N → A so
that the sequence {fφ(j)}j∈N converges uniformly on [a, b].

Proof Let {qk}k∈N be the collection of rational numbers in [a, b], enumerated in some
arbitrary manner. The collection of numbers { fa(q1)}a∈A forms a bounded subset of
R. Thus there exists a sequence of distinct functions { fk1}k1∈N in Fwith the property
that { fk1(q1)}k1∈N converges. Now consider the sequence { fk1(q2)}k1∈N. Again, this is a
bounded subset of R so there exists a subsequence of functions { fk2}k2∈N ⊆ { fk1}k1∈N
with the property that the sequence { fk2(q2)}k2∈N converges. One may continue in
this manner defining nested sequences of functions

{ fk1}k1∈N ⊇ { fk2}k2∈N ⊇ · · · ⊇ { fkn}kn∈N ⊇ · · ·

Now define a sequence of functions { fn = fnn}n∈N. We claim that this is a uniformly
convergent sequence. Let ε > 0 and choose δ > 0 so that | fa(x1) − fa(x2)| < ε

3 for all
a ∈ A, provided that |x1 − x2| < δ. Now let {Q1, . . . ,QK} be a collection of rational
numbers having the property that for any x ∈ [a, b] there exists k ∈ {1, . . . ,K} so that
|x −Qk| < δ. Since the sequences

{ fn(Q1)}n∈N, . . . , { fn(QK)}n∈N
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converge, there exists N ∈ N so that | fm(Qk)− fn(Qk)| < ε
3 for k ∈ {1, . . . ,K}. Now, for

x ∈ [a, b] let k ∈ {1, . . . ,K} have the property that |x −Qk| < δ. Then we have

| fm(x) − fn(x)| = |( fm(x) − fm(Qk)) + ( fm(Qk) − fn(Qk)) + ( fn(Qk) − fn(x))|
≤ | fm(x) − fm(Qk)| + | fm(Qk) − fn(Qk)| + | fn(Qk) − fn(x)|
≤

ε
3 + ε

3 + ε
3 = ε,

provided that n,m > N. As the choice of N does not depend on x, only on ε,
uniform convergence follows. H

By virtue of the lemma we select a subsequence {Gp,q,r(u jk)}k∈N of functions that
converges uniformly on [a, b]. As we saw inmissing stuff , this implies L2 conver-
gence of this same sequence. It follows that the limit function which we denote by
f1, is in L2([a, b];R). Let µ1 = ‖Gp,q,r‖r→r and compute

‖Gp,q,r(u jk) − µ1u jk‖
2
r = ‖Gp,q,r(u jk)‖

2
r + µ2

1‖u jk‖
2
r − 2µ1〈Gp,q,r(u jk),u jk〉r.

By construction of the sequence {u jk}k∈N we have

lim
k→∞

(
‖Gp,q,r(u jk)‖

2
r + µ2

1‖u jk‖
2
r − 2µ1〈Gp,q,r(u jk),u jk〉r

)
= ‖ f1‖

2
r − µ

2
1. (7.21)

This allows us to conclude that the limit function f1 does not identically vanish.
Noting that ‖Gp,q,r(u jk)‖

2
r ≤ µ

2
1, we can also conclude from (7.21) that

0 ≤ ‖Gp,q,r(u jk) − µ1u jk‖
2
r ≤ 2µ2

1 − 2µ1〈Gp,q,r(u jk),u jk〉r.

As the limit as k → ∞ of the term on the right tends to zero, so too does the term
in the middle, thus giving

lim
k→∞
‖Gp,q,r(u jk) − µ1u jk‖

2
r = 0. (7.22)

An application of the triangle inequality and the relation ‖Gp,q,r(u)‖r ≤

‖Gp,q,r(u)‖r→r‖u‖r then gives

0 ≤ ‖Gp,q,r( f1) − µ1 f1‖r

≤ ‖Gp,q,r( f1) − Gp,q,r(Gp,q,r( f1))‖r + ‖Gp,q,r(Gp,q,r( f1)) − µ1Gp,q,r(u jk)‖r+
‖µ1Gp,q,r(u jk) − µ1 f1‖r

≤ ‖ f1 − Gp,q,r(u jk)‖r + ‖Gp,q,r(u jk) − µ1u jk‖r + |µ1|‖Gp,q,r(u jk) − f1‖r.

As k → ∞ this final expression tends to zero by (7.22) along with the definition
of the sequence {u jk}k∈N. This gives Gp,q,r( f1) = µ1 f1, showing that µ1 = ‖Gp,q,r‖r→r is
indeed an eigenvalue for Gp,q,r. An entirely similar argument can be worked out
for the case when ‖Gp,q,r‖r→r = − inf‖u‖=1〈Gp,q,r(u),u〉r.

It now remains to exhibit the character of the eigenvalues stated in the theorem.
Note that

Qp,q,r(u) = 〈Gp,q,r(u),u〉r.
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Let us consider the case where ‖Gp,q,r‖r→r is an eigenvalue, the other case following
like lines. Given the function f1 defined above, denote φ1 =

f1
‖ f1‖r

the corresponding
normalised eigenvector. If then follows that

Qp,q,r(φ1) = 〈Gp,q,r(φ1), φ1〉r = µ1‖φ1‖
2
r = µ1 = ‖Gp,q,r‖r→r.

Thus, for any u ∈ Sr we have

Qp,q,r(u) = 〈Gp,q,r(u),u〉r ≤ ‖Gp,q,r‖r→r,

giving the result, since this argument holds for any unit length eigenvector for the
eigenvalue µ1. �

The above theorem is highly nontrivial, so it is worth separating out its essential
character. The first main feature is that the existence of an eigenvalue for Gp,q,r is
guaranteed, thus also ensuring at least one eigenvalue for P by Lemma 7.2.15.
The importance of this is clear given the concerns raised in Exercise 7.1.14 about
the existence of eigenvalues for linear maps on infinite-dimensional vector spaces.
However, it is also of some importance to observe the simple character of this
eigenvalue, and of the corresponding eigenvectors, by using the inner product
〈·, ·〉r. The reader may wish to refer to the Exercise 7.1.12 to remember how this is
accomplished in finite-dimensions. The basic idea is the same, but due to the com-
plications of function spaces, certain features that are easy in the finite-dimensional
case are nontrivial in Theorem 7.2.16. Nevertheless, we may proceed essentially
as in Exercise 7.1.12 and modify the Green function, using the existing eigenvalue,
to a function which has the same features. The following result indicates how this
is done.

7.2.17 Proposition Let µ1, . . . , µm be a finite collection of not necessarily distinct eigenvalues
for Gp,q,r with φ1, . . . , φm the corresponding eigenvectors which may be assumed to be
orthonormal. If Gm

p,q,r : [a, b] × [a, b]→ R is defined by

Gm
p,q,r(x, ξ) = Gp,q,r(x, ξ) − r(ξ)

m∑
j=1

µjφj(x)φj(ξ)

then the map Gm
p,q,r : L2([a, b];R)→ dom(Lp,q,r) defined by

Gm
p,q,r(u)(x) =

∫ b

a
Gm

p,q,r(x, ξ)u(ξ) dξ

has the following properties:
(i) the set of functions

{Gm
p,q,r(u)}u∈L2([a,b];R)

‖u‖r≤1

is equicontinuous and uniformly bounded;
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(ii) ‖Gm
p,q,r‖r→r = sup

‖u‖r

∣∣∣〈Gm
p,q,r(u),u〉r

∣∣∣;
(iii) ‖Gm

p,q,r‖r→r , 0.

Proof (i) Referring to the proof of Proposition 7.2.14, the essential feature of Gp,q,r

that allows one to prove that result is that the set of functions {gξ}ξ∈[a,b] is uniformly
continuous, where gξ(x) = Gp,q,r(x, ξ). That is to say, for each ε > 0 there exists
δ > 0 so that, independent of ξ, |gξ(x1) − gξ(x2)| < ε provided that |x1 − x2| < δ.
This also holds for Gm

p,q,r since it is a continuous function on [a, b] × [a, b]. This, plus
boundedness of Gm

p,q,r, allows the argument of Proposition 7.2.14 to be applied here.
(ii) This part of the result will follow from Exercise 7.1.11 if we can show that

Gm
p,q,r is self-adjoint with respect to the inner product 〈·, ·〉r. To verify this we compute

〈Gm
p,q,r( f ), g〉r =

∫ b

a
Gm

p,q,r( f )(x)g(x)r(x) dx

=

∫ b

a
Gp,q,r( f )(x)g(x)r(x) dx−

m∑
j=1

∫ b

a

(∫ b

a
µ jφ j(x)φ j(ξ) f (ξ)r(ξ) dξ

)
g(x)r(x) dx

=

∫ b

a
f (x)G(g)(x)r(x) dx−

m∑
j=1

∫ b

a

(
µ jφ j(ξ)φ j(x)g(x)r(x) dx

)
f (ξ)r(ξ) dξ

=

∫ b

a
f (ξ)Gm

p,q,r(g)(ξ)r(ξ)

= 〈 f ,Gm
p,q,r(g)〉r,

where we have used the fact that Gp,q,r is self-adjoint.
(iii) For f ∈ L2([a, b];R) we compute

−Lp,q,r ◦ G
m
p,q,r( f )(x) = − Lp,q,r ◦ Gp,q,r( f )(x) + Lp,q,r

( m∑
j=1

∫ b

a
µ jr(ξ)φ j(x)φ j(ξ) f (ξ) dξ

)
= f (x) +

m∑
j=1

µ j〈 f , φ j〉rLp,q,r(φ j)(x)

= f (x) −
m∑

j=1

〈 f , φ j〉rφ j(x),

using the fact that Gp,q,r = −L−1
p,q,r, and Lemma 7.2.15. Now if ‖Gm

p,q,r‖r→r = 0 then we
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have

f =

m∑
j=1

〈 f , φ j〉rφ j, (7.23)

which should hold for every f ∈ L2([a, b];R). Since the eigenfunctions φ1, . . . , φm

are also eigenfunctions for P by Lemma 7.2.15, it follows that these functions are
continuously differentiable. Therefore, the right-hand side of (7.23) is continuously
differentiable for every f ∈ L2([a, b];R). In particular, since there are certainly
functions in L2([a, b];R) that are not continuously differentiable, (7.23) cannot hold.
Thus ‖Gm

p,q,r‖r→r cannot be zero. �

The previous result indicates that we can iteratively apply Theorem 7.2.16 to
produce an infinite sequence of eigenvalues {µ j} j∈N forGp,q,r, and so by Lemma 7.2.15
an infinite sequence of eigenvalues {λ j = −µ−1

j } j∈N for P. By Theorem 7.2.11,
the eigenvalues for P are unbounded in magnitude as j → ∞. Thus we have
successfully captured some of the features we saw in the simple boundary value
problem of Section 7.2.1.1. Flush with our success, we may, for a function f ∈
L2([a, b];R) write its generalised Fourier series as

FS[ f ] =

∞∑
n=1

〈 f , φn〉φn,

at least formally. What remains is to show that the normalised eigenfunctions form
a complete orthonormal family. This is the content of the following result.

7.2.18 Theorem Let P be the eigenvalue problem (7.15). A set {φn}n∈N of orthonormal eigenvec-
tors for P is a complete orthonormal family. What’s more, if f ∈ dom(Lp,q,r) then FS[f]
converges uniformly to f.
Proof We first prove that any function f ∈ dom(Lp,q,r) can be arbitrarily well
approximated by its generalised Fourier series. To do this, we first work with Gp,q,r.
For x ∈ [a, b] let us define g̃x : [a, b]→ R be defined by g̃x(ξ) = Gp,q,r(x, ξ). If φn is the
eigenfunction corresponding to µn, n ∈ N, then we compute

|〈g̃x, φn〉r| =
∣∣∣∣∫ b

a
g̃x(ξ)φn(ξ)r(ξ) dξ

∣∣∣∣
≥ r

∣∣∣∣∫ b

a
G(x, ξ)φn(ξ) dξ

∣∣∣∣
= r|Gp,q,r(φn)(x)|
=r|µnφn(x)|.

