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Introduction to Simulation

A simulation is the imitation of the operation of a real-world process or sys-
tem over time. Whether done by hand or on a computer, simulation involves
the generation of an artificial history of a system, and the observation of that
artificial history to draw inferences concerning the operating characteristics of
the real system.

The behavior of a system as it evolves over time is studied by developing
a simulation model. This model usually takes the form of a set of assumptions
concerning the operation of the system. These assumptions are expressed in
mathematical, logical, and symbolic relationships between the entities, or ob-
jects of interest, of the system. Once developed and validated, a model can
be used to investigate a wide variety of “what-if” questions about the real-
world system. Potential changes to the system can first be simulated in order
to predict their impact on system performance. Simulation can also be used to
study systems in the design stage, before such systems are built. Thus, simula-
tion modeling can be used both as an analysis tool for predicting the effect of
changes to existing systems, and as a design tool to predict the performance of
new systems under varying sets of circumstances.

In some instances, a model can be developed which is simple enough to
be “solved” by mathematical methods. Such solutions may be found by the use
of differential calculus, probability theory, algebraic methods, or other math-
ematical techniques. The solution usually consists of one or more numerical
parameters which are called measures of performance of the system. How-
ever, many real-world systems are so complex that models of these systems
are virtually impossible to solve mathematically. In these instances, numerical,
computer-based simulation can be used to imitate the behavior of the system
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over time. From the simulation, data are collected as if a real system were being
observed. This simulation-generated data is used to estimate the measures of
performance of the system.

This book provides an introductory treatment of the concepts and meth-
ods of one form of simulation modeling—discrete-event simulation modeling.
The first chapter initially discusses when to use simulation, its advantages and
disadvantages, and actual areas of application. Then the concepts of system
and model are explored. Finally, an outline is given of the steps in building and
using a simulation model of a system.

1.1 When Is Simulation the Appropriate Tool?

The availability of special-purpose simulation languages, massive computing
capabilities at a decreasing cost per operation, and advances in simulation
methodologies have made simulation one of the most widely used and accepted
tools in operations research and systems analysis. Circumstances under which
simulation is the appropriate tool to use have been discussed by many authors,
from Naylor et al. [1966] to Banks et al. [1996]. Simulation can be used for the
following purposes:

1. Simulation enables the study of, and experimentation with, the internal
interactions of a complex system, or of a subsystem within a complex

system.

2. Informational, organizational, and environmental changes can be simu-
lated, and the effect of these alterations on the model’s behavior can be
observed.

3. The knowledge gained in designing a simulation model may be of great
value toward suggesting improvement in the system under investigation.

4. By changing simulation inputs and observing the resulting outputs, valu-
able insight may be obtained into which variables are most important and
how variables interact.

i

Simulation can be used as a pedagogical device to reinforce analytic so-
lution methodologies.

6. Simulation can be used to experiment with new designs or policies prior
to implementation, so as to prepare for what may happen.

7. Simulation can be used to verify analytic solutions.

8. By simulating different capabilities for a machine, requirements can be
determined.

9. Simulation models designed for training allow learning without the cost
and disruption of on-the-job learning.
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10. Animation shows a system in simulated operation so that the plan can be
visualized.

11. The modern system (factory, wafer fabrication plant, service organization,
etc.) is so complex that the interactions can be treated only through
simulation.

1.2 When Simulation Is Not Appropriate

This section is based on an article by Banks and Gibson [1997], who gave
ten rules for determining when simulation is not appropriate. The first rule
indicates that simulation should not be used when the problem can be solved
using common sense. An example is given of an automobile-tag facility serving
customers who arrive randomly at an average rate of 100/hour and are served at
a mean rate of 12/hour. To determine the minimum number of servers needed,
simulation is not necessary. Just compute 100/12 = 8.33, indicating that nine or
more servers are needed.

The second rule says that simulation should not be used if the problem
can be solved analytically. For example, under certain conditions, the average
waiting time in the example above can be determined from curves that were
developed by Hillier and Lieberman [1995].

The next rule says that simulation should not be used if it is easier to
perform direct experiments. An example of a fast-food drive-in restaurant is
given, where it was less expensive to have a person use a hand-held terminal and
voice communication to determine the effect of adding another order station
on customer waiting time.

The fourth rule says not to use simulation, if the costs exceed the savings.
There are many steps in completing a simulation as discussed in Section 1.11,
and these must be done thoroughly. If a simulation study costs $20,000 and the
savings might be $10,000, simulation would not be appropriate.

Rules five and six indicate that simulation should not be performed if the
resources or time are not available. If the simulation is estimated to cost $20,000
and only $10,000 is available, the suggestion is not to venture into a simulation
study. Similarly, if a decision in needed is two weeks and a simulation will take
a month, the simulation study is not advised.

Simulation takes data, sometimes lots of data. If no data is available, not
even estimates, simulation is not advised.

The next rule concerns the ability to verify and validate the model. If
there is not enough time or the personnel are not available, simulation is not
appropriate.

If managers have unreasonable expectations—say, too much too soon—
or the power of simulation is overestimated, simulation may not be appropriate.

Last, if system behavior is too complex or can’t be defined, simulation is
not appropriate. Human behavior is sometimes extremely complex to model.
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1.3 Advantages and Disadvantages of Simulation

Simulation is intuitively appealing to a client because it mimics what happens
in areal system or what is perceived for a system that is in the design stage. The
output data from a simulation should directly correspond to the outputs that
could be recorded from the real system. Additionally, it is possible to develop
a simulation model of a system without dubious assumptions (such as the same
statistical distribution for every random variable) of mathematically solvable
models. For these, and other reasons, simulation is frequently the technique of
choice in problem solving.

In contrast to optimization models, simulation models are “run” rather
thansolved. Given a particular set of input and model characteristics, the model
is run and the simulated behavior is observed. This process of changing inputs
and model characteristics results in a set of scenarios that are evaluated. A
good solution, either in the analysis of an existing system or the design of a new
system, is then recommended for implementation.

Simulation has many advantages, and even some disadvantages. These
are listed by Pegden, Shannon, and Sadowski [1995]. The advantages are:

1. New policies, operating procedures, decision rules, information flows, or-
ganizational procedures, and so on can be explored without disrupting
ongoing operations of the real system.

2. New hardware designs, physical layouts, transportation systems, and so
on, can be tested without committing resources for their acquisition.

3. Hypotheses about how or why certain phenomena occur can be tested
for feasibility.

4. Time can be compressed or expanded allowing for a speedup or slowdown
of the phenomena under investigation.

5. Insight can be obtained about the interaction of variables.

6. Insight can be obtained about the importance of variables to the perfor-
mance of the system.

7. Bottleneck analysis can be performed indicating where work-in-process,
information, materials, and so on are being excessively delayed.

8. A simulation study can help in understanding how the system operates
rather than how individuals think the system operates.

9. “What-if” questions can be answered. This is particularly useful in the
design of new systems.

The disadvantages are:

1. Model building requires special training. It is an art that is learned over
time and through experience. Furthermore, if two models are constructed
by two competent individuals, they may have similarities, but it is highly
unlikely that they will be the same.
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2. Simulation results may be difficult to interpret. Since most simulation
outputs are essentially random variables (they are usually based on ran-
dom inputs), it may be hard to determine whether an observation is a
result of system interrelationships or randomness.

3. Simulation modeling and analysis can be time consuming and expensive.
Skimping on resources for modeling and analysis may result in a simula-
tion model or analysis that is not sufficient for the task.

4. Simulation is used in some cases when an analytical solution is possible,
or even preferable, as discussed in Section 1.2. This might be particularly
true in the simulation of some waiting lines where closed-form queueing
models are available.

In defense of simulation, these four disadvantages, respectively, can be offset
as follows:

1. Vendors of simulation software have been actively developing packages
that contain models that need only input data for their operation. Such
models have the generic tag “simulators” or “templates.”

2. Many simulation software vendors have developed output analysis capa-
bilities within their packages for performing very thorough analysis.

3. Simulation can be performed faster today than yesterday, and even faster
tomorrow. This is attributable to the advances in hardware that permit
rapid running of scenarios. It is also attributable to the advances in many
simulation packages. For example, some simulation software contains
constructs for modeling material handling using transporters such as fork
lift trucks, conveyors, automated guided vehicles, and others.

4. Closed-form models are not able to analyze most of the complex systems
that are encountered in practice. In nearly eight years of consulting prac-
tice by one of the authors, not one problem was encountered that could
have been solved by a closed-form solution.

1.4 Areas of Application

The applications of simulation are vast. The Winter Simulation Conference
(WSC) is an excellent way to learn more about the latest in simulation ap-
plications and theory. There are also numerous tutorials at both the begin-
ning and advanced levels. WSC is sponsored by six technical societies and the
National Institute of Standards and Technology (NIST). The technical soci-
eties are American Statistical Association (ASA), Association for Computing
Machinery/Special Interest Group on Simulation (ACM/SIGSIM), Institute
of Electrical and Electronics Engineers: Computer Society (IEEE/CS), Insti-
tute of Electrical and Electronics Engineers: Systems, Man and Cybernetics
Society (IEEE/SMCS), Institute of Industrial Engineers (IIE), Institute for
Operations Research and the Management Sciences: College on Simulation
(INFORMS/CS), and The Society for Computer Simulation (SCS). Note that
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IEEE is represented by two bodies. Information about the upcoming WSC can
be obtained from

www.wintersim.org

Some of the areas of application at a recent WSC, with the subject matter
within those areas, is listed below:

Manufacturing Applications

Analysis of electronics assembly operations

Design and evaluation of a selective assembly station for high-precision
scroll compressor shells

Comparison of dispatching rules for semiconductor manufacturing using
large-facility models

Evaluation of cluster tool throughput for thin-film head production

Determining optimal lot size for a semiconductor back-end factory

Optimization of cycle time and utilization in semiconductor test manufac-
turing

Analysis of storage and retrieval strategies in a warehouse

Investigation of dynamics in a service-oriented supply chain

Model for an Army chemical munitions disposal facility

Semiconductor Manufacturing

Comparison of dispatching rules using large-facility models

The corrupting influence of variability

A new lot-release rule for wafer fabs

Assessment of potential gains in productivity due to proactive reticle man-
agement

Comparison of a 200-mm and 300-mm X-ray lithography cell

Capacity planning with time constraints between operations

300-mm logistic system risk reduction

Construction Engineering

Construction of a dam embankment

Trenchless renewal of underground urban infrastructures
Activity scheduling in a dynamic, multiproject setting
Investigation of the structural steel erection process
Special-purpose template for utility tunnel construction
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Military Applications
Modeling leadership effects and recruit type in an Army recruiting station
Design and test of an intelligent controller for autonomous underwater ve-
hicles
Modeling military requirements for nonwarfighting operations
Multitrajectory performance for varying scenario sizes
Using adaptive agents in U.S. Air Force pilot retention

Logistics, Transportation, and Distribution Applications
Evaluating the potential benefits of a rail-traffic planning algorithm
Evaluating strategies to improve railroad performance
Parametric modeling in rail-capacity planning
Analysis of passenger flows in an airport terminal
Proactive flight-schedule evaluation
Logistics issues in autonomous food production systems for extended-duration
space exploration
Sizing industrial rail-car fleets
Product distribution in the newspaper industry
Design of a toll plaza
Choosing between rental-car locations
Quick-response replenishment

Business Process Simulation
Impact of connection bank redesign on airport gate assignment
Product development program planning
Reconciliation of business and systems modeling
Personnel forecasting and strategic workforce planning

Human Systems

Modeling human performance in complex systems
Studying the human element in air traffic control

1.5 Systems and System Environment

To model a system, it is necessary to understand the concept of a system and
the system boundary. A system is defined as a group of objects that are joined
together in some regular interaction or interdependence toward the accom-
plishment of some purpose. An example is a production system manufacturing
automobiles. The machines, component parts, and workers operate jointly
along an assembly line to produce a high-quality vehicle.

A system is often affected by changes occurring outside the system. Such
changes are said to occur in the system environment [Gordon, 1978]. In model-
ing systems, it is necessary to decide on the boundary between the system and
its environment. This decision may depend on the purpose of the study.
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In the case of the factory system, for example, the factors controlling the
arrival of orders may be considered to be outside the influence of the factory
and therefore part of the environment. However, if the effect of supply on
demand is to be considered, there will be a relationship between factory
output and arrival of orders, and this relationship must be considered an
activity of the system. Similarly, in the case of a bank system, there may be a
limit on the maximum interest rate that can be paid. For the study of a single
bank, this would be regarded as a constraint imposed by the environment.
In a study of the effects of monetary laws on the banking industry, however,
the setting of the limit would be an activity of the system. [Gordon, 1978]

1.6 Components of a System

In order to understand and analyze a system, a number of terms need to be
defined. An entity is an object of interest in the system. An attribute is a
property of an entity. An activity represents a time period of specified length.
If a bank is being studied, customers might be one of the entities, the balance
in their checking accounts might be an attribute, and making deposits might be
an activity.

The collection of entities that compose a system for one study might
be only a subset of the overall system for another study [Law and Kelton,
2000]. For example, if the bank mentioned above is being studied to determine
the number of tellers needed to provide for paying and receiving, the system
can be defined as that portion of the bank consisting of the regular tellers
and the customers waiting in line. If the purpose of the study is expanded to
determine the number of special tellers needed (to prepare cashier’s checks, to
sell traveler’s checks, etc.), the definition of the system must be expanded.

The state of a system is defined to be that collection of variables necessary
to describe the system at any time, relative to the objectives of the study. In
the study of a bank, possible state variables are the number of busy tellers, the
number of customers waiting in line or being served, and the arrival time of
the next customer. An event is defined as an instantaneous occurrence that
may change the state of the system. The term endogenous is used to describe
activities and events occurring within a system, and the term exogenous is used
to describe activities and events in the environment that affect the system.
In the bank study, the arrival of a customer is an exogenous event, and the
completion of service of a customer is an endogenous event.

Table 1.1 lists examples of entities, attributes, activities, events, and state
variables for several systems. Only a partial listing of the system components
is shown. A complete list cannot be developed unless the purpose of the study
is known. Depending on the purpose, various aspects of the system will be of
interest, and then the listing of components can be completed.



Table 1.1 Examples of Systems and Components

System Entities Attributes Activities Events State Variables
Banking Customers Checking account Making deposits ~ Arrival; Number of busy tellers; number
balance departure of customers waiting
Rapid rail Riders Origination; Traveling Arrival at Number of riders waiting at each
destination station; station; number of riders in
arrival at transit
destination
Production Machines  Speed; capacity; ~ Welding; Breakdown  Status of machines (busy, idle,
breakdown rate stamping or down)
Communications Messages  Length; Transmitting Arrival at Number waiting to be transmitted
destination destination
Inventory Warehouse Capacity Withdrawing Demand Levels of inventory; backlogged
demands
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1.7 Discrete and Continuous Systems

Systems can be categorized as discrete or continuous. “Few systems in practice
are wholly discrete or continuous, but since one type of change predominates
for most systems, it will usually be possible to classify a system as being either
discrete or continuous” [Law and Kelton, 2000]. A discrete system is one in
which the state variable(s) change only at a discrete set of points in time. The
bank is an example of a discrete system since the state variable, the number
of customers in the bank, changes only when a customer arrives or when the
service provided a customer is completed. Figure 1.1 shows how the number
of customers changes only at discrete points in time.

A

Number of customers waiting
in line or being served

=

Time t

Figure 1.1 Discrete-system state variable.

A continuous system is one in which the state variable(s) change continu-
ously over time. An example is the head of water behind a dam. During and for
some time after a rain storm, water flows into the lake behind the dam. Water
is drawn from the dam for flood control and to make electricity. Evaporation
also decreases the water level. Figure 1.2 shows how the state variable, head
of water behind the dam, changes for this continuous system.

A

Head of water behind the dam

Time t

Figure 1.2 Continuous-system state
variable.
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1.8 Model of a System

Sometimes it is of interest to study a system to understand the relationships
between its components or to predict how the system will operate under a
new policy. Sometimes it is possible to experiment with the system itself, but,
not always. A new system may not yet exist; it may be only in hypothetical
form or at the design stage. Even if the system exists, it may be impractical
to experiment with it. For example, it may not be wise or possible to double
the unemployment rate to determine the effect of employment on inflation. In
the case of a bank, reducing the numbers of tellers to study the effect on the
length of waiting lines may infuriate the customers so greatly that they move
their accounts to a competitor. Consequently, studies of systems are often
accomplished with a model of a system.

We had a consulting job for the simulation of a redesigned port in western
Australia. At $200 million for a loading/unloading berth, it’s not advisable to
invest that amount only to find that the berth is inadequate for the task.

A model is defined as a representation of a system for the purpose of
studying the system. For most studies, it is necessary to consider only those as-
pects of the system that affect the problem under investigation. These aspects
are represented in a model of the system, and the model, by definition, is a sim-
plification of the system. On the other hand, the model should be sufficiently
detailed to permit valid conclusions to be drawn about the real system. Differ-
ent models of the same system may be required as the purpose of investigation
changes.

Just as the components of a system were entities, attributes, and activities,
models are represented similarly. However, the model contains only those
components that are relevant to the study. The components of a model are
discussed more extensively in Chapter 3.

1.9 Types of Models

Models can be classified as being mathematical or physical. A mathemati-
cal model uses symbolic notation and mathematical equations to represent a
system. A simulation model is a particular type of mathematical model of a
system.

Simulation models may be further classified as being static or dynamic,
deterministic or stochastic, and discrete or continuous. A static simulation
model, sometimes called a Monte Carlo simulation, represents a system at a
particular point in time. Dynamic simulation models represent systems as they
change over time. The simulation of a bank from 9:00 A.M. to 4:00 PM. is an
example of a dynamic simulation.

Simulation models that contain no random variables are classified as de-
terministic. Deterministic models have a known set of inputs which will result in
a unique set of outputs. Deterministic arrivals would occur at a dentist’s office
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if all patients arrived at the scheduled appointment time. A stochastic simula-
tion model has one or more random variables as inputs. Random inputs lead to
random outputs. Since the outputs are random, they can be considered only as
estimates of the true characteristics of a model. The simulation of a bank would
usually involve random interarrival times and random service times. Thus, in
a stochastic simulation, the output measures—the average number of people
waiting, the average waiting time of a customer—must be treated as statistical
estimates of the true characteristics of the system.

Discrete and continuous systems were defined in Section 1.6. Discrete
and continuous models are defined in an analogous manner. However, a dis-
crete simulation model is not always used to model a discrete system, nor is a
continuous simulation model always used to model a continuous system. Tanks
and pipes are modeled discretely by some software vendors, even though we
know that fluid flow is continuous. In addition, simulation models may be
mixed, both discrete and continuous. The choice of whether to use a discrete
or continuous (or both discrete and continuous) simulation model is a func-
tion of the characteristics of the system and the objective of the study. Thus, a
communication channel could be modeled discretely if the characteristics and
movement of each message were deemed important. Conversely, if the flow
of messages in aggregate over the channel were of importance, modeling the
system using continuous simulation could be more appropriate. The models
considered in this text are discrete, dynamic, and stochastic.

