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Chapter 1

Vector Analysis

Problem 1.1

✲

✒

✯

✣

A

B

C

B
+
C

︸ ︷︷ ︸

|B| cos θ1

︸ ︷︷ ︸

|C| cos θ2

}|B| sin θ1

}|C| sin θ2

θ1

θ2

θ3

(a) From the diagram, |B + C| cos θ3 = |B| cos θ1 + |C| cos θ2.
|A||B + C| cos θ3 = |A||B| cos θ1 + |A||C| cos θ2.
So: A·(B + C) = A·B + A·C. (Dot product is distributive)

Similarly: |B + C| sin θ3 = |B| sin θ1 + |C| sin θ2. Mulitply by |A| n̂.
|A||B + C| sin θ3 n̂ = |A||B| sin θ1 n̂ + |A||C| sin θ2 n̂.
If n̂ is the unit vector pointing out of the page, it follows that
A×(B + C) = (A×B) + (A×C). (Cross product is distributive)

(b) For the general case, see G. E. Hay’s Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and
Section 8 (cross product)

Problem 1.2

✲ A = B

✻
C

❂
B×C ❄A×(B×C)

The triple cross-product is not in general associative. For example,
suppose A = B and C is perpendicular to A, as in the diagram.
Then (B×C) points out-of-the-page, and A×(B×C) points down,
and has magnitude ABC. But (A×B) = 0, so (A×B)×C = 0 ̸=
A×(B×C).

Problem 1.3

✲ y

✻z

✰
x

✣B

❲
A

θ

A = +1 x̂ + 1 ŷ − 1 ẑ; A =
√

3; B = 1 x̂ + 1 ŷ + 1 ẑ;

A·B = +1 + 1 − 1 = 1 = AB cos θ =
√

3
√

3 cos θ ⇒ cos θ.

θ = cos−1
(

1
3

)

≈ 70.5288◦

Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):
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(a) From the diagram, |B + C| cos ✓
3

= |B| cos ✓
1

+ |C| cos ✓
2

. Multiply by |A|.
|A||B + C| cos ✓

3

= |A||B| cos ✓
1

+ |A||C| cos ✓
2

.
So: A·(B + C) = A·B + A·C. (Dot product is distributive)

Similarly: |B + C| sin ✓
3

= |B| sin ✓
1

+ |C| sin ✓
2

. Mulitply by |A| n̂.
|A||B + C| sin ✓

3

n̂ = |A||B| sin ✓
1

n̂ + |A||C| sin ✓
2

n̂.
If n̂ is the unit vector pointing out of the page, it follows that
A⇥(B + C) = (A⇥B) + (A⇥C). (Cross product is distributive)

(b) For the general case, see G. E. Hay’s Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and
Section 8 (cross product)
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Problem 1.2

✲ A = B

✻
C

❂
B×C ❄A×(B×C)

The triple cross-product is not in general associative. For example,
suppose A = B and C is perpendicular to A, as in the diagram.
Then (B×C) points out-of-the-page, and A×(B×C) points down,
and has magnitude ABC. But (A×B) = 0, so (A×B)×C = 0 ̸=
A×(B×C).

Problem 1.3

✲ y

✻z

✰
x

✣B

❲
A

θ

A = +1 x̂ + 1 ŷ − 1 ẑ; A =
√

3; B = 1 x̂ + 1 ŷ + 1 ẑ; B =
√

3.

A·B = +1 + 1 − 1 = 1 = AB cos θ =
√

3
√

3 cos θ ⇒ cos θ = 1
3
.

θ = cos−1
(

1
3

)

≈ 70.5288◦

Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):

A = −1 x̂ + 2 ŷ + 0 ẑ; B = −1 x̂ + 0 ŷ + 3 ẑ.
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A = +1 x̂ + 1 ŷ � 1 ẑ; A =
p

3; B = 1 x̂ + 1 ŷ + 1 ẑ; B =
p

3.

A·B = +1 + 1� 1 = 1 = AB cos ✓ =
p

3
p

3 cos ✓ ) cos ✓ = 1

3

.

✓ = cos�1

�
1

3

�
⇡ 70.5288�

Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):

A = �1 x̂ + 2 ŷ + 0 ẑ; B = �1 x̂ + 0 ŷ + 3 ẑ.
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CHAPTER 1. VECTOR ANALYSIS 5

A⇥B =

������
x̂ ŷ ẑ
�1 2 0
�1 0 3

������ = 6 x̂ + 3 ŷ + 2 ẑ.

This has the right direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its
length:

|A⇥B| =
p

36 + 9 + 4 = 7. n̂ = A⇥B

|A⇥B| = 6

7

x̂ + 3

7

ŷ + 2

7

ẑ .

Problem 1.5

A⇥(B⇥C) =

������
x̂ ŷ ẑ
A

x

A
y

A
z

(B
y

C
z

�B
z

C
y

) (B
z

C
x

�B
x

C
z

) (B
x

C
y

�B
y

C
x

)

������
= x̂[A

y

(B
x

C
y

�B
y

C
x

)�A
z

(B
z

C
x

�B
x

C
z

)] + ŷ() + ẑ()
(I’ll just check the x-component; the others go the same way)
= x̂(A

y

B
x

C
y

�A
y

B
y

C
x

�A
z

B
z

C
x

+ A
z

B
x

C
z

) + ŷ() + ẑ().
B(A·C)�C(A·B) = [B

x

(A
x

C
x

+ A
y

C
y

+ A
z

C
z

)� C
x

(A
x

B
x

+ A
y

B
y

+ A
z

B
z

)] x̂ + () ŷ + () ẑ
= x̂(A

y

B
x

C
y

+ A
z

B
x

C
z

�A
y

B
y

C
x

�A
z

B
z

C
x

) + ŷ() + ẑ(). They agree.
Problem 1.6

A⇥(B⇥C)+B⇥(C⇥A)+C⇥(A⇥B) = B(A·C)�C(A·B)+C(A·B)�A(C·B)+A(B·C)�B(C·A) = 0.
So: A⇥(B⇥C)� (A⇥B)⇥C = �B⇥(C⇥A) = A(B·C)�C(A·B).

If this is zero, then either A is parallel to C (including the case in which they point in opposite directions, or
one is zero), or else B·C = B·A = 0, in which case B is perpendicular to A and C (including the case B = 0.)

Conclusion: A⇥(B⇥C) = (A⇥B)⇥C() either A is parallel to C, or B is perpendicular to A and C.