Here r > 0 is defined so that r(x) ≥ r for all x ∈ [a, b]. Bessel’s inequality then gives

∞∑
n=1

r2
|µnφn(x)|2 ≤

∞∑
n=1

|〈g̃x, φn〉r|
2
≤ ‖g̃x‖

2
r , (7.24)
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this holding for all x ∈ [a, b]. Since g̃x is bounded, it follows that ‖g̃x‖
2
r < ∞. Thus

the series on the left in (7.24) converges pointwise to a limit function of x. We claim
that the convergence is actually uniform. This simply follows from the continuity
of the function ‖g̃x‖

2
r (this itself following from continuity of g̃x). Thus we may

term-by-term integrate (7.24) with respect to x. The left series when integrated
gives

∞∑
n=1

∫ b

a
r̄2
|µnφn(x)|2dx =

∞∑
n=1

r̄2µ2
n

∫ b

a
φ2

n(x) dx

≥
r̄2

R

∞∑
n=1

µ2
n

∫ b

a
φ2

n(x)r(x) dx

=
r̄2

R

∞∑
n=1

µ2
n,

where r̄ = supx∈[a,b]{r(x)}. Integration of the expression on the right in (7.24) gives∫ b

a
‖g̃x‖

2
r dx =

∫ b

a

∫ b

a
Gp,q,r(x, ξ)2r(ξ) dx dξ

≤

∫ b

a

∫ b

a
M2R dx dξ

= M2R(b − a)2 < ∞,

where M = supx,ξ∈[a,b]{Gp,q,r(x, ξ)}. This allows us to conclude that

r̄2
∞∑

n=1

µ2
n < ∞.

In particular, we may conclude that the eigenvalues for Gp,q,r satisfy limn→∞ µn = 0.
Now we adopt the notation Gm

p,q,r and Gm
p,q,r of Proposition 7.2.17. Since ‖Gm

p,q,r‖r→r =
|µm|, it follows that for any u ∈ L2([a, b];R) we have

‖Gm
p,q,r(u)‖r =

∥∥∥∥Gp,q,r(u) −
m∑

j=1

µ j〈u, φ j〉rφ j

∥∥∥∥ ≤ |µm|‖u‖r.

By Theorem 7.2.11 and Lemma 7.2.15, limm→∞|µm| = 0 so that

lim
m→∞

∥∥∥∥Gp,q,r(u) −
m∑

j=1

µ j〈u, φ j〉rφ j

∥∥∥∥ = 0. (7.25)

Now, for n > m we directly have
n∑

j=m

µ j〈u, φ j〉φ j = Gp,q,r

( n∑
j=m

〈u, φ j〉rφ j

)
.
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This gives ∣∣∣∣ n∑
j=m

µ j〈u, φ j〉φ j(x)
∣∣∣∣ =

∣∣∣∣Gp,q,r

( n∑
j=m

〈u, φ j〉rφ j

)
(x)

∣∣∣∣
=

∣∣∣∣∫ b

a

( n∑
j=m

〈u, φ j〉rGp,q,r(x, ξ)φ j(ξ)
)

dξ
∣∣∣∣

≤
M
r̄

∣∣∣∣∫ b

a

( n∑
j=m

〈u, φ j〉rφ j(ξ)r(ξ)
)

dξ
∣∣∣∣

≤
M
√

b − a
r̄

( n∑
j=m

|〈u, φ j〉r|
2
)1/2

,

where M = sup(x,ξ)∈[a,b]×[a,b]{G(x, ξ)}, r̄ = supx∈[a,b]{r(x)}, and where we have used the
Cauchy-Bunyakovsky-Schwartz inequality in the penultimate step. From Bessel’s
inequality, as n,m→ ∞ the term in the last line goes to zero. This implies that the
series

∞∑
j=1

µ j〈u, φ j〉φ j

converges uniformly, and therefore converges to a continuous function. Since
Gp,q,r(u) is also continuous, from (7.25) we deduce that

Gp,q,r(u) =

m∑
j=1

µ j〈u, φ j〉rφ j (7.26)

for any u ∈ L2([a, b];R) with convergence being, again, uniform. If f ∈ dom(Lp,q,r)
then we may write f = Gp,q,r(u) for some u ∈ L2([a, b];R). In this case we have

µ j〈u, φ j〉r = 〈u,Gp,q,r(φ j)〉r = 〈Gp,q,r(u), φ j〉r = 〈 f , φ j〉r

for any j ∈ N. The equation (7.26) then gives

f =

∞∑
j=1

〈 f , φ j〉φ j,

with convergence being uniform. This proves the final assertion of the theorem.
The first assertion, that {φn}n∈N is dense in L2([a, b];R), will follow if we can show

that dom(Lp,q,r) is dense in L2([a, b];R). Frommissing stuff we know that twice con-
tinuously differentiable functions on [a, b], C2([a, b];R), are dense in L2([a, b];R). We
claim that the twice continuously differentiable functions satisfying the boundary
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conditions of dom(Lp,q,r) are dense in C2([a, b];R). We do this as follows. Note that
the function B ∈ C2([a, b];R) given by

B(x) = (α0β1 + α0bβ0 − α1β0 − aα0β0)x2 + (a2α0β0 + 2aα1β0 − α0b2β0 − 2α0bβ1)x+

(2α1bβ1 + 2aα0bβ1 − 2aα1β1 − a2α0β1 + α1b2β0 + aα0b2β0 − 2aα1bβ0 − a2α0bβ0)

satisfies the boundary conditions (it has been constructed to be a function quadratic
in x whose coefficients are obtained by asking that the boundary conditions be
satisfied). Given f ∈ C2([a, b];R) we “blend” f with B to get a function that is close
to f , but which satisfies the boundary conditions. We do this as follows. For δ > 0
define χδ : R→ R by

χδ(x) =


0, x < 0
15(x

δ )4
− 24( x

δ )5 + 10( x
δ )6, x ∈ [0, δ]

1, x > δ.

One may verify that χδ is twice continuously differentiable, and that χδ(0) = χ′δ(0) =
0 and that χδ(δ) = 1 and χ′δ(δ) = 0. In Figure 7.3 Now, for a given f ∈ C2([a, b];R)

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.3 The graph of χδ for δ = 1
10

and small δ > 0 define fδ : [a, b]→ R by

fδ(x) = f (x)
(
1 − χδ(a + 2δ − x) − χδ(x − b + 2δ)

)
+

B(x)
(
χδ(a + 2δ − x) + χδ(x − b + 2δ)

)
.

The function fδ is designed to have the following properties:

1. fδ ∈ C2([a, b];R);

2. fδ(x) = f (x) for x ∈ [a + 2δ, b − 2δ];
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3. fδ(x) = B(x) for x ∈ [a, a + δ] and for x ∈ [b − δ, b];

4. for each x ∈ [a + δ, a + 2δ] and x ∈ [b − 2δ, b − δ] we have

fδ(x) = (1 − α(x)) f (x) + α(x)B(x),

where α(x) ∈ [0, 1].

Thus fδ “looks like” B near the boundaries of the interval, and equals f in the
middle of the interval. Also, property 3 ensures that fδ satisfies the boundary
conditions of dom(Lp,q,r). The definition of fδ gives

| fδ(x) − f (x)| =
∣∣∣∣ f (x)

(
−χδ(a + 2δ − x) − χδ(x − b + 2δ)

)
+

B(x)
(
χδ(a + 2δ − x) + χδ(x − b + 2δ)

)∣∣∣
≤ | f (x)

(
χδ(a + 2δ − x) + χδ(x − b + 2δ)

)
|+

|B(x)
(
χδ(a + 2δ − x) + χδ(x − b + 2δ)

)
|

≤ 2
(
| f (x)| + |B(x)|

)
.

Since f and B are continuous on [a, b], it follows that there exists M > 0 so that

| fδ(x) − f (x)| ≤M

for all x ∈ [a, b]. If r is bounded by r̄ > 0 one then computes

‖ f − fδ‖2r =

∫ b

a
( f (x) − fδ(x))2r(x) dx

=

∫ a+2δ

a
( f (x) − fδ(x))2r(x) dx +

∫ b

b−2δ
( f (x) − fδ(x))2r(x) dx

≤

∫ a+2δ

a
M2r̄ dx +

∫ b

b−2δ
M2r̄ dx

= 4δM2r̄.

This shows that for any ε > 0 there exists a function fδ ∈ dom(Lp,q,r) ∩ C2([a, b];R)
for which ‖ f − fδ‖r < ε.

With the above setup in place, let f ∈ L2([a, b];R) and let ε > 0. Then there exists
f1 ∈ C2([a, b];R) so that ‖ f − f1‖r < ε

3 and there exists f2 ∈ C2([a, b];R) ∩ dom(Lp,q,r)
so that ‖ f1 − f2‖r < ε

3 . Also, since f2 ∈ dom(Lp,q,r), there exists an N ∈ N so that
‖ f2 − f2,n‖ < ε

3 if n ≥ N, where f2,n is the nth partial sum for the generalised Fourier
series of f2. We then compute

‖ f − f2,n‖r = ‖( f − f1) + ( f1 − f2) + ( f2 − f2,n)‖r
≤ ‖ f − f1‖r + ‖ f1 − f2‖r + ‖ f2 − f2,n‖r

< ε,
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provided that n ≥ N. This shows that any function in L2([a, b];R) can be arbitrarily
well approximated by a finite linear combination of the eigenfunctions {φn}n∈N, and
the result now follows frommissing stuff . �

During the course of the proof we showed that the eigenvalues of Gp,q,r tend to
zero in magnitude. From this and Lemma 7.2.15 we have the following corollary.

7.2.19 Corollary If spec0(P) = {λn}n∈N then limn→∞|λn| = ∞.

We shall improve this result in Theorem 7.2.20.

7.2.4 Approximate behaviour of eigenvalues and eigenfunctions

While Theorem 7.2.18 is one of the triumphs of applied mathematics, telling us
that solutions to some types of differential equations may be used to approximate
quite arbitrary functions, it does not tell us much about the character of the solutions
to the differential equation. In this section we set about determining the character
of the large eigenvalues and their corresponding eigenfunctions.

7.2.4.1 Eigenvalue properties First let us state a result of general utility, giving
a more refined description of the eigenvalues than is provided by Corollary 7.2.19.

7.2.20 Theorem If p(x) > 0 for all x ∈ [a, b] (as we have been assuming all along), then there
are at most a finite number of positive eigenvalues for P. Therefore, it is possible to index
spec0(P) = {λn}n∈N so that

· · · < λn < · · · < λk+1 < 0 < λk < · · · < λ1,

and so that limn→∞ λn = −∞. When ordered in this way, spec0(P), and the corresponding
eigenfunctions, is said to have descending order.
Proof Define Ep,q,r : dom(Lp,q,r) × dom(Lp,q,r)→ R by

Ep,q,r(y1, y2) =

∫ b

a

(
p(x)y′1(x)y′2(x) + q(x)y1(x)y2(x)

)
dx −

(
p(x)y′1(x)y2(x)

)∣∣∣∣b
a
.

