
1

Distributed Software Systems 1

Introduction to Distributed

Computing

Prof. Sanjeev Setia

Distributed Software Systems

CS 707

Distributed Software Systems 2

About this Class

 Distributed systems are ubiquitous
 Focus:
 Fundamental concepts underlying distributed

computing
 designing and writing moderate-sized distributed

applications

 Prerequisites:
 CS 571 (Operating Systems)
 CS 656 (Computer Networks)
 CS 706 (Concurrent Software)

2

Distributed Software Systems 3

What you will learn

“I hear and I forget, I see and I remember, I do
and I understand” – Chinese proverb

 Issues that arise in the development of
distributed software

 Middleware technology
 Threads, sockets
 RPC, Java RMI/CORBA
 Javaspaces (JINI), SOAP/Web Services/.NET,

Enterprise Javabeans
 Not discussed in class, but you can become more familiar

with these technologies by

Distributed Software Systems 4

Logistics

 Grade: 60% projects, 40% exams
 Slides, assignments, reading material on class

web page
http://www.cs.gmu.edu/~setia/cs707/

 Two small (2-3 week) programming
assignments + one larger project (3-4 weeks)
 To be done individually

 Use any platform; all the necessary software will
be available on IT&E lab computers

3

Distributed Software Systems 5

Readings

 Textbook:
 “Distributed Systems: Principles and

Paradigms” - Tannenbaum & van Steen
 Some lectures based on Coulouris et al

“Distributed Systems: Concepts & Design”
 Research literature
 Each lecture/chapter will be supplemented

with articles from the research literature
 Links on class web site

Distributed Software Systems 6

Schedule

 Introduction (today)
 Client-server application design
 Application-level protocols
 Sockets

 Communication
 RPC/RMI/CORBA

 Naming
 Synchronization
 Consistency & Replication
 Fault Tolerance

4

Distributed Software Systems 7

Example Distributed systems

 Internet
 ATM (bank) machines
 Intranets/Workgroups
 Computing landscape will soon consist of

ubiquitous network-connected devices
 “The network is the computer”

Distributed Software Systems 8

Characteristics of Distributed
Systems

 Concurrency
 No global clock
 Independent failures

5

Distributed Software Systems 9

intranet

ISP

desktop computer:

backbone

satellite link

server:

☎

network link:

☎

☎

☎

A typical portion of the Internet

Distributed Software Systems 10

A typical intranet

the rest of

email server

Web server

Desktop
computers

File server

router/firewall

print and other servers

other servers

print

Local area
network

email server

the Internet

6

Distributed Software Systems 11

Portable and handheld devices in
a distributed system

Laptop

Mobile

Printer
Camera

Internet

Host intranet Home intranet
WAP

Wireless LAN

phone

gateway

Host site

Distributed Software Systems 12

Distributed applications

 Applications that consist of a set of processes
that are distributed across a network of
machines and work together as an ensemble to
solve a common problem

 In the past, mostly “client-server”
 Resource management centralized at the server

 “Peer to Peer” computing represents a
movement towards more “truly” distributed
applications

7

Distributed Software Systems 13

Web servers and web browsers

Internet

BrowsersWeb servers

www.google.com

www.cdk3.net

www.w3c.org

Protocols

Activity.html

http://www.w3c.org/Protocols/Activity.html

http://www.google.comlsearch?q=kindberg

http://www.cdk3.net/

File system of
www.w3c.org

Distributed Software Systems 14

Goals/Benefits

 Resource sharing
 Scalability
 Fault tolerance and availability
 Performance
 Parallel computing can be considered a

subset of distributed computing

8

Distributed Software Systems 15

Challenges(Differences from
Local Computing)

 Heterogeneity
 Latency
 Remote Memory vs Local Memory
 Synchronization
 Concurrent interactions the norm

 Partial failure
 Applications need to adapt gracefully in the face of

partial failure
 Lamport once defined a distributed system as “One

on which I cannot get any work done because some
machine I have never heard of has crashed”

Distributed Software Systems 16

Challenges cont’d

 Need for “openness”
 Open standards: key interfaces in software and

communication protocols need to be standardized

 Security
 Denial of service attacks
 Mobile code

 Scalability
 Transparency

9

Distributed Software Systems 17

Scalability

 Becoming increasingly important because of the
changing computing landscape

 Key to scalability: decentralized algorithms and
data structures
 No machine has complete information about the

state of the system
 Machines make decisions based on locally available

information
 Failure of one machine does not ruin the algorithm
 There is no implicit assumption that a global clock

exists

Distributed Software Systems 18

Computers in the Internet

Date Computers Web servers

1979, Dec. 188 0

1989, July 130,000 0
1999, July 56,218,000 5,560,866
2003, Jan. 171,638,297 35,424,956

10

Distributed Software Systems 19

Computers vs. Web servers

in the Internet

Date Computers Web servers Percentage

1993, July 1,776,000 130 0.008

1995, July 6,642,000 23,500 0.4
1997, July 19,540,000 1,203,096 6
1999, July 56,218,000 6,598,697 12

2001, July 125,888,197 31,299,592 25
42,298,3712003, July

Distributed Software Systems 20

1.4

The difference between letting: (a) a server or (b)a client
check forms as they are being filled

Scaling Techniques (1)

11

Distributed Software Systems 21

Scaling Techniques (2)

1.5

An example of dividing the DNS name space into zones.