1.10 Discrete-Event System Simulation

This book is about discrete-event system simulation—the modeling of systems
in which the state variable changes only at a discrete set of points in time.
The simulation models are analyzed by numerical rather than by analytical
methods. Analytical methods employ the deductive reasoning of mathemat-
ics to “solve” the model. For example, differential calculus can be used to
determine the minimum-cost policy for some inventory models. Numerical
methods employ computational procedures to “solve” mathematical models.
In the case of simulation models, which employ numerical methods, models
are “run” rather than solved; that is, an artificial history of the system is gen-
erated based on the model assumptions, and observations are collected to be
analyzed and to estimate the true system performance measures. Since real-
world simulation models are rather large, and since the amount of data stored
and manipulated is so vast, the runs are usually conducted with the aid of a
computer. However, much insight can be obtained by simulating small models
manually.

In summary, this book is about discrete-event system simulation in which
the models of interest are analyzed numerically, usually with the aid of a com-
puter.
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1.11 Steps in a Simulation Study

Figure 1.3 shows a set of steps to guide a model builder in a thorough and sound
simulation study. Similar figures and discussion of steps can be found in other
sources [Shannon, 1975; Gordon, 1978; Law and Kelton, 2000]. The number
beside each symbol in Figure 1.3 refers to the more detailed discussion in the
text. The steps in a simulation study are as follows:

Problem formulation. Every study should begin with a statement of the prob-
lem. If the statement is provided by the policy makers, or those that have the
problem, the analyst must ensure that the problem being described is clearly
understood. If a problem statement is being developed by the analyst, it is
important that the policy makers understand and agree with the formulation.
Although not shown in Figure 1.3, there are occasions where the problem must
be reformulated as the study progresses. In many instances, policy makers and
analysts are aware that there is a problem long before the nature of the problem
is known.

Setting of objectives and overall project plan. The objectives indicate the
questions to be answered by simulation. At this point a determination should
be made concerning whether simulation is the appropriate methodology for the
problem as formulated and objectives as stated. Assuming it is decided that
simulation is appropriate, the overall project plan should include a statement
of the alternative systems to be considered, and a method for evaluating the
effectiveness of these alternatives. It should also include the plans for the
study in terms of the number of people involved, the cost of the study, and
the number of days required to accomplish each phase of the work with the
anticipated results at the end of each stage.

Model conceptualization. The construction of a model of a system is proba-
bly as much art as science. Pritsker [1998] provides a lengthy discussion of this
step. “Although it is not possible to provide a set of instructions that will lead
to building successful and appropriate models in every instance, there are some
general guidelines that can be followed” [Morris, 1967]. The art of modeling is
enhanced by an ability to abstract the essential features of a problem, to select
and modify basic assumptions that characterize the system, and then to enrich
and elaborate the model until a useful approximation results. Thus, it is best to
start with a simple model and build toward greater complexity. However, the
model complexity need not exceed that required to accomplish the purposes
for which the model is intended. Violation of this principle will only add to
model-building and computer expenses. It is not necessary to have a one-to-
one mapping between the model and the real system. Only the essence of the
real system is needed.

It is advisable to involve the model user in model conceptualization. This
will both enhance the quality of the resulting model and increase the confidence
of the model user in the application of the model. (Chapter 2 describes a
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Figure 1.3 Steps in a simulation study.
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number of simulation models. Chapter 6 describes queueing models that can
be solved analytically. However, only experience with real systems—versus
textbook problems—can “teach” the art of model building.)

Data collection. There is a constant interplay between the construction of
the model and the collection of the needed input data [Shannon, 1975]. As the
complexity of the model changes, the required data elements may also change.
Also, since data collection takes such a large portion of the total time required
to perform a simulation, it is necessary to begin it as early as possible, usually
together with the early stages of model building.

The objectives of the study dictate, in a large way, the kind of data to be
collected. In the study of a bank, for example, if the desire is to learn about the
length of waiting lines as the number of tellers change, the types of data needed
would be the distributions of interarrival times (at different times of the day),
the service-time distributions for the tellers, and historic distributions on the
lengths of waiting lines under varying conditions. These last data will be used
to validate the simulation model. (Chapter 9 discusses data collection and data
analysis; Chapter 5 discusses statistical distributions which occur frequently in
simulation modeling. See also an excellent discussion by Vincent [1998].)

Model translation. Since most real-world systems result in models that re-
quire a great deal of information storage and computation, the model must
be entered into a computer-recognizable format. We use the term “program,”
even though it is possible to accomplish the desired result in many instances
with little or no actual coding. The modeler must decide whether to program
the model in a simulation language such as GPSS/H® (discussed in Chapter 4)
or to use special-purpose simulation software. For manufacturing and material
handling, Chapter 4 discusses Arena®, AutoMod®, CSIM, Extend®, Micro
Saint, ProModel®, Dened/Quest®, Taylor Eneterprise Dynamics (ED), and
Witness®. Simulation languages are powerful and flexible. However, if the
problem is amenable to solution with the simulation software, the model de-
velopment time is greatly reduced. Furthermore, most of the simulation soft-
ware packages have added features that enhance their flexibility, although the
amount of flexibility varies greatly.

Verified? Verification pertains to the computer program prepared for the sim-
ulation model. Is the computer program performing properly? With complex
models it is difficult, if not impossible, to translate a model successfully in its
entirety without a good deal of debugging. If the input parameters and logical
structure of the model are correctly represented in the computer, verification
has been completed. For the most part, common sense is used in completing
this step. (Chapter 10 discusses verification of simulation models, and Balci
[1998] also discusses this topic extensively.)

Validated? Validation is the determination that a model is an accurate rep-
resentation of the real system. Validation is usually achieved through the cal-
ibration of the model, an iterative process of comparing the model to actual
system behavior and using the discrepancies between the two, and the insights



18 Chap. 1 Introduction to Simulation

gained, to improve the model. This process is repeated until model accuracy
is judged acceptable. In the example of a bank mentioned above, data were
collected concerning the length of waiting lines under current conditions. Does
the simulation model replicate this system measure? This is one means of val-
idation. (Chapter 10 discusses the validation of simulation models, and Balci
[1998] also discusses this topic extensively.)

Experimental design. The alternatives that are to be simulated must be de-
termined. Often, the decision concerning which alternatives to simulate may
be a function of runs that have been completed and analyzed. For each system
design that is simulated, decisions need to be made concerning the length of the
initialization period, the length of simulation runs, and the number of replica-
tions to be made of each run. (Chapter 11 and 12 discuss issues associated with
the experimental design, and Kleijnen [1998] discusses this topic extensively.)

Production runs and analysis. Production runs, and their subsequent analy-
sis, are used to estimate measures of performance for the system designs that
are being simulated. [Chapters 11 and 12 discuss the analysis of simulation
experiments, and Chapter 4 discusses software to aid in this step, including Au-
toStat (in AutoMod), OptQuest (in several simulation softwares), SimRunner
(in ProModel) and the Arena Output Analyzer.]

More Runs? Based on the analysis of runs that have been completed, the an-
alyst determines if additional runs are needed and what design those additional
experiments should follow.

Documentation and reporting. There are two types of documentation: pro-
gram and progress. Program documentation is necessary for numerous reasons.
If the program is going to be used again by the same or different analysts, it may
be necessary to understand how the program operates. This will build confi-
dence in the program, so that model users and policy makers can make decisions
based on the analysis. Also, if the program is to be modified by the same or
a different analyst, this can be greatly facilitated by adequate documentation.
One experience with an inadequately documented program is usually enough
to convince an analyst of the necessity of this important step. Another reason
for documenting a program is so that model users can change parameters at
will in an effort to determine the relationships between input parameters and
output measures of performance, or to determine the input parameters that
“optimize” some output measure of performance.

Musselman [1998] discusses progress reports that provide the important,
written history of a simulation project. Project reports give a chronology of
work done and decisions made. This can prove to be of great value in keeping
the project on course.

Musselman suggests frequent reports (monthly, at least) so that even those
not involved in the day-to-day operation can keep abreast. The awareness
of these others can usually enhance the successful completion of the project
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by surfacing misunderstandings early, when the problem can be solved easily.
Musselman also suggests maintaining a project log providing a comprehensive
record of accomplishments, change requests, key decisions, and other items of
importance.

On the reporting side, Musselman suggests frequent deliverables. These
may or may not be the results of major accomplishments. His maxim is that
“it is better to work with many intermediate milestones than with one absolute
deadline.” Possibilities prior to the final report include a model specification,
prototype demonstrations, animations, training results, intermediate analyses,
program documentation, progress reports, and presentations. He suggests that
these deliverables should be timed judiciously over the life of the project.

The result of all the analysis should be reported clearly and concisely in
a final report. This will enable the model users (now, the decision makers)
to review the final formulation, the alternative systems that were addressed,
the criterion by which the alternatives were compared, the results of the ex-
periments, and the recommended solution to the problem. Furthermore, if
decisions have to be justified at a higher level, the final report should provide
a vehicle of certification for the model user/decision maker and add to the
credibility of the model and the model-building process.

Implementation. The success of the implementation phase depends on how
well the previous eleven steps have been performed. It is also contingent upon
how thoroughly the analyst has involved the ultimate model user during the
entire simulation process. If the model user has been thoroughly involved and
understands the nature of the model and its outputs, the likelihood of a vigor-
ous implementation is enhanced [Pritsker, 1995]. Conversely, if the model and
its underlying assumptions have not been properly communicated, implemen-
tation will probably suffer, regardless of the simulation model’s validity.

The simulation model-building process shown in Figure 1.3 can be broken
down into four phases. The first phase, consisting of steps 1 (Problem Formula-
tion) and 2 (Setting of Objective and Overall Design), is a period of discovery
or orientation. The initial statement of the problem is usually quite “fuzzy,”
the initial objectives will usually have to be reset, and the original project plan
will usually have to be fine-tuned. These recalibrations and clarifications may
occur in this phase, or perhaps after or during another phase (i.e., the analyst
may have to restart the process).

The second phase is related to model building and data collection and
includes steps 3 (Model Conceptualization), 4 (Data Collection), 5 (Model
Translation), 6 (Verification), and 7 (Validation). A continuing interplay is
required among the steps. Exclusion of the model user during this phase can
have dire implications at the point of implementation.

The third phase concerns running the model. It involves steps 8 (Experi-
mental Design), 9 (Production Runs and Analysis), and 10 (Additional Runs).
This phase must have a thoroughly conceived plan for experimenting with the
simulation model. A discrete-event stochastic simulation is in fact a statisti-
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cal experiment. The output variables are estimates that contain random error,
and therefore a proper statistical analysis is required. Such a philosophy differs
sharply from that of the analyst who makes a single run and draws an inference
from that single data point.

The fourth phase, implementation, involves steps 11 (Documentation and
Reporting) and 12 (Implementation). Successful implementation depends on
continual involvement of the model user and the successful completion of every
step in the process. Perhaps the most crucial point in the entire process is step
7 (Validation), because an invalid model is going to lead to erroneous results,
which if implemented could be dangerous, costly, or both.
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EXERCISES

1 Name several entities, attributes, activities, events, and state variables for the fol-
lowing systems:

(a) A small appliance repair shop
(b) A cafeteria
(¢) A grocery store
(d) A laundromat
(e) A fast-food restaurant
(f) A hospital emergency room
(g) A taxicab company with 10 taxis
(h) An automobile assembly line
2 Consider the simulation process shown in Figure 1.3.

(a) Reduce the steps by at least two by combining similar activities. Give your
rationale.

(b) Increase the steps by at least two by separating current steps or enlarging on
existing steps. Give your rationale.

3 A simulation of a major traffic intersection is to be conducted with the objective of
improving the current traffic flow. Provide three iterations, in increasing order of
complexity, of steps 1 and 2 in the simulation process of Figure 1.3.

4 In what ways and at what steps might a personal computer be used to support the
simulation process of Figure 1.3?

5 A simulation is to be conducted of cooking a spaghetti dinner to determine what
time a person should start in order to have the meal on the table by 7:00 pm. Read
a recipe for preparing a spaghetti dinner (or ask a friend or relative, etc., for the
recipe). As best you can, trace what you understand to be needed in the data-
collection phase of the simulation process of Figure 1.3 in order to perform a sim-
ulation in which the model includes each step in the recipe. What are the events,
activities, and state variables in this system?

6 What events and activities are associated with the operation of your checkbook?

7 Read an article in the current WSC Proceedings, on the application of simulation
related to your major area of study or interest, and prepare a report on how the
author accomplishes the steps given in Figure 1.3. WSC Proceedings are available
at

www.informs-cs.org

8 Get a copy of a recent WSC Proceedings and report on the different applications
discussed in an area of interest to you. WSC Proceedings are available at

www.informs-cs.org

9 Getacopyofarecent WSC Proceedings and report on the most unusual application
that you can find. WSC Proceedings are available at

www . informs-cs.org
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10 Go to the Simulation Education website at
www.pitt.edu/@wjyst/nsfteachsim.html

and address the following:
(a) Use the links there to thoroughly answer the question, “What is simulation?”
(b) What kinds of careers are available in simulation?
(¢) What are some recent applications of discrete-event simulation in the news?
(d) What are some simulation education organizations that are currently active?

11 Go to the Winter Simulation Conference website at
www.wintersim.org

and address the following:

(a) What advanced tutorials were offered at the previous WSC or are planned
at the next WSC?

(b) Where and when will the next WSC be held?
(¢) What is the history of WSC?



2

Simulation Examples

This chapter presents several examples of simulations that can be performed
by devising a simulation table either manually or with a spreadsheet. The
simulation table provides a systematic method for tracking system state over

time.

These examples provide insight into the methodology of discrete system

simulation and the descriptive statistics used for predicting system performance.

N

tory,

The simulations in this chapter entail three steps:

Determine the characteristics of each of the inputs to the simulation.
Quite often, these may be modeled as probability distributions, either
continuous or discrete.

Construct a simulation table. Each simulation table is different, for each
is developed for the problem at hand. An example of a simulation ta-
ble is shown in Table 2.1. In this example there are p inputs, x;;, j =
1,2,..., p, and one response, y;, for each of repetitionsi = 1,2, ..., n.
Initialize the table by filling in the data for repetition 1.

For each repetition i, generate a value for each of the p inputs, and eval-
uate the function, calculating a value of the response y;. The input values
may be computed by sampling values from the distributions determined
in step 1. A response typically depends on the inputs and one or more
previous responses.

This chapter gives a number of simulation examples in queueing, inven-
and reliability. The two queueing examples provide a single-server and

23
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two-server system, respectively. (Chapter 6 provides more insight into queue-
ing models.) The first inventory example involves a problem that has a closed-
form solution; thus the simulation solution can be compared to the mathemat-
ical solution. The second inventory example pertains to the classic order-level
model.

Finally, there is an example that introduces the concept of random normal
numbers and a model for the determinination of lead-time demand.

2.1 Simulation of Queueing Systems

A queueing system is described by its calling population, the nature of the ar-
rivals, the service mechanism, the system capacity, and the queueing discipline.
These attributes of a queueing system are described in detail in Chapter 6. A
simple single-channel queueing system is portrayed in Figure 2.1.

ONONGO) []
Server

Waiting line

Calling population

Figure 2.1 Queueing system.

In the single-channel queue, the calling population is infinite; that is, if a
unit leaves the calling population and joins the waiting line or enters service,
there is no change in the arrival rate of other units that may need service.
Arrivals for service occur one at a time in a random fashion; once they join the
waiting line, they are eventually served. In addition, service times are of some
random length according to a probability distribution which does not change
over time. The system capacity has no limit, meaning that any number of units
can wait in line. Finally, units are served in the order of their arrival (often
called FIFO: first in, first out) by a single server or channel.

Table 2.1 Simulation Table

Inputs

Response
Repetitions  xiji Xz -+ Xij 0 Xpp Vi
1
2

3
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Arrivals and services are defined by the distribution of the time between
arrivals and the distribution of service times, respectively. For any simple single-
or multi-channel queue, the overall effective arrival rate must be less than the
total service rate, or the waiting line will grow without bound. When queues
grow without bound, they are termed “explosive” or unstable. (In some reen-
trant queueing networks in which units return a number of times to the same
server before finally exiting the system, the condition about arrival rate being
less than service rate may not guarantee stability. See Harrison and Nguyen
[1995] for more explanation. Interestingly, this type of instability was noticed
first, not in theory, but in actual manufacturing in semiconductor plants.) More
complex situations may occur—for example, arrival rates that are greater than
service rates for short periods of time, or networks of queues with routing.
However, this chapter sticks to the simplest, more basic queues.

Prior to introducing several simulations of queueing systems, it is neces-
sary to understand the concepts of system state, events, and simulation clock.
(These concepts are studied systematically in Chapter 3.) The state of the sys-
tem is the number of units in the system and the status of the server, busy or
idle. An event is a set of circumstances that cause an instantaneous change in
the state of the system. In a single-channel queueing system there are only two
possible events that can affect the state of the system. They are the entry of a
unit into the system (the arrival event) or the completion of service on a unit
(the departure event). The queueing system includes the server, the unit being
serviced (if one is being serviced), and units in the queue (if any are waiting).
The simulation clock is used to track simulated time.

If a unit has just completed service, the simulation proceeds in the manner
shown in the flow diagram of Figure 2.2. Note that the server has only two
possible states: it is either busy or idle.

Departure
event

|

Another
unit waiting
?

Yes Remove the waiting unit
from the queue

Begin server
idle time

Y

Begin servicing
the unit

Figure 2.2 Service-just-completed flow diagram.

The arrival event occurs when a unit enters the system. The flow diagram
for the arrival event is shown in Figure 2.3. The unit may find the server either
idle or busy; therefore, either the unit begins service immediately, or it enters the
queue for the server. The unit follows the course of action shown in Figure 2.4.
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Arrival
event

l

No Server
busy
2

Yes

Y Y

Unit enters Unit enters
service queue for
service

Figure 2.3 Unit-entering-system flow diagram.

If the server is busy, the unit enters the queue. If the server is idle and the
queue is empty, the unit begins service. It is not possible for the server to be
idle and the queue to be nonempty.

Queue status

Not empty Empty
Server Busy Enter queue Enter queue
status Idle Impossible Enter service

Figure 2.4 Potential unit actions upon
arrival.

After the completion of a service the server may become idle or remain
busy with the next unit. The relationship of these two outcomes to the status
of the queue is shown in Figure 2.5. If the queue is not empty, another unit
will enter the server and it will be busy. If the queue is empty, the server will
be idle after a service is completed. These two possibilities are shown as the
shaded portions of Figure 2.5. It is impossible for the server to become busy if
the queue is empty when a service is completed. Similarly, it is impossible for
the server to be idle after a service is completed when the queue is not empty.

Queue status
Not empty Empty
Server | BUSY Impossible
outcomes |gle Impossible 7

Figure 2.5 Server outcomes after service
completion.

Now, how can the events described above occur in simulated time? Sim-
ulations of queueing systems generally require the maintenance of an event
list for determining what happens next. The event list tracks the future times
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at which the different types of events occur. Simulations using event lists are
described in Chapter 3. This chapter simplifies the simulation by tracking each
unit explicitly. Simulation clock times for arrivals and departures are computed
in a simulation table customized for each problem. In simulation, events usu-
ally occur at random times, the randomness imitating uncertainty in real life.
For example, it is not known with certainty when the next customer will arrive
at a grocery checkout counter, or how long the bank teller will take to complete
a transaction. In these cases, a statistical model of the data is developed from
either data collected and analyzed, or subjective estimates and assumptions.

The randomness needed to imitate real life is made possible through the
use of “random numbers.” Random numbers are distributed uniformly and
independently on the interval (0, 1). Random digits are uniformly distributed
ontheset {0,1,2,...,9}. Random digits can be used to form random numbers
by selecting the proper number of digits for each random number and placing
a decimal point to the left of the value selected. The proper number of digits
is dictated by the accuracy of the data being used for input purposes. If the
input distribution has values with two decimal places, two digits are taken from
arandom-digits table (such as Table A.1) and the decimal point is placed to the
left to form a random number.