Let us now consider the left boundary condition α1y′(a) + α0y(a) = 0. If α1 = 0
then y(a) = 0 from which we deduce that p(a)y′1(a)y2(a) = 0. If α1 , 0 then we
have y′1(a) = −α0

α1
y1(a) so that p(a)y′1(a)y2(a) = −α0

α1
p(a)y2(a)2. In all cases this gives

p(a)y′1(a)y2(a) = −Ay2(a)2 for some constant A. A similar conclusion holds at the
right endpoint where we will have p(b)y′1(b)y2(b) = By2(b)2. This gives

Ep,q,r(y1, y2) =

∫ b

a

(
p(x)y′1(x)y′2(x) + q(x)y1(x)y2(x)

)
dx + Ay2(a)2 + By2(b)2. (7.27)

Now we use integration by parts to derive∫ b

a

(
p(x)y′1(x))y′2(x) dx =

(
p(x)y′1(x)y2(x)

)∣∣∣∣b
a
−

∫ b

a

(
p(x)y′1(x)

)′
y2(x) dx.
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Plugging this latter expression into the definition of Ep,q,r we get

Ep,q,r(y1, y2) = −

∫ b

a
Lp,q(y1)(x)y2(x) dx. (7.28)

In particular, if λn is an eigenvalue with normalised eigenfunction φn, n ∈ N, we
have

Ep,q,r(φn, φn) = −

∫ b

a
Lp,q(φn)φn dx = −

∫ b

a
r(x)φ2

n(x) dx = −λn. (7.29)

Let us leave this relation aside for a moment and return to (7.27). If q =

infx∈[a,b]{q(x)} and r̄ = supx∈[a,b]{r(x)} then, for ‖y‖r = 1 we compute

Ep,q,r(y, y) =

∫ b

a

(
p(x)y′(x)2 + q(x)y(x)2

)
dx + Ay(a)2 + By(b)2

≥ ‖
√

py′‖22 +
q

r̄

∫ b

a
r(x)y2(x) dx + Ay(a)2 + By(b)2

= ‖
√

py′‖22 +
q

r̄
+ Ay(a)2 + By(b)2. (7.30)

Now there are four cases to consider: (1) A,B ≥ 0, (2) A ≥ 0 and B < 0, (3) B ≥ 0
and A < 0, and (4) A,B < 0. In the first case we immediately have

Ep,q,r(y, y) ≥ ‖
√

py′‖22 +
q

r̄
≥

q

r̄
.

In this case, the result follows from (7.29) since in this case we have proven that
λn ≤ −

q

r̄ . When one of A or B is negative, however, further estimates are required.
To this end, let y ∈ dom(Lp,q,r) and define fy : [a, b]→ R by

fy(x) =

∫ x

a
r(ξ)y2(ξ) dξ.

By the mean value theorem, if ‖y‖r = 1 then we have

f ′y(c) =
fy(b) − fy(a)

b − a

=⇒ (b − a)r(c)y(c)2 =

∫ b

a
r(x)y2(x) dx = 1

for some c ∈ (a, b). Next, integration by parts gives∫ c

a
y(x)y′(x) dx = y2(x)

∣∣∣∣c
a
−

∫ c

a
y(x)y′(x) dx

=⇒ 2
∫ c

a
y(x)y′(x) dx + y(a)2 = y(c)2.
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Working on this last equality we derive, with r = infx∈[a,b]{r(x)} and p = infx∈[a,b]{p(x)},

y(a)2 = y(c)2
− 2

∫ c

a
y(x)y′(x) dx

≤ y(c)2 + 2
∫ b

a
|y(x)||y′(x)|dx

≤
1

(b − a)p(c)
+

2
r

∫ c

a
r(x)|y(x)||y′(x)|dx

≤
1

(b − a)p(c)
+

2
r

(∫ b

a
r(x)y′(x)2 dx

)1/2

≤
1

(b − a)p(c)
+

1√rp

(∫ b

a
p(x)y′(x)2 dx

)1/2
,

where, in the last step, we used the Cauchy-Bunyakovsky-Schwartz inequality,
along with the fact that ‖y‖r = 1. This then gives

y(a)2
≤ C̃ + C̃‖

√
py′‖r

=⇒ Ay(a)2
≥ AC̃ + AC̃‖

√
py′‖2,

if A < 0, and where C̃ = max{ 1
(b−a)p(c) ,

1√
rp
}. Defining C = −AC̃ gives

Ay(a)2
≥ −C‖

√
py′‖2 − C.

A similar analysis may be used to determine the estimate

By(b)2
≥ −C‖

√
py′‖2 − C

when B < 0. Combining these estimates with (7.30) we obtain, provided that
A,B < 0.

Ep,q,r(y, y) ≥ ‖
√

py′‖22 +
q

r̄
+ Ay(a)2 + By(b)2

≥ ‖
√

py′‖22 +
q

r̄
− 2C − 2C‖

√
py′‖2

= (‖
√

py′‖22 − C)2
− C2

− 2C +
q

r̄

≥ − C2
− 2C +

q

r̄
.

By taking y to be the normalised eigenfunction φn for the eigenvalue λn, n ∈ N, this
shows that as long as A,B < 0 we have λn ≤ C2 + 2C −

q

r̄ . This proves the result
when A,B < 0. The cases when A ≥ 0 and B < 0 and when A < 0 and B ≥ 0 follow
in the same manner. �
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7.2.21 Remarks
1. An upshot of the result is that it is always possible to introduce a constant c < 0

so that the problem P(c) defined by (7.17), i.e., the problem with eigenvalues
shifted by c, has all negative eigenvalues.

2. Because of the seemingly endemic distaste for negative numbers, many authors
change the sign of λ to ensure that there at most finitely many negative eigen-
values, and that the positive eigenvalues tend to ∞ as n → 0. Other authors
use −Lp,q in place of Lp,q. However, negative numbers do not scare this author,
so they are allows as eigenvalues.

3. The function Ep,q,r : dom(Lp,q,r) × dom(Lp,q,r)→ R introduced in the proof of the
theorem often can be interpreted physically as the energy of the system. •

Now let us turn to a basic result which gives a characterisation of the eigenval-
ues. As usual, we denote

p̄ = sup
x∈[a,b]
{p(x)}, p = inf

x∈[a,b]
{p(x)},

q̄ = sup
x∈[a,b]
{q(x)}, q = inf

x∈[a,b]
{q(x)},

r̄ = sup
x∈[a,b]
{r(x)}, r = inf

x∈[a,b]
{r(x)},

and with this notation we have the following result.

7.2.22 Theorem Consider the eigenvalue problem P of equation (7.15) and assume that the
boundary conditions ensure that y(a)y′(a) = y(b)y′(b) = 0. Let k ∈ {1, 2} be the number
of endpoints at which eigenfunctions are specified to vanish by the boundary conditions.
Then for each n ∈ N ( knπ

b − a

)2 p

r
+

q

r
≤ λn ≤

( knπ
b − a

)2 p̄
r̄

+
q̄
r̄
.

Proof First we prove a technical result.

1 Lemma Suppose that we have functions p,q, r, p̃, q̃, r̃ : [a, b]→ R satisfying

p̃(x) ≤ p(x), q̃(x) ≤ q(x), r̃(x) ≤ r(x).

for each x ∈ [a, b]. Consider the two eigenvalue problems P and P̃ defined by

(py′)′ − qy = λry
α1y′(a) + α0y(a) = 0
β1y′(b) + β0y(b) = 0

and

(p̃y′)′ − q̃y = λ̃r̃y
α1y′(a) + α0y(a) = 0
β1y′(b) + β0y(b) = 0,
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respectively. Suppose that the boundary conditions ensure that A and B in (7.27) are
nonnegative. If spec0(P) = {λn}n∈N and spec0(P̃) have descending order, then we have
λ̃n ≤ λn for each n ∈ N.
Proof missing stuff H

�

A look at Figure 7.2 indicates that the eigenvalues for the problem of Sec-
tion 7.2.1.2 become equally spaced as n→ ∞. Interestingly, this is generally true,
and this is the content of the next result.

7.2.23 Theorem For the eigenvalue problem P of equation (7.15) let spec0(P) = {λn}n∈N be given
the descending order. Then

lim
n→∞

λn

n2 = −
π2

(b − a)2 .

Proof First of all, by a suitable choice of c, let us transform the problem to a problem
P(c) as given by (7.17) having the property that all eigenvalues are negative. This
is possible by Theorem 7.2.20. Note that the theorem holds for P if and only if it
holds for P(c) since the eigenvalues for P(c) are merely those of P shifted by c. Thus
we may write λn = −ω2

n for some ωn > 0, n ∈ N. We now transform8 the problem
via a change of dependent and independent variable as follows:

ξ =

∫ x

a

√
r(x)
p(x)

dx, η(ξ) =
(
p(x(ξ))r(x(ξ))

)1/4
y(x(ξ)).

Now a direct computation shows that (7.15) is equivalent to

d2η(ξ)
dξ2 − ρ(ξ)η(ξ) = −ω2η(ξ)

where ξ ∈ [0, b − a], and where

ρ(ξ) =
σ′′(ξ)
σ(ξ)

+
q(x(ξ))
r(x(ξ))

,

with σ(ξ) =
(
p(x(ξ))r(x(ξ))

)1/4
. The punchline is that we may as well assume that

a = 0, b = `, and that p(x) = r(x) = 1 for x ∈ [0, `]. Let us do this, and for simplicity
return to our previous notation. Thus we have the problem

y′′ − qy = −ω2y
α1y′(0) + α0y(0) = 0
β1y′(`) + β0y(`) = 0.

We shall thus prove the theorem for this simplified system.missing stuff �
8This transformation is known as the Liouville transformation.
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7.2.4.2 Eigenfunction properties Now let us turn our attention briefly to a
discussion of eigenfunctions. We discuss the general eigenvalue problem P given
by equation (7.15). Let us write spec0(P) = {λn}n∈N in descending order, with {φn}n∈N
the corresponding eigenfunctions. Motivated by the vibrating string as a boundary
value problem, let us say that a point x ∈ [a, b] is a node for the eigenfunction φn,
n ∈ N, if φn(x) = 0.

7.2.24 Theorem Let n ∈ N and suppose that x1, x2 are nodes for φn with the properties that
x1 < x2 and there are no nodes for φn in (x1, x2). Then φn+1 has a node in (x1, x2).
Proof Suppose that φn+1 has no node in (x1, x2). We may as well suppose that both
φn and φn+1 are strictly positive on (x1, x2). The eigenfunctions satisfy the equations

(pφ′n)′ − (q + λnr)φn = 0
(pφ′n+1)′ − (q + λn+1r)φn+1 = 0.

Now multiply the first equation by φn+1 and the second by φn and subtract the
resulting two equations to get

(pφ′n)′φn+1 − (pφ′n+1)′φn = (λn − λn+1)rφnφn+1

The expression on the right is by design positive on (x1, x2). Thus integrating we
get ∫ x2

x1

(
(pφ′n)′φn+1 − (pφ′n+1)′φn

)
dx > 0. (7.31)

The integrand is(
(pφ′n)′φn+1 − (pφ′n+1)′φn

)
=

d
dx

(
p(φ′nφn+1 − φnφ

′

n+1

)
.

Therefore, integrating the left-hand side of (7.31) gives

p(x2)φ′n(x2)φn+1(x2) − p(x1)φ′n(x1)φn+1(x1) > 0, (7.32)

using the fact that φn(x1) = φn(x2) = 0. However, since φn(x2) = 0 and φn(x) > 0 for
x ∈ (x1, x2), we have φ′n(x2 < 0. Similarly we deduce that φ′n(x1) > 0. This shows
that the expression (7.32) cannot hold, so our original assumption that φn+1 cannot
vanish on (x1, x2) must not be true. �

7.2.5 Summary

This chapter has been an almost entirely theoretical one. In the exercises you
will be asked to explore some aspects of the theory, as well as see how it arises
in some applications. The points one should take away from this chapter are the
following.
1. The properties that we saw inmissing stuff for trigonometric series generalise

to a far more general class of problems, of which Fourier series are an example.
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2. Part of the reason for our success in being able to say so much about the
eigenvalue problem (7.15) is that it defines a self-adjoint mapping. This, at least,
guarantees it having real eigenvalues and orthogonal eigenfunctions. However,
much more than this is needed, as in infinite dimensions, self-adjointness is not
even sufficient to ensure the existence of eigenvalues. Thus, in some sense, the
results of this section are somewhat miraculous.

3. Key in the success of the development is the Green function. This being the
inverse of Lp,q,r and having such nice properties (as enumerated particularly in
Proposition 7.2.14) allows us to formulate the problem of finding an eigenfunc-
tion essentially as that of minimising a function on the unit norm functions in
L2([a, b];R) (cf. Theorem 7.2.16). In this way, we are able to emulate the spirit
of Exercise 7.1.12, even though the analysis is rather more complicated. In
particular, we should point out that the use of the Arzela-Ascoli theorem in the
proof of Theorem 7.2.16 makes this result one that qualifies as difficult.