Distributed Software Systems 22

Transparency in Distributed Systems

Access transparency: enables local and remote resources to be accessed using
identical operations.
Location transparency: enables resources to be accessed without knowledge of their
physical or network location (for example, which building or IP address).
Concurrency transparency: enables several processes to operate concurrently using
shared resources without interference between them.
Replication transparency: enables multiple instances of resources to be used to
increase reliability and performance without knowledge of the replicas by users or
application programmers.
Failure transparency: enables the concealment of faults, allowing users and
application programs to complete their tasks despite the failure of hardware or
software components.
Mobility transparency: allows the movement of resources and clients within a system
without affecting the operation of users or programs.
Performance transparency: allows the system to be reconfigured to improve
performance as loads vary.
Scaling transparency: allows the system and applications to expand in scale without
change to the system structure or the application algorithms.

12

Distributed Software Systems 23

Communication Patterns

 Client-server
 Group-oriented/Peer-to-Peer
 Applications that require reliability, scalability

 Function-shipping/Mobile Code/Agents
 Postscript, Java

Distributed Software Systems 24

Clients invoke individual servers

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

13

Distributed Software Systems 25

A service provided by multiple
servers

Server

Server

Server

Service

Client

Client

Distributed Software Systems 26

Web proxy server

Client

Proxy

Web

server

Web

server

server
Client

14

Distributed Software Systems 27

A distributed application based
on peer processes

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

Distributed Software Systems 28

Web applets

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code

Client

b) client interacts with the applet

15

Distributed Software Systems 29

Thin clients and compute servers

Thin
Client

Application
Process

Network computer or PC
Compute server

network

Distributed Software Systems 30

Spontaneous networking in a
hotel

Internet

gateway

PDA

service

Music
service

 service
Discovery

Alarm

Camera

Guests
devices

Laptop
TV/PC

Hotel wireless
network

16

Distributed Software Systems 31

Distributed Software: Goals

 Middleware handles heterogeneity
 Higher-level support
 Make distributed nature of application transparent

to the user/programmer
 Remote Procedure Calls
 RPC + Object orientation = CORBA

 Higher-level support BUT expose remote
objects, partial failure, etc. to the programmer
 JINI, Javaspaces

 Scalability

Distributed Software Systems 32

Software and hardware service
layers in distributed systems

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

17

Distributed Software Systems 33

Fundamental/Abstract Models

 A fundamental model captures the
essential ingredients that we need to
consider to understand and reason about
a system’s behavior

 Addresses the following questions
 What are the main entities in the system?
 How do they interact?
 What are the characteristics that affect their

collective and individual behavior?

Distributed Software Systems 34

Fundamental/Abstract Models

 Three models
 Interaction model

 Reflects the assumptions about the processes and the
communication channels in the distributed system

 Failure model
 Distinguish between the types of failures of the processes

and the communication channels

 Security Model
 Assumptions about the principals and the adversary

18

Distributed Software Systems 35

Interaction Models
 Synchronous Distributed Systems: a system in

which the following bounds are defined
 The time to execute each step of a process has an upper and

lower bound
 Each message transmitted over a channel is received within a

known bounded delay
 Each process has a local clock whose drift rate from real time has

a known bound

 Asynchronous distributed system
 Each step of a process can take an arbitrary time
 Message delivery time is arbitrary
 Clock drift rates are arbitrary

 Some implications
 In a synchronous system, timeouts can be used to detect failures
 Impossible to detect failures or “reach agreement” in an

asynchronous system

Distributed Software Systems 36

Processes and channels

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

19

Distributed Software Systems 37

Omission and arbitrary failures

Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.
Crash Process Process halts and remains halted. Other processes may

not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.
Send-omission Process A process completes a send, but the message is not put

in its outgoing message buffer.
Receive-omission Process A message is put in a process’s incoming message

buffer, but that process does not receive it.
Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Distributed Software Systems 38

Timing failures

Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.
Performance Process Process exceeds the bounds on the interval

between two steps.
Performance Channel A message’s transmission takes longer than the

stated bound.

20

Distributed Software Systems 39

Objects and principals

Network

invocation

result
Client

Server

Principal (user) Principal (server)

ObjectAccess rights

Distributed Software Systems 40

Secure channels

Principal A

Secure channelProcess p Process q

Principal B

21

Distributed Software Systems 41

The enemy/adversary

Communication channel

Copy of m

Process p Process qm

The enemy
m’

Distributed Software Systems 42

Readings

 Chapter 1 of textbook (Tannenbaum)
 Chapters 1, 2 of Coulouris, Kindberg,

Dollimore (on reserve in library)
 “A Note on Distributed Computing” –

Waldo, Wyant, Wollrath, Kendall
 Link on class web page