Problem 1.7

r = (4 x̂ + 6 ŷ + 8 ẑ)� (2 x̂ + 8 ŷ + 7 ẑ) = 2 x̂� 2 ŷ + ẑ

r =
p

4 + 4 + 1 = 3

r̂ = rr = 2

3

x̂� 2

3

ŷ + 1

3

ẑ

Problem 1.8

(a) Ā
y

B̄
y

+ Ā
z

B̄
z

= (cos�A
y

+ sin�A
z

)(cos�B
y

+ sin�B
z

) + (� sin�A
y

+ cos�A
z

)(� sin�B
y

+ cos�B
z

)
= cos2 �A

y

B
y

+ sin� cos�(A
y

B
z

+ A
z

B
y

) + sin2 �A
z

B
z

+ sin2 �A
y

B
y

� sin� cos�(A
y

B
z

+ A
z

B
y

) +
cos2 �A

z

B
z

= (cos2 �+ sin2 �)A
y

B
y

+ (sin2 �+ cos2 �)A
z

B
z

= A
y

B
y

+ A
z

B
z

. X
(b) (A

x

)2 + (A
y

)2 + (A
z

)2 = ⌃3

i=1

A
i

A
i

= ⌃3

i=1

�
⌃3

j=1

R
ij

A
j

� �
⌃3

k=1

R
ik

A
k

�
= ⌃

j,k

(⌃
i

R
ij

R
ik

) A
j

A
k

.

This equals A2

x

+ A2

y

+ A2

z

provided ⌃3

i=1

R
ij

R
ik

=
⇢

1 if j = k
0 if j 6= k

�
Moreover, if R is to preserve lengths for all vectors A, then this condition is not only su�cient but also
necessary. For suppose A = (1, 0, 0). Then ⌃

j,k

(⌃
i

R
ij

R
ik

) A
j

A
k

= ⌃
i

R
i1

R
i1

, and this must equal 1 (since we
want A

2

x

+A
2

y

+A
2

z

= 1). Likewise, ⌃3

i=1

R
i2

R
i2

= ⌃3

i=1

R
i3

R
i3

= 1. To check the case j 6= k, choose A = (1, 1, 0).
Then we want 2 = ⌃

j,k

(⌃
i

R
ij

R
ik

) A
j

A
k

= ⌃
i

R
i1

R
i1

+ ⌃
i

R
i2

R
i2

+ ⌃
i

R
i1

R
i2

+ ⌃
i

R
i2

R
i1

. But we already
know that the first two sums are both 1; the third and fourth are equal, so ⌃

i

R
i1

R
i2

= ⌃
i

R
i2

R
i1

= 0, and so
on for other unequal combinations of j, k. X In matrix notation: R̃R = 1, where R̃ is the transpose of R.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is

protected under all copyright laws as they currently exist. No portion of this material may be

reproduced, in any form or by any means, without permission in writing from the publisher.



6 CHAPTER 1. VECTOR ANALYSIS

Problem 1.9
CHAPTER 1. VECTOR ANALYSIS 5

✲ x

✻y

✠
z

❃✿

Looking down the axis:

✻y

&
x

✰z

✻z′

&y′

✰
x′

❄

■

✒
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A 120� rotation carries the z axis into the y (= z) axis, y into x (= y), and x into z (= x). So A
x

= A
z

,
A

y

= A
x

, A
z

= A
y

.

R =

0@ 0 0 1
1 0 0
0 1 0

1A
Problem 1.10

(a) No change. (A
x

= A
x

, A
y

= A
y

, A
z

= A
z

)

(b) A �! �A, in the sense (A
x

= �A
x

, A
y

= �A
y

, A
z

= �A
z

)

(c) (A⇥B) �! (�A)⇥(�B) = (A⇥B). That is, if C = A⇥B, C �! C . No minus sign, in contrast to
behavior of an “ordinary” vector, as given by (b). If A and B are pseudovectors, then (A⇥B) �! (A)⇥(B) =
(A⇥B). So the cross-product of two pseudovectors is again a pseudovector. In the cross-product of a vector
and a pseudovector, one changes sign, the other doesn’t, and therefore the cross-product is itself a vector.
Angular momentum (L = r⇥p) and torque (N = r⇥F) are pseudovectors.

(d) A·(B⇥C) �! (�A)·((�B)⇥(�C)) = �A·(B⇥C). So, if a = A·(B⇥C), then a �! �a; a pseudoscalar
changes sign under inversion of coordinates.
Problem 1.11

(a)rf = 2x x̂ + 3y2 ŷ + 4z3 ẑ

(b)rf = 2xy3z4 x̂ + 3x2y2z4 ŷ + 4x2y3z3 ẑ

(c)rf = ex sin y ln z x̂ + ex cos y ln z ŷ + ex sin y(1/z) ẑ

Problem 1.12

(a) rh = 10[(2y � 6x� 18) x̂ + (2x� 8y + 28) ŷ]. rh = 0 at summit, so
2y � 6x� 18 = 0
2x� 8y + 28 = 0 =) 6x� 24y + 84 = 0

�
2y � 18� 24y + 84 = 0.

22y = 66 =) y = 3 =) 2x� 24 + 28 = 0 =) x = �2.
Top is 3 miles north, 2 miles west, of South Hadley.

(b) Putting in x = �2, y = 3:
h = 10(�12� 12� 36 + 36 + 84 + 12) = 720 ft.

(c) Putting in x = 1, y = 1: rh = 10[(2� 6� 18) x̂ + (2� 8 + 28) ŷ] = 10(�22 x̂ + 22 ŷ) = 220(� x̂ + ŷ).
|rh| = 220

p
2 ⇡ 311 ft/mile; direction: northwest.
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Problem 1.13

r = (x� x0) x̂ + (y � y0) ŷ + (z � z0) ẑ; r =
p

(x� x0)2 + (y � y0)2 + (z � z0)2.

(a) r(r 2) = @

@x

[(x�x0)2+(y�y0)2+(z�z0)2] x̂+ @

@y

() ŷ+ @

@z

() ẑ = 2(x�x0) x̂+2(y�y0) ŷ+2(z�z0) ẑ = 2 r .

(b) r( 1r ) = @

@x

[(x� x0)2 + (y � y0)2 + (z � z0)2]� 1

2 x̂ + @

@y

()� 1

2 ŷ + @

@z

()� 1

2 ẑ

= � 1

2

()� 3

2 2(x� x0) x̂� 1

2

()� 3

2 2(y � y0) ŷ � 1

2

()� 3

2 2(z � z0) ẑ
= �()� 3

2 [(x� x0) x̂ + (y � y0) ŷ + (z � z0) ẑ] = �(1/r 3)r = �(1/r 2) r̂ .

(c) @

@x

(r n) = n r n�1

@

r
@x

= n r n�1( 1

2

1r 2 r
x

) = n r n�1 r̂
x

, so r(r n) = n r n�1 r̂
Problem 1.14

y = +y cos�+ z sin�; multiply by sin�: y sin� = +y sin� cos�+ z sin2 �.
z = �y sin�+ z cos�; multiply by cos�: z cos� = �y sin� cos�+ z cos2 �.