4. Interestingly, one is able to prove some useful facts about the behaviour of the
eigenvalues of general boundary value problems. This can be useful in some
types of approximate analysis.

5. Similarly, one can understand the behaviour of eigenfunctions to some extent.

7.2.6 Notes

The classical text for this material, although it is rather advanced, is that of
Coddington and Levinson [1984]. Another text, delivered at a somewhat more
palatable pace is that of Troutman [1994]. For an introduction, we refer to [Stakgold
1979]. It is possible to attain such completeness results without using the Green
function [e.g., Troutman 1994].

Exercises

7.2.1 Let I ⊆ R be an interval and let r : I → R be Riemann integrable with the
property that r(x) > 0 for every x ∈ I. Show that

〈 f , g〉r =

∫
I

f ḡr dx

defines an inner product on C0(I;F).
7.2.2 For the boundary value problems below do the following:

1. find all values of λ for which the problem admits a nontrivial solution
X;

2. for each λ give a nontrivial solution X;
3. for the three values of λ smallest in absolute value, plot the correspond-

ing solution X.

(a) X′′(x) + λX(x) = 0, X(0) = 0, X(l) = 0.
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(b) X′′(x) + λX(x) = 0, X′(0) = 0, X(l) = 0.
(c) X′′(x) = λX(x), X′(0) = 0, X′(l) = 0.
(d) X′′(x) − λX(x) = 0, X(0) = 0, X′(l) = 0.

7.2.3 Show that the map L defined for the example of Section 7.2.1.1 is not con-
tinuous with respect to the norm defined by the inner product 〈·, ·〉2.

7.2.4 Consider the following potential equation with boundary conditions that
are used to model the deflection of an airplane wing of length ` and width
w:

∂2u
∂x2 +

∂2u
∂y2 = 0

u(0, y) = 0,
∂u
∂x

(w, y) = Ku(w, y)

u(x, 0) = f1(x), u(x, `) = f (x).
(7.33)

Here K is a design constant that governs the deflection of the wing, and f
determines the shape of the cross-section of the wing at its tip.
(a) Using separation of variables, show that the above boundary value

problem leads to following eigenvalue problem:

y′′(x) = λy(x), x ∈ [0,w]
y(0) = 0
y′(w) = Ky(w).

(b) For the various cases for K (it can be any real number), determine the
eigenvalues and eigenvectors for the problem from (a).

(c) Use the eigenvalues and eigenvectors from (b) to obtain a solution to the
boundary value problem (7.33).

Throughout this chapter we have considered only real solutions to the problem P.
However, as with Fourier series, it is possible to allow complex solutions as well.
The following problem indicates how to do this, and why the reduction to the real
case can be made without loss of generality.

7.2.5 Consider the problem P defined by (7.15).
(a) Show that if y : [a, b] → C is a complex solution to P, then the complex

conjugate ȳ : [a, b] → C is also a solution to P. In a natural way, to each
complex solution to P associate a real solution.

(b) If y1, y2 : [a, b] → R are two real solutions to P, show that y = y1 + iy2 is
a complex solution to P.

7.2.6 Often a physical problem will have boundary conditions that specify the ratio
of y′ and y at the endpoints. Show that in this case there exists α, β ∈ [0, 2π)
so that the boundary conditions of (7.15) have the form

cosαy(a) − sinαy′(a) = 0
cos βy(b) + sin βy′(b) = 0.
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7.2.7 Show directly using integration by parts that the eigenvalue problem

Lp,q(y) = (py′)′ − qy = λy
α1y′(a) + α0y(a) = 0
β1y′(b) + β0y(b) = 0

is symmetric. That is, show that∫ b

a
Lp,q( f )(x)g(x) dx =

∫ b

a
f (x)Lp,q(g)(x) dx

for f , g ∈ dom(Lp,q).

In this chapter we have introduced the notion of a generalised Fourier series corre-
sponding to functions satisfying a certain class of boundary value problem. Sadly,
the Fourier series as considered inmissing stuff is not quite of this form. In this
exercise you will reconcile at least part of this by showing that the Fourier series of
missing stuff are eigenfunctions for a self-adjoint boundary value problem.

7.2.8 Consider the boundary value problem defined on the interval [0, `] by

L(y) = y′′(x) = λy(x)
y(0) = y(`)
y′(0) = y′(`).

Let dom(L) be those continuously differentiable functions possessing a sec-
ond derivative in L2([0, `],R) and which satisfy the boundary conditions.
(a) Following the proof of Proposition 7.2.7, show that if f , g ∈ dom(L) then
〈L( f ), g〉2 = 〈 f ,L(g)〉2.

(b) Directly using integration by parts, show that if f , g ∈ dom(L) then
〈L( f ), g〉2 = 〈 f ,L(g)〉2.

This shows (in two ways) that L is self-adjoint, although it is not of the
form we have considered in this chapter. It also turns out that L has an
infinite collection of eigenvalues, and the corresponding eigenfunctions form
a complete orthonormal family. This is the content of the next question.
(c) Find the eigenvalues and eigenfunctions for L.

7.2.9 Consider the one-dimensional Schrödinger9 equation

i~
∂ψ

∂t
=

1
2m

∂2ψ

∂x2

for particle of mass m moving in one-dimension. The constant ~ is Planck’s
constant. The dependent variable ψ is the wave function for the particle.
Suppose that the particle moves on a ring so that the wave function can be
taken to be 2π-periodic in x.

9After Erwin Rudolf Josef Alexander Schrödinger (1887–1961)
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(a) Use the method of separation of variables to arrive at an eigenvalue
problem for the Schrödinger equation.

(b) Find the eigenvalues and eigenfunctions for the eigenvalue problem of
part (a).

(c) Use your eigenfunctions to obtain a general expression for the wave
function.

7.2.10 Use the construction provided in the proof of Theorem 7.2.13 to compute
the Green function for the example of Section 7.2.1.1.

7.2.11 Show that Gp,q,r(x, ξ) = Gp,q,r(ξ, x) for all x, ξ ∈ [a, b].
7.2.12 Show that Gp,q,r is self-adjoint with respect to the inner product 〈·, ·〉r.
7.2.13 Verify that if u ∈ L2([a, b];R) then Gp,q,r(u) ∈ dom(Lp,q,r).

Hint: Use the definition of Gp,q,r in terms of the Green function, and then use the
properties of the Green function enumerated in Theorem 7.2.13.

7.2.14 Let p : [0, 1] → R be positive and continuously differentiable and consider
the eigenvalue problem

p(x)y′′(x) = λy(x)
y(0) = 0
y(1) = 0.

Let {λn}n∈N denote the eigenvalues for this system, with {φn}n∈N the corre-
sponding normalised eigenfunctions.
(a) Show that there exists functions p̃, q̃, and r̃ defined on [0, 1] with p̃ and r̃

positive, and constants α0, α1, β0, and β1 so that the eigenvalue problem

(p̃y′)′ − q̃y = λr̃y
α1y′(0) + α0y(0) = 0
β1y′(1) + β0y(1) = 0

has eigenvalues {λn}n∈N and eigenfunctions {φ′n}n∈N.
(b) Show that the eigenfunctions from part (a) are orthonormal with respect

to the inner product 〈·, ·〉r̃.
7.2.15 In Exercise 6.5.2 you determined the temperature distribution across the

walls of a heat exchanger tube. In part (c) of that problem, you simply solved
a differential equation, and no eigenvalue problem was encountered.
(a) If one applies the method of separation of variables (forgetting the as-

sumption that the temperature is independent of θ, what is the eigen-
value problem defined by the “r-part” of the problem, assuming that
T0 = T1 = 0?

(b) Are any of the eigenvalues positive?
Hint: Understand enough of the proof of Theorem 7.2.20 to answer the ques-
tion.

(c) Is zero an eigenvalue?
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In the following exercise you will be introduced to Rayleigh’s principle, named
after John William Strutt, or more commonly, Lord Rayleigh (1842–1919).

7.2.16 Consider the eigenvalue problem (7.15) and suppose that all eigenvalues are
positive (which can always be done by shifting the eigenvalues if necessary).
For a nonzero function y ∈ dom(Lp,q,r) define the Rayleigh quotient by

Rp,q,r(y) =
Ep,q,r(y)

‖y‖2r
.

Denote the eigenvalues in descending order by {λn}n∈N and the corresponding
normalised eigenfunctions by {φn}n∈N. For N ∈ N let FN denote the collection
of nonzero functions in dom(Lp,q,r) that are orthogonal to the first N − 1
eigenfunctions.

For y ∈ dom(Lp,q,r) let

yN =

N∑
n=1

〈y, φn〉φn

denote the Nth partial sum in the generalised Fourier series.

(a) Show that Ep,q,r(yN, y) =
∑N

n=1 λn〈y, φn〉
2.

Hint: Use (7.28).
(b) Use the result from (a) to show that for y ∈ dom(Lp,q,r) we have

∞∑
n=1

λnc2
n ≤ Ep,q,r(y, y).

(c) Prove the following result.

Proposition λN = Rp,q,r(yN) = min
y∈FN

Rp,q,r(y).

Hint: Use Parseval’s equality for functions in FN.
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Section 7.3

Second-order singular boundary value problems

The eigenvalue problem P studied in the previous chapter (i.e., the one defined
by equation (7.15)) has some properties that simply do not hold in certain physical
situations. These are characterised by the problem being defined on a closed
interval [a, b] of finite length, and by the fact that on this interval the functions
p and r are strictly positive. In this chapter we look to relax these assumptions.
Doing so, it turns out, opens a Pandora’s box of complications that make the
boundary value problems we study in this chapter much more difficult than those
of Section 7.2. It turns out that there are many physical problems which retain the
character of the easier problems, but there are others which do not. Our first order
of business is to classify the more general class of boundary value problems we
look at. This we do in Section 7.3.1.

7.3.1 Classification of boundary value problems

The problems we study in this chapter are so-called “singular problems.” In
this section we shall first distinguish singular problems from nonsingular problems,
and then look in detail at the various types of singular problems, at least as these
can be ascertained by simply “looking at” the problem. It turns out that there
is a further classification in the singular case, that between the “limit-point” and
“limit-circle” cases, that has no analogue in the nonsingular case. This is a crucial
distinction, and we look into this in Section 7.3.1.2.

7.3.1.1 Regular and singular boundary value problems Our first order of
business in to generalise in a fairly straightforward manner the boundary value
problems of Section 7.2. One of the generalisations is to allow intervals that are
open and/or unbounded. This requires some new notation for the inner product
defined by a positive function r. Thus, if I ⊆ R is an interval and if r : I → R is a
positive continuous function, then we as usual define the inner product between
two C-valued functions on I by

〈 f , g〉r =

∫
I

f (x)ḡ(x)r(x) dx. (7.34)

We shall denote by Lr
2(I;C) those functions f : I→ C for which ‖ f ‖r =

√
〈 f , f 〉r < ∞.

If I is closed and bounded, then Lr
2(I;C) = L2(I;C) (cf. Exercise 7.3.1). However, for

intervals that are not closed and bounded, these sets of functions may not be the
same, so we need to make a distinction here that was not necessary in Section 7.2.