Random numbers can also be generated in simulation packages and in
spreadsheets such as Excel®. For example, Excel has a macro function called
RAND() that returns a “random” number between 0 and 1. When numbers
are generated using a procedure, they are often referred to as pseudo-random
numbers. Since the method is known, it is always possible to know the sequence
of numbers that will be generated prior to the simulation. The most commonly
used methods for generating random numbers are discussed in Chapter 7.

In a single-channel queueing system interarrival times and service times
are generated from the distributions of these random variables. The examples
that follow show how such times are generated. For simplicity, assume that the
times between arrivals were generated by rolling a die five times and recording
the up face. Table 2.2 contains a set of five interarrival times generated in this
manner. These five interarrival times are used to compute the arrival times of
six customers at the queueing system.

Table 2.2 Interarrival and Clock

Times
Interarrival Arrival
Customer Time Time on Clock
1 - 0
2 2 2
3 4 6
4 1 7
5 2 9
6 6 15
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Table 2.3 Service
Times

Service
Customer  Time
1 2

AN AW
A =N W

The first customer is assumed to arrive at clock time 0. This starts the
clock in operation. The second customer arrives two time units later, at a clock
time of 2. The third customer arrives four time units later, at a clock time of 6;
and so on.

The second time of interest is the service time. Table 2.3 contains service
times generated at random from a distribution of service times. The only possi-
ble service times are one, two, three, and four time units. Assuming that all four
values are equally likely to occur, these values could have been generated by
placing the numbers one through four on chips and drawing the chips from a hat
with replacement, being sure to record the numbers selected. Now, the inter-
arrival times and service times must be meshed to simulate the single-channel
queueing system. As shown in Table 2.4, the first customer arrives at clock
time 0 and immediately begins service, which requires two minutes. Service is
completed at clock time 2. The second customer arrives at clock time 2 and is
finished at clock time 3. Note that the fourth customer arrived at clock time 7,
but service could not begin until clock time 9. This occurred because customer
3 did not finish service until clock time 9.

Table 2.4 was designed specifically for a single-channel queue which serves
customers on a first-in, first-out (FIFO) basis. It keeps track of the clock time

Table 2.4 Simulation Table Emphasizing Clock Times

A B C D E
Arrival  Time Service  Service Time Service

Customer — Time Begins Time Ends
Number  (Clock) (Clock) (Duration) (Clock)

1 0 0 2 2

2 2 2 1 3

3 6 6 3 9

4 7 9 2 11

5 9 11 1 12

6 15 15 4 19
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Table 2.5 Chronological

Ordering of
Events
Customer Clock

Event Type  Number  Time
Arrival 1 0
Departure 1 2
Arrival 2 2
Departure 2 3
Arrival 3 6
Arrival 4 7
Departure 3 9
Arrival 5 9
Departure 4 11
Departure 5 12
Arrival 6 15
Departure 6 19

at which each event occurs. The second column of Table 2.4 records the clock
time of each arrival event, while the last column records the clock time of each
departure event. The occurrence of the two types of events in chronological
order is shown in Table 2.5 and Figure 2.6.
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Figure 2.6 Number of customers in the system.

It should be noted that Table 2.5 is ordered by clock time, in which case
the events may or may not be ordered by customer number. The chronological
ordering of events is the basis of the approach to discrete-event simulation
described in Chapter 3.

Figure 2.6 depicts the number of customers in the system at the various
clock times. It is a visual image of the event listing of Table 2.5. Customer 1
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Table 2.6 Distribution of Time Between Arrivals

Time between

Arrivals Cumulative Random-Digit

(Minutes) Probability Probability ~ Assignment
1 0.125 0.125 001—125
2 0.125 0.250 126—250
3 0.125 0.375 251-375
4 0.125 0.500 376—500
5 0.125 0.625 501—-625
6 0.125 0.750 626—750
7 0.125 0.875 751—-875
8 0.125 1.000 876—000

is in the system from clock time 0 to clock time 2. Customer 2 arrives at clock
time 2 and departs at clock time 3. No customers are in the system from clock
time 3 to clock time 6. During some time periods two customers are in the
system, such as at clock time 8, when both customers 3 and 4 are in the system.
Also, there are times when events occur simultaneously, such as at clock time
9, when customer 5 arrives and customer 3 departs.

Example 2.1 follows the logic described above while keeping track of
a number of attributes of the system. Example 2.2 is concerned with a two-
channel queueing system. The flow diagrams for a multichannel queueing
system are slightly different from those for a single-channel system. The devel-
opment and interpretation of these flow diagrams is left as an exercise for the
reader.

ExAmPLE 2.1 Single-Channel Queue

A small grocery store has only one checkout counter. Customers arrive at this
checkout counter at random from 1 to 8 minutes apart. Each possible value of
interarrival time has the same probability of occurrence, as shown in Table 2.6.
The service times vary from 1 to 6 minutes with the probabilities shown in
Table 2.7. The problem is to analyze the system by simulating the arrival and
service of 20 customers.

Table 2.7 Service-Time Distribution

Service Time Cumulative Random-Digit
(Minutes)  Probability Probability — Assignment
1 0.10 0.10 01—-10
2 0.20 0.30 11-30
3 0.30 0.60 31-60
4 0.25 0.85 61-85
5 0.10 0.95 86—95
6 0.05 1.00 96—00
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In actuality, 20 customers is too small a sample size to allow drawing any
reliable conclusions. The accuracy of the results is enhanced by increasing the
sample size, as discussed in Chapter 11. However, the purpose of the exercise
is to demonstrate how simple simulations can be carried out in a table, either
manually or with a spreadsheet, not to recommend changes in the grocery store.
A second issue, discussed thoroughly in Chapter 11, is that of initial conditions.
A simulation of a grocery store that starts with an empty system is not realistic
unless the intention is to model the system from startup or to model until steady-
state operation is reached. Here, to keep things simple, starting conditions and
concerns are overlooked.

A set of uniformly distributed random numbers is needed to generate
the arrivals at the checkout counter. Random numbers have the following
properties:

1. The set of random numbers is uniformly distributed between 0 and 1.
2. Successive random numbers are independent.

With tabular simulations, random digits such as those found in Table A.1 in
the Appendix can be converted to random numbers. If using a spreadsheet,
most have a built-in random-number generator such as RAND() in Excel. The
example in the text uses random digits from Table A.1; in some of the exercises
the student is asked to use a spreadsheet.

Random digits are converted to random numbers by placing a decimal
point appropriately. Since the probabilities in Table 2.6 are accurate to 3 signif-
icant digits, three-place random numbers will suffice. It is necessary to list only
19 random numbers to generate times between arrivals. Why only 19 numbers?
The first arrival is assumed to occur at time 0, so only 19 more arrivals need to
be generated to end up with 20 customers. Similarly, for Table 2.7, two-place
random numbers will suffice.

The rightmost two columns of Tables 2.6 and 2.7 are used to generate ran-
dom arrivals and random service times. The third column in each table contains
the cumulative probability for the distribution. The rightmost column contains
the random digit-assignment. In Table 2.6, the first random-digit assignment
is 001-125. There are 1000 three-digit values possible (001 through 000). The
probability of a time-between-arrivals of 1 minute is 0.125, and 125 of the 1000
random-digit values are assigned to such an occurrence. Times between ar-
rivals for 19 customers are generated by listing 19 three-digit values from Table
A.1 and comparing them to the random-digit assignment of Table 2.6.

For manual simulations, it is good practice to start at a random position in
the random-digit table and proceed in a systematic direction, never re-using the
same stream of digits in a given problem. If the same pattern is used repeatedly,
bias could result, because the same event pattern would be generated. In Excel,
each time the random function RAND() is evaluated, it returns a new random
value.

The time-between-arrival determination is shown in Table 2.8. Note that
the first random digits are 913. To obtain the corresponding time between
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Table 2.8 Time-Between-Arrivals Determination

Time between Time between
Random Arrivals Random Arrivals
Customer  Digits (Minutes) Customer  Digits (Minutes)
1 — — 11 109 1
2 913 8 12 093 1
3 727 6 13 607 5
4 015 1 14 738 6
5 948 8 15 359 3
6 309 3 16 888 8
7 922 8 17 106 1
8 753 7 18 212 2
9 235 2 19 493 4
10 302 3 20 535 5

arrivals, enter the fourth column of Table 2.6 and read 8 minutes from the first
column of the table. Alternatively, we see that 0.913 is between the cumulative
probabilities 0.876 and 1.000, again resulting in 8 minutes as the generated time.

Service times for all 20 customers are shown in Table 2.9. These service
times were generated based on the methodology described above, together with
the aid of Table 2.7. The first customer’s service time is 4 minutes because the
random digits 84 fall in the bracket 61-85, or alternatively because the derived
random number 0.84 falls between the cumulative probabilities 0.61 and 0.85.

Table 2.9 Service Times Generated

Service Service
Random Time Random Time
Customer  Digits  (Minutes) Customer  Digits  (Minutes)
1 84 4 11 32 3
2 10 1 12 94 5
3 74 4 13 79 4
4 53 3 14 05 1
5 17 2 15 79 5
6 79 4 16 84 4
7 91 5 17 52 3
8 67 4 18 55 3
9 89 5 19 30 2
10 38 3 20 50 3
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The essence of a manual simulation is the simulation table. These ta-
bles are designed for the problem at hand, with columns added to answer the
questions posed. The simulation table for the single-channel queue, shown in
Table 2.10, is an extension of the type of table already seen in Table 2.4. The
first step is to initialize the table by filling in cells for the first customer. The
first customer is assumed to arrive at time 0. Service begins immediately and
finishes at time 4. The customer was in the system for 4 minutes. After the
first customer, subsequent rows in the table are based on the random numbers
for interarrival time and service time and the completion time of the previous
customer. For example, the second customer arrives at time 8. Thus, the server
(checkout person) was idle for 4 minutes. Skipping down to the fourth cus-
tomer, it is seen that this customer arrived at time 15 but could not be served
until time 18. This customer had to wait in the queue for 3 minutes. This pro-
cess continues for all 20 customers. Extra columns have been added to collect
statistical measures of performance such as each customer’s time in the system
and the server’s idle time (if any) since the previous customer departed. In
order to compute summary statistics, totals are formed as shown for service
times, time customers spend in the system, idle time of the server, and time the
customers wait in the queue.

In the exercises, the reader is asked to implement the simulation table for
the single-channel queue, Table 2.10, in Excel or another spreadsheet. Here
we give some hints when using Excel. The key column to compute is column
E, the “Time Service Begins”. (We leave for the reader the question of how to
compute the random interarrival and service times, but suggest the RAND()
random number generator or other built-in distribution in Excel.) First, the
reader may fill in row 1 for the first customer manually. The values for the
remaining customers must use macro formulas (which begin with an equals
sign in Excel). Note that a customer begins service at the later of its own
arrival time (column C) or the completion time (column G) of the previous
customer. Therefore, for customer 10, service begins at E10 = MAX(C10,
G9), where MAX() is the Excel macro function that returns the maximum
value in a range or list of cells. This easily generalizes to other customers.
(The statistical measures in columns H and I are easily computed by simple
subtractions—also left for the reader.) A final hint on how to verify your spread-
sheet model: instead of using a random function for arrivals and service times,
type in the actual values given in Table 2.10 in columns B and D. If your for-
mulas are correct, the spreadsheet should duplicate Table 2.10 exactly. After
verification, replace the numbers by an appropriate random function. Then
on each recalculation of the spreadsheet (function key F9 in Excel), it will
generate new random numbers and you will get a new “run” of the simula-
tion.

Some of the findings from the simulation in Table 2.10 are as follows:
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1. The average waiting time for a customer is 2.8 minutes. This is determined
in the following manner:

average waiting time total time customers wait in queue (minutes)
(minutes) N total numbers of customers
56 )
= — = 2.8 minutes
20

2. The probability that a customer has to wait in the queue is 0.65. This is
determined in the following manner:

. . number of customers who wait
probability (wait) =

total number of customers

13
= — = 0.65
20
3. The fraction of idle time of the server is 0.21. This is determined in the
following manner:

probability of idle  total idle time of server (minutes)
server ~total run time of simulation (minutes)
18
= — =021
86
The probability of the server being busy is the complement of 0.21, or
0.79.
4. The average service time is 3.4 minutes, determined as follows:
average service time _  total service time (minutes)
(minutes) ~ total number of customers
68
= — = 3.4 minutes
20

This result can be compared with the expected service time by finding the
mean of the service-time distribution using the equation

e e]

E(S) =) sp(s)

s=0

Applying the expected-value equation to the distribution in Table 2.7
gives an expected service time of:

= 1(0.10) + 2(0.20) + 3(0.30) + 4(0.25) + 5(0.10) + 6(0.05)
= 3.2 minutes

The expected service time is slightly lower than the average service time
in the simulation. The longer the simulation, the closer the average will
be to E(S).



Table 2.10 Simulation Table for Queueing Problem

A B C D E F G H I

Time Since Service Time Time Customer Time Time Customer Idle Time

Last Arrival Arrival Time Service Waits in Queue Service Spends in System of Server

Customer (Minutes) Time (Minutes) Begins (Minutes) Ends (Minutes) (Minutes)
1 — 0 4 0 0 4 4 0
2 8 8 1 8 0 9 1 4
3 6 14 4 14 0 18 4 5
4 1 15 3 18 3 21 6 0
5 8 23 2 23 0 25 2 2
6 3 26 4 26 0 30 4 1
7 8 34 5 34 0 39 5 4
8 7 41 4 41 0 45 4 2
9 2 43 5 45 2 50 7 0
10 3 46 3 50 4 53 7 0
11 1 47 3 53 6 56 9 0
12 1 48 5 56 8 61 13 0
13 5 53 4 61 8 65 12 0
14 6 59 1 65 6 66 7 0
15 3 62 5 66 4 71 9 0
16 8 70 4 71 1 75 5 0
17 1 71 3 75 4 78 7 0
18 2 73 3 78 5 81 8 0
19 4 77 2 81 4 83 6 0
20 5 82 3 83 1 86 4 0
68 56 124 18

L'¢ "I9S
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5. The average time between arrivals is 4.3 minutes. This is determined in
the following manner:

sum of all times

average time between  between arrivals (minutes)
arrivals (minutes) ~ number of arrivals —1
82 .
= — = 4.3 minutes
19

One is subtracted from the denominator because the first arrival is as-
sumed to occur at time 0. This result can be compared to the expected
time between arrivals by finding the mean of the discrete uniform dis-
tribution whose endpoints are @ = 1 and b = 8. The mean is given
by

a+b 1+38

= ——— = 4.5 minutes

E(A) = — .

The expected time between arrivals is slightly higher than the average.
However, as the simulation becomes longer, the average value of the time
between arrivals will approach the theoretical mean, E(A).

6. The average waiting time of those who wait is 4.3 minutes. This is deter-
mined in the following manner:

Average waiting time of total time customers wait in queue (minutes)

those who wait (minutes)  total number of customers who wait

56 .
= — = 4.3 minutes
13
7. The average time a customer spends in the system is 6.2 minutes. This
can be determined in two ways. First, the computation can be achieved
by the following relationship:

average time customer total time customers spend in the
system (minutes)

spends in the system =
. total number of customers
(minutes)

124

20

= 6.2 minutes

The second way of computing this same result is to realize that the fol-
lowing relationship must hold:

average time average time average time
customer spends customer spends customer spends
in the system = waiting in the +  inservice

(minutes) queue (minutes) (minutes)
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From findings 1 and 4 this results in:

Average time customer spends in the system (minutes)

= 2.8 + 3.4 = 6.2 minutes

A decision maker would be interested in results of this type, but a longer
simulation would increase the accuracy of the findings. However, some sub-
jective inferences can be drawn at this point. Most customers have to wait;
however, the average waiting time is not excessive. The server does not have
an undue amount of idle time. Objective statements about the results would
depend on balancing the cost of waiting with the cost of additional servers.
(Simulations requiring variations of the arrival and service distributions, as
well as implementation in a spreadsheet, are presented as exercises for the
reader.) A

ExampLE 2.2 The Able Baker Carhop Problem

This example illustrates the simulation procedure when there is more than one
service channel. Consider a drive-in restaurant where carhops take orders and
bring food to the car. Cars arrive in the manner shown in Table 2.11. There are
two carhops—Able and Baker. Able is better able to do the job and works a bit
faster than Baker. The distribution of their service times is shown in Tables 2.12
and 2.13.

Table 2.11 Interarrival Distribution of Cars

Time between

Arrivals Cumulative Random-Digit
(Minutes) Probability Probability — Assignment
1 0.25 0.25 01-25
2 0.40 0.65 26—65
3 0.20 0.85 66—85
4 0.15 1.00 86—00

The simulation proceeds in a manner similar to Example 2.1, except that
it is more complex because of the two servers. A simplifying rule is that Able
gets the customer if both carhops are idle. Perhaps, Able has seniority. (The

Table 2.12 Service Distribution of Able

Service Time Cumulative Random-Digit
(Minutes)  Probability Probability — Assignment
2 0.30 0.30 01-30
3 0.28 0.58 31-58
4 0.25 0.83 59-83
5 0.17 1.00 84—00
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Table 2.13 Service Distribution of Baker

Service Time Cumulative Random-Digit
(Minutes)  Probability Probability — Assignment
3 0.35 0.35 01-35
4 0.25 0.60 36—60
5 0.20 0.80 61—-80
6 0.20 1.00 81—-00

solution would be different if the decision were made at random or by any other
rule.)

The problem is to find how well the current arrangement is working.
To estimate the system measures of performance, a simulation of 1 hour of
operation is made. A longer simulation would yield more reliable results, but
for purposes of illustration a I-hour period has been selected.

The simulation proceeds in a manner similar to Example 2.1. Here there
are more events: a customer arrives, a customer begins service from Able, a
customer completes service from Able, a customer begins service from Baker,
and a customer completes service from Baker. The simulation table is shown
in Table 2.14.

In later exercises, the reader is asked to implement the simulation table,
Table 2.14, in a spreadsheet such as Excel. Here we provide a few hints (and
rules!). The row for the first customer is filled in manually, with the random-
number function RAND() or another random function replacing the random
digits. After the first customer, the cells for the other customers must be based
on logic and formulas. For example, the “Clock Time of Arrival” (column D)
in the row for the second customer is computed as follows:

D2 = D1 + C2

using notation similar to that used by most spreadsheets. (C2 is the time be-
tween arrivals 1 and 2.) This formula is easily generalized for any customer.