Add: y sin�+ z cos� = z(sin2 �+ cos2 �) = z. Likewise, y cos�� z sin� = y.
So @y

@y

= cos�; @y

@z

= � sin�; @z

@y

= sin�; @z

@z

= cos�. Therefore

(rf)
y

= @f

@y

= @f

@y

@y

@y

+ @f

@z

@z

@y

= +cos�(rf)
y

+ sin�(rf)
z

(rf)
z

= @f

@z

= @f

@y

@y

@z

+ @f

@z

@z

@z

= � sin�(rf)
y

+ cos�(rf)
z

)
So rf transforms as a vector. qed

Problem 1.15

(a)r·v
a

= @

@x

(x2) + @

@y

(3xz2) + @

@z

(�2xz) = 2x + 0� 2x = 0.

(b)r·v
b

= @

@x

(xy) + @

@y

(2yz) + @

@z

(3xz) = y + 2z + 3x.

(c)r·v
c

= @

@x

(y2) + @

@y

(2xy + z2) + @

@z

(2yz) = 0 + (2x) + (2y) = 2(x + y)

Problem 1.16

r·v = @

@x

( x

r

3

) + @

@y

( y

r

3

) + @

@z

( z

r

3

) = @

@x

h
x(x2 + y2 + z2)� 3

2

i
+ @

@y

h
y(x2 + y2 + z2)� 3

2

i
+ @

@z

h
z(x2 + y2 + z2)� 3

2

i
= ()� 3

2 + x(�3/2)()� 5

2 2x + ()� 3

2 + y(�3/2)()� 5

2 2y + ()� 3

2

+ z(�3/2)()� 5

2 2z = 3r�3� 3r�5(x2 + y2 + z2) = 3r�3� 3r�3 = 0.

This conclusion is surprising, because, from the diagram, this vector field is obviously diverging away from the
origin. How, then, can r·v = 0? The answer is that r·v = 0 everywhere except at the origin, but at the
origin our calculation is no good, since r = 0, and the expression for v blows up. In fact, r·v is infinite at
that one point, and zero elsewhere, as we shall see in Sect. 1.5.
Problem 1.17

v
y

= cos� v
y

+ sin� v
z

; v
z

= � sin� v
y

+ cos� v
z

.
@v

y

@y

= @v

y

@y

cos�+ @v

z

@y

sin� =
⇣

@v

y

@y

@y

@y

+ @v

y

@z

@z

@y

⌘
cos�+

⇣
@v

z

@y

@y

@y

+ @v

z

@z

@z

@y

⌘
sin�. Use result in Prob. 1.14:

=
⇣

@v

y

@y

cos�+ @v

y

@z

sin�
⌘

cos�+
⇣

@v

z

@y

cos�+ @v

z

@z

sin�
⌘

sin�.
@v

z

@z

= �@v

y

@z

sin�+ @v

z

@z

cos� = �
⇣

@v

y

@y

@y

@z

+ @v

y

@z

@z

@z

⌘
sin�+

⇣
@v

z

@y

@y

@z

+ @v

z

@z

@z

@z

⌘
cos�

= �
⇣
�@v

y

@y

sin�+ @v

y

@z

cos�
⌘

sin�+
⇣
�@v

z

@y

sin�+ @v

z

@z

cos�
⌘

cos�. So

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is

protected under all copyright laws as they currently exist. No portion of this material may be

reproduced, in any form or by any means, without permission in writing from the publisher.



8 CHAPTER 1. VECTOR ANALYSIS

@v

y

@y

+ @v

z

@z

= @v

y

@y

cos2 �+ @v

y

@z

sin� cos�+ @v

z

@y

sin� cos�+ @v

z

@z

sin2 �+ @v

y

@y

sin2 �� @v

y

@z

sin� cos�
�@v

z

@y

sin� cos�+ @v

z

@z

cos2 �

= @v

y

@y

�
cos2 �+ sin2 �

�
+ @v

z

@z

�
sin2 �+ cos2 �

�
= @v

y

@y

+ @v

z

@z

. X
Problem 1.18

(a) r⇥v
a

=

������
x̂ ŷ ẑ
@

@x

@

@y

@

@z

x2 3xz2 �2xz

������ = x̂(0� 6xz) + ŷ(0 + 2z) + ẑ(3z2 � 0) = �6xz x̂ + 2z ŷ + 3z2 ẑ.

(b) r⇥v
b

=

������
x̂ ŷ ẑ
@

@x

@

@y

@

@z

xy 2yz 3xz

������ = x̂(0� 2y) + ŷ(0� 3z) + ẑ(0� x) = �2y x̂� 3z ŷ � x ẑ.

(c) r⇥v
c

=

������
x̂ ŷ ẑ
@

@x

@

@y

@

@z

y2 (2xy + z2) 2yz

������ = x̂(2z � 2z) + ŷ(0� 0) + ẑ(2y � 2y) = 0.

Problem 1.19

A x

y

z

v

v

v

vB

As we go from point A to point B (9 o’clock to 10 o’clock), x
increases, y increases, v

x

increases, and v
y

decreases, so @v
x

/@y >
0, while @v

y

/@y < 0. On the circle, v
z

= 0, and there is no
dependence on z, so Eq. 1.41 says

r⇥ v = ẑ
✓
@v

y

@x
� @v

x

@y

◆
points in the negative z direction (into the page), as the right
hand rule would suggest. (Pick any other nearby points on the
circle and you will come to the same conclusion.) [I’m sorry, but I
cannot remember who suggested this cute illustration.]

Problem 1.20

v = y x̂ + x ŷ; or v = yz x̂ + xz ŷ + xy ẑ; or v = (3x2z � z3) x̂ + 3 ŷ + (x3 � 3xz2) ẑ;
or v = (sinx)(cosh y) x̂� (cos x)(sinh y) ŷ; etc.