Let us now try to be as precise as we can about what we mean by a boundary
value problem.
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7.3.1 Definition Let I ⊆ R be an interval. A boundary value problem on I consists of the
following data:

(i) functions p, q, r : I→ R satisfying

(a) p is twice continuously differentiable,
(b) q and r are continuous, and
(c) p(x), r(x) > 0 for all x ∈ I;

(ii) for each finite endpoint e ∈ I, a boundary condition of the form α1y′(e) +
α0y(e) = 0;

(iii) for each finite endpoint e ∈ cl(I) \ I with the property that the limits

lim
x→e

p(x), lim
x→e

r(x), lim
x→e

q(x)

exist with the first two limits being strictly positive, a boundary condition of
the form α1y′(e) + α0y(e) = 0;

(iv) a subspace dom(Lp,q,r) of functions from I to C consisting of those functions f
with the properties that

(a) f is differentiable,
(b) there exists a function f ′′ ∈ Lr

2(I;C) so that

f ′(x) = f ′(x0) +

∫ x

x0

f ′′(ξ) dξ,

and
(c) f satisfies the boundary conditions (ii) and/or (iii) when these are appli-

cable;

(v) the linear mapping Lp,q,r : dom(Lp,q,r)→ Lr
2(I;C) defined by

Lp,q,r(y) = r−1
(
(py′)′ − qy

)
.

An endpoint e ∈ cl(I) is regular if it is finite and if the limits

lim
x→e

p(x), lim
x→e

r(x), lim
x→e

q(x) (7.35)

exist with the first two limits being strictly positive. An endpoint that is not regular
is singular. A boundary value problem is regular if both endpoints are regular. A
boundary value problem that is not regular is singular. •

Let us give some examples of boundary value problems so that we can try to
better understand the above lengthy definition.



7.3 Second-order singular boundary value problems 603

7.3.2 Examples
1. We shall encounter in Section 7.3.4.1 the Bessel equation. Let us not physically

motivate the equation at this point, but merely produce an eigenvalue problem
that we will use to demonstrate our classification procedures. The eigenvalue
problem we consider is

xy′′(x) + y′(x) −
ν2

x
y = λxy(x),

which is Bessel’s equation of order ν ≥ 0. Thus p(x) = x, q(x) = − ν
2

x , and r(x) = x.
The matter of classification is determined once the interval is specified. Let ε > 0
and take I = [ε, 1], p(x) = x, q(x) = 0, and r(x) = x. Since I is closed and bounded,
this defines a regular problem, and so requires the corresponding boundary
conditions. Let us be concrete and choose boundary conditions y(ε) = 0 and
y(1) = 0. This, of course, is the sort of problem we looked at in detail in
Chapter 6.

2. Let us use the same data as in Example 1, but now take I = (ε, 1]. Thus the only
difference is the exclusion of the left endpoint of the interval. However, since
we are taking ε > 0, the limits of part (iii) and equation (7.35) of the definition
are met, so we still need to have the boundary conditions specified at these
points. Thus we see that the problem is still regular.

3. Let us keep the same p, q, and r as in Example 1, but now take I = (0, 1]. Now
the limits of part (iii) and equation (7.35) of the definition are not satisfied since
both p and r assume the value of zero in the limit. Thus this problem is singular,
and one specifies only the boundary condition at the right endpoint.

4. In Section 7.3.4.2 we will see how the Legendre equation10 comes up in look-
ing at the Laplacian in spherical coordinates. Here we merely reproduce the
differential equation:

(1 − x2)y′′(x) − 2xy′(x) = λy(x).

Thus p(x) = 1 − x2, q(x) = 0, and r(x) = 1. The interval of definition for this
differential equation is (−1, 1). Since the limit for p at both endpoints is zero,
the problem is singular. •

7.3.3 Assumption Note that in Example 2, the removal of the left endpoint does nothing
to essentially change the problem from Example 1. This is generally the case, as
can easily be seen. Thus we make the following blanket assumption from now on.

If a problem is regular, we shall assume that the interval of definition is closed
and bounded. •

10After Adrien-Marie Legendre (1752–1833).
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7.3.4 Remark Note that in Examples 3 and 4, while p and r are indeed positive on I as they
are required to be, they vanish in the limit at one or both of the endpoints. Some
authors allow the problem of Example 3 to be defined on [0, 1] and of Example 4
to be defined on [−1, 1]. In this case the problem arises because p and r then vanish
on the physical domain of the system. However, such an approach has some
disadvantages, and the wiser approach is to not allow p and r to vanish on the
physical domain. •

One of the main features of the singular problem is its allowance of intervals that
are not closed and bounded. The possible intervals on which a singular problem
might be defined are

1. I = (−∞, b],
2. I = [a,∞),
3. I = [a, b),
4. I = (a, b],

5. I = (a, b),
6. I = (a,∞),
7. I = (−∞, b),
8. I = R.

We intend to reduce this to essentially two cases, at least as far as the development
of the theory goes. Any given singular example may take any of the above forms.
However, we wish to contend that there are essentially two cases to consider. We
do this as follows.

7.3.5 Lemma Any problem with an interval of the form 1–4 can be transformed into a problem
with interval [0,∞), and any problem with an interval of the form 5–8 can be transformed
into a problem with interval (−∞,∞).

Proof The lemma is proved by making a change of the independent variable for the
problem. Thus we prove the lemma by merely listing the change of variable in the
eight cases. In each case, it is easy to verify that the change of variable is a infinitely
differentiable bijection with infinitely differentiable inverse, thus ensuring that the
change of variable is valid.

1 We define the map ξ : (−∞, b]→ [0,∞) by ξ(x) = b − x.
2 We define the map ξ : [a,∞)→ [0,∞) by ξ(x) = x − a.
3 We define the map ξ : [a, b)→ [0,∞) by ξ(x) = tan(π2

x−a
b−a ).

4 We define the map ξ : (a, b]→ [0,∞) by ξ(x) = tan(π2
b−x
b−a ).

5 We define the map ξ : (a, b)→ (−∞,∞) by ξ(x) = tan(π2x−(b+a)
b−a ).

6 We define the map ξ : (a,∞)→ (−∞,∞) by ξ(x) = ln(x − a).
7 We define the map ξ : (−∞, b)→ (−∞,∞) by ξ(x) = ln(b − x).
8 There is nothing to do in this case. �

The lemma tells us that, up to a change of the independent variable, there are
essentially two singular problems, one defined on the interval [0,∞) and the other
defined on the interval (−∞,∞). This is of some help in developing the general
theory as it keeps us from having to deal with the eight cases separately. Let us see
how this works in some examples.
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7.3.6 Examples (Example 7.3.2 cont’d)
1. By Lemma 7.3.5, the singular Bessel boundary value problem Example 7.3.2–3

can be reduced so as to be defined on the interval [0,∞). Let us be explicit about
this, in fact. As we see in the proof of Lemma 7.3.5, to define the problem on
the new interval [0,∞) we should make the change of independent variable
ξ(x) = tan(π2 (1 − x)). If η(ξ) = y(x(ξ)) then we ascertain that η satisfies the
differential equation

π
4 (1 + ξ2)2(π − 2 arctan ξ)η′′(ξ) + π

4

(
2ξ(π − 2 arctan ξ) − 2(1 + ξ2)

)
η′(ξ) =

λ(1 − 2
π arctan ξ)η(ξ) (7.36)

for ξ ∈ [0,∞).
2. For the Legendre boundary value problem, Example 7.3.2–4, the interval can

be transformed to (−∞,∞). Indeed, as in Example 3, we can grab an explicit
expression for the transformation of the independent variable from the proof
of the lemma: ξ(x) = tan(πx). One may directly compute, with notation as in
Example (7.36),

(1+ξ2)2(π2
−arctan2 ξ)η′′(ξ)+

(
2ξ(π2

−arctan2 ξ)−2 arctan ξ(1+ξ2)
)
η′(ξ) = λη(ξ),

(7.37)
with ξ ∈ (−∞,∞).

7.3.7 Remark In equations (7.36) and (7.37) we see explicitly how Lemma 7.3.5 works.
Note, however, that one never does this transformation in practice, but retains the
equations in the original coordinates. We merely produce the results of making
the transformation to explicitly indicate the manner in which the eight different
singular problems are reduced to two in Lemma 7.3.5. •

7.3.1.2 The limit-point and limit-circle cases In this section we discuss a
means of distinguishing two fundamental classes of singular boundary value prob-
lems. The exact reasons why the distinction goes along the lines presented should
not be obvious to a first time reader; it only follows from a detailed look into the
theory of these singular problems. In the development in this section we make use
of Lemma 7.3.5 to reduce the singular problems to those defined on the interval
[0,∞) or on the interval (−∞,∞).

7.3.8 Definition Consider a boundary value problem defined on an interval I ∈
{[0,∞), (−∞,∞)}. Let e ∈ {−∞,+∞} be an infinite endpoint of I, and define

Ie =

(−∞, 0], e = −∞

[0,∞), e = +∞.
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The problem is in the limit-circle case at e if for a given λ0 ∈ C, every y satisfying

(py′)′ − qy = λ0ry (7.38)

has the property that y ∈ Lr
2(Ie;C). If the problem is not in the limit-circle case on

Ie, it is in the limit-point case at e. •

In order to make sure that the distinction between the limit-circle and limit-
point cases depends only on the problem data I, p, q, and r, and not on a choice of
a particular λ0 ∈ C in (7.38), we prove the following result due to Hermann Klaus
Hugo Weyl (1885–1955).

7.3.9 Theorem Consider a boundary value problem defined on an interval I ∈ {[0,∞), (−∞,∞)}.
Let e ∈ {−∞,+∞} be an infinite endpoint for I and let Ie be the corresponding interval as
given in Definition 7.3.8. If there exists a λ0 ∈ C so that every solution y of

(py′)′ − qy = λ0ry

belongs to Lr
2(Ie,C), then for every λ ∈ C, every solution y of

(py′)′ − qy = λry

belongs to Lr
2(Ie,C).

Proof missing stuff �

The theorem ensures tells us that the notion of being in the limit-circle case is
a problem dependent notion. Furthermore, it tells us that to determine whether a
problem is in the limit-circle case, one need only check the solution of the differential
equation

(py′)′ − qy = λ0ry

for a particular λ0 ∈ C, allowing one to choose an easy one, if it happens that this
is possible. Let us illustrate this for a couple of examples.

7.3.10 Examples
1. We take the eigenvalue problem y′′ = λy, and consider two possible types of

intervals.

(a) If I = [0,∞) then choosing λ = 0 gives the solution y(x) = Ax + B to the
differential equation. This solution is generally not in L2([0,∞);R), and so
we deduce that the problem is in the limit-point case at +∞.

(b) Next we take I = (−∞,∞). Here there are two singular endpoints. The
previous case allows us to conclude that the problem is in the limit-point
case at +∞. Also, since a function of the form y(x) = Ax+B is not generally
in L2((−∞, 0];R), we see that the problem is also in the limit-point case at
−∞.
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2. Let us now look at Bessel’s equation of order ν, which gave the eigenvalue
problem

xy′′(x) + y′(x) −
ν2

x
y = λxy(x).

We shall look at two singular problems associated with this equation.

(a) The first case we consider is I = (0, b] for some 0 < b < ∞. Since it suffices to
investigate solutions to the equation for a particular λ, let us choose λ = 0.
We may then see by direct computation that two linearly independent
solutions to the equation are y1(x) = xν and y2(x) = x−ν if ν > 0. For ν = 0
two linearly independent solutions are y1(x) = 1 and y2(x) = ln x. For ν > 1
we compute

‖y2‖
2
r =

∫ b

0
xx−2ν dx =

x2(1−ν)

2(1 − ν)

∣∣∣∣b
0
. (7.39)

Therefore, for ν > 1, the function y2 is not in Lr
2((0, b];R), and we conclude

that we are in the limit-point case at 0. For ν = 1 we compute

‖y2‖
2
r =

∫ b

0
xx−2 dx = ln x

∣∣∣b
0
.

This means that we are in the limit-point case when ν = 1. For 0 < ν < 1
we see from (7.39) that we are in fact in the limit-circle case at x = 0. For
ν = 0 we have

‖y2‖
2
r =

∫ b

0
x ln2 x dx =

(x2

4
−

x2 ln x
2

+
x2 ln2 x

2

)∣∣∣∣b
0
.

Thus y2 < Lr
2((0, b];R), and the zeroth-order Bessel equation is in the limit-

point case at x = 0 when ν = 0. The above is summarised in Table 7.1.