The logic to compute who gets a given customer, and when that service
begins, is more complex. Here we give a hint using the Excel macro function
IF(), which returns one of two values depending on whether a condition is true
or false. [The syntax is IF( condition, value_if_true, value_if false).] The logic
goes as follows when a customer arrives: If the customer finds Able idle, the
customer begins service immediately with Able. If Able is notidle but Baker is,
then the customer begins service immediately with Baker. If both are busy, the
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customer begins service with the first server to become free. The logic requires
that we compute when Able and Baker will become free, for which we use the
built-in Excel function for maximum over a range, MAX(). For example, for
customer 10, Able will become free at MAX(H$1:H9), since service comple-
tion time is in column H and we need to look at customers 1-9. (Using H$1
instead of H1 works better with Excel when formulas are copied. The dollar
sign indicates an absolute reference versus a relative reference to a cell.) The
resulting formula to compute whether and when Able serves customer 10 is as
follows:

F10 = IF(D10>MAX(H$1:H9),D10, IF(D10>MAX(K$1:K9),’’’’,
MIN(MAX(H$1:H9) ,MAX(K$1:K9))))

In this formula, note that if the first condition (Able idle when customer 10
arrives) is true, then the customer begins immediately at the arrival time in
D10. Otherwise, a second IF() function is evaluated, which says if Baker is
idle, put nothing (“”’) in the cell. Otherwise, the function returns the time that
Able or Baker becomes idle, whichever is first [the minimum or MIN() of their
respective completion times]. A similar formula applies to cell 110 for “Time
Service Begins” for Baker. For service times for Able, you could use another
IF() function to make the cell blank or have a value:

G10 = IF(F10 > O,new_service_time, "™")
H10 = IF(F10 > 0, F10+Gl0, "")

and similarly for Baker. With these hints, we leave the formula for
new_service_time as well as the remainder of the solution to the reader.
The analysis of Table 2.14 results in the following:

1. Over the 62-minute period Able was busy 90% of the time.
2. Baker was busy only 69% of the time. The seniority rule keeps Baker less
busy (and gives Able more tips).

3. Nine of the 26 arrivals (about 35%) had to wait. The average waiting time
for all customers was only about 0.42 minute (25 seconds), which is very
small.

4. Those nine who did have to wait only waited an average of 1.22 minutes,
which is quite low.

9]

. In summary, this system seems well balanced. One server cannot handle
all the diners, and three servers would probably be too many. Adding
an additional server would surely reduce the waiting time to nearly zero.
However, the cost of waiting would have to be quite high to justify an
additional server. A



Table 2.14 Simulation Table for Carhop Example

A B C D E F G H 1 J K L
Able Baker

Customer Random Digits Time between Clock Time Random Digits Time Service Service Time Service Time Service Service Time Service Time in

No. for Arrival Arrivals of Arrival _ for Service Begins Time Ends Begins Time Ends Queue
1 — — 0 95 0 5 5 0
2 26 2 2 21 2 3 5 0
3 98 4 6 51 6 3 9 0
4 90 4 10 92 10 5 15 0
5 26 2 12 89 12 6 18 0
6 42 2 14 38 15 3 18 1
7 74 3 17 13 18 2 20 1
8 80 3 20 61 20 4 24 0
9 68 3 23 50 23 4 27 0
10 22 1 24 49 24 3 27 0
11 48 2 26 39 27 3 30 1
12 34 2 28 53 28 4 32 0
13 45 2 30 88 30 5 35 0
14 24 1 31 01 32 3 35 1
15 34 2 33 81 35 4 39 2
16 63 2 35 53 35 4 39 0
17 38 2 37 81 39 4 43 2
18 80 3 40 64 40 5 45 0
19 42 2 42 01 43 2 45 1
20 56 2 44 67 45 4 49 1
21 89 4 48 01 48 3 51 0
22 18 1 49 47 49 3 52 0
23 51 2 51 75 51 5 56 0
24 71 3 54 57 54 3 57 0
25 16 1 55 87 56 6 62 1
26 92 4 59 47 59 3 62 0
56 43 11

or
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2.2 Simulation of Inventory Systems

An important class of simulation problems involves inventory systems. A sim-
pleinventory systemis shown in Figure 2.7. This inventory system has a periodic
review of length N, at which time the inventory level is checked. An order is
made to bring the inventory up to the level M. At the end of the first review
period, an order quantity, Q1, is placed. In this inventory system the lead time
(i.e., the length of time between the placement and receipt of an order) is zero.
Since demands are not usually known with certainty, the order quantities are
probabilistic. Demand is shown as being uniform over the time period in Fig-
ure 2.7. In actuality, demands are not usually uniform and do fluctuate over
time. One possibility is that demands all occur at the beginning of the cycle.
Another is that the lead time is random of some positive length.

Amount in inventory

I
|
|
|
|
| \

| |
<— N—>»<—N—><—N—>

Figure 2.7 Probabilistic order-level inventory system.

Notice that in the second cycle, the amount in inventory drops below
zero, indicating a shortage. In Figure 2.7, these units are backordered; when
the order arrives, the demand for the backordered items is satisfied first. To
avoid shortages, a buffer, or safety, stock would need to be carried.

Carrying stock in inventory has an associated cost attributed to the inter-
est paid on the funds borrowed to buy the items (this also could be considered
as the loss from not having the funds available for other investment purposes).
Other costs can be placed in the carrying or holding cost column: renting of stor-
age space, hiring guards, and so on. An alternative to carrying high inventory
is to make more frequent reviews, and consequently, more frequent purchases
or replenishments. This has an associated cost: the ordering cost. Also, there is
a cost in being short. Customers may get angry, with a subsequent loss of good
will. Larger inventories decrease the possibilities of shortages. These costs
must be traded off in order to minimize the total cost of an inventory system.

The total cost (or total profit) of an inventory system is the measure of
performance. This can be affected by the policy alternatives. For example,
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in Figure 2.7, the decision maker can control the maximum inventory level,
M, and the length of the cycle, N. What effect does changing N have on the
various costs?

Inan (M, N) inventory system, the events that may occur are: the demand
for items in the inventory, the review of the inventory position, and the receipt
of an order at the end of each review period. When the lead time is zero, as in
Figure 2.7, the last two events occur simultaneously.

In the following example for deciding how many newspapers to buy, only
asingle time period of specified length is relevant and only a single procurement
is made. Inventory remaining at the end of the single time period is sold for
scrap or discarded. A wide variety of real-world problems are of this form,
including the stocking of spare parts, perishable items, style goods, and special
seasonal items [Hadley and Whitin, 1963].

ExAmPLE 2.3 The Newspaper Seller’s Problem

A classical inventory problem concerns the purchase and sale of newspapers.
The paper seller buys the papers for 33 cents each and sells them for 50 cents
each. Newspapers not sold at the end of the day are sold as scrap for 5 cents
each. Newspapers can be purchased in bundles of 10. Thus, the paper seller can
buy 50, 60, and so on. There are three types of newsdays, “good,” “fair,” and
“poor,” with probabilities of 0.35, 0.45, and 0.20, respectively. The distribution
of papers demanded on each of these days is given in Table 2.15. The problem
is to determine the optimal number of papers the newspaper seller should
purchase. This will be accomplished by simulating demands for 20 days and
recording profits from sales each day.
The profits are given by the following relationship:

revenue cost of
Profit = ( ) —
from sales newspapers

lost profit from salvage from sale
excess demand of scrap papers

Table 2.15 Distribution of Newspapers
Demanded

Demand Probability Distribution

Demand Good Fair Poor
40 0.03 0.10 0.44

50 0.05 0.18 0.22

60 0.15 0.40 0.16

70 0.20 0.20 0.12

80 0.35 0.08 0.06

90 0.15 0.04 0.00
100 0.07 0.00 0.00
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Table 2.16 Random-Digit Assignment for Type of
Newsday

Cumulative Random-Digit
Type of Newsday Probability Probability — Assignment

Good 0.35 0.35 01-35
Fair 0.45 0.80 36—80
Poor 0.20 1.00 81-00

From the problem statement, the revenue from sales is 50 cents for each paper
sold. The cost of newspapers is 33 cents for each paper purchased. The lost
profit from excess demand is 17 cents for each paper demanded that could not
be provided. Such a shortage cost is somewhat controversial but makes the
problem much more interesting. The salvage value of scrap papers is 5 cents
each.

Tables 2.16 and 2.17 provide the random-digit assignments for the types
of newsdays and the demands for those newsdays. To solve this problem by
simulation requires setting a policy of buying a certain number of papers each
day, then simulating the demands for papers over the 20-day time period to
determine the total profit. The policy (number of newspapers purchased) is
changed to other values and the simulation repeated until the best value is
found.

Table 2.17 Random-Digit Assignments for Newspapers
Demanded

Cumulative DistributionRandom-Digit Assignment

Demand Good Fair  Poor  Good  Fair Poor
40 003 010 044 01-03 01-10 01-—-44
50 008 028 066 04—08 11-28 45-66
60 023 068 082 09-23 29-68 67—82
70 043 0838 094 24-43 69-88 83-94
80 078 096 1.00 44-78 89-96 95-00
90 0.93 1.00 1.00 79—-93 97-00

100 1.00 1.00 1.00 94-—00

The simulation table for the decision to purchase 70 newspapers is shown
in Table 2.18.

On day 1 the demand is for 60 newspapers. The revenue from the sale
of 60 newspapers is $30.00. Ten newspapers are left over at the end of the
day. The salvage value at 5 cents each is 50 cents. The profit for the first day is
determined as follows:

Profit = $30.00 — $23.10 — 0 + $.50 = $7.40



Table 2.18 Simulation Table for Purchase of 70 Newspapers

Random

Digits for Random Revenue Lost Profit Salvage
Type of Type of Digits for from from Excess from Sale Daily
Day Newsday Newsday Demand Demand Sales Demand of Scrap Profit
1 94 Poor 80 60 $30.00 — $0.50 $7.40
2 77 Fair 20 50 25.00 - 1.00 2.90
3 49 Fair 15 50 25.00 - 1.00 2.90
4 45 Fair 88 70 35.00 - — 11.90
5 43 Fair 98 90 35.00 $3.40 - 8.50
6 32 Good 65 80 35.00 1.70 — 10.20
7 49 Fair 86 70 35.00 - — 11.90
8 00 Poor 73 60 30.00 — 0.50 7.40
9 16 Good 24 70 35.00 - — 11.90
10 24 Good 60 80 35.00 1.70 - 10.20
11 31 Good 60 80 35.00 1.70 — 10.20
12 14 Good 29 70 35.00 - - 11.90
13 41 Fair 18 50 25.00 — 1.00 2.90
14 61 Fair 90 80 35.00 1.70 - 10.20
15 85 Poor 93 70 35.00 - - 11.90
16 08 Good 73 80 35.00 1.70 — 10.20
17 15 Good 21 60 30.00 - 0.50 7.40
18 97 Poor 45 50 25.00 - 1.00 2.90
19 52 Fair 76 70 35.00 - - 11.90
20 78 Fair 96 80 35.00 1.70 - 10.20
$645.00 $13.60 $5.50 $174.90
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On the fifth day the demand is greater than the supply. The revenue
from sales is $35.00, since only 70 papers are available under this policy. An
additional 20 papers could have been sold. Thus, a lost profit of $3.40 (20 x 17
cents) is assessed. The daily profit is determined as follows:

Profit = $35.00 — $23.10 — $3.40 + 0 = $8.50

The profit for the 20-day period is the sum of the daily profits, $174.90. It can
also be computed from the totals for the 20 days of the simulation as follows:

Total profit = $645.00 — $462.00 — $13.60 + $5.50 = $174.90

In general, since the results of one day are independent of those of previous
days, inventory problems of this type are easier than queueing problems when
solvedin aspreadsheet such as Excel. The determination of the optimal number
of newspapers to purchase is left as an exercise for the reader. A

ExXAMPLE 2.4 Simulation of an (//, N) Inventory System

This example follows the pattern of the probabilistic order-level inventory sys-
tem shown in Figure 2.7. Suppose that the maximum inventory level, M, is
11 units and the review period, N, is 5 days. The problem is to estimate, by
simulation, the average ending units in inventory and the number of days when
a shortage condition occurs. The distribution of the number of units demanded
per day is shown in Table 2.19. In this example, lead time is a random variable,
as shown in Table 2.20. Assume that orders are placed at the close of business
and are received for inventory at the beginning of business as determined by
the lead time.

Table 2.19 Random-Digit Assignments for Daily Demand

Cumulative Random-Digit
Demand Probability Probability Assignment
0 0.10 0.10 01-10
1 0.25 0.35 11-35
2 0.35 0.70 36—70
3 0.21 0.91 71-91
4 0.09 1.00 92—00

Table 2.20 Random-Digit Assignments for Lead Time

Lead Time Cumulative Random-Digit
(Days) Probability Probability Assignment
1 0.6 0.6 1-6
2 0.3 0.9 7-9
3 0.1 1.0 0




Table 2.21 Simulation Tables for (M, N') Inventory System
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To make an estimate of the mean units in ending inventory, many cycles
would have to be simulated. For purposes of this example, only five cycles will
be shown. The reader is asked to continue the example as an exercise at the
end of the chapter.

The random-digit assignments for daily demand and lead time are shown
in the rightmost columns of Tables 2.19 and 2.20. The resulting simulation table
is shown in Table 2.21. The simulation has been started with the inventory level
at 3 units and an order of 8 units scheduled to arrive in 2 days’ time.

Following the simulation table for several selected days indicates how the
process operates. The order for 8 units is available on the morning of the third
day of the first cycle, raising the inventory level from 1 unit to 9 units. Demands
during the remainder of the first cycle reduced the ending inventory level to
2 units on the fifth day. Thus, an order for 9 units was placed. The lead time
for this order was 1 day. The order of 9 units was added to inventory on the
morning of day 2 of cycle 2.

Notice that the beginning inventory on the second day of the third cycle
was zero. An order for 2 units on that day led to a shortage condition. The
units were backordered on that day and the next day also. On the morning of
day 4 of cycle 3 there was a beginning inventory of 9 units. The 4 units that were
backordered and the 1 unit demanded that day reduced the ending inventory
to 4 units.

Based on five cycles of simulation, the average ending inventory is approx-
imately 3.5 (88 = 25) units. On 2 of 25 days a shortage condition existed. A

2.3 Other Examples of Simulation

This section includes examples of the simulation of a reliability problem, a
bombing mission, and the generation of the lead-time demand distribution
given the distributions of demand and lead time.

ExAMPLE 2.5 A Reliability Problem

A large milling machine has three different bearings that fail in service. The
cumulative distribution function of the life of each bearing is identical, as shown
in Table 2.22. When a bearing fails, the mill stops, a repairperson is called, and
a new bearing is installed. The delay time of the repairperson’s arriving at
the milling machine is also a random variable, with the distribution given in
Table 2.23. Downtime for the mill is estimated at $5 per minute. The direct
on-site cost of the repairperson is $15 per hour. It takes 20 minutes to change
one bearing, 30 minutes to change two bearings, and 40 minutes to change three
bearings. The bearings cost $16 each. A proposal has been made to replace all
three bearings whenever a bearing fails. Management needs an evaluation of
this proposal.

Table 2.24 represents a simulation of 20,000 hours of operation under the
current method of operation. Note that there are instances where more than
one bearing fails at the same time. This is unlikely to occur in practice and is
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Table 2.22 Bearing-Life Distribution

Bearing
Life Cumulative Random-Digit

(Hours) Probability Probability — Assignment
1000 0.10 0.10 01-10
1100 0.13 0.23 11-23
1200 0.25 0.48 2448
1300 0.13 0.61 49—-61
1400 0.09 0.70 62-70
1500 0.12 0.82 71-82
1600 0.02 0.84 83-84
1700 0.06 0.90 85-90
1800 0.05 0.95 91-95
1900 0.05 1.00 96—00

due to using a rather coarse grid of 100 hours. It will be assumed in this example
that the times are never exactly the same, and thus no more than one bearing is
changed at any breakdown. Sixteen bearing changes were made for bearings
1 and 2, but only 14 bearing changes were required for bearing 3. The cost of
the current system is estimated as follows:

Cost of bearings = 46 bearings x $16/bearing = $736
Cost of delay time = (110 + 125 + 95) minutes x $5/minute = $1650

Cost of downtime during repair =

46 bearings x 20 minutes/bearing x $5/minute = $4600

Cost of repairpersons =

46 bearings x 20 minutes/bearing x $15/60 minutes= $230
Total cost = $736 + $1650 + $4600 + $230 = $7216

Table 2.23 Delay-Time Distribution

Delay Time Cumulative Random-Digit
(Minutes)  Probability Probability  Assignment
5 0.6 0.6 1-6
10 0.3 0.9 7-9

15 0.1 1.0 0

Table 2.25 is a simulation using the proposed method. Notice that bearing
life is taken from Table 2.24, so that for as many bearings as were used in the cur-

rent method, the

bearing

life is 1identical for both methods.



Table 2.24 Bearing Replacement Using Current Method

Bearing 1 Bearing 2 Bearing 3
Accumulated Accumulated Accumulated
Life Life Delay Life Life Delay Life Life Delay
RD?®* (Hours) (Hours) RD (Minutes) RD (Hours) (Hours) RD (Minutes) RD (Hours) (Hours) RD (Minutes)

1 67 1,400 1,400 2 5 70 1,500 1,500 0 15 76 1,500 1,500 0 15
2 08 1,000 2,400 3 5 43 1,200 2,700 7 10 65 1,400 2,900 2 5
3 49 1,300 3,700 1 5 86 1,700 4,400 3 5 61 1,400 4,300 7 10
4 84 1,600 5,300 7 10 93 1,800 6,200 1 5 96 1,900 6,200 1 5
5 4 1,200 6,500 8 10 81 1,600 7,800 2 5 65 1,400 7,600 3 5
6 30 1,200 7,700 1 44 1,200 9,000 8 10 56 1,300 8,900 3 5
7 10 1,000 8,700 2 5 19 1,100 10,100 1 5 11 1,100 10,000 6 5
8 63 1,400 10,100 8 10 51 1,300 11,400 1 86 1,700 11,700 3 5
9 02 1,000 11,100 3 5 45 1,300 12,700 7 10 57 1,300 13,000 1 5
10 02 1,000 12,100 8 10 12 1,100 13,800 8 5 49 1,300 14,300 4 5
1 77 1,500 13,600 7 10 48 1,300 15,100 0 15 36 1,200 15,500 8 10
12 59 1,300 14,900 5 5 09 1,000 16,100 8 10 44 1,200 16,700 2 5
13 23 1,100 16,000 5 5 44 1,200 17,300 1 5 94 1,800 18,500 1 5
14 53 1,300 17,300 9 10 46 1,200 18,500 2 5 78 1,500 20,000 7 10
15 85 1,700 19,000 6 5 40 1,200 19,700 8 10
16 75 1,500 20,500 4 52 1,300 21,000 5 5

110 125 95

2RD, random digits.
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Table 2.25 Bearing Replacement using Proposed Method

Bearing 1 Bearing2 Bearing3  First  Accumulated
Life Life Life Failure Life Delay
(Hours)  (Hours) (Hours) (Hours) (Hours) RD (Minutes)

1 1,400 1,500 1,500 1,400 1,400 3 5
2 1,000 1,200 1,400 1,000 2,400 7 10
3 1,300 1,700 1,400 1,300 3,700 5 5
4 1,600 1,800 1,900 1,600 5,300 1 5
5 1,200 1,600 1,400 1,200 6,500 4 5
6 1,200 1,200 1,300 1,200 7,700 3 5
7 1,000 1,100 1,100 1,000 8,700 7 10
8 1,400 1,300 1,700 1,300 10,000 8 10
9 1,000 1,300 1,300 1,000 11,000 8 10
10 1,000 1,100 1,300 1,000 12,000 3 5
11 1,500 1,300 1,200 1,200 13,200 2 5
12 1,300 1,000 1,200 1,000 14,200 4 5
13 1,100 1,200 1,800 1,100 15,300 1 5
14 1,300 1,200 1,500 1,200 16,500 6 5
15 1,700 1,200 63/1,400 1,200 17,700 2 5
16 1,500 1,300 21/1,100 1,100 18,800 7 10
17 85/1,700  53/1,300  23/1,100 1,100 19,900 0 15
18 05/1,000  29/1,200  51/1,300 1,000 20,900 5 5
125

It is assumed that the bearings are in order on a shelf and they are taken
sequentially and placed on the mill. Since the proposed method uses more
bearings than the current method, the second simulation uses new random
digits for generating the additional lifetimes. (When comparing two scenarios,
the effect of using different random numbers versus common random numbers
is discussed in Chapter 12.) The random digits that lead to the lives of the
additional bearings are shown above the slashed line beginning with the 15th
replacement of bearing 3. When the new policy is used, some 18 sets of bearings
were required. In the two simulations, repairperson delays were not duplicated
but were generated independently using different random digits. The total cost
of the new policy is computed as follows:

Cost of bearings = 54 bearings x $16/bearing = $864
Cost of delay time = 125 minutes x $5/minute = $625
Cost of downtime during repairs =

18 sets x 40 minutes/set x $5/minute = $3600
Cost of repairpersons =

18 sets x 40 minutes/set x $15/60 minutes = $180
Total cost = $864 + $625 + $3600 + $180 = $5269



Sec. 2.3 Other Examples of Simulation 51

The new policy generates a savings of $1947 over a 20,000-hour simulation.
If the machine runs continuously, the simulated time is about 2% years. Thus,
the savings are about $865 per year. A

ExXAMPLE 2.6 Random Normal Numbers

A classic simulation problem is that of a squadron of bombers attempting to
destroy an ammunition depot shaped as shown in Figure 2.8. If a bomb lands
anywhere on the depot, a hit is scored. Otherwise, the bomb is a miss. The
aircraft fly in the horizontal direction. Ten bombers are in each squadron. The
aiming point is the dot located in the heart of the ammunition dump. The point
of impact is assumed to be normally distributed around the aiming point with
a standard deviation of 600 meters in the horizontal direction and 300 meters
in the vertical direction. The problem is to simulate the operation and make
statements about the number of bombs on target.