Problem 1.21

(i) r(fg) = @(fg)

@x

x̂ + @(fg)

@y

ŷ + @(fg)

@z

ẑ =
⇣
f @g

@x

+ g @f

@x

⌘
x̂ +

⇣
f @g

@y

+ g @f

@y

⌘
ŷ +

⇣
f @g

@z

+ g @f

@z

⌘
ẑ

= f
⇣

@g

@x

x̂ + @g

@y

ŷ + @g

@z

ẑ
⌘

+ g
⇣

@f

@x

x̂ + @f

@y

ŷ + @f

@z

ẑ
⌘

= f(rg) + g(rf). qed

(iv) r·(A⇥B) = @

@x

(A
y

B
z

�A
z

B
y

) + @

@y

(A
z

B
x

�A
x

B
z

) + @

@z

(A
x

B
y

�A
y

B
x

)

= A
y

@B

z

@x

+ B
z

@A

y

@x

�A
z

@B

y

@x

�B
y

@A

z

@x

+ A
z

@B

x

@y

+ B
x

@A

z

@y

�A
x

@B

z

@y

�B
z

@A

x

@y

+A
x

@B

y

@z

+ B
y

@A

x

@z

�A
y

@B

x

@z

�B
x

@A

y

@z

= B
x

⇣
@A

z

@y

� @A

y

@z

⌘
+ B

y

�
@A

x

@z

� @A

z

@x

�
+ B

z

⇣
@A

y

@x

� @A

x

@y

⌘
�A

x

⇣
@B

z

@y

� @B

y

@z

⌘
�A

y

�
@B

x

@z

� @B

z

@x

�
�A

z

⇣
@B

y

@x

� @B

x

@y

⌘
= B· (r⇥A)�A· (r⇥B). qed

(v) r⇥ (fA) =
⇣

@(fA

z

)

@y

� @(fA

y

)

@z

⌘
x̂ +

⇣
@(fA

x

)

@z

� @(fA

z

)

@x

⌘
ŷ +

⇣
@(fA

y

)

@x

� @(fA

x

)

@y

⌘
ẑ

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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=
⇣
f @A

z

@y

+ A
z

@f

@y

� f
@A

y

@z

�A
y

@f

@z

⌘
x̂ +

⇣
f @A

x

@z

+ A
x

@f

@z

� f @A

z

@x

�A
z

@f

@x

⌘
ŷ

+
⇣
f

@A

y

@x

+ A
y

@f

@x

� f @A

x

@y

�A
x

@f

@y

⌘
ẑ

= f
h⇣

@A

z

@y

� @A

y

@z

⌘
x̂ +

�
@A

x

@z

� @A

z

@x

�
ŷ +

⇣
@A

y

@x

� @A

x

@y

⌘
ẑ
i

�
h⇣

A
y

@f

@z

�A
z

@f

@y

⌘
x̂ +

⇣
A

z

@f

@x

�A
x

@f

@z

⌘
ŷ +

⇣
A

x

@f

@y

�A
y

@f

@x

⌘
ẑ
i

= f (r⇥A)�A⇥ (rf). qed
Problem 1.22

(a) (A·r)B =
⇣
A

x

@B

x

@x

+ A
y

@B

x

@y

+ A
z

@B

x

@z

⌘
x̂ +

⇣
A

x

@B

y

@x

+ A
y

@B

y

@y

+ A
z

@B

y

@z

⌘
ŷ

+
⇣
A

x

@B

z

@x

+ A
y

@B

z

@y

+ A
z

@B

z

@z

⌘
ẑ.

(b) r̂ = r

r

= x x̂+y ŷ+z ẑp
x

2

+y

2

+z

2

. Let’s just do the x component.

[(r̂·r)r̂]
x

= 1p
⇣
x @

@x

+ y @

@y

+ z @

@z

⌘
xp

x

2

+y

2

+z

2

= 1

r

n
x
h

1p + x(� 1

2

) 1

(

p
)

3

2x
i

+ yx
h
� 1

2

1

(

p
)

3

2y
i

+ zx
h
� 1

2

1

(

p
)

3

2z
io

= 1

r

�
x

r

� 1

r

3

�
x3 + xy2 + xz2

� 
= 1

r

�
x

r

� x

r

3

�
x2 + y2 + z2

� 
= 1

r

�
x

r

� x

r

�
= 0.

Same goes for the other components. Hence: (r̂·r) r̂ = 0 .

(c) (v
a

·r)v
b

=
⇣
x2

@

@x

+ 3xz2

@

@y

� 2xz @

@z

⌘
(xy x̂ + 2yz ŷ + 3xz ẑ)

= x2 (y x̂ + 0 ŷ + 3z ẑ) + 3xz2 (x x̂ + 2z ŷ + 0 ẑ)� 2xz (0 x̂ + 2y ŷ + 3x ẑ)
=
�
x2y + 3x2z2

�
x̂ +

�
6xz3 � 4xyz

�
ŷ +

�
3x2z � 6x2z

�
ẑ

= x2

�
y + 3z2

�
x̂ + 2xz

�
3z2 � 2y

�
ŷ � 3x2z ẑ

Problem 1.23

(ii) [r(A·B)]
x

= @

@x

(A
x

B
x

+ A
y

B
y

+ A
z

B
z

) = @A

x

@x

B
x

+ A
x

@B

x

@x

+ @A

y

@x

B
y

+ A
y

@B

y

@x

+ @A

z

@x

B
z

+ A
z

@B

z

@x

[A⇥(r⇥B)]
x

= A
y

(r⇥B)
z

�A
z

(r⇥B)
y

= A
y

�
@B

y

@x

� @B

x

@y

�
�A

z

�
@B

x

@z

� @B

z

@x

�
[B⇥(r⇥A)]

x

= B
y

�
@A

y

@x

� @A

x

@y

�
�B

z

�
@A

x

@z

� @A

z

@x

�
[(A·r)B]

x

=
�
A

x

@

@x

+ A
y

@

@y

+ A
z

@

@z

�
B

x

= A
x

@B

x

@x

+ A
y

@B

x

@y

+ A
z

@B

x

@z

[(B·r)A]
x

= B
x

@A

x

@x

+ B
y

@A

x

@y

+ B
z

@A

x

@z

So [A⇥(r⇥B) + B⇥(r⇥A) + (A·r)B + (B·r)A]
x

= A
y

@B

y

@x

�A
y

@B

x

@y

�A
z

@B

x

@z

+ A
z

@B

z

@x

+ B
y

@A

y

@x

�B
y

@A

x

@y

�B
z

@A

x

@z

+ B
z

@A

z

@x

+A
x

@B

x

@x

+ A
y

@B

x

@y

+ A
z

@B

x

@z

+ B
x

@A

x

@x

+ B
y

@A

x

@y

+ B
z

@A

x

@z

= B
x

@A

x

@x

+ A
x

@B

x

@x

+ B
y

�
@A

y

@x

� @A

x

@y

/

+@A

x

@y

/

�
+ A

y

�
@B

y

@x

� @B

x

@y

/

+@B

x

@y

/

�
+B

z

�
�@A

x

@z

/

+@A

z

@x

+ @A

x

@z

/

�
+ A

z

�
�@B

x

@z

/

+@B

z

@x

+ @B

x

@z

/

�
= [r(A·B)]

x

(same for y and z)