Table 7.1 Classification of Bessel’s equation into limit-point or
limit-circle cases for the interval (0, b]

ν limit-point or limit-circle at 0

0 limit-point
ν ∈ (0, 1) limit-circle
ν ∈ [1,∞) limit-point

(b) Next we take [a,∞) for some a > 0. Here the singular endpoint is at +∞.
The solutions we determined in the previous part of the problem still hold.
In this case, the above integrals may be used, along with the appropriately
modified endpoints, to produce the categorisation of Table 7.2.
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Table 7.2 Classification of Bessel’s equation into limit-point or
limit-circle cases for the interval [a,∞)

ν limit-point or limit-circle at∞

0 limit-point
ν ∈ (0, 1] limit-point
ν ∈ (1,∞) limit-circle

3. Now we look at the Legendre equation

(1 − x2)y′′(x) − 2xy′(x) = λy(x)

defined for x ∈ (−1, 1). There are two singular endpoints. Here we may
verify that for λ = 0 two linearly independent solutions are y1(x) = 1 and
y2(x) = ln(1 + x) − ln(1 − x). Clearly y1 ∈ Lr

2((−1, 1);R). One also computes∫ 1

−1
y2

2(x) dx =
2π2

3
,

so that y2 ∈ L2((−1, 1);R), thus allowing us to conclude that the problem is in
the limit-circle case at each endpoint. •

It ought not be clear at this point what is the relevance of the distinction between
the limit-circle and limit-point cases. One reason for our interest in this distinction
will be elucidated in Theorem 7.3.13 below.

7.3.2 Eigenvalues and eigenfunctions for singular problems

Note that the problems covered in some detail in Section 7.2 are always regular.
As was the case with these problems, the eigenvalue problem is of principle interest,
even for singular problems. We denote the eigenvalue problem again as P, thus
making a slight abuse of notation:

(py′)′ − qy = λry, y ∈ dom(Lp,q,r) (7.40)

with λ ∈ C an unknown parameter. As we did with the regular problems of
Section 7.2, we shall denote by spec0(P) ⊆ C the set of complex numbers λ for
which (7.40) admits a solution. Thus spec0(P) is the collection of eigenvalues for
the problem, as usual. The notion of spectrum for singular problems is more
sophisticated than for regular problems. As we shall see in Section 7.3.3, the
natural generalisation of the notion of spectrum allows for points in the spectrum
that are not eigenvalues.
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7.3.2.1 Basic properties In this section we shall show that the essential fea-
tures of the eigenvalues and eigenfunctions for regular problems extend to singu-
lar problems. In particular, eigenvalues are real, and eigenfunctions for distinct
eigenvalues are orthogonal. For the regular problems this followed from self-
adjointness of Lp,q,r. However, a look at the proofs for this self-adjointness (see
Propositions 7.2.7 and 7.2.10) reveals that they depend on the regular boundary
conditions being present at each endpoint. As this is not necessarily the case for
singular problems, we need to start from scratch.

Let us get right to this.

7.3.11 Proposition Consider the problem P defined on the interval I. Suppose that for any two
eigenfunctions y1 and y2, perhaps associated with distinct eigenvalues, for P we have the
property that at each endpoint e for I we have

lim
x→e

p(x)y1(x)y′2(x) = lim
x→e

p(x)y2(x)y′1(x). (7.41)

Then spec(P) ⊆ R ⊆ C. Moreover,
(i) at a regular endpoint e, (7.41) is satisfied at e, and
(ii) if limx→e p(x) = 0 and if all eigenfunctions are bounded, then (7.41) holds at e.

Proof Let λ ∈ spec(P) have the eigenfunction y : I→ C. Then

(py′)′ − qy = λry,

and since p, q, and r are R-valued, we also have

(pȳ′)′ − qȳ = λ̄rȳ.

Multiply the first of these equations by ȳ and the second by y and subtract the
resulting equations to get

(py′)′ ȳ − (pȳ′)′y = (λ − λ̄)ryȳ.

Now let [a, b] ⊆ I and integrate over this interval:∫ b

a

(
(py′)′ ȳ − (pȳ′)′y

)
dx = (λ − λ̄)

∫ b

a
ryȳ dx. (7.42)

The integral on the left in (7.42) may be evaluated by parts:∫ b

a

(
(py′)′ ȳ − (pȳ′)′y

)
dx = p(x)y′(x)ȳ(x)

∣∣∣∣b
a
− p(x)ȳ′(x)y(x)

∣∣∣∣b
a
−

∫ b

a
py′ ȳ′ dx +

∫ b

a
pȳ′y′ dx

= p(x)y′(x)ȳ(x)
∣∣∣∣b
a
− p(x)ȳ′(x)y(x)

∣∣∣∣b
a
.
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Now we take the limit as a approaches the left endpoint e1 and b the right endpoint
e2, and by the assumption (7.41), this gives

lim
a→e1
b→e2

∫ b

a

(
(py′)′ ȳ − (pȳ′)′y

)
dx = 0.

Now, returning back to (7.42), we have

(λ − λ̄) lim
a→e1
b→e2

∫ b

a
r(x)|y(x)|2 dx = 0. (7.43)

Since the integral is nonzero, this implies that λ̄ = λ, as desired.
Now suppose that e is a regular endpoint for I. Then we may as well suppose

that e ∈ I, as per Assumption 7.3.3. Then we have α1y′(e) + α0y(e) = 0. If α1 = 0
then we immediately have y(e) = 0 and so (i) holds. If α1 , 0 then we have

α1y′1(e) + α0y1(e) = 0, α1y′2(e) + α0y2(e) = 0.

Thus
y′1(e)y2(e) = −

α0

α1
y1(e)y2(e), y′2(e)y1(e) = −

α0

α1
y2(e)y1(e),

giving y′1(e)y2(e) = y′2(e)y1(e), and so (i) follows in this case as well.
The statement (ii) is clear as both limits in (7.41) are zero in this case. �

Note that, as expected, our result indicates that the eigenvalues for a regular
problem are real. It also shows that the eigenvalues for at least some singular
problems are real. In fact, the condition (7.41) turns out to be satisfied in almost
any boundary value problem. For example, in all of the problems of Example 7.3.2,
both singular and regular, the condition (7.41) is satisfied, although in the singular
cases, this is not obvious.

Now let us turn to orthogonality of eigenfunctions.

7.3.12 Proposition If the problem P satisfies the condition (7.41) at each endpoint, and for each
pair of eigenfunctions y1 and y2, then eigenfunctions for distinct eigenvectors of P are
orthogonal with respect to the inner product 〈·, ·〉r.

Proof Let λ1, λ2 ∈ spec(P) be distinct with respective real eigenfunctions y1 and
y2. We may then proceed exactly as in the proof of Proposition 7.3.11, replacing
y with y1 and ȳ with y2, to get an equation which is the analogue of (7.43) in this
case:

(λ1 − λ2) lim
a→e1
b→e2

∫ b

a
r(x)y1(x)ȳ2(x) dx = 0.

Since λ1 , λ2, the result follows. �
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7.3.2.2 Classification by spectral properties The classification above has
been done along the lines of the interval of definition for the problem. This is
essentially determined by the physics of the problem, and one does not have to
do any analysis to decide whether a problem is regular or singular, and if it is
singular, which of the two cases of Lemma 7.3.5 applies. Let us turn to a useful
characterisation, albeit one that cannot be determined readily by simply looking at
the physics. To this end, we shall say that the boundary value problem P defined
by (7.40) is pseudo-regular if spec(P) is a countable set {λn}n∈N which can be ordered
so that

1. · · · < λn < · · · < λk+1 < 0 < λk < · · · < λ1 and

2. limn→∞ λn = −∞.

Thus a problem is pseudo-regular when its spectrum has the properties deduced
in Theorem 7.2.20 for regular problems. In particular, of course, a regular problem
is pseudo-regular. Some singular problems are also pseudo-regular, although it
is generally non-trivial to ascertain whether a given singular problem is pseudo-
regular. The valuable fact about pseudo-regular problems is that the eigenfunction
properties provided for regular problems in Section 7.2 often extend easily to
pseudo-regular problems. In particular, the eigenfunctions for a pseudo-regular
boundary value problem form a complete orthonormal family. It can be shown
that the singular problems of Example 7.3.2 are actually pseudo-regular, although
this is not an entirely trivial deduction.

The following result makes a connection between spectral properties and the
limit-circle/limit-point discussion of Section 7.3.1.2. This is a quite nontrivial result,
and we refer to the references for a proof.

7.3.13 Theorem If a boundary value problem defined on the interval I ∈ {[0,∞), (−∞,∞)} is in
the limit-circle case at all infinite endpoints, then it is pseudo-regular.

The theorem does not say that if a problem is in the limit-point case at one or
more endpoints then it is prohibited from being pseudo-regular. Indeed, there
are examples with endpoints in the limit-point case for which the boundary value
problem is pseudo-regular, some of these having physical importance. In such
cases, one can often proceed “by hand” to determine pseudo-regularity.

7.3.3 The theory for singular boundary value problems

Let us give for now the briefest outline of how the general theory progresses for
singular eigenvalue problems. It turns out that it is convenient in this development
to use the Lebesgue-Stieltjes integral.

7.3.3.1 Problems defined on [0,∞) In this case we proceed by considering
a sequence of regular problems defined on intervals [0, bn], where {b j} j∈N is an
increasing sequence with lim j→∞ b j = ∞. At the boundary b j we impose the regular
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boundary condition y(b j) = 0. Since each of the problems on the intervals [0, b j]
is then regular, it possesses an countable eigenvalue sequence {λn, j}n∈N which we
assume to be in descending order. For each fixed j ∈ N we define a monotone
increasing function ρ j : [0,∞)→ R. . . no time!

7.3.3.2 Problems defined on (−∞,∞) Tune in next year. . .

7.3.4 Applications that yield singular boundary value problems

In the preceding sections we presented a few singular eigenvalue problems as
illustrations of certain parts of the general development. Interestingly, singular
eigenvalue problems are very common in applications, so the attention devoted to
them is merited, even though they require a level of sophistication a cut above that
shown for the regular problems in Section 7.2. In this section we look at a small
collection of physical problems that exhibit singular behaviour.

7.3.4.1 The vibrating of a drum We consider a circular drum of radius b. One
may determine that the partial differential equation governing the vertical deflec-
tion u of the drumhead is

∂2u
∂t2 = c2

∇
2u,

where u is the Laplacian of Section 6.5. Since the drumhead is circular, it makes
sense to work in polar coordinates (r, θ) defined in the usual manner by

x = r cosθ, y = r sinθ.

In Exercises 6.5.1 and 6.5.2 the Laplacian in polar coordinates is derived to be

∇
2u =

∂2u
∂r2 +

1
r
∂u
∂r

+
1
r2

∂2u
∂θ2 .

Therefore the partial differential equation governing the vertical displacements
u(r, θ, t) of the drumhead is then given explicitly in polar coordinates by

1
c2

∂2u
∂t2 =

∂2u
∂r2 +

1
r
∂u
∂r

+
1
r2

∂2u
∂θ2 .

If we suppose that the outer edge of the drumhead is glued down (or something),
a natural boundary condition is u(b, θ, t) = 0. We should also require that u be a
2π-periodic function of θ.

To this equation, we apply the venerable method of separation of variables. Let
us simplify life by looking for radially symmetric vibrations of the drumhead. This
means that we ask that u be independent of θ. Substituting u(r, t) = R(r)T(t) into
the differential equation gives

1
c2 R(r)T̈(t) = R′′(r)T(t) +

1
r

R′(r)T(t).



7.3 Second-order singular boundary value problems 613

Now, as usual, divide by R(r)T(t) to get

1
c2

T̈(t)
T(t)

=
R′′(r)
R(r)

+
1
r

R′(r)
R(r)

.

Carrying on as usual, we declare that both sides of this equation must be equal to
a constant which we denote by λ, giving the two differential equations

T̈(t) = c2λT(t)
rR′′(r) + R′(r) = λrR(r).