Recall that the standardized normal variate, Z, with mean 0 and standard
deviation 1, is distributed as

o (—504, 198)
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Figure 2.8 Ammunition depot.



52 Chap.2 Simulation Examples

where X is a normal random variable, u is the true mean of the distribution of
X, and o is the standard deviation of X. Then,

X =Zo + .

In this example the aiming point can be considered as (0, 0); that is, the u value
in the horizontal direction is 0, and similarly for the p value in the vertical
direction. Then,

X=ZO‘X
Y:ZOY

where (X, Y) are the simulated coordinates of the bomb after it has fallen.
Now, oy = 600 and oy = 300. Therefore,

X = 6007
Y = 300Z;

The i and j subscripts have been added to indicate that the values of Z should
be different. What are these Z values and where can they be found? The values
of Z are random normal numbers. These can be generated from uniformly
distributed random numbers, as discussed in Chapter 7. Alternatively, tables
of random normal numbers have been generated. A small sample of random
normal numbers is given in Table A.2. If using a spreadsheet, there is a built-in
function that generates normal random numbers. (For Excel, use the Random
Number Generation tool in the Analysis TookPak Add-In to generate any
number of normal random values in a range of cells.)

To understand what happens in these bombing missions, a simulation of
perhaps 10 or 20 runs might be conducted. However, space limitations do not
permit such an extensive simulation. An example of one run will indicate how
the simulation is performed. The table of random normal numbers is used in
the same way as the table of random numbers: that is, start at a random place
in the table and proceed in a systematic direction, avoiding overlap. Table 2.26
shows the results of a simulated run.

The mnemonic RNN, stands for “random normal number to compute
the x coordinate” and corresponds to Z; above. The first random normal
number used was —0.84, generating an x coordinate 600(—0.84) = —504. The
random normal number to generate the y coordinate was 0.66, resulting in a y
coordinate of 198. Taken together, (—504, 198) is a miss, for it is off the target.
The resulting point and that of the third bomber are plotted on Figure 2.8. The
10 bombers had 3 hits and 7 misses. Many more runs are needed to assess the
potential for destroying the dump. Additional runs appear as an exercise for
the reader. This is an example of a Monte Carlo, or static, simulation, since
time is not an element of the solution. A
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Table 2.26 Simulated Bombing Run

x Coordinate y Coordinate
Bomber RNN, (600 RNN,) RNN, (300 RNN,) Result*
1 —0.84 —504 0.66 198 Miss
2 1.03 618 —0.13 -39 Miss
3 0.92 552 0.06 18 Hit
4 -1.82 —1,092 —1.40 —420 Miss
5 —0.16 —96 0.23 69 Hit
6 —1.78 —1,068 133 399 Miss
7 2.04 1,224 0.69 207 Miss
8 1.08 648 —1.10 —330 Miss
9 —1.50 —900 —0.72 —216 Miss
10 —0.42 —252 —0.60 —180 Hit

2Total: 3 hits, 7 misses.

ExAMPLE 2.7 Lead-Time Demand

Lead-time demand may occur in an inventory system when the lead time is other
than instantaneous. The lead time is the time from placement of an order until
the order is received. In a realistic situation, lead time is a random variable.
During the lead time, demands also occur at random. Lead-time demand is
thus a random variable defined as the sum of the demands over the lead time,
or ZiT:o D;, where i is the time period of the lead time, i = 0,1,2,...; D; is
the demand during the i th time period; and T is the lead time. The distribution
of lead-time demand is determined by simulating many cycles of lead time and
building a histogram based on the results.

A firm sells bulk rolls of newsprint. The daily demand is given by the
following probability distribution:

Daily Demand (Rolls) 3 4 5 6
Probability 020 035 030 0.15

The lead time is the number of days from placing an order until the firm receives
the order from the supplier. In this instance, lead time is a random variable
given by the following distribution:

Lead Time (Days) 1 2 3
Probability 0.36 042 022

Table 2.27 shows the random-digit assignment for demand, and Table 2.28
does the same for lead time. The incomplete simulation table is shown in
Table 2.29. The random digits for the first cycle were 57. This generates a lead
time of 2 days. Thus, two pairs of random digits must be generated for the
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Table 2.27 Random-Digit Assignment for Demand

Cumulative Random-Digit
Daily Demand _ Probability Probability  Assignment

3 0.20 0.20 01-20
4 0.35 0.55 21-55
5 0.30 0.85 56—85
6 0.15 1.00 86—00

daily demand. The first of these pairs is 87, which leads to a demand of 6. This
is followed by a demand of 4. The lead-time demand for the first cycle is 10.
After many cycles are simulated, a histogram is formulated. The histogram
might appear as shown in Figure 2.9. This example illustrates how simulation
can be used to study an unknown distribution by generating a random sample
from the distribution. A

Table 2.28 Random-Digit Assignment for

Lead Time
Lead
Time Cumulative Random-Digit
(Days) Probability Probability — Assignment
1 0.36 0.36 01-36
2 0.42 0.78 37-78
3 0.22 1.00 79—-00

Table 2.29 Simulation Table for Lead-Time Demand

Random  Lead Random
Digits for ~ Time Digits Lead-Time
Cycle Lead Time (Days) for Demand Demand  Demand
1 57 2 87 6
34 4 10
33 1 82 5 5
3 93 3 28 4
19 3
63 5 12
4 55 2 91 6
26 4 10
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Figure 2.9 Histogram for lead-time demand.

2.4 Summary

This chapter introduced simulation concepts via examples in order to illustrate
general areas of application and to motivate the remaining chapters. The next
chapter gives a more systematic presentation of the basic concepts.

Ad hoc simulation tables were used in completing each example. Events
in the tables were generated using uniformly distributed random numbers and,
in one case, random normal numbers. The examples illustrate the need for
determining the characteristics of the input data, generating random variables
from the input models, and analyzing the resulting response. The queueing
examples, especially the two-channel queue, illustrate some of the complex
dependencies that can occur—in this example, between subsequent customers
visiting the queue. Because of these complexities, the ad hoc simulation table
approach fails, or becomes unbearably complex, even with relatively simple
networks of queues. For this and other reasons, a more systematic methodol-
ogy, such as the event-scheduling approach described in Chapter 3, is needed.
These subjects are treated in more detail in the remaining chapters of the
text.

Examples are drawn principally from queueing and inventory systems,
because a large number of simulations concern problems in these areas. Addi-
tional examples are given in the areas of reliability, static simulation, and the
generation of a random sample from an unknown distribution.
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EXERCISES

If solving a problem manually with a simulation table, use different random digits
taken from Table A.l for all problems referring to examples in the text. Many of
the problems solved with a simulation table can be solved in a spreadsheet such
as Excel. If using a spreadsheet, the reader is encouraged to investigate in the
help system the existence and syntax for some common but useful functions. [For
example, in Excel, use RAND() for random numbers between 0 and 1; IF() to
return one of two values depending on whether a condition is true or false; MAX()
and MIN() for maximums and minimums, etc.] Recall, also, that numerous hints
for spreadsheet implementation were given in the text for the queueing examples.

In Example 2.1, let the arrival distribution be uniformly distributed between 1 and
10 minutes. Develop the simulation table and the analysis for 20 customers. What
is the effect of changing the arrival-time distribution?

In Example 2.1, let the service distribution be changed to the following:

Service Time (Minutes) 1 2 3 4 5 6
Probability 0.05 0.10 020 030 025 0.10

Develop the simulation table and the analysis for 20 customers. What is the effect
of changing the service-time distribution?

Perform the simulation in Example 2.1 for 20 more customers (customers 21 through
40). Compare the results of Example 2.1 to your results.

In Example 2.1, determine the time-weighted-average number of customers in the
system and the time-weighted-average number of customers waiting. [Hint: Use
Figure 2.6.]

In Example 2.2, change the arrival distribution of cars to the following:

Time between
Arrivals (Minutes) 0 1 2 3 4
Probability 0.10 020 035 020 0.15

Develop the simulation and subsequent analysis for a period of 1 hour. What is the
effect of changing the arrival distribution?

Again, with respect to Example 2.2, Able has a kneecap injury and cannot move
as fast. Consequently, two things happen. Able’s service distribution changes and
Baker gets first shot at the customer if both carhops are idle. Able’s new service
distribution is as follows:

Service Time (Minutes) 3 4 5 6
Probability 0.30 030 0.25 0.15

(a) Develop a simulation and subsequent analysis for 30 service completions.
What is the effect of Able’s injury and the new rule?

(b) What would be the effect of adding a new employee who works at Baker’s
speed? The new employee would have all leftover work after Baker and
Able.
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Modify Example 2.2 so that Able has a probability of 0.45 of getting a customer in
case both are idle. What is the effect of such a change?

Consider the following continuously operating job shop. Interarrival times of jobs
are distributed as follows:

Time between Probability
Arrivals (Hours)
0 23
1 37
2 28
3 12

Processing times for jobs are normally distributed with mean 50 minutes and stan-
dard deviation 8 minutes. Construct a simulation table, and perform a simulation
for 10 new customers. Assume that when the simulation begins there is one job
being processed (scheduled to be completed in 25 minutes) and there is one job
with a 50-minute processing time in the queue.

1. What was the average time in the queue for the 10 new jobs?
2. What was the average processing time of the 10 new jobs?

3. What was the maximum time in the system for the 10 new jobs?

Determine the optimal number of newspapers to be purchased daily in Example 2.3.
Should the same random digits be used for each level of newspapers purchased by
the seller? Why or why not? What effect does using new random numbers have?

A baker is trying to determine how many dozens of bagels to bake each day. The
probability distribution of the number of bagel customers is as follows:

Number of Customers/Day 8 10 12 14
Probability 035 030 025 0.10

Customers order 1, 2, 3, or 4 dozen bagels according to the following probability
distribution.

Number of Dozen Ordered/Customer 1 2 3 4
Probability 04 03 02 01

Bagels sell for $5.40 per dozen. They cost $3.80 per dozen to make. All bagels not
sold at the end of the day are sold at half-price to a local grocery store. Based on
5 days of simulation, how many dozen (to the nearest 10 dozen) bagels should be
baked each day?

Demand for widgets follows the probability distribution shown:

Daily Demand 0 1 2 3 4
Probability 033 025 020 012 0.10
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Stock is examined every 7 days (the plant is in operation every day) and, if the stock
level has reached 6 units, or less, an order for 10 widgets is placed. The lead time
(days until delivery) is probabilistic and follows the following distribution:

Lead Time (Days) 1 2 3
Probability 03 05 02

When the simulation begins, it is the beginning of the week, 12 widgets are on
hand, and no orders have been backordered. (Backordering is allowed.) Simulate
6 weeks of operation of this system. Analyze the system. Perform additional
simulations to determine the effect on shortages if increases or decreases occur in
(1) the review period, (2) the reorder quantity, and (3) the reorder point.

A plumbing supply firm is interested in the distribution of lead-time demand of
industrial sinks. The probability distribution for daily demand is known and occurs
as shown:

Daily Demand 0 1 2 3 4
Probability 0.18 0.39 0.29 0.090.05

The distribution of lead time has been reconstructed from past records as follows:

Lead Time (Days) 0 1 2 3 4 5
Probability 0.135 0.223 0.288 0.213 0.118 0.023

Develop the distribution of lead-time demand based on 20 cycles of lead time.
Prepare a histogram of the distribution using intervals 0-2, 3-5, .. .. Then, prepare
a histogram using intervals 0-1, 2-3, 4-5,.... Does changing the width of the
interval have a pronounced effect on the form of the histogram of the lead-time
demand distribution?

Develop and interpret flow diagrams analogous to Figures 2.2 and 2.3 for a queueing
system with i channels.

Rework the simulation of the proposed method of Example 2.5 using new random
digits. What is the effect on the total cost of generating a new set of events? When is
it satisfactory to use the same random digits (and events) for competing proposals?
Smalltown Taxi operates one vehicle during the 9:00 A.m. to 5:00 pm. period. Cur-
rently, consideration is being given to the addition of a second vehicle to the fleet.
The demand for taxis follows the distribution shown:

Time between Calls (Minutes) 15 20 25 30 35
Probability 0.14 022 043 0.17 0.04

The distribution of time to complete a service is as follows:

Service Time (Minutes) 5 15 25 35 45
Probability 0.12 035 043 0.06 0.04

Simulate five individual days of operation of the current system and the system with
an additional taxicab. Compare the two systems with respect to the waiting times
of the customers and any other measures that might shed light on the situation.
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Continue Example 2.6 for nine more runs and estimate how well the simulated
bombers will do when they make their raid on the ammunition depot.

The random variables X, Y, and Z are distributed as follows:

X ~ N(n = 100, 02 = 100)
Y ~ N(u = 300,02 = 225)
Z ~ N(u = 40,0% = 64)

Simulate 50 values of the random variable

X+Y
Z

Prepare a histogram of the resulting values using class intervals of width equal to
3.

Given A, B, and C, three independent random variables: Variable A is normally
distributed with ;1 = 100 and 6> = 400. Variable B is discrete uniformly dis-
tributed with probability distribution given by p(b) = 1/5 with b =0, 1, 2, 3 and
4. Variable C is distributed in accordance with the following table.

Value of C  Probability
10 10
20 25
30 .50
40 A5

Use simulation to estimate the mean of a new variable D, defined as
D = (A —25B)/(2C)

Use a sample of size 10.

Lead time for a stock item is normally distributed with a mean of 7 days and a
standard deviation of 2 days. Daily demand is distributed as follows:

Daily Demand 0 1 2 3 4
Probability 0.367 0.368 0.184 0.062 0.019

Determine the lead-time demand for 20 order cycles. (Round off lead time to the
closest integer during the simulation and, if a negative value results, give it a lead
time of zero.)

Consider Example 2.4.
(a) Extend the example for 15 more cycles and draw conclusions.
(b) Rework the example for 10 cycles with M = 10.
(¢) Rework the example for 10 cycles with N = 6.
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21 Estimate, by simulation, the average number of lost sales per week for an inventory
system that functions as follows:

(a)
(b)
(c)
(d)
(e)

)
(®

(h)

Whenever the inventory level falls to or below 10 units, an order is placed.
Only one order can be outstanding at a time.

The size of each order is equal to 20 — 7, where [ is the inventory level when
the order is placed.

If a demand occurs during a period when the inventory level is zero, the sale
is lost.

Daily demand is normally distributed with a mean of 5 units and a standard
deviation of 1.5 units. (Round off demands to the closest integer during the
simulation and, if a negative value results, give it a demand of zero.)

Lead time is distributed uniformly between zero and 5 days, integers only.
The simulation will start with 18 units in inventory.

For simplicity, assume that all demands occur at 12 noon and that all orders
are placed at the same time. Assume further that orders are received at 5:00
PM,, or after the demand which occurred on that day.

Let the simulation run for 5 weeks.

22 An elevator in a manufacturing plant carries exactly 400 kilograms of material.
There are three kinds of material, which arrive in boxes of known weight. These
materials and their distributions of time between arrivals are as follows:

Material Weight (kilograms) Interarrival Time (Minutes)
A 200 5 %+ 2(uniform)
B 100 6(constant)
C 50 P(2) =033
P(3) =0.67

It takes the elevator 1 minute to go up to the second floor, 2 minutes to unload, and
1 minute to return to the first floor. The elevator does not leave the first floor unless
it has a full load. Simulate 1 hour of operation of the system. What is the average
transit time for a box of material A (time from its arrival until it is unloaded)? What
is the average waiting time for a box of material B? How many boxes of material
C made the trip in 1 hour?

23 The random variables X and Y are distributed as follows:

X ~ 10 £ 10 (uniform)
Y ~ 10 =+ 8 (uniform)

(a) Simulate 200 values of the random variable

Z = XY

Prepare a histogram of the resulting values. What is the range of Z and what
is its average value?

(b) Same as (a) except

Z=X/Y
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Consider the assembly of two steel plates, each plate having a hole drilled in its
center. The plates are to be joined by a pin. The plates are aligned for assembly
relative to the bottom left corner (0, 0). The hole placement is centered at (3, 2) on
each plate. The standard deviation in each direction is 0.0045. The hole diameter is
normally distributed with a mean of 0.3 and a standard deviation of 0.005. The pin
diameter is also distributed normally with a mean of 0.29 and a standard deviation
of 0.004. What fraction of pins will go through the assembled plates? Base your
answer on a simulation of 50 observations.

[Hint: Clearance = Min(hy, ho) — [(x1 — x2)* + (y1 — y2)?]° — p, where

h; = hole diameter,i = plate 1,2

p = pin diameter

x; = distance to center of plate hole, horizontal direction,i = 1,2

distance to center of plate hole, vertical direction, i = 1, 2.]

Yi

In the exercise above, the pin will wobble if it is too loose. Wobbling occurs if
Min(hy, hy) — p > 0.006. What fraction of the assemblies wobble? (Conditional
probability, i.e., given that the pins go through.)

Three points are chosen at random on the circumference of a circle. Estimate the
probability that they all lie on the same semicircle, using Monte Carlo sampling
methods. Perform 5 replications.

Two theorems from statistics are as follows:

Theorem 1

Let Zy, Z,, ..., Z; be normally and independently distributed random variables
with mean ;& = 0 and variance o> = 1. Then the random variable

=21+ 2+ -+ Z;

is said to follow the chi-squared distribution with k degrees of freedom, abbreviated
2
Xk -

Theorem 2

Let Z ~ N(0, 1) and V be a chi-square random variable with k degrees of freedom.
If Z and V are independent, then the random variable

z
JVk

is said to follow the ¢ distribution with k degrees of freedom, abbreviated #.