(vi) [r⇥(A⇥B)]
x

= @

@y

(A⇥B)
z

� @

@z

(A⇥B)
y

= @

@y

(A
x

B
y

�A
y

B
x

)� @

@z

(A
z

B
x

�A
x

B
z

)
= @A

x

@y

B
y

+ A
x

@B

y

@y

� @A

y

@y

B
x

�A
y

@B

x

@y

� @A

z

@z

B
x

�A
z

@B

x

@z

+ @A

x

@z

B
z

+ A
x

@B

z

@z

[(B·r)A� (A·r)B + A(r·B)�B(r·A)]
x

= B
x

@A

x

@x

+ B
y

@A

x

@y

+ B
z

@A

x

@z

�A
x

@B

x

@x

�A
y

@B

x

@y

�A
z

@B

x

@z

+ A
x

�
@B

x

@x

+ @B

y

@y

+ @B

z

@z

�
�B

x

�
@A

x

@x

+ @A

y

@y

+ @A

z

@z

�
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= B
y

@A

x

@y

+ A
x

�
�@B

x

@x

/

+@B

x

@x

/

+@B

y

@y

+ @B

z

@z

�
+ B

x

�
@A

x

@x

/

�@A

x

@x

/

�@A

y

@y

� @A

z

@z

�
+ A

y

�
�@B

x

@y

�
+ A

z

�
�@B

x

@z

�
+ B

z

�
@A

x

@z

�
= [r⇥(A⇥B)]

x

(same for y and z)
Problem 1.24

r(f/g) = @

@x

(f/g) x̂ + @

@y

(f/g) ŷ + @

@z

(f/g) ẑ

= g

@f

@x

�f

@g

@x

g

2

x̂ +
g

@f

@y

�f

@g

@y

g

2

ŷ + g

@f

@z

�f

@g

@z

g

2

ẑ

= 1

g

2

h
g
⇣

@f

@x

x̂ + @f

@y

ŷ + @f

@z

ẑ
⌘
� f

⇣
@g

@x

x̂ + @g

@y

ŷ + @g

@z

ẑ
⌘i

= grf�frg

g

2

. qed

r·(A/g) = @

@x

(A
x

/g) + @

@y

(A
y

/g) + @

@z

(A
z

/g)

= g

@A

x

@x

�A

x

@g

@x

g

2

+
g

@A

y

@y

�A

y

@g

@y

g

2

+ g

@A

z

@z

�A

z

@g

@x

g

2

= 1

g

2

h
g
⇣

@A

x

@x

+ @A

y

@y

+ @A

z

@z

⌘
�
⇣
A

x

@g

@x

+ A
y

@g

@y

+ A
z

@g

@z

⌘i
= gr·A�A·rg

g

2

. qed

[r⇥(A/g)]
x

= @

@y

(A
z

/g)� @

@z

(A
y

/g)

=
g

@A

z

@y

�A

z

@g

@y

g

2

� g

@A

y

@z

�A

y

@g

@z

g

2

= 1

g

2

h
g
⇣

@A

z

@y

� @A

y

@z

⌘
�
⇣
A

z

@g

@y

�A
y

@g

@z

⌘i
= g(r⇥A)

x

+(A⇥rg)

x

g

2

(same for y and z). qed

Problem 1.25

(a) A⇥B =

������
x̂ ŷ ẑ
x 2y 3z
3y �2x 0

������ = x̂(6xz) + ŷ(9zy) + ẑ(�2x2 � 6y2)

r·(A⇥B) = @

@x

(6xz) + @

@y

(9zy) + @

@z

(�2x2 � 6y2) = 6z + 9z + 0 = 15z

r⇥A = x̂
⇣

@

@y

(3z)� @

@z

(2y)
⌘

+ ŷ
�

@

@z

(x)� @

@x

(3z)
�

+ ẑ
⇣

@

@x

(2y)� @

@y

(x)
⌘

= 0; B·(r⇥A) = 0

r⇥B = x̂
⇣

@

@y

(0)� @

@z

(�2x)
⌘

+ ŷ
�

@

@z

(3y)� @

@x

(0)
�

+ ẑ
⇣

@

@x

(�2x)� @

@y

(3y)
⌘

= �5 ẑ; A·(r⇥B) = �15z

r·(A⇥B) ?= B·(r⇥A)�A·(r⇥B) = 0� (�15z) = 15z. X
(b) A·B = 3xy � 4xy = �xy ; r(A·B) = r(�xy) = x̂ @

@x

(�xy) + ŷ @

@y

(�xy) = �y x̂� x ŷ

A⇥(r⇥B) =

������
x̂ ŷ ẑ
x 2y 3z
0 0 �5

������ = x̂(�10y) + ŷ(5x); B⇥(r⇥A) = 0

(A·r)B =
⇣
x @

@x

+ 2y @

@y

+ 3z @

@z

⌘
(3y x̂� 2x ŷ) = x̂(6y) + ŷ(�2x)

(B·r)A =
⇣
3y @

@x

� 2x @

@y

⌘
(x x̂ + 2y ŷ + 3z ẑ) = x̂(3y) + ŷ(�4x)

A⇥(r⇥B) + B⇥(r⇥A) + (A·r)B + (B·r)A
= �10y x̂ + 5x ŷ + 6y x̂� 2x ŷ + 3y x̂� 4x ŷ = �y x̂� x ŷ = r·(A·B). X

(c) r⇥(A⇥B) = x̂
⇣

@

@y

(�2x2 � 6y2)� @

@z

(9zy)
⌘

+ ŷ
�

@

@z

(6xz)� @

@x

(�2x2 � 6y2)
�

+ ẑ
⇣

@

@x

(9zy)� @

@y

(6xz)
⌘

= x̂(�12y � 9y) + ŷ(6x + 4x) + ẑ(0) = �21y x̂ + 10x ŷ

r·A = @

@x

(x) + @

@y

(2y) + @

@z

(3z) = 1 + 2 + 3 = 6; r·B = @

@x

(3y) + @

@y

(�2x) = 0
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CHAPTER 1. VECTOR ANALYSIS 11

(B·r)A� (A·r)B + A(r·B)�B(r·A) = 3y x̂� 4x ŷ � 6y x̂ + 2x ŷ � 18y x̂ + 12x ŷ = �21y x̂ + 10x ŷ
= r⇥(A⇥B). X

Problem 1.26

(a) @

2

T

a

@x

2

= 2; @

2

T

a

@y

2

= @

2

T

a

@z

2

= 0 ) r2T
a

= 2.

(b) @

2

T

b

@x

2

= @

2

T

b

@y

2

= @

2

T

b

@z

2

= �T
b

) r2T
b

= �3T
b

= �3 sinx sin y sin z.

(c) @

2

T

c

@x

2

= 25T
c

; @

2

T

c

@y

2

= �16T
c

; @

2

T

c

@z

2

= �9T
c

) r2T
c

= 0.