We recognise the second of these equations as the Bessel equation of order 0. Since
r ∈ (0, b], we are in the singular case as exemplified by Example 7.3.2–3. What’s
more, from Table 7.1 we see that the problem is in the limit-circle case at the singu-
lar endpoint x = 0. From Theorem 7.3.13 we see that this implies that the problem
is pseudo-regular. Thus we the eigenvalue problem will have a collection of eigen-
values {λn}n∈N that are, but for a finite number, negative, and limn→∞ λn = −∞.
The corresponding normalised eigenfunctions {φn}n∈N will comprise a complete
orthonormal family relative to the inner product 〈·, ·〉r.

The above characterisation of the solution to the eigenvalue problem is of some
interest as it tells us a great deal about the character of the problem. However, the
Bessel equation is such a classic and common equation that public opinion dictates
that we say something about the solution. One can verify by understanding the
proof of Theorem 7.2.20 that the eigenvalues of the Bessel equation are nonpositive.
Furthermore, one can verify that 0 is not an eigenvalue (see Exercise 7.3.3). This
makes it valid to get rid of theλ in the solution by making the change of independent
variable x =

√
−λr, and then defining y(x) = R( 1

√
−λ

x). The differential equation for
y is then

xy′′(x) + y′(x) + xy(x) = 0, (7.44)

which is the zeroth-order Bessel equation in standard form. In a course on dif-
ferential equations, one will learn how to obtain a polynomial (essentially) series
representation for the solutions of (7.44) about the singular point 0. We shall not
provide this series representation. Let us merely say that the zeroth-order (or
any order, for that matter) Bessel’s equation is a linear, second-order differential
equation, albeit one with non-constant coefficients. This entitles it to two linearly
independent solutions. It is the form of these functions, at least as a series expan-
sion, that one obtains in one’s differential equation course. In that course, you will
arrive at the two linear independent solutions that are typically denoted J0 and Y0.
J0 is called the zeroth-order Bessel function of the first kind and Y0 is called the
zeroth-order Bessel function of the second kind. In Figure 7.4 are plotted J0 and
Y0. Note that J0 has a well-defined limit at x = 0, but that Y0 is unbounded at x = 0.
In fact, one can verify that the singularity of Y0 at 0 is logarithmic. Note that any
solution of (7.44) will be of the form y(x) = c1J0(x) + c2Y0(x). Going back to the
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Figure 7.4 J0 (left) and Y0 (right)

original variables we have

R(r) = c1J0(
√

−λr) + c2Y0(
√

−λr).

Let us now see how we can use the solution of the equation (7.44) to obtain
information about the eigenvalues and eigenfunctions for the singular eigenvalue
problem

rR′′(r) + R′(r) = λrR(r), R(b) = 0.

On physical grounds (this also comes out of the theory of Section 7.3.3) we reject
the presence of Y0 in our solution as this would imply unbounded deflections of
the drumhead. Thus the physically useful solutions for the eigenvalue problem
will be multiples of J0. The boundary condition R(b) = 0 then translates to

R(
√

−λb) = c1J0(
√

−λb) = 0.

This gives the algebraic equation J0(
√
−λb) = 0 that must be satisfied by the eigen-

values. That is to say, for every root z of J0, there corresponds an eigenvalue
satisfying

√
−λb = z. From Figure 7.4 we find it believable that it is possible to

enumerate the roots {zn}n∈N of J0 nicely in ascending order. This then gives the eigen-
values as {− z2

n
b2 }n∈N. The eigenfunctions are then simply Rn(r) = J0(

√
−λnr) = J0( zn

b r).
These functions are necessarily orthogonal with respect to the inner product 〈·, ·〉r
so that we have ∫ b

0
rRn(r)Rm(r) dr = 0

if m , n. We may also normalise the eigenfunctions by defining

cn =
(∫ b

0
rR2

n(r) dr
)−1/2

so that the functions {φn = cnRn}n∈N form a complete orthonormal family. This
orthonormal family may be used to obtain an expression for the displacement
u(r, t) of the drumhead at all times (see Exercise 7.3.7).
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Many other physical systems yield eigenfunctions in terms of Bessel functions,
and some of these arise in the exercises in this section and in Section 7.2.

7.3.4.2 The Laplacian in spherical coordinates Given our definition in Sec-
tion 6.5 of the Laplacian for planar domains, it is clear that one may define the
Laplacian on a domain in Rn by

∇
2 f =

∂2 f
∂x2

1

+ · · · +
∂2 f
∂x2

n
.

In this section we shall be interested in the case where n = 3. What’s more, just
as we used polar coordinates in the preceding section, in this section we shall use
nonstandard coordinates, now the spherical coordinates (r, θ, φ) defined by

x = r sinθ cosφ, y = r sinθ sinφ, z = r cosθ.

These coordinates are illustrated in Figure 7.5 where we can see that r is, of course,

y

z

x

θ

φ

r

Figure 7.5 Spherical coordinates

the distance from the origin, and θ and φ are what one would normally think of as
“latitude” and “longitude.” Note that θ ∈ (0, π) and φ ∈ (−π, π). If we express the
three-dimensional Laplacian,

∇
2 f =

∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2
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in spherical coordinates we have, after the requisite computations (see Exer-
cise 7.3.8),

∇
2 f =

1
r2

∂
∂r

(
r2∂ f
∂r

)
+

1
r2 sinθ

∂
∂θ

(
sinθ

∂ f
∂θ

)
+

1
r2 sin2 θ

∂2 f
∂φ2 . (7.45)

As with the Laplacian in two-dimensions, the Laplacian may be used to describe
the steady-state temperature distribution in a uniform solid. That is to say, if the
temperature is a function u on a domain in R3, the equation ∇2u = 0 will describe
the equilibrium temperature of the solid. So suppose that we are given a spherical
solid of radius b with a known temperature distribution on its boundary. Further
suppose that the distribution of temperature on the boundary is independent of φ
in spherical coordinates. The temperature u(r, θ) in the interior of the body satisfies
the boundary value problem

1
r2

∂
∂r

(
r2∂u
∂r

)
+

1
r2 sinθ

∂
∂θ

(
sinθ

∂u
∂θ

)
= 0, u(b, θ) = f (θ).

To make this equation more tractable, we engage in trickery. We introduce the
new variable s = cosθ ∈ (−1, 1), and then we compute (see Exercise 7.3.8) that the
above boundary value problem becomes

1
r2

∂
∂r

(
r2∂v
∂r

)
+

1
r2

∂
∂s

(
(1 − s2)

∂v
∂s

)
= 0, v(b, s) = g(s), (7.46)

where v(r, s) = u(r, arccos s) and g(s) = f (arccos s). In the usual manner, we seek a
separable solution u(r, θ) = R(r)S(s). We substitute this into the partial differential
equation to get

S(s)R′′(r) +
2
r

S(s)R′(r) +
1
r2 R(r)

(
(1 − s2)S′(s)

)′
= 0.

Division by R(r)S(s)/r2 gives(
(1 − s2)S′(s)

)′
S(s)

= −r2 R′′(r)
R(r)

− 2r
R′(r)
R(r)

.

The usual argument of setting both sides of the equation equal to a constant λ gives
the two ordinary differential equations(

(1 − s2)S′(s)
)′

= λS(s)

r2R′′(r) + 2rR′(r) = −λR(r).

The first of these equations we recognise as the eigenvalue problem associated with
Legendre’s equation as discussed in Example 7.3.2–4.
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With this physical example as motivation, let us say a few things about the
Legendre equation. As it is defined for s ∈ (−1, 1) we see that it is singular, and is in
the limit-circle case at both endpoints as seen in Example 7.3.10–3. Therefore, as
with the zeroth-order Bessel equation, the Legendre eigenvalue problem is pseudo-
regular, and so has all the properties of a regular eigenvalue problem. Thus the
eigenvalues {λn}n∈N for the problem are negative, except possibly for an at most
finite number, and the corresponding normalised eigenfunctions {φn}n∈N form a
complete orthonormal family. Unlike the situation with the Bessel equation, one
can actually be explicit about the eigenvalues and eigenfunctions for the Legendre
equation. To do this in a methodical manner, one should use the same theory
for obtaining polynomial series expansions about singular points for differential
equations as was alluded to in Section 7.3.4.1 in relation to the Bessel equation. We
shall sidestep this, and merely present the eigenvalues and eigenfunctions. The
eigenvalues are {λn = −n(n+1)}n∈N0 and the corresponding bounded eigenfunctions
are {Pn}n∈N where Pn is given by Rodrigues’ formula:

Pn(s) =
1

n!2n

dn

dsn (s2
− 1)n, n ∈ N0.

These are called the Legendre polynomials. There are also unbounded solutions to
Legendre’s equation, but we reject these, again on physical grounds, although one
can make this rigorous. That the stated eigenvalues and eigenfunctions are indeed
eigenvalues and eigenfunctions is easy to verify (see Exercise 7.3.9). However, one
must also show that these are all of the eigenvalues and eigenfunctions, and this
requires a little more work, although it is not extraordinarily difficult.

Our solution to the eigenvalue problem solves half of the boundary value prob-
lem. To fully determine the solution, one must also consider the R-equation. This
is yet another singular equation, so let us just quit while we are ahead, and mention
that it is possible to use series methods for ordinary differential equations to derive
a solution for the R-equation upon substitution of the eigenvectors obtained from
the Legendre equation.

7.3.4.3 The approximate age of the earth In 1820 Fourier proposed that his
series methods could be extended to determine the age of the earth. William
Thomson, more commonly known as Lord Kelvin, (1824–1907) picked this up,
and used computations as we give here to deduce a figure of between 4 × 108 and
109 years, based upon some approximate data. While these estimates have been
improved upon through the use of advanced equipment (not of the mathematical
variety), it is interesting to go through Kelvin’s argument.

The first approximation one makes is that the earth is flat (!). In doing so, the
earth is parameterised by the depth from the surface, the other dimensions being
assumed to be infinite. We let x ∈ [0,∞) denote the distance from the surface of
the earth, and t denotes time, as usual. It is not unreasonable to expect that the
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temperature distribution u in the earth should satisfy the heat equation

∂u
∂t

= k
∂2u
∂x2 .

As boundary conditions we take u(0, t) = 0 (meaning that the temperature at the
surface is roughly constant) and we also use the initial condition u(x, 0) = f (x) to
specify an initial distribution of temperature away from the earth’s surface. In the
usual separation of variable way, we then arrive at the two differential equations

T′(t) = kλT(t)
X′′(x) = λX(x).

This gives
u(x, t) = X(x)T(0)ekλt.

On physical grounds, we reject the possibility that λ > 0; we do not expect the
temperature to increase as a function of time. Now let us concentrate our attention
on the X-equation with its eigenvalue problem

X′′(x) = λX(x), X(0) = 0.

Note that this problem is singular as the interval of definition is infinite: [0,∞).
In Example 7.3.10–1 we ascertained that the problem is in the limit-point case at
the singular endpoint. Therefore, we cannot use Theorem 7.3.13 to conclude that
the problem is pseudo-regular. In fact, the problem is not pseudo-regular. Let us
therefore proceed directly and see what happens. First let us consider the case
when λ = 0. This gives X(x) = ax + b, and the boundary condition gives b = 0, thus
leaving us with X(x) = ax in this case. We reject this possibility on the physical
grounds that it gives an unbounded temperature as x→ ∞. Thus we are left with
λ < 0. For convenience, let us write λ = −ω2. The solution for the X-equation
is then X(x) = a cos(ωx) + b sin(ωx), and the boundary condition X(0) = 0 gives
b = 0. These arguments, some of them a little hokey, give a typical solution to the
X-equation as X(x) = a sin(ωx). The question now is how we can determine ω. For
other problems of this sort, we always had another boundary condition to invoke,
and this ensured that we had a countable number of possibilities,, {ωn}n∈N, for ω.
Then we wrote

u(x, t) =

∞∑
n=1

ane−kω2
nt sin(ωnx). (7.47)

If we were to impose a boundary condition u(`, t) = 0 for some ` > 0 this would give
ωn = nπ

` . We see that as ` → ∞, the frequencies become closer and closer together,
making us think that perhaps we can change the sum in (7.47) to an integral:

u(x, t) =

∫
∞

0
e−kω2ta(ω) sin(ωx) dω. (7.48)
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Just as in (7.47) we use the initial condition u(x, 0) = f (x) to determine the coeffi-
cients an, n ∈ N, we want to somehow determine the unknown function a(ω) using
this same initial condition. Setting t = 0 in (7.48) gives

u(x, 0) =

∫
∞

0
a(ω) sin(ωx) dω = f (x). (7.49)

To “solve” this equation for a(ω) is not an easy matter, and is the subject of the
theory of Fourier transforms. We shall not cover this subject here, but merely state
that if f satisfies some conditions, then the equation (7.49) implies that

a(ω) =
2
π

∫
∞

0
f (x) sin(ωx) dx.