T =

Generate a 7-distributed random variate with 3 degrees of freedom. Use a
spreadsheet and tabulate the generate values into a histogram; or, if manual, use
the following random values in the order shown:
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Random digitsRandom normal numbers

6729 1.06
1837 —0.72
2572 0.28
8134 —0.18
5251 —0.63

A bank has one drive-in teller and room for one additional customer to wait. Cus-
tomers arriving when the queue is full, park and go inside the bank to transact
business. The time-between-arrivals and service-time distributions are given be-
low.

Time between Service
Arrivals Time
(Minutes) Probability (Minutes) Probability

0 0.09 1 0.20
1 0.17 2 0.40
2 0.27 3 0.28
3 0.20 4 0.12
4 0.15

5 0.12

Simulate the operation of the drive-in teller for 10 new customers. The first of the
10 new customers arrives at a time determined at random. Start the simulation with
one customer being served, leaving at time 3, and one in the queue. How many
customers went into the bank to transact business?

The number of acres comprised by Cedar Bog Lake is being estimated. The lake
is shown in the accompanying sketch with the scale shown in feet. Use simulation
to estimate the size of the lake. (One acre = 43,560 square feet).

1000*

A
Y
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General Principles

This chapter develops a common framework for the modeling of complex sys-
tems using discrete-event simulation. It covers the basic building blocks of all
discrete-event simulation models: entities and attributes, activities and events.
In discrete-event simulation, a system is modeled in terms of its state at each
point in time; the entities that pass through the system and the entities that rep-
resent system resources; and the activities and events that cause system state
to change. Discrete-event models are appropriate for those systems for which
changes in system state occur only at discrete points in time.

The simulation languages and software (collectively called simulation
packages) described in Chapter 4 are fundamentally packages for discrete-
event simulation. A few of the packages also include the capability to model
continuous variables in a purely continuous simulation or a mixed discrete-
continuous model. The discussion in this chapter focuses on the discrete-event
concepts and methodologies. The discussion in Chapter 4 focuses more on the
capabilities of the individual packages and some of their higher-level constructs.

This chapter introduces and explains the fundamental concepts and meth-
odologies underlying all discrete-event simulation packages. These concepts
and methodologies are not tied to any particular package. Many of the pack-
ages use different terminology from that used here, and most have a number of
higher-level constructs designed to make modeling simpler and more straight-
forward for their application domain. For example, while this chapter discusses
the fundamental abstract concept of an entity, Chapter 4 discusses more con-
crete realizations of entities such as machines, conveyors, and vehicles that are
built into some of the packages to facilitate modeling in the manufacturing,
material handling or other domains.

63
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Section 3.1 covers the general principles and concepts of discrete-event
simulation, the event-scheduling/time-advance algorithm, and the three preva-
lent world views: eventscheduling, process interaction, and activity scanning.
Section 3.2 introduces some of the notions of list processing, one of the more
important methodologies used in discrete-event simulation software. Chapter 4
covers the implementation of the concepts in a number of the more widely used
simulation packages.

3.1 Concepts in Discrete-Event Simulation

The concept of a system and a model of a system were discussed briefly in
Chapter 1. This chapter deals exclusively with dynamic, stochastic systems (i.e.,
involving time and containing random elements) which change in a discrete
manner. This section expands on these concepts and develops a framework for
the development of a discrete-event model of a system. The major concepts
are briefly defined and then illustrated by examples:

System A collection of entities (e.g., people and machines) that interact
together over time to accomplish one or more goals.

Model An abstract representation of a system, usually containing structural,
logical, or mathematical relationships which describe a system in terms of
state, entities and their attributes, sets, processes, events, activities, and de-
lays.

System state A collection of variables that contain all the information nec-
essary to describe the system at any time.

Entity Any object or component in the system which requires explicit rep-
resentation in the model (e.g., a server, a customer, a machine).

Attributes The properties of a given entity (e.g., the priority of a waiting
customer, the routing of a job through a job shop).

List A collection of (permanently or temporarily) associated entities, or-
dered in some logical fashion (such as all customers currently in a waiting
line, ordered by first come, first served, or by priority).

Event An instantaneous occurrence that changes the state of a system (such
as an arrival of a new customer).

Event notice A record of an event to occur at the current or some future
time, along with any associated data necessary to execute the event; at a
minimum, the record includes the event type and the event time.

Event list A list of event notices for future events, ordered by time of occur-
rence; also known as the future event list (FEL).

Activity A duration of time of specified length (e.g., a service time or inter-
arrival time), which is known when it begins (although it may be defined in
terms of a statistical distribution).

Delay A duration of time of unspecified indefinite length, which is not known
until it ends (e.g., a customer’s delay in a last-in, first-out waiting line which,
when it begins, depends on future arrivals).
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Clock A variable representing simulated time, called CLOCK in the exam-
ples to follow.

Different simulation packages use different terminology for the same or similar
concepts. For example, lists are sometimes called sets, queues, or chains. Sets
or lists are used to hold entities as well as event notices. The entities on a list
are always ordered by some rule, such as first-in first-out or last-in first-out, or
ranked by some entity attribute, such as priority or due date. The future event
list is always ranked by the event time recorded in the event notice. Section 3.2
discusses a number of methods for handling lists and introduces some of the
methodologies for efficient processing of ordered sets or lists.

An activity typically represents a service time, an interarrival time, or any
other processing time whose duration has been characterized and defined by
the modeler. An activity’s duration may be specified in a number of ways:

1. Deterministic—for example, always exactly 5 minutes;

2. Statistical—for example, as a random draw from among 2, 5, 7 with equal
probabilities;

3. A function depending on system variables and/or entity attributes—for
example, loading time for an iron ore ship as a function of the ship’s
allowed cargo weight and the loading rate in tons per hour.

However it is characterized, the duration of an activity is computable from
its specification at the instant it begins. Its duration is not affected by the
occurrence of other events (unless, as is allowed by some simulation packages,
the model contains logic to cancel an event). To keep track of activities and their
expected completion time, at the simulated instant that an activity duration
begins, an event notice is created having an event time equal to the activity’s
completion time. For example, if the current simulated time is CLOCK = 100
minutes and an inspection time of exactly 5 minutes is just beginning, then an
event notice is created that specifies the type of event (an end of inspection
event) and the event time (100 + 5 = 105 minutes).

In contrast to an activity, a delay’s duration is not specified by the modeler
ahead of time, but rather is determined by system conditions. Quite often, a
delay’s duration is measured and is one of the desired outputs of a model run.
Typically, a delay ends when some set of logical conditions becomes true or one
or more other events occur. For example, a customer’s delay in a waiting line
may be dependent on the number and duration of service of other customers
ahead in line as well as the availability of servers and equipment.

A delay is sometimes called a conditional wait, while an activity is called
an unconditional wait. The completion of an activity is an event, often called
a primary event, that is managed by placing an event notice on the FEL. In
contrast, delays are managed by placing the associated entity on another list,
perhaps representing a waiting line, until such time as system conditions permit
the processing of the entity. The completion of a delay is sometimes called a
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conditional or secondary event, but such events are not represented by event
notices, nor do they appear on the FEL.

The systems considered here are dynamic—that is, changing over time.
Therefore, system state, entity attributes and the number of active entities,
the contents of sets, and the activities and delays currently in progress are
all functions of time and are constantly changing over time. Time itself is
represented by a variable called CLOCK.

ExampLE 3.1 (Able and Baker, Revisited)
Consider the Able-Baker carhop system of Example 2.2. A discrete-event
model has the following components:
System state
L (1), the number of cars waiting to be served at time ¢
L A(t),0o0r 1 to indicate Able being idle or busy at time ¢
Lp(t),0or 1 to indicate Baker being idle or busy at time ¢
Entities Neither the customers (i.e., cars) nor the servers need to be explicitly
represented, except in terms of the state variables, unless certain customer
averages are desired (compare Examples 3.4 and 3.5)
Events
Arrival event
Service completion by Able
Service completion by Baker
Activities
Interarrival time, defined in Table 2.11
Service time by Able, defined in Table 2.12
Service time by Baker, defined in Table 2.13
Delay A customer’s wait in queue until Able or Baker becomes free A

The definition of the model components provides a static description of the
model. In addition, a description of the dynamic relationships and interactions
between the components is also needed. Some questions that need answers
include:

1. How does each event affect system state, entity attributes, and set con-
tents?

2. How are activities defined (i.e., deterministic, probabilistic, or some other
mathematical equation)? What event marks the beginning or end of
each activity? Can the activity begin regardless of system state, or is
its beginning conditioned on the system being in a certain state? (For
example, a machining “activity” cannot begin unless the machine is idle,
not broken, and not in maintenance.)

3. Which events trigger the beginning (and end) of each type of delay? Un-
der what conditions does a delay begin, or end?

4. What is the system state at time 0? What events should be generated at
time 0 to “prime” the model—that is, to get the simulation started?
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A discrete-event simulation is the modeling over time of a system all of whose
state changes occur at discrete points in time—those points when an event
occurs. A discrete-event simulation (hereafter called a simulation) proceeds by
producing a sequence of system snapshots (or system images) which represent
the evolution of the system through time. A given snapshot at a given time
(CLOCK = t) includes not only the system state at time ¢, but also a list
(the FEL) of all activities currently in progress and when each such activity
will end, the status of all entities and current membership of all sets, plus the
current values of cumulative statistics and counters that will be used to calculate
summary statistics at the end of the simulation. A prototype system snapshot
is shown in Figure 3.1. (Not all models will contain every element exhibited in
Figure 3.1. Further illustrations are provided in the examples in this chapter.)

3.1.1 The Event-Scheduling/Time-Advance Algorithm

The mechanism for advancing simulation time and guaranteeing that all events
occur in correct chronological order is based on the future event list (FEL).
This list contains all event notices for events that have been scheduled to oc-
cur at a future time. Scheduling a future event means that at the instant an
activity begins, its duration is computed or drawn as a sample from a statistical
distribution and the end-activity event, together with its event time, is placed
on the future event list. In the real world, most future events are not scheduled
but merely happen—such as random breakdowns or random arrivals. In the
model, such random events are represented by the end of some activity, which
in turn is represented by a statistical distribution.

At any given time ¢, the FEL contains all previously scheduled future
events and their associated event times (called #1, ,, . . . in Figure 3.1). The FEL
is ordered by event time, meaning that the events are arranged chronologically;
that is, the event times satisfy

I <h =h =B ==

Time ¢ is the value of CLOCK, the current value of simulated time. The event
associated with time #; is called the imminent event; that is, it is the next event
that will occur. After the system snapshot at simulation time CLOCK = ¢
has been updated, the CLOCK is advanced to simulation time CLOCK =
t1, and the imminent event notice is removed from the FEL and the event
executed. Execution of the imminent event means that a new system snapshot
for time ¢, is created based on the old snapshot at time 7 and the nature of the
imminent event. At time ¢, new future events may or may not be generated,
but if any are, they are scheduled by creating event notices and putting them
in their proper position on the FEL. After the new system snapshot for time
t; has been updated, the clock is advanced to the time of the new imminent
event and that event is executed. This process repeats until the simulation is
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Figure 3.1 Prototype system snapshot at simulation time ¢.
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over. The sequence of actions which a simulator (or simulation language) must
perform to advance the clock and build a new system snapshot is called the
event-scheduling/time-advance algorithm, whose steps are listed in Figure 3.2
(and explained below).

Old system snapshot at time ¢

System
CLOCK State e Future Event List
t 5,1,6) (3, t1)— Type 3 event to occur at time #

(1, t,)— Type 1 event to occur at time #,
(1, t3)— Type 1 event to occur at time 3

(2, t,)— Type 2 event to occur at time ¢,

Event-scheduling/time-advance algorithm
Step 1. Remove the event notice for the imminent event
(event 3, time #;) from FEL
Step 2. Advance CLOCK to imminent event time
(i.e., advance CLOCK from ¢ to t;).
Step 3. Execute imminent event: update system state,
change entity attributes, and set membership as needed.
Step 4. Generate future events (if necessary) and
place their event notices on FEL ranked by event time.
(Example: Event 4 to occur at time t*, where 1, < t* < 13.)
Step 5. Update cumulative statistics and counters.

New system snapshot at time #

System
CLOCK State e Future Event List
18] 5,1,5) (1, 1,)— Type 1 event to occur at time #,

(4, t*)— Type 4 event to occur at time ¢*
(1, t3)— Type 1 event to occur at time #3

(2, t,)— Type 2 event to occur at time #,

Figure 3.2 Advancing simulation time and updating system image.
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The length and contents of the FEL are constantly changing as the simula-
tion progresses, and thus its efficient management in a computerized simulation
will have a major impact on the efficiency of the computer program represent-
ing the model. The management of a list is called list processing. The major
list-processing operations performed on a FEL are removal of the imminent
event, addition of a new event to the list, and occasionally removal of some
event (called cancellation of an event). As the imminent event is usually at the
top of the list, its removal is as efficient as possible. Addition of a new event
(and cancellation of an old event) requires a search of the list. The efficiency of
this search depends on the logical organization of the list and on how the search
is conducted. In addition to the FEL, all the sets in a model are maintained in
some logical order, and the operations of addition and removal of entities from
the set also require efficient list-processing techniques. A brief introduction to
list processing in simulation is given in Section 3.2.

The removal and addition of events from the FEL is illustrated in Fig-
ure 3.2. Event 3 with event time #; represents, say, a service completion event
at server 3. Since it is the imminent event at time ¢, it is removed from the FEL
in step 1 (Figure 3.2) of the event-scheduling/time-advance algorithm. When
event 4 (say, an arrival event) with event time ¢* is generated at step 4, one pos-
sible way to determine its correct position on the FEL is to conduct a top-down
search:

If t* < 1y, place event 4 at the top of the FEL.
Ift, <t* <13, place event 4 second on the list.
If; <t* <14, place event4 third on the list.

Ift, <r*, place event 4 last on the list.

(In Figure 3.2, it was assumed that t* was between 7, and 73.) Another way is to
conduct a bottom-up search. The least efficient way to maintain the FEL is to
leave it as an unordered list (additions placed arbitrarily at the top or bottom),
which would require at step 1 of Figure 3.2 a complete search of the list for the
imminent event before each clock advance. (The imminent event is the event
on the FEL with the lowest event time.)

The system snapshot at time 0 is defined by the initial conditions and the
generation of the so-called exogenous events. The specified initial conditions
define the system state at time 0. For example, in Figure 3.2, if ¢+ = 0, then the
state (5, 1, 6) might represent the initial number of customers at three different
points in the system. An exogenous event is a happening “outside the system”
which impinges on the system. Animportant example is an arrival to a queueing
system. At time 0, the first arrival event is generated and is scheduled on the
FEL (meaning its event notice is placed on the FEL). The interarrival time is
an example of an activity. When the clock eventually is advanced to the time
of this first arrival, a second arrival event is generated. First, an interarrival
time is generated, a*; it is added to the current time, CLOCK = ¢; the resulting
(future) event time, t + a* = t*, is used to position the new arrival event
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At simulated timé, assumed to be the instant
of thenth arrival, generate interarrival
timea*, computet* = t + a*, and schedule
future arrival on FEL to
occur at future time*

Arrival 1 2 3 n n+1- .- Arrival
L \ \ \ .. 1 1 Il
r /N /N /N T T 1
Time 0 37 41 7.4 CLOCK =t ' - *tx ... Time
B — —— J

Between successive arrival events, other

types of events may occur, causing
system state to change

Figure 3.3 Generation of an external arrival stream by bootstrapping.

notice on the FEL. This method of generating an external arrival stream, called
bootstrapping, provides one example of how future events are generated in step
4 of the event-scheduling/time-advance algorithm. Bootstrapping is illustrated
in Figure 3.3. The first three interarrival times generated are 3.7, 0.4, and 3.3
time units. The end of an interarrival interval is an example of a primary event.

A second example of how future events are generated (step 4 of Fig-
ure 3.2) is provided by a service-completion event in a queueing simulation.
When one customer completes service, at current time CLOCK = ¢, if the
next customer is present, then a new service time, s*, will be generated for the
next customer. The next service-completion event will be scheduled to occur
at future time * = ¢ + s* by placing onto the FEL a new event notice of type
service completion with event time #*. In addition, a service-completion event
will be generated and scheduled at the time of an arrival event, provided that,
upon arrival, there is at least one idle server in the server group. A service time
is an example of an activity. Beginning service is a conditional event, because
its occurrence is triggered only on the condition that a customer is present and
aserver is free. Service completion is an example of a primary event. Note that
a conditional event, such as beginning service, is triggered by a primary event
occurring and certain conditions prevailing in the system. Only primary events
appear on the FEL.

A third important example is the alternate generation of runtimes and
downtimes for a machine subject to breakdowns. At time 0, the first runtime
will be generated and an end-of-runtime event scheduled. Whenever an end-
of-runtime event occurs, a downtime will be generated and an end-of-downtime
event scheduled on the FEL. When the CLOCK is eventually advanced to the
time of this end-of-downtime event, a runtime is generated and an end-of-
runtime event scheduled on the FEL. In this way, runtimes and downtimes
continually alternate throughout the simulation. A runtime and a downtime
are examples of activities, and end of runtime and end of downtime are primary
events.
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Every simulation must have a stopping event, here called E, which defines
how long the simulation will run. There are generally two ways to stop a
simulation:

1. At time 0, schedule a stop simulation event at a specified future time Tf.
Thus, before simulating, it is known that the simulation will run over the
time interval [0, Tg]. Example: Simulate a job shop for Tr = 40 hours.

N

Run length Tg is determined by the simulation itself. Generally, Tg is the
time of occurrence of some specified event E. Examples: Tg is the time
of the 100th service completion at a certain service center. T is the time
of breakdown of a complex system. T is the time of disengagement or
total kill (whichever occurs first) in a combat simulation. T is the time
at which a distribution center ships the last carton in a day’s orders.

In case 2, Tg is not known ahead of time. Indeed, it may be one of the statistics
of primary interest to be produced by the simulation.

3.1.2 World Views

When using a simulation package or even when doing a manual simulation,
a modeler adopts a world view or orientation for developing a model. Those
most prevalent are the event-scheduling world view, as discussed in the previous
section, the process-interaction world view, and the activity-scanning world
view. Even if a particular package does not directly support one or more of the
world views, understanding the different approaches may suggest alternative
ways to model a given system.

To summarize the previous discussion, when using the event-scheduling
approach, a simulation analyst concentrates on events and their effect on sys-
tem state. This world view will be illustrated by the manual simulations of
Section 3.1.3 and the C++ simulation in Chapter 4.

When using a package that supports the process-interaction approach, a
simulation analyst thinks in terms of processes. The analyst defines the sim-
ulation model in terms of entities or objects and their life cycle as they flow
through the system, demanding resources and queueing to wait for resources.
More precisely, a process is the life cycle of one entity. This life cycle consists
of various events and activities. Some activities may require the use of one
or more resources whose capacities are limited. These and other constraints
cause processes to interact, the simplest example being an entity forced to wait
in a queue (on a list) because the resource it needs is busy with another entity.
The process-interaction approach is popular because of its intuitive appeal, and
because the simulation packages that implement it allow an analyst to describe
the process flow in terms of high-level block or network constructs, while the
interaction among processes is handled automatically.

In more precise terms, a process is a time-sequenced list of events, ac-
tivities, and delays, including demands for resources, that define the life cycle
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of one entity as it moves through a system. An example of a “customer pro-
cess” is shown in Figure 3.4. In this figure, we see the interaction between two
customer processes as customer n + 1 is delayed until the previous customer’s
“end-service event” occurs. Usually many processes are simultaneously active
in a model, and the interaction among processes may be quite complex.