(d) @

2

v

x

@x

2

= 2 ; @

2

v

x

@y

2

= @

2

v

x

@z

2

= 0 ) r2v
x

= 2
@

2

v

y

@x

2

= @

2

v

y

@y

2

= 0 ; @

2

v

y

@z

2

= 6x ) r2v
y

= 6x
@

2

v

z

@x

2

= @

2

v

z

@y

2

= @

2

v

z

@z

2

= 0 ) r2v
z

= 0

9>=>; r2v = 2 x̂ + 6x ŷ.

Problem 1.27

r·(r⇥v) = @

@x

⇣
@v

z

@y

� @v

y

@z

⌘
+ @

@y

�
@v

x

@z

� @v

z

@x

�
+ @

@z

⇣
@v

y

@x

� @v

x

@y

⌘
=
⇣

@

2

v

z

@x @y

� @

2

v

z

@y @x

⌘
+
⇣

@

2

v

x

@y @z

� @

2

v

x

@z @y

⌘
+
⇣

@

2

v

y

@z @x

� @

2

v

y

@x @z

⌘
= 0, by equality of cross-derivatives.

From Prob. 1.18: r⇥v
a

= �6xz x̂+2z ŷ+3z2 ẑ ) r·(r⇥v
a

) = @

@x

(�6xz)+ @

@y

(2z)+ @

@z

(3z2) = �6z+6z = 0.

Problem 1.28

r⇥(rt) =

������
x̂ ŷ ẑ
@

@x

@

@y

@

@z

@t

@x

@t

@y

@t

@z

������ = x̂
�

@

2

t

@y @z

� @

2

t

@z @y

�
+ ŷ

�
@

2

t

@z @x

� @

2

t

@x @z

�
+ ẑ
�

@

2

t

@x @y

� @

2

t

@y @x

�
= 0, by equality of cross-derivatives.

In Prob. 1.11(b), rf = 2xy3z4 x̂ + 3x2y2z4 ŷ + 4x2y3z3 ẑ, so

r⇥(rf) =

������
x̂ ŷ ẑ
@

@x

@

@y

@

@z

2xy3z4 3x2y2z4 4x2y3z3

������
= x̂(3 · 4x2y2z3 � 4 · 3x2y2z3) + ŷ(4 · 2xy3z3 � 2 · 4xy3z3) + ẑ(2 · 3xy2z4 � 3 · 2xy2z4) = 0. X

Problem 1.29

(a) (0, 0, 0) �! (1, 0, 0). x : 0! 1, y = z = 0; dl = dx x̂;v · dl = x2 dx;
R

v · dl =
R

1

0

x2 dx = (x3/3)|1
0

= 1/3.
(1, 0, 0) �! (1, 1, 0). x = 1, y : 0! 1, z = 0; dl = dy ŷ;v · dl = 2yz dy = 0;

R
v · dl = 0.

(1, 1, 0) �! (1, 1, 1). x = y = 1, z : 0! 1; dl = dz ẑ;v · dl = y2 dz = dz;
R

v · dl =
R

1

0

dz = z|1
0

= 1.

Total:
R

v · dl = (1/3) + 0 + 1 = 4/3.

(b) (0, 0, 0) �! (0, 0, 1). x = y = 0, z : 0! 1; dl = dz ẑ;v · dl = y2 dz = 0;
R

v · dl = 0.
(0, 0, 1) �! (0, 1, 1). x = 0, y : 0! 1, z = 1; dl = dy ŷ;v ·dl = 2yz dy = 2y dy;

R
v ·dl =

R
1

0

2y dy = y2|1
0

= 1.
(0, 1, 1) �! (1, 1, 1). x : 0! 1, y = z = 1; dl = dx x̂;v · dl = x2 dx;

R
v · dl =

R
1

0

x2 dx = (x3/3)|1
0

= 1/3.

Total:
R

v · dl = 0 + 1 + (1/3) = 4/3.

(c) x = y = z : 0! 1; dx = dy = dz;v · dl = x2 dx + 2yz dy + y2 dz = x2 dx + 2x2 dx + x2 dx = 4x2 dx;R
v · dl =

R
1

0

4x2 dx = (4x3/3)|1
0

= 4/3.

(d)
H

v · dl = (4/3)� (4/3) = 0.
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12 CHAPTER 1. VECTOR ANALYSIS

Problem 1.30

x, y : 0 ! 1, z = 0; da = dx dy ẑ;v · da = y(z2 � 3) dx dy = �3y dx dy;
R

v · da = �3
R

2

0

dx
R

2

0

y dy =
�3(x|2

0

)(y

2

2

|2
0

) = �3(2)(2) = �12. In Ex. 1.7 we got 20, for the same boundary line (the square in the
xy-plane), so the answer is no: the surface integral does not depend only on the boundary line. The total flux
for the cube is 20 + 12 = 32.

Problem 1.31R
T d⌧ =

R
z2 dx dy dz. You can do the integrals in any order—here it is simplest to save z for last:Z

z2

Z ✓Z
dx

◆
dy

�
dz.

The sloping surface is x+y+z = 1, so the x integral is
R

(1�y�z)

0

dx = 1�y�z. For a given z, y ranges from 0 to
1� z, so the y integral is

R
(1�z)

0

(1�y� z) dy = [(1� z)y� (y2/2)]|(1�z)

0

= (1� z)2� [(1� z)2/2] = (1� z)2/2 =
(1/2)� z + (z2/2). Finally, the z integral is

R
1

0

z2( 1

2

� z + z

2

2

) dz =
R

1

0

( z

2

2

� z3 + z

4

2

) dz = ( z

3

6

� z

4

4

+ z

5

10

)|1
0

=
1

6

� 1

4

+ 1

10

= 1/60.

Problem 1.32

T (b) = 1 + 4 + 2 = 7; T (a) = 0. ) T (b)� T (a) = 7.

rT = (2x + 4y)x̂ + (4x + 2z3)ŷ + (6yz2)ẑ; rT ·dl = (2x + 4y)dx + (4x + 2z3)dy + (6yz2)dz

(a) Segment 1: x : 0! 1, y = z = dy = dz = 0.
R

rT ·dl =
R

1

0

(2x) dx = x2

��1
0

= 1.

Segment 2: y : 0! 1, x = 1, z = 0, dx = dz = 0.
R

rT ·dl =
R

1

0

(4) dy = 4y|1
0

= 4.

Segment 3: z : 0! 1, x = y = 1, dx = dy = 0.
R

rT ·dl =
R

1

0

(6z2) dz = 2z3

��1
0

= 2.

9>=>; R
b

a

rT ·dl = 7. X

(b) Segment 1: z : 0! 1, x = y = dx = dy = 0.
R

rT ·dl =
R

1

0

(0) dz = 0.