The function a(ω) so defined is known as the Fourier sine transform of f . Other
sorts of Fourier transforms are available, including the Fourier cosine transform

b(ω) =
2
π

∫
∞

0
f (x) cos(ωx) dx

and the plain ol’ Fourier transform

f̂ (ω) =

∫
∞

−∞

f (x)e−iωx dx.

There subject of transform theory is one which, when given even the remotest
degree of serious attention, will take up at least as much space as we have devoted
to this point in our treatment of Fourier series and eigenvalue problems. Thus we
can be forgiven for not saying too much about it at this point.

But back to the problem at hand. Using the Fourier sine series expression which
we have been handed for a(ω), the solution to the boundary value problem is now

u(x, t) =
2
π

∫
∞

0
e−kω2t

(∫ ∞

0
f (ξ) sin(ωξ) dξ

)
sin(ωx) dω

=
1
π

∫
∞

0
e−kω2t

(∫ ∞

−∞

f (ξ) cosω(x − ξ) dξ
)

dω,

if we extend f to be defined on R by f (x) = − f (−x) for x < 0 (thus we extend f
by requiring it to be odd) and using the fact that cos is an even function. Now we
swap the order of integration to give

u(x, t) =
1
π

∫
∞

−∞

f (ξ)
(∫ ∞

0
e−kω2t cosω(x − ξ) dω

)
dξ.

The inner integral is one that is determined by the well-known (or easily looked
up) integral ∫

∞

0
e−ω

2
cos(aω) dω =

√
π

2
e−a2/4.
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Using the appropriate modifications to this integral we obtain

u(x, t) =
1

2
√
πkt

∫
∞

−∞

f (ξ) exp
(
−

(x − ξ)2

4kt

)
dξ.

Now we define a new variable s by ξ = x + 2
√

kts. The change of variable formula
then gives

u(x, t) =
1
√
π

∫
∞

−∞

f (x + 2
√

kts)e−s2
ds.

Now let’s make a specific choice for f and proceed further. We take

f (ξ) =


U0, ξ > 0
−U0, ξ < 0
0, ξ = 0,

keeping in mind our requirement that f be odd when extended to R. We thus see
that

f (x + 2
√

kts) =


U0, s > − x

2
√

kt

−U0, s < − x
2
√

kt

0, s = − x
2
√

kt
.

We then have

u(x, t) =
1
√
π

∫
∞

−∞

f (x + 2
√

kts)e−s2
ds

=
U0
√
π

∫ x
2
√

kt

−
x

2
√

kt

e−s2
ds +

U0
√
π

∫
∞

x
2
√

kt

e−s2
ds −

U0
√
π

∫
−

x
2
√

kt

−∞

e−s2
ds

=
2U0
√
π

∫ x
2
√

kt

0
e−s2

ds +
U0
√
π

∫
∞

x
2
√

kt

e−s2
ds −

U0
√
π

∫
∞

x
2
√

kt

e−s2
ds

=
2U0
√
π

∫ x
2
√

kt

0
e−s2

ds.

In this way we have arrived at a nice compact formula which expresses the tem-
perature distribution in the earth, given that the initial temperature distribution
was uniform. We have made some shady moves in deriving this formula. How-
ever, these moves were all actually justified. For example, one can verify by direct
computation that the function u(x, t) does actually satisfy the heat equation and the
boundary conditions.

Now, let us see how we can use this formula for u(x, t) to ascertain the approxi-
mate age of the earth. The value of k can be determined empirically, and the value
of U0 can be taken roughly to be the temperature of molten lava, as this should



7.3 Second-order singular boundary value problems 621

take on the temperature of the interior of a very old earth. Another piece of data
that we can measure is the temperature gradient at the earth’s surface. That is to
say, we can obtain estimates for ∂u

∂x (0,T) where T is the “present” time. We can also
directly compute this from the solution u(x, t):

∂u
∂x

(0,T) =
U0
√
πkt

.

From this we obtain
T =

1
πk

( U0
∂u
∂x (0,T)

)2
.

It is from this formula that Lord Kelvin obtained his estimate of between 4 × 108

and 109 years for the age of the earth. While this estimate is made via a number of
approximations and rough estimates, the significant gap between it and theological
speculations concerning the age of the earth was a cause of some discussion.

7.3.5 Summary

Generally speaking, singular eigenvalue problems are quite complex. As such,
the extent to which one wishes to become expert in these problems is a matter of
negotiation. Here is a guide to such.
1. One should be able to determine whether a given eigenvalue problem is regular

or singular, and if singular, one should be able to ascertain which endpoints are
singular.

2. One should understand the grounds on which the distinction between the limit-
point and limit-circle cases is made, and be prepared to make this distinction,
at least for problems where one can solve the ensuing differential equations for
some value of the parameter λ.

3. Problems in the limit-circle case at all singular endpoints are nice because they
are pseudo-regular, so there eigenvalues and eigenfunctions behave like those
for regular problems.

4. Problems in the limit-point case at at least one singular endpoint are not guar-
anteed to be pseudo-regular, although they may be.

5. The notion of spectrum for problems in the limit-point case is not what you
expect. The generalisation of the idea of spectrum from the regular case leads
to the possibility in the singular case of there being points in the spectrum that
are not eigenvalues. Thus for some singular problems, the distinction between
the spectrum spec(L) and the point spectrum spec0(L) becomes real.

6. Singular problems do come up in applications, so their study is merited. Many
interesting “special functions,” examples being presented here being the Bessel
functions and the Legendre polynomials, arise as eigenfunctions for pseudo-
regular singular eigenvalue problems.



622 7 Second-order boundary value problems

7.3.6 Notes

Books have been written about Bessel functions [Tranter 1969, Watson 1995],
so obviously we can only scratch the surface as concerns a discussion of their
properties.

Exercises

7.3.1 Let I ⊆ R be an interval with r : I→ R a continuous positive function. Define
the inner product 〈·, ·〉r as in (7.34) and let Lr

2(I;C) be those functions with
finite norm with respect to this inner product.
(a) Show that if I is closed and bounded then Lr

s(I;C) = L2(I;C).
Hint: Use the fact that continuous functions on compact sets attain their
maximum and minimum.

(b) Let I = (0, 1] and let r(x) = x. Show that Lr
2(I;C) , L2(I;C).

7.3.2 Suppose that the I is bounded with endpoints e1 < e2, and suppose that the
problem data is periodic so that

lim
x→e1

p(e1) = lim
x→e2

p(e2), lim
x→e1

q(e1) = lim
x→e2

q(e2), lim
x→e1

r(e1) = lim
x→e2

r(e2).

Show that if we impose periodic boundary conditions

y(a) = y(b), y′(a) = y′(b),

then the eigenvalues for the boundary value problem are real.
Hint: Suitably modify the proof of Proposition 7.3.11.

7.3.3 Show that the eigenvalues of the problem

(xy′)′ = λxy, y(b) = 0

that yield bounded eigenfunctions are strictly positive.
7.3.4 In Exercise 6.4.3 you determined that the horizontal deflections of a string

dangling vertically are governed by the partial differential equation

∂2u
∂t2 = g

∂
∂x

(
x
∂u
∂x

)
,

for t ≥ 0 and x ∈ [0, `]. The problem has the single natural boundary
condition u(`, t) = 0.
(a) Use separation of variables to arrive at an eigenvalue problem in x.
(b) Is the eigenvalue problem in part (a) regular or singular?
(c) Find an algebraic equation that governs the location of the eigenvalues,

and provide the form of the eigenfunctions.
Hint: Make a change of independent variable ξ = 2

√
−λx.
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(d) Why is a second boundary condition not necessary?
7.3.5 Consider the eigenvalue problem you derived in part (a) of Exercise 7.2.15.

(a) Is the eigenvalue problem regular or singular?
(b) Provide an algebraic equation which is satisfied by the eigenvalues.
(c) Determine the form of the eigenfunctions.
(d) If T : [R0,R1]→ R is an arbitrary radially symmetric temperature distri-

bution across the walls of the heat exchanger tube, express T as a linear
combination of eigenfunctions.

7.3.6 Consider the Hermite equation11

y′′ − x2y = λy

defined on (−∞,∞).
(a) What are p, q, and r?
(b) Is the problem regular or singular? Why?
(c) Make the change of variable z = ex2/2y and show that z satisfies the

differential equation
z′′ − 2xz′ − z = λz.

(d) Show that the differential equation from part (c) has two linearly inde-
pendent solutions

z1(x) = 1, z2(x) =

∫ x

0
eξ

2
dξ

for some value of λ (part of the question is to determine which value of
λ).

(e) Determine whether the Hermite equation is in the limit-point or the
limit-circle case at its two endpoints.

(f) Can you deduce whether the problem is pseudo-regular?

Consider the vibrating drumhead problem discussed in Section 7.3.4.1. The prob-
lem was only partly solved in that section. Here we will finish the problem.

7.3.7 Denote by {λn}n∈N and {φn}n∈N the eigenvectors and normalised eigenfunc-
tions as determined from the Bessel eigenvalue problem yielded by the
“R-equation” in the analysis of Section 7.3.4.1. Suppose that the drumhead
has an initial vertical deflection given by

u(r, 0) = f (r),
∂u
∂t

(r, 0) = 0.

Give an expression for the displacement u(r, t) of the drumhead for all r ∈
(0, b] and for all t > 0.

11After Charles Hermite (1822–1901).
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7.3.8 Consider the Laplacian in three-dimensions.
(a) Verify that the Laplacian in spherical coordinates is as given in (7.45).
(b) Verify that for a function that is independent of “longitude” φ, the in-

troduction of the new coordinate s = cosθ gives the partial differential
equation of (7.46)

7.3.9 Let {λn}n∈N0 be the eigenvalues for the Legendre equation with {Pn}n∈N0 the
eigenfunctions as defined in Section 7.3.4.2.
(a) Show that for each n ∈ N0, Pn is an eigenfunction for the Legendre

equation with eigenvalue λn.
(b) Show that the polynomials Pn, n ∈ N0, satisfy the recursion relation

(n + 1)Pn+1(s) = (2n + 1)sPn(s) − nPn−1(s), n ∈ N.

Hint: Show that

Pn+1(s) − Pn−1(s) =
2n + 1
2nn!

dn−1

dsn−1 (s2
− 1)n

Pn+1(s) − sPn(s) =
n

2nn!
dn−1

dsn−1 (s2
− 1)n,

using Rodrigues’ formula.
(c) Show that

P′n+1(s) − P′n−1(s) = (2n + 1)Pn(s), n ∈ N.

(d) Use part (c) to deduce

(2n + 1)
∫ 1

s
Pn(σ) dσ = Pn−1(s) − Pn+1(s).

(e) Now conclude that

(2n + 1)
∫ 1

−1
P2

n(s) ds =

∫ 1

−1
Pn(s)P′n+1(s) ds = Pn(s)Pn+1(s)

∣∣∣∣1
−1

= 2.

Hint: Use the fact that Pn is orthogonal to Pm for any m < n.
(f) Determine the constants cn, n ∈ N0, so that the eigenfunctions {φn =

cnPn}n∈N0 are orthonormal.
7.3.10 Change standard problem on [0,∞) to one on (0, 1].missing stuff
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