Underlying the implementation of the process-interaction approach in a
simulation package, but usually hidden from a modeler’s view, events are being
scheduled on a future event list and entities are being placed onto lists when-
ever they face delays, causing one process to temporarily suspend its execution
while other processes proceed. It is important that the modeler have a basic
understanding of the concepts and, for the simulation package being used, a
detailed understanding of the built-in but hidden rules of operation. Schriber
and Brunner [1998] provide provide understanding in this area.

Both the event-scheduling and the process-interaction approaches use a
variable time advance; that is, when all events and system state changes have
occurred at one instant of simulated time, the simulation clock is advanced
to the time of the next imminent event on the FEL. The activity-scanning ap-
proach, in contrast, uses a fixed time increment and a rule-based approach to
decide whether any activities can begin at each point in simulated time.

With the activity-scanning approach, a modeler concentrates on the activ-
ities of a model and those conditions, simple or complex, that allow an activity to
begin. At each clock advance, the conditions for each activity are checked and,
if the conditions are true, then the corresponding activity begins. Proponents
claim that the activity-scanning approach is simple in concept and leads to mod-
ular models that are more maintainable and easily understood and modified by
other analysts at later times. They admit, however, that the repeated scanning to
determine whether an activity can begin results in slow runtime on computers.
Thus, the pure activity-scanning approach has been modified (and made con-
ceptually somewhat more complex) by what is called the three-phase approach,
which combines some of the features of event scheduling with activity scanning
to allow for variable time advance and the avoidance of scanning when it is not
necessary, but keeping the main advantages of the activity-scanning approach.

In the three-phase approach, events are considered to be activities of
duration-zero time units. With this definition, activities are divided into two
categories, called B and C.

B activities activities bound to occur; all primary events and unconditional
activities.

C activities activities or events that are conditional upon certain conditions
being true.

The B-type activities and events can be scheduled ahead of time, just as in
the event-scheduling approach. This allows variable time advance. The FEL
contains only B-type events. Scanning to check if any C-type activities can begin
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or C-type events occur happens only at the end of each time advance, after all
B-type events have completed. In summary, with the three-phase approach,
the simulation proceeds with repeated execution of the three phases until it is
completed:

Phase A Remove the imminent event from the FEL and advance the clock

toits event time. Remove any other events from the FEL that have the same

event time.

Phase B Execute all B-type events that were removed from the FEL. (This

may free a number of resources or otherwise change system state.)

Phase C Scan the conditions that trigger each C-type activity and activate

any whose conditions are met. Rescan until no additional C-type activities

can begin or events occur.
The three-phase approach improves the execution efficiency of the activity-
scanning method. In addition, proponents claim that the activity-scanning and
three-phase approaches are particularly good at handling complex resource
problems, in which various combinations of resources are needed to accom-
plish different tasks. These approaches guarantee that resources being freed
at a given simulated time will all be freed before any available resources are
reallocated to new tasks.

ExAMPLE 3.2 (Able and Baker, Back Again)

The events and activities were identified in Example 3.1. Using the three-phase
approach, the conditions for beginning each activity in Phase C are:

Activity Condition
Service time by Able A customer is in queue and Able is idle
Service time by Baker A customer is in queue, Baker is idle, and Able is busy

Using the process-interaction approach, we view the model from the viewpoint
of a customer and its “life cycle.” Considering a life cycle beginning upon
arrival, a customer process is pictured in Figure 3.4. A

In summary, as will be illustrated in Chapter 4, the process-interaction
approach has been adopted by the simulation packages most popular in the
United States. On the other hand, a number of activity scanning-based pack-
ages are popular in the United Kingdom and Europe. Some of the packages
allow portions of a model to be event-scheduling based, if that orientation
is convenient, mixed with the process-interaction approach. Finally, some of
the packages are based on a flow chart, block diagram, or network structure,
which upon closer examination turns out to be a specific implementation of the
process-interaction concept.

3.1.3 Manual Simulation Using Event Scheduling

In conducting an event-scheduling simulation, a simulation table is used to
record the successive system snapshots as time advances.
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Figure 3.4 Two interacting customer processes in a single-server queue.

ExampLE 3.3 (Single-Channel Queue)
Reconsider the grocery store with one checkout counter that was simulated in
Example 2.1 by an ad hoc method. The system consists of those customers in
the waiting line plus the one (if any) checking out. The model has the following
components:

System state (LQ(z), LS(t)), where LQ(¢) is the number of customers in

the waiting line, and LS(¢) is the number being served (0 or 1) at time ¢.

Entities The server and customers are not explicitly modeled, except in terms

of the state variables above.

Events

Arrival (A)

Departure (D)

Stopping event (E), scheduled to occur at time 60.

Event notices

(A, 1), representing an arrival event to occur at future time ¢

(D, t), representing a customer departure at future time ¢

(E, 60), representing the simulation-stop event at future time 60.

Activities

Interarrival time, defined in Table 2.6

Service time, defined in Table 2.7

Delay Customer time spent in waiting line.
The event notices are written as (event type, event time). In this model, the
FEL will always contain either two or three event notices. The effect of the
arrival and departure events was first shown in Figures 2.2 and 2.3 and is shown
in more detail in Figures 3.5 and 3.6.

The simulation table for the checkout counter is given in Table 3.1. The

reader should cover all system snapshots except one, starting with the first, and
attempt to construct the next snapshot from the previous one and the event
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Arrival event
occurs at CLOCK %

Step 3 Step 3

No Yes Increasd_Q(t)
by 1

SetLS(t) = 1

Step 4

Generate service tins;
schedule new departure
event at time + s*

Step 4

Generate interarrival tima;
schedule next arrival
event at time + a*

Y Step 5

Collect statistics

Y

Return control to
time-advance routine
to continue simulation

Figure 3.5 Execution of the arrival event.

logic in Figures 3.5 and 3.6. The interarrival times and service times will be
identical to those used in Table 2.10, namely:

Interarrival Times 8
Service Times 4

6 8 8
1 3 4

1 3
4 2

Initial conditions are that the first customer arrives at time 0 and begins service.
This is reflected in Table 3.1 by the system snapshot at time zero (CLOCK
= 0), with LQ(0) = 0, LS(0) = 1, and both a departure event and arrival
event on the FEL. Also, the simulation is scheduled to stop at time 60. Only
two statistics, server utilization and maximum queue length, will be collected.
Server utilization is defined by total server busy time (B) divided by total time
(Tg). Total busy time, B, and maximum queue length, MQ, will be accumulated
as the simulation progresses. A column headed “comments” is included to
aid the reader. (a¢* and s* are the generated interarrival and service times,
respectively.)
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occurs at CLOCK %
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Figure 3.6 Execution of the departure event.

As soon as the system snapshot at time CLOCK = 0 is complete, the
simulation begins. At time 0, the imminent event is (D, 4). The CLOCK is
advanced to time 4, and (D, 4) is removed from the FEL. Since LS(¢) =1 for
0 <t <4 (i.e., the server was busy for 4 minutes), the cumulative busy time is
increased from B = 0 to B = 4. By the event logic in Figure 3.6,set LS(4) =0
(the server becomes idle). The FEL is left with only two future events, (A, 8)
and (E, 0). The simulation CLOCK is next advanced to time 8 and an arrival
event executed. The interpretation of the remainder of Table 3.1 is left to the
reader.

The simulation in Table 3.1 covers the time interval [0, 21]. At simulated
time 21, the system is empty, but the next arrival will occur at future time 23.
The server was busy for 12 of the 21 time units simulated, and the maximum
queue length was one. This simulation is, of course, too short to allow us to draw
any reliable conclusions. Exercise 1 asks the reader to continue the simulation
and compare the results to those in Example 2.1. Note that the simulation table
gives the system state at all times, not just the listed times. For example, from
time 15 to time 18, there is one customer in service and one in the waiting line.
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Table 3.1 Simulation Table for Checkout Counter (Example 3.3)

Cumulative
System State Statistics
Clock LQ(t) LS(t) Future Event List Comment B MQ
0 0 1 (D,4) (A,8) (E,60)  First A occurs 0 0
(a* = 8) Schedule next A
(s* = 4) Schedule first D
0 (A,8) (E,60) First D occurs: (D, 4) 4
(D,9) (A,14) (E,60) Second A occurs: (A,8) 4
(a* = 6) Schedule next A
(s* = 1) Schedule next D
9 0 0 (A,14) (E,60) Second D occurs: (D,9) 5 0
14 0 1 (A,15) (D, 18) (E,60) Third A occurs: (A, 14) 5 0
(s* = 4) Schedule next D
15 1 1 (D, 18) (A,23) (E,60) Fourth A occurs: (A,15) 6 1
(Customer delayed)
18 0 1 (D,21) (A,23) (E,60) Third D occurs: (D,18) 9 1
(s* = 3) Schedule next D
21 0 0 (A,23) (E,60) Fourth D occurs: (D,21) 12 1

When an event-scheduling algorithm is computerized, only one snapshot
(the current one or partially updated one) is kept in computer memory. With the
idea of implementing event scheduling in C++ or some other general-purpose
language, the following rule should be followed. A new snapshot can be de-
rived only from the previous snapshot, newly generated random variables, and
the event logic (Figures 3.5 and 3.6). Past snapshots should be ignored when ad-
vancing the clock. The current snapshot must contain all information necessary
to continue the simulation. A

ExAmPLE 3.4 (The Checkout-Counter Simulation, Continued)

Suppose that in the simulation of the checkout counter in Example 3.3 the
simulation analyst desires to estimate mean response time and mean proportion
of customers who spend 4 or more minutes in the system. A response time
is the length of time a customer spends in the system. In order to estimate
these customer averages, it is necessary to expand the model in Example 3.3 to
explicitly represent the individual customers. In addition, to be able to compute
an individual customer’s response time when that customer departs, it will be
necessary to know that customer’s arrival time. Therefore, a customer entity
with arrival time as an attribute will be added to the list of model components
in Example 3.3. These customer entities will be stored in a list to be called
“CHECKOUT LINE”; they will be called C1, C2, C3, .... Finally, the event
notices on the FEL will be expanded to indicate which customer is affected.
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For example, (D, 4, C1) means that customer C1 will depart at time 4. The
additional model components are listed below:

Entities (Ci, 1), representing customer Ci who arrived at time ¢
Event notices

(A, t, Ci), the arrival of customer Ci at future time ¢

(D, t, Cj), the departure of customer C;j at future time ¢

Set “CHECKOUT LINE,” the set of all customers currently at the checkout
counter (being served or waiting to be served), ordered by time of arrival

Three new cumulative statistics will be collected: S, the sum of customer re-
sponse times for all customers who have departed by the current time; F,
the total number of customers who spend 4 or more minutes at the checkout
counter; and Np the total number of departures up to the current simulation
time. These three cumulative statistics will be updated whenever the departure
event occurs; the logic for collecting these statistics would be incorporated into
step 5 of the departure event in Figure 3.6.

The simulation table for Example 3.4 is shown in Table 3.2. The same
data for interarrival and service times will be used again, so that Table 3.2
essentially repeats Table 3.1, except that the new components are included (and
the comment column has been deleted). These new components are needed
for the computation of the cumulative statistics S, F', and Np. For example,
at time 4 a departure event occurs for customer C1. The customer entity C1
is removed from the list called “CHECKOUT LINE”; the attribute “time of
arrival” is noted to be 0, so the response time for this customer was 4 minutes.
Hence, S is incremented by 4 minutes, and F' and Np are incremented by one
customer. Similarly, at time 21 when the departure event (D, 21, C4) is being
executed, the response time for customer C4 is computed by

Response time = CLOCK TIME - attribute “time of arrival”
21 — 15

= 6 minutes

Then § is incremented by 6 minutes, and F and Np by one customer.

For a simulation run length of 21 minutes, the average response time
was S/Np = 15/4 = 3.75 minutes, and the observed proportion of customers
who spent 4 or more minutes in the system was F/Np = 0.75. Again, this
simulation was far too short to allow us to regard these estimates with any
degree of accuracy. The purpose of Example 3.4, however, was to illustrate
the notion that in many simulation models the information desired from the
simulation (such as the statistics S/Np and F/Np) determines to some extent
the structure of the model. A
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Table 3.2 Simulation Table for Example 3.4

Cumulative
System State Statistics
- List Future Event - |

Clock LQ(t) LS(t) “CHECKOUT LINE” List S Np F
0 0 1 (C1,0) (D,4,C1) (A,8,C2) (E,60) 0 0 O
4 0 0 (A,8,C2) (E,60) 4 1 1
8 0 1 (C2,8) (D,9,C2) (A,14,C3) (E,60) 4 1 1
9 0 0 (A,14,C3) (E, 60) 5 2 1
4 0 1 (C3,14) (A,15,C4) (D,18,C3) (E,60) 5 2 1
15 1 1 (C3,14) (C4,15) (D,18,C3) (A,23,C5) (E,60) 5 2 1
18 0 1 (C4,15) (D,21,C4) (A,23,C5) (E,60) 9 3 2
21 0 0 (A,23,C5) (E,60) 15 4 3

ExAmpLE 3.5 (The Dump Truck Problem)

Six dump trucks are used to haul coal from the entrance of a small mine to
the railroad. Figure 3.7 provides a schematic of the dump truck operation.
Each truck is loaded by one of two loaders. After loading, a truck immediately
moves to the scale, to be weighed as soon as possible. Both the loaders and the
scale have a first-come first-served waiting line (or queue) for trucks. Travel
time from a loader to the scale is considered negligible. After being weighed, a
truck begins a travel time (during which time the truck unloads) and then after-
ward returns to the loader queue. The distributions of loading time, weighing
time, and travel time are given in Tables 3.3, 3.4, and 3.5, respectively, together
with the random digit assignment for generating these variables using random
digits from Table A.1. The purpose of the simulation is to estimate the loader
and scale utilizations (percentage of time busy). The model has the following
components:

Traveling
Loading
Scale
Loader Weighing
queue queue

Figure 3.7 Dump truck problem.
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Table 3.3 Distribution of Loading Time for the

Dump Trucks
Loading Cumulative Random-Digit
Time  Probability Probability  Assignment
5 0.30 0.30 1-3
10 0.50 0.80 4-8
15 0.20 1.00 9-0

System state
[LO@®), L(t), WO(t), W(r)], where

L Q(t) = number of trucks in loader queue
L(r)
W)

W(t) = number of trucks (0 or 1) being weighed, all at simulation time ¢

number of trucks (0, 1, or 2) being loaded

number of trucks in weigh queue

Event notices

(ALQ,t, DTi),dump truck i arrives at loader queue (AL Q) at time ¢
(EL,t, DTi), dump truck i ends loading (EL) at time ¢

(EW,t, DTi), dump truck i ends weighing (EW) at time ¢

Entities The six dump trucks (DT1, ..., DT6)

Lists

Loader queue, all trucks waiting to begin loading, ordered on a first come,
first served basis

Weigh queue, all trucks waiting to be weighed, ordered on a first come, first
served basis

Activities Loading time, weighing time, and travel time
Delays Delay at loader queue, and delay at scale

Table 3.4 Distribution of Weighing Time for the
Dump Trucks

Weighing Cumulative Random-Digit
Time Probability Probability ~ Assignment
12 0.70 0.70 1-7
16 0.30 1.00 8—0
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Table 3.5 Distribution of Travel Time for the
Dump Trucks

Travel Cumulative Random-Digit
Time Probability Probability  Assignment

40 0.40 0.40 1-4

60 0.30 0.70 5-7

80 0.20 0.90 8-9
100 0.10 1.00 0

The simulation table is given in Table 3.6. It has been assumed that five
of the trucks are at the loaders and one is at the scale at time 0. The activity
times are taken from the following list as needed:

Loading Time 10 5 5 10 15 10 10
Weighing Time 12 12 12 16 12 16
Travel Time 60 100 40 40 &0

When an end-loading ( E L) event occurs, say for truck j at time ¢, other events
may be triggered. If the scaleisidle [W (¢) = 0], truck j begins weighing and an
end-weighing event (E W) is scheduled on the FEL; otherwise, truck j joins the
weigh queue. If at this time there is another truck waiting for a loader, it will be
removed from the loader queue and will begin loading by the scheduling of an
end-loading event (E L) on the FEL. This logic for the occurrence of the end-
loading event, as well as the appropriate logic for the other two events, should
be incorporated into an event diagram as in Figures 3.5 and 3.6 of Example 3.3.
The construction of these event logic diagrams is left as an exercise for the
reader (Exercise 2).

As an aid to the reader, in Table 3.6 whenever a new event is scheduled,
its event time is written as “s+ (activity time).” For example, at time O the
imminent event is an EL event with event time 5. The clock is advanced to
time ¢ = 5, dump truck 3 joins the weigh queue (since the scale is occupied),
and truck 4 begins to load. Thus, an EL event is scheduled for truck 4 at future
time 10, computed by (present time) + (loading time) = 5+ 5 = 10.

In order to estimate the loader and scale utilizations, two cumulative
statistics are maintained:

B; = total busy time of both loaders from time 0 to time ¢

Bg

total busy time of the scale from time 0 to time ¢

Since both loaders are busy from time 0 to time 20, B;, = 40 at time ¢t = 20.
But from time 20 to time 24, only one loader is busy; thus, By, increases by only
4 minutes over the time interval [20, 24]. Similarly, from time 25 to time 36,
both loaders are idle (L(25) = 0), so By does not change. For the relatively
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Table 3.6 Simulation Table for Dump Truck Operation (Example 3.5)

83

Clock
t

System State

Lists

Lo L@ WO W@

Loader Weigh

Future Event

Queue Queue List

Cumulative
Statistics

By

B

0

3

2 0

1

DT4
DTS
DT6

(EL,5, DT3)
(EL,10, DT2)
(EW,12, DT1)

0

0

DT5
DT6

DT3

(EL,10, DT2)
(EL,5+5, DT4)
(EW,12, DT1)

10

10

DT6

DT3
DT2

(EL,10, DT4)
(EW.,12, DT1)
(EL,10 + 10, DT5)

20

10

10

DT3
DT2
DT4

(EW,12, DT1)
(EL,20, DT5)
(EL,10 + 15, DT6)

20

10

12

DT?2
DT4

(EL,20, DT5)
(EW,12 4+ 12, DT3)
(EL,25, DT6)
(ALQ,12 + 60, DT1)

24

12

20

DT?2
DT4
DTS5

(EW,24, DT3)
(EL,25, DT6)
(ALQ,72, DT1)

40

20

24

DT4
DTS5

(EL,25, DT6)
(EW,24 + 12, DT2)
(ALQ,72, DT1)
(ALQ,24 + 100, DT3)

44

24

25

DT4
DTS5
DT6

(EW, 36, DT2)
(ALQ.72, DT1)
(ALQ, 124, DT3)

45

25

36

DT5S
DT6

(EW,36 + 16, DT4)
(ALQ,72, DT1)
(ALQ,36 + 40, DT2)
(ALQ, 124, DT3)

36

52

DT6

(EW,52 + 12, DT5)
(ALQ,72, DT1)
(ALQ,76, DT2)
(ALQ,52 + 40, DT4)
(ALQ, 124, DT3)

45

52
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Table 3.6 Continued

Lists Cumulative
System State - Statistics
Clock Loader Weigh Future Event
t LQ@) L) WQ(t) W() Queue Queue List B:,  Bs
64 0 0 0 1 (ALQ,72, DT1) 45 64

(ALQ,76, DT2)
(EW, 64 + 16, DT6)
(ALQ,92, DT4)
(ALQ, 124, DT3)
(ALQ, 64 + 80, DT5)

72 0 1 0 1 (ALQ,76, DT2) 45 72
(EW, 80, DT6)
(EL,72 + 10, DT1)
(ALQ,92, DT4)
(ALQ,124, DT3)
(ALQ, 144, DT5)

76 0 2 0 1 (EW, 80, DT6) 49 76
(EL, 82, DT1)
(EL,76 + 10, DT2)
(ALQ,92, DT4)
(ALQ, 124, DT3)
(ALQ, 144, DT5)

short simulation in Table 3.6, the utilizations are estimated as follows:

o 49/2
average loader utilization = 6 = 0.32
o 76
average scale utilization = 6= 1.00

These estimates cannot be regarded as accurate estimates of the long-run
“steady-state” utilizations of the loader and scale; a considerably longer simu-
lation would be needed to reduce the effect of the assumed conditions at time
0 (five of the six trucks at the loaders) and to realize accurate estimates. On the
other hand, if the analyst were interested in the so-called transient behavior of
the system over a short period of time (say 1 or 2 hours), given the specified
initial conditions, then the results in Table 3.6 can be considered representative
(or constituting one sample) of that transient behavior. Additional samples can
be obtained by conducting additional simulations, each one having the same
initial conditions but using a different stream of random digits to generate the
activity times.