Segment 2: y : 0! 1, x = 0, z = 1, dx = dz = 0.
R

rT ·dl =
R

1

0

(2) dy = 2y|1
0

= 2.

Segment 3: x : 0! 1, y = z = 1, dy = dz = 0.
R

rT ·dl =
R

1

0

(2x + 4) dx

= (x2 + 4x)
��1
0

= 1 + 4 = 5.

9>>>=>>>;
R

b

a

rT ·dl = 7. X

(c) x : 0! 1, y = x, z = x2, dy = dx, dz = 2x dx.

rT ·dl = (2x + 4x)dx + (4x + 2x6)dx + (6xx4)2x dx = (10x + 14x6)dx.R
b

a

rT ·dl =
R

1

0

(10x + 14x6)dx = (5x2 + 2x7)
��1
0

= 5 + 2 = 7. X
Problem 1.33

r·v = y + 2z + 3xR
(r·v)d⌧ =

R
(y + 2z + 3x) dx dy dz =

RR nR
2

0

(y + 2z + 3x) dx
o

dy dz

,! ⇥
(y + 2z)x + 3

2

x2

⇤
2

0

= 2(y + 2z) + 6
=
R nR

2

0

(2y + 4z + 6)dy
o

dz

,! ⇥
y2 + (4z + 6)y

⇤
2

0

= 4 + 2(4z + 6) = 8z + 16

=
R

2

0

(8z + 16)dz = (4z2 + 16z)
��2
0

= 16 + 32 = 48.

Numbering the surfaces as in Fig. 1.29:
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CHAPTER 1. VECTOR ANALYSIS 13

(i) da = dy dz x̂, x = 2. v·da = 2y dy dz.
R
v·da =

RR
2y dy dz = 2y2

��2
0

= 8.

(ii) da = �dy dz x̂, x = 0. v·da = 0.
R
v·da = 0.

(iii) da = dx dz ŷ, y = 2. v·da = 4z dx dz.
R
v·da =

RR
4z dx dz = 16.

(iv) da = �dx dz ŷ, y = 0. v·da = 0.
R
v·da = 0.

(v) da = dx dy ẑ, z = 2. v·da = 6x dx dy.
R
v·da = 24.

(vi) da = �dx dy ẑ, z = 0. v·da = 0.
R
v·da = 0.

)
R
v·da = 8 + 16 + 24 = 48 X

Problem 1.34

r⇥v = x̂(0� 2y) + ŷ(0� 3z) + ẑ(0� x) = �2y x̂� 3z ŷ � x ẑ.
da = dy dz x̂, if we agree that the path integral shall run counterclockwise. So
(r⇥v)·da = �2y dy dz.R

(r⇥v)·da =
R nR

2�z

0

(�2y)dy
o

dz

,! y2

��2�z

0

= �(2� z)2

= �
R

2

0

(4� 4z + z2)dz = �
⇣
4z � 2z2 + z

3

3

⌘���2
0

= �
�
8� 8 + 8

3

�
= � 8

3 -

6z

y

@
@

@
@

@
@

y =
2�

z

Meanwhile, v·dl = (xy)dx + (2yz)dy + (3zx)dz. There are three segments.

-

6z

y

@
@

@
@

@
@-

(1)

@
@I (2)

?
(3)

(1) x = z = 0; dx = dz = 0. y : 0! 2.
R
v·dl = 0.

(2) x = 0; z = 2� y; dx = 0, dz = �dy, y : 2! 0. v·dl = 2yz dy.R
v·dl =

R
0

2

2y(2� y)dy = �
R

2

0

(4y � 2y2)dy = �
�
2y2 � 2

3

y3

���2
0

= �
�
8� 2

3

· 8
�

= � 8

3

.

(3) x = y = 0; dx = dy = 0; z : 2! 0. v·dl = 0.
R
v·dl = 0. So

H
v·dl = � 8

3

. X
Problem 1.35

By Corollary 1,
R
(r⇥v)·da should equal 4

3

. r⇥v = (4z2 � 2x)x̂ + 2z ẑ.

(i) da = dy dz x̂, x = 1; y, z : 0! 1. (r⇥v)·da = (4z2 � 2)dy dz;
R
(r⇥v)·da =

R
1

0

(4z2 � 2)dz

= (4

3

z3 � 2z)
��1
0

= 4

3

� 2 = � 2

3

.

(ii) da = �dx dy ẑ, z = 0; x, y : 0! 1. (r⇥v)·da = 0;
R
(r⇥v)·da = 0.

(iii) da = dx dz ŷ, y = 1; x, z : 0! 1. (r⇥v)·da = 0;
R
(r⇥v)·da = 0.

(iv) da = �dx dz ŷ, y = 0; x, z : 0! 1. (r⇥v)·da = 0;
R
(r⇥v)·da = 0.

(v) da = dx dy ẑ, z = 1; x, y : 0! 1. (r⇥v)·da = 2 dx dy;
R
(r⇥v)·da = 2.

)
R
(r⇥v)·da = � 2

3

+ 2 = 4

3

. X
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14 CHAPTER 1. VECTOR ANALYSIS

Problem 1.36

(a) Use the product rule r⇥(fA) = f(r⇥A)�A⇥ (rf) :Z
S

f(r⇥A) · da =
Z
S

r⇥(fA) · da +
Z
S
[A⇥ (rf)] · da =

I
P

fA · dl +
Z
S
[A⇥ (rf)] · da. qed

(I used Stokes’ theorem in the last step.)

(b) Use the product rule r·(A⇥B) = B · (r⇥A)�A · (r⇥B) :Z
V

B · (r⇥A)d⌧ =
Z
V

r·(A⇥B) d⌧ +
Z
V

A · (r⇥B) d⌧ =
I
S
(A⇥B) · da +

Z
V

A · (r⇥B) d⌧. qed

(I used the divergence theorem in the last step.)

Problem 1.37 r =
p

x2 + y2 + z2; ✓ = cos�1

✓
zp

x

2

+y

2

+z

2

◆
; � = tan�1

�
y

x

�
.

Problem 1.38

There are many ways to do this one—probably the most illuminating way is to work it out by trigonometry
from Fig. 1.36. The most systematic approach is to study the expression:

r = x x̂ + y ŷ + z ẑ = r sin ✓ cos� x̂ + r sin ✓ sin� ŷ + r cos ✓ ẑ.