Table 3.6, the simulation table for the dump truck operation, could have
been simplified somewhat by not explicitly modeling the dump trucks as entities.
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That is, the event notices could be written as (EL, t), and so on, and the state
variables used to keep track merely of the number of trucks in each part of the
system, not which trucks were involved. With this representation, the same
utilization statistics could be collected. On the other hand, if mean “system”
response time, or proportion of trucks spending more than 30 minutes in the
“system,” were being estimated, where “system” refers to the loader queue
and loaders and the weigh queue and scale, then dump truck entities (D7),
together with an attribute equal to arrival time at the loader queue, would be
needed. Whenever a truck left the scale, that truck’s response time could be
computed as current simulation time (¢) minus the arrival-time attribute. This
new response time would be used to update the cumulative statistics: § = total
response time of all trucks which have been through the “system” and F =
number of truck response times which have been greater than 30 minutes. This
example again illustrates the notion that to some extent the complexity of the
model depends on the performance measures being estimated. A

EXAMPLE 3.6 (The Dump Truck Problem Revisited)

The events and activities were identified in Example 3.5. Using the activity-
scanning approach, the conditions for beginning each activity are:

Activity Condition

Loading time  Truck is at front of loader queue, and at least one loader is
idle.

Weighing time Truck is at front of weigh queue and weigh scale is idle.

Travel time Truck has just completed weighing.

Using the process-interaction approach, we view the model from the viewpoint
of one dump truck and its “life cycle.” Considering a life cycle beginning at the
loader queue, a dump truck process is pictured in Figure 3.8. A

} Dump truck process {

Delay , Loading Delay Weigh Travel time

ALQ EL EW ALQ

Figure 3.8 The dump truck process.

3.2 List Processing

List processing deals with methods for handling lists of entities and the future
event list. Simulation packages provide, both explicitly for an analyst’s use as
well as hidden in the simulation mechanism behind the language, facilities for
an analyst or the model itself to use lists and perform the basic operations on
lists.
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Section 3.2.1 describes the basic properties and operations performed on
lists. Section 3.2.2 discusses the use of arrays for processing lists and the use
of array indices to create linked lists, arrays being a simpler mechanism for
describing the basic operations than the more general dynamically allocated
linked lists discussed in Section 3.2.3. Finally, Section 3.2.4 briefly introduces
some of the more advanced techniques for managing lists.

The purpose of this discussion of list processing is not to prepare the
reader to implement lists and their processing in a general-purpose language
such as FORTRAN, C or C++ but rather to increase the reader’s understanding
of lists and the underlying concepts and operations.

3.2.1 Lists: Basic properties and operations

As previously discussed, lists are a set of ordered or ranked records. In simu-
lation, each record represents one entity or one event notice.

Since lists are ranked, they have a top or head (the first item on the list);
some way to traverse the list (to find the second, third, etc. items on the list);
and a bottom or tail (the last item on the list). A head pointer is a variable that
points to or indicates the record at the top of the list. Some implementations
of lists may also have a tail pointer that points to the bottom item on the list.

For purposes of discussion, an entity along with its attributes or an event
notice will be referred to as a record. An entity identifier and its attributes
are fields in the entity record; the event type, event time, and any other event-
related data are fields in the event-notice record. Each record on a list will also
have a field that holds a “next pointer” that points to the next record on the list,
providing a way to traverse the list. Some lists may also require a “previous
pointer” to allow traversing the list from bottom to top.

For either type of list, the main activities in list processing are adding a
record to a list and removing a record from a list. More specifically, the main
operations on a list are:

1. Removing a record from the top of the list.
2. Removing a record from any location on the list.
3. Adding an entity record to the top or bottom of the list.

4. Adding a record to an arbitrary position on the list, determined by the
ranking rule.

While the first and third operations, removing or adding a record to the top or
bottom of the list, can be carried out in minimal time by adjusting two record
pointers and the head or tail pointer, the other two operations require at least
a partial search through the list. Making these two operations efficient is the
goal of list-processing techniques.

In the event-scheduling approach, when time is advanced and the im-
minent event is due to be executed, the removal operation takes place first,
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namely, the event at the top of the FEL is removed from the FEL. If an ar-
bitrary event is being canceled, or an entity is removed from a list based on
some of its attributes (say, for example, its priority and due date) to begin an
activity, then the second removal operation is performed. When an entity joins
the back of a first-in first-out queue implemented as a list, then the third oper-
ation, adding an entity to the bottom of a list, is performed. Finally, if a queue
has a ranking rule of earliest due date first, then upon arrival to the queue, an
entity must be added to the list, not at the top or bottom, but at the position
determined by the due-date ranking rule.

When simulating on a computer, whether using a general-purpose lan-
guage such as FORTRAN, C or C++, or a simulation package, each entity
record and event notice is stored in a physical location in computer memory.
There are two basic possibilities: (a) All records are stored in arrays. Arrays
hold successive records in contiguous locations in computer memory. They
therefore can be referenced by an array index that can be thought of as a row
number in a matrix. (b) All entities and event notices are represented by struc-
tures (as in C) or classes (as in C++), allocated from RAM as needed, and
tracked by pointers to a record or structure.

Most simulation packages use dynamically allocated records and pointers
to keep track of lists of items. As arrays are conceptually simpler, the concept
of linked lists is first explained through arrays and array indices in Section 3.2.2
and then applied to dynamically allocated records and pointers in Section 3.2.3.

3.2.2 Using arrays for list processing

The array method of list storage is typical of FORTRAN but may be used
in other procedural languages. As most versions of FORTRAN do not have
actual record-type data structures, a record may be implemented as a row in a
two-dimensional array or as a number of parallel arrays. For convenience, we
use the notation R(7) to refer to the ith record in the array, however it may be
stored in the language being used. Most modern simulation packages do not
use arrays for list storage but rather use dynamically allocated records—that
is, records that are created upon first being needed and destroyed when they
are no longer needed.

Arrays are advantageous in that any specified record, say the i th, can be
retrieved quickly without searching, merely by referencing R(i). Arrays are
disadvantaged when items are added to the middle of a list or the list must
be rearranged. In addition, arrays typically have a fixed size, determined at
compile time or upon initial allocation when a program first begins to execute.
In simulation, the maximum number of records for any list may be difficult or
impossible to determine ahead of time, while the current number in a list may
vary widely over the course of the simulation run. Worse yet, most simulations
require more than one list, and if kept in separate arrays, each would have to
be dimensioned to the largest the list would ever be, potentially using excessive
amounts of computer memory.
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When using arrays for storing lists, there are two basic methods for keep-
ing track of the ranking of records in a list. One method is to store the first
record in R(1), the second in R(2), and so on, and the last in R(zailptr), where
tailptr is used to refer to the last item in the list. While simple in concept and
easy to understand, this method will be extremely inefficient for all except the
shortest lists of less than five or so records. For when adding an item, for ex-
ample in position 41 in a list of 100 items, the last 60 records must be physically
moved down one array position to make space for the new record. Even if
it were a first-in first-out list, removing the top item would be inefficient, as
all remaining items would have to be physically moved up one position in the
array. The physical rearrangement method of managing lists will not be further
discussed. What is needed is a method to track and rearrange the logical order-
ing of items in a list without having to physically move the records in computer
memory.

In the second method, a variable called a head pointer, with name headptr,
points to the record at the top of the list. For example, if the record in position
R(11) was the record at the top of the list, then headptr would have a value of
11. In addition, each record has a field that stores the index or pointer of the
next record in the list. For convenience, let R(i, next) represent the next index
field.

EXAMPLE 3.7 (A List for the Dump Trucks at the Weigh Queue)

In Example 3.5, the dump truck problem, suppose that a waiting line of three
dump trucks occurred at the weigh queue, specifically, DT3, DT2, and DT4,
in that order, exactly as at CLOCK time 10 in Table 3.6. Suppose further that
the model is tracking one attribute of each dump truck, its arrival time at the
weigh queue, updated each time it arrives. Finally, suppose that the entities
are stored in records in an array dimensioned from 1 to 6, one record for each
dump truck. Each entity is represented by a record with 3 fields, the first an
entity identifier, the second the arrival time at the weigh queue, and the last a
pointer field to “point to” the next record, if any, in the list representing the
weigh queue, as follows:

[ DTi, arrival time at weigh queue, next index ]

Before their first arrival to the weigh queue, and before being added to
the weigh queue list, the second and third fields are meaningless. At time 0,
the records would be initialized as follows:

R(1)=[ DT1,0.0,0]
R(2) =[ DT2,0.0,0]

R(6) = [ DT6, 0.0, 0]



Sec. 3.2 List Processing 89

Then, at CLOCK time 10 in the simulation in Table 3.6, the list of entities
in the weigh queue would be defined by:

headptr =3
R(1)=[ DT1,0.0,0]
R(2) =[ DT2,10.0, 4]
R(3)=[ DT3,5.0,2]
R(4)=[ DT4,10.0,0]
R(5) =[ DTS5, 0.0, 0]
R(6) =[ DT6,0.0,0]
tailptr = 4
To traverse the list, start with the head pointer, go to that record, retrieve

that record’s next pointer, and proceed, to create the list in its logical order, as
for example:

headptr =3

R(3) =[ DT3,5.0,2]
R(2)=[DT2,10.0, 4]
R(4) =[ DT4,10.0,0]

The zero entry for next pointer in R(4), as well as tailptr = 4, indicates
that DT4 is at the end of the list.

Using next pointers for a first-in first-out list, such as the weigh queue in
this example, the operations of adding and removing entity records, as dump
trucks join and leave the weigh queue, are particularly simple. At CLOCK
time 12, dump truck DT 3 begins weighing and thus leaves the weigh queue.
To remove the DT3 entity record from the top of the list, update the head
pointer by setting it equal to the next pointer value of the record at the top of
the list, as in:

headptr = R(headptr, next)
In this example, we get
headptr = R(3, next) =2

meaning that dump truck D72 in R(2) is now at the top of the list.

Similarly, at CLOCK time 20, dump truck DTS5 arrives to the weigh queue
and joins the rear of the queue. To add the DTS5 entity record to the bottom
of the list, the following steps are taken:

R(tailptr, next) = 5(update the next pointer field of the previously last item)
tailptr = S(update the value of the tail pointer)
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It becomes slightly more complex when a list is a ranked list, such as the
future event list or an entity list ranked by an entity attribute. For ranked
lists, to add or remove an item anywhere except to the head or tail of the list,
searching is usually required. See Example 3.8.

Note that in the dump truck problem, the loader queue could also be
implemented as a list using the same six records and the same array, because
each dump truck entity will be on at most one of the two lists, and while loading,
weighing or traveling, a dump truck will be on neither list. A

3.2.3 Using dynamic allocation and linked lists

In procedural languages such as C and C++, and in most simulation languages,
entity records are dynamically created when an entity is created and event
notice records are dynamically created whenever an event is scheduled on the
future event list. The languages themselves, or the operating systems on which
they are running, maintain a linked list of free chunks of computer memory and
allocate a chunk of desired size upon request to running programs. (Another
use of linked lists!) When an entity “dies”—that is, exits from the simulated
system—and also after an event occurs and the event notice is no longer needed,
the corresponding records are freed, making that chunk of computer memory
available for later reuse; the language or operating system adds the chunk to
the list of free memory.

In this text, we are not concerned with the details of allocating and freeing
computer memory, and we will assume that the necessary operations occur as
needed. With dynamic allocation, a record is referenced by a pointer instead of
an array index. When a record is allocated in C or C++, the allocation routine
returns a pointer to the allocated record, which must be stored in a variable or
a field of another record for later use. A pointer to a record can be thought of
as the physical or logical address in computer memory of the record.

In our example, we will use a notation for records identical to that in the
previous section (3.2.2):

Entities: [ ID, attributes, next pointer |
Event notices: [ event type, event time, other data, next pointer |

but we will not reference them by the array notation R(i) as before, because it
would be misleading. If for some reason we wanted the third item on the list,
we would have to traverse the list, counting items until we reached the third
record. Unlike arrays, there is no way to retrieve directly the ith record in
a linked list, as the actual records may be stored at any arbitrary location in
computer memory and are not stored contiguously as are arrays.

EXAMPLE 3.8 (The Future Event List and the Dump Truck Problem)

Based on Table 3.6, event notices in the dump truck problem of Example 3.5
are expanded to include a pointer to the next event notice on the future event
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list and can be represented by:
[ event type, event time, DT'i, nextptr]

as, for example,

[ EL,10, DT3, nextptr]

where EL is the end loading event to occur at future time 10 for dump truck
DT3, and the field nextptr points to the next record on the FEL. Keep in mind
that the records may be stored anywhere in computer memory, and in particular
are not necessarily stored contiguously. Figure 3.9 represents the future event
list at CLOCK time 10 taken from Table 3.6. The fourth field in each record is
a pointer value to the next record in the future event list.

The C and C++ languages, and other general-purpose languages, use dif-
ferent notation for referencing data from pointer variables. For discussion
purposes, if R is a pointer to a record, then

R— eventtype, R— eventtime, R— next

are the event type, the event time, and the next record for the event notice that
R points to. For example, if R is set equal to the head pointer for the FEL at
CLOCK time 10, then

R—eventtype = EW

R—eventtime = 12

R—next is the pointer for the second event notice on the FEL,

headpt

EL 25 DT6 0

tailptr

Figure 3.9 The dump truck future event list as a linked list.
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so that

R—next—eventtype = EL
R—next—eventtime = 20

R—next—next is the pointer to the third event notice on the FEL.

If one of the pointer fields is zero (or null), then that record is the last item
in the list, and the pointer variable tailptr points to that last record, as depicted
in Figure 3.9. A

What we have described are called singly-linked lists, because there is a
one-way linkage from the head of the list to its tail. The tail pointer is kept
mostly for convenience and efficiency, especially for lists for which items are
added at the bottom of the list. Of course, a tail pointer is not strictly necessary,
as the last item can always be found by traversing the list, but it does make
some operations more efficient.

For some purposes, it is desirable to traverse or search a list starting at
the tail as well as from the head. For such purposes, a doubly-linked list can be
used. Records on a doubly-linked list have two pointer fields, one for the next
record and one for the previous record. Good references that discuss arrays,
singly- and doubly-linked lists, and searching and traversing lists are Cormen
et al. [1990] and Sedgewick [1998].

3.2.4 Advanced techniques

Many of the modern simulation packages use techniques and representations
of lists that are more efficient than searching through a doubly-linked list. Most
of these topics are too advanced for this text. The purpose of this section is to
briefly introduce some of the more advanced ideas.

One idea to speed up processing doubly-linked lists is to use a middle
pointer in addition to a head and tail pointer. With special techniques, the mid
pointer will always point to the approximate middle of the list. Then, when a
new record is being added to the list, the algorithm first examines the middle
record to decide whether to begin searching at the head of the list or the middle
of the list. Theoretically, except for some overhead due to maintenance of the
mid pointer, this technique should cut search times in half. A few advanced
techniques use one or more mid pointers, depending on the length of the list.

Some advanced algorithms use list representations other than a doubly-
linked list, such as heaps or trees. These topics are beyond the scope of this
text. Good references are Cormen et al. [1990] and Sedgewick [1998].

3.3 Summary

This chapter introduced the major concepts and building blocks in simulation,
the most important being entities and attributes, events and activities. The
three major world views—event scheduling, process interaction, and activity
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scanning—were discussed. Finally, to gain an understanding of one of the most
important underlying methodologies, Section 3.2 introduced some of the basic
notions of list processing.

The next chapter will provide a survey of some of the most widely used
and popular simulation packages, most of which either use exclusively or allow
the process interaction approach to simulation.
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EXERCISES

Instructions to the reader: For most exercises, the reader should first construct a
model by explicitly defining:

. System state
. System entities and their attributes
. Sets and the entities that may be put into the sets

. Events and activities; event notices

N A W IN -

. Variables needed to collect cumulative statistics

Second, the reader should either (1) develop the event logic (as in Figures 3.5 and
3.6 for Example 3.3) in preparation for using the event-scheduling approach, or
(2) develop the system processes (as in Figure 3.4) in preparation for using the
process-interaction approach.

Most problems contain activities that are uniformly distributed over an inter-
val [a, b]. When conducting a manual simulation, assume thata, a+1,a+2,...,b
are the only possible values; that is, the activity time is a discrete random variable.
The discrete assumption will simplify the manual simulation.

1 (a) Usingthe event-schedulingapproach, continue the (manual) checkout-counter
simulation in Example 3.3, Table 3.1. Use the same interarrival and service
times that were previously generated and used in Example 2.1. When the
last interarrival time is used, continue the simulation (allowing no new ar-
rivals) until the system is empty. Compare the results obtained here to those
obtained in Example 2.1. The results should be identical.

(b) Do Exercise 1(a) again, adding the model components necessary to estimate
mean response time and proportion of customers who spend 4 or more min-
utes in the system. [Hint: See Example 3.4, Table 3.2.]

(c¢) Comment on the relative merits of manual versus computerized simulations.
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Construct the event logic diagrams for the dump truck problem, Example 3.5.

In the dump truck problem of Example 3.5, it is desired to estimate mean response
time and the proportion of response times which are greater than 30 minutes. A
response time for a truck begins when that truck arrives at the loader queue, and
ends when the truck finishes weighing. Add the model components and cumulative
statistics needed to estimate these two measures of system performance. Simulate
for 8 hours.

Prepare a table in the manner of Table 3.2, until the CLOCK reaches time 15, using
the interarrival and service times given below in the order shown. The stopping
event will be at time 30.

Interarrival times 1 56 3 8

Service times 35415
Continue Table 3.2 until customer C5 departs.
The data for Table 3.2 are changed to the following:

Interarrival times 452837

Service times 534627

Prepare a table in the manner of Table 3.2 with a stopping event at time 25.
Redo Example 2.2 (the Able-Baker carhop problem) by a manual simulation using
the event-scheduling approach.
Redo Example 2.4 (the (M, N) inventory system) by a manual simulation using
the event-scheduling approach.

Redo Example 2.5 (the bearing-replacement problem) by a manual simulation
using the event-scheduling approach.

10 Rework Example 3.5 using the following data:

Loading times 10510105105
Weigh times 12 16 12 1216 12 12
Travel times 40 60 40 80 100 40
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