If I only vary r slightly, then dr = @

@r

(r)dr is a short vector pointing in the direction of increase in r. To make
it a unit vector, I must divide by its length. Thus:

r̂ =
@r

@r�� @r

@r

�� ; ✓̂ =
@r

@✓�� @r

@✓

�� ; �̂ =
@r

@��� @r

@�

�� .
@r

@r

= sin ✓ cos� x̂ + sin ✓ sin� ŷ + cos ✓ ẑ;
�� @r

@r

��2 = sin2 ✓ cos2 �+ sin2 ✓ sin2 �+ cos2 ✓ = 1.
@r

@✓

= r cos ✓ cos� x̂ + r cos ✓ sin� ŷ � r sin ✓ ẑ;
�� @r

@✓

��2 = r2 cos2 ✓ cos2 �+ r2 cos2 ✓ sin2 �+ r2 sin2 ✓ = r2.
@r

@�

= �r sin ✓ sin� x̂ + r sin ✓ cos� ŷ;
�� @r

@�

��2 = r2 sin2 ✓ sin2 �+ r2 sin2 ✓ cos2 � = r2 sin2 ✓.

)
r̂ = sin ✓ cos� x̂ + sin ✓ sin� ŷ + cos ✓ ẑ.
✓̂ = cos ✓ cos� x̂+ cos ✓ sin� ŷ� sin ✓ ẑ.
�̂ = � sin� x̂ + cos� ŷ.

Check: r̂·̂r = sin2 ✓(cos2 �+ sin2 �) + cos2 ✓ = sin2 ✓ + cos2 ✓ = 1, X
✓̂·�̂ = � cos ✓ sin� cos�+ cos ✓ sin� cos� = 0, X etc.

sin ✓ r̂ = sin2 ✓ cos� x̂ + sin2 ✓ sin� ŷ + sin ✓ cos ✓ ẑ.
cos ✓ ✓̂ = cos2 ✓ cos� x̂ + cos2 ✓ sin� ŷ � sin ✓ cos ✓ ẑ.

Add these:
(1) sin ✓ r̂ + cos ✓ ✓̂ = + cos� x̂ + sin� ŷ;
(2) �̂ = � sin� x̂ + cos� ŷ.

Multiply (1) by cos�, (2) by sin�, and subtract:

x̂ = sin ✓ cos� r̂ + cos ✓ cos� ✓̂ � sin� �̂.
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CHAPTER 1. VECTOR ANALYSIS 15

Multiply (1) by sin�, (2) by cos�, and add:

ŷ = sin ✓ sin� r̂ + cos ✓ sin� ✓̂ + cos� �̂.

cos ✓ r̂ = sin ✓ cos ✓ cos� x̂ + sin ✓ cos ✓ sin� ŷ + cos2 ✓ ẑ.
sin ✓ ✓̂ = sin ✓ cos ✓ cos� x̂ + sin ✓ cos ✓ sin� ŷ � sin2 ✓ ẑ.

Subtract these:

ẑ = cos ✓ r̂� sin ✓ ✓̂.

Problem 1.39

(a) r·v
1

= 1

r

2

@

@r

(r2r2) = 1

r

2

4r3 = 4rR
(r·v

1

)d⌧ =
R
(4r)(r2 sin ✓ dr d✓ d�) = (4)

R
R

0

r3dr
R

⇡

0

sin ✓ d✓
R

2⇡

0

d� = (4)
⇣

R

4

4

⌘
(2)(2⇡) = 4⇡R4R

v
1

·da =
R
(r2r̂)·(r2 sin ✓ d✓ d� r̂) = r4

R
⇡

0

sin ✓ d✓
R

2⇡

0

d� = 4⇡R4 X (Note: at surface of sphere r = R.)

(b) r·v
2

= 1

r

2

@

@r

�
r2

1

r

2

�
= 0 )

R
(r·v

2

)d⌧ = 0R
v

2

·da =
R �

1

r

2

r̂
�
(r2 sin ✓ d✓ d� r̂) =

R
sin ✓ d✓ d� = 4⇡.

They don’t agree! The point is that this divergence is zero except at the origin, where it blows up, so our
calculation of

R
(r·v

2

) is incorrect. The right answer is 4⇡.
Problem 1.40

r·v = 1

r

2

@

@r

(r2 r cos ✓) + 1

r sin ✓

@

@✓

(sin ✓ r sin ✓) + 1

r sin ✓

@

@�

(r sin ✓ cos�)
= 1

r

2

3r2 cos ✓ + 1

r sin ✓

r 2 sin ✓ cos ✓ + 1

r sin ✓

r sin ✓(� sin�)
= 3 cos ✓ + 2 cos ✓ � sin� = 5 cos ✓ � sin�R

(r·v)d⌧ =
R
(5 cos ✓ � sin�) r2 sin ✓ dr d✓ d� =

R
R

0

r2 dr
R ✓

2

0

hR
2⇡

0

(5 cos ✓ � sin�) d�
i

d✓ sin ✓
,!2⇡(5 cos ✓)

=
⇣

R

3

3

⌘
(10⇡)

R ⇡

2

0

sin ✓ cos ✓ d✓

,! sin

2

✓

2

���⇡

2

0

= 1

2

= 5⇡

3

R3.

Two surfaces—one the hemisphere: da = R2 sin ✓ d✓ d� r̂; r = R; � : 0! 2⇡, ✓ : 0! ⇡

2

.R
v·da =

R
(r cos ✓)R2 sin ✓ d✓ d� = R3

R ⇡

2

0

sin ✓ cos ✓ d✓
R

2⇡

0

d� = R3

�
1

2

�
(2⇡) = ⇡R3.

other the flat bottom: da = (dr)(r sin ✓ d�)(+✓̂) = r dr d� ✓̂ (here ✓ = ⇡

2

). r : 0! R, � : 0! 2⇡.R
v·da =

R
(r sin ✓)(r dr d�) =

R
R

0

r2 dr
R

2⇡

0

d� = 2⇡R

3

3

.

Total:
R
v·da = ⇡R3 + 2

3

⇡R3 = 5

3

⇡R3. X

Problem 1.41 rt = (cos ✓ + sin ✓ cos�)r̂ + (� sin ✓ + cos ✓ cos�)✓̂ + 1

sin ✓/ (� sin ✓/ sin�)�̂

r2t = r·(rt)
= 1

r

2

@

@r

�
r2(cos ✓ + sin ✓ cos�)

�
+ 1

r sin ✓

@

@✓

(sin ✓(� sin ✓ + cos ✓ cos�)) + 1

r sin ✓

@

@�

(� sin�)
= 1

r

2

2r(cos ✓ + sin ✓ cos�) + 1

r sin ✓

(�2 sin ✓ cos ✓ + cos2 ✓ cos�� sin2 ✓ cos�)� 1

r sin ✓

cos�
= 1

r sin ✓

[2 sin ✓ cos ✓ + 2 sin2 ✓ cos�� 2 sin ✓ cos ✓ + cos2 ✓ cos�� sin2 ✓ cos�� cos�]
= 1

r sin ✓

⇥
(sin2 ✓ + cos2 ✓) cos�� cos�

⇤
= 0.
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