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Abstract. These are the notes for the Intersection Theory and Ennumerative Geometry
lectures given in July 2020, and part of the Univerity of Texas at Austin mathematics
department gradate-student-run Summer minicourses. Due to contemporary realities,
the lectures are to be given virtually.

We follow Eisenbud-Harris 3264 & All That, Intersection Theory in Algebraic Geometry,
and strongly recommend anyone whose interest is piqued to pick up that gorgeously-
written text to learn more.

The goal of these notes is to showcase how techniques of Algebraic Geometry in general
and Intersection Theory in particular may be applied to solve classical enumerative ques-
tions. The numbers obtained this way are largely unimportant1, but the fact that they
can be determined (and often via standard techniques at that) is truly fascinating.

The ground field. Throughout these notes, we implicitly work over a field k, which we
require to be algebraically closed and have characteristic zero. Both of these assumptions
could largely be compensated for by additional effort (e.g. by taking degrees of residue
field extensions into account), which is why we choose not to.

The reader who wishes to assume that k = C is free to do so, but should be aware that
they are doing so merely for psychological comfort. Said reader should also be warned that
special complex-analytic or differential-geometric intuitions will not be used. In particular,
we will think of algebraic curves as being 1-dimensional objects, and not a 2-dimensional,
as their identification with Riemann surfaces might lead one think of them as. In short:
please accept that we are in the realm of algebraic geometry, and try to make yourelf at
home! As we hope to show, it’s not such a scary place, and can be quite fun to live in!

The foundations of algebraic geometry. Some rudimentary knowledge of algebraic
geometry on the reader’s part would be beneficial, but we will try our best to minimize
its importance. In particular, we will work throughout with varieties, which a reader well-
versed in the contemporary language can take to be an integral (though sometimes we will
want to relax this to assuming only reducedness, and as such allow reducible varieties as
well) separated scheme of finite type over the base field.

But since the vast majority of the varieties that we will actually be thinking about will
be projective, it is also perfectly acceptable if the reader wishes to imagine a subset of the
projective space Pn for some n, cut out by a finite number of (homogeneous) algebraic
equations. The high-flying technology of scheme theory, as crucial as it has proved over
the last half-century, will largely play a back seat in our discussion.

Warning. These are informal notes, sure to be brimming with mistakes, all of them mine.
Please take everything you read here with a hefty grain of salt, defer to Eisenbud-Harris
whenever confused, and in general use at your own peril!

Date: August 1, 2020.
University of Texas at Austin.
1Albeit largely unimportant, the numbers are sometimes quite fascinating, however. For instance,

Schubert computed in 1879 that there are 5,819,539,783,680 twisted cubics tangent to twelve quadric
surfaces in general position in 3-space. That means that, if we were to evenly distribute these twisted
cubics among all the people currently alive on planet Earth, each person would become the proud owner
of almost 800 of them!
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1. Framework of Intersection Theory

Fix a smooth algebraic variety X of dimension n. In this subsection we introduce a
convenient setting for studying the intersection theory of subvarieties in X.

1.1. Algebraic cycles and rational equivalence. An algebraic i-cycle is a formal sum
α = n1Z1 + ⋯ + nkZk with nj ∈ Z and Zj ⊆ X any i-dimensional subvarieties. Algebraic
i-cycles form an abelian group Zi(X).

We wish to consider algebraic cycles to be rationally equivalent, if we can deform one
into another through a family of algebraic cycles. Informally, we define that α ≃rat α

′ if
there exists a family of i-cycles {αt ⊆ X}t∈P1 , depending algebraically on a parameter t
ranging over the projective line P1, such that α0 = α and α∞ = α′. Formally, this may be
achieved by incarnating the family {αt ⊆ X}t∈P1 as a cycle α ∈ Zi+1(X ×P1), such that
it is (or more precisely, its constituent subvarieties are) not fully contained in any of the
fibers X ×{t} ⊂X ×P1. Under this assumption, the restrictions to fibers αt ∶= α∣X×{t} are
i-cycles in X, and as such define elements of the family in question.

Figure 1. A family given by the subvariety α, exhibiting α0 ≃rat α∞.

1.2. The Chow groups. By identifying i-cycles under rational equivalence, we define
the i-th Chow group of X to be

Ai(X) ∶= Zi(X)/ ≃rat .

For any i-dimensional subvariety Z ⊆ X, we call the corresponding Chow group element
[Z] ∈ Ai(X) its fundamental class. It is often convenient to use an alternative grading
Ai(X) ∶= An−i(X), under which the fundamental class of a subvariety Z ⊆ X becomes
indexed by its codimension.

Example 1.2.1. For those familiar with algebraic geometry, the codimension 1 cycles
might be better known as divisors (or more precisely, Weil divisors). In that language,
the group Z1(X) = Div(X) is the divisor group, rational equivalence is the same as linear
equivalence, and A1(X) = Cl(X) recovers the divisor class group. But if none of that
means anything to you, that’s alright - just remember the word “divisor” as shorthand.

The Chow groups may be viewed as an algebro-geometric analogue of the algebro-
topological homology groups H∗(M ;Z) for a compact oriented n-dimensional manifold
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M . In that case, Poincaré duality identifies Hi(X;Z) ≃ Hn−i(X;Z), justifying the coho-
mological grading on the Chow groups. Recall that in algebraic topology, cohomology is
often more useful than homology because it carries a ring structure.

1.3. The intersection product and transversality. In analogy with cohomology, we
wish to equip the Chow groups with a ring structure, to make A∗(X) ∶= ⊕iA

i(X) into
the Chow ring of X. The multiplication should respect the grading, and as such be
encoded by maps Ai(X)×Aj(X) → Ai+j(X). By linearity, it suffices to define the product
[Z].[W ] ∈ Ai+j(X) for a pair of subvarieties Z,W ⊆X of codimensions i and j respectively.

We wish to simply set [Z].[W ] = [Z ∩W ]. In order for the gradings to work out right,
we wish [Z].[W ] to live in Ai+j(X). The class [Z ∩W ] is an element of Ak(X), where k
is the codimension of Z ∩W ⊆X. And while the expected codimension of Z ∩W is indeed
i + j, i.e. we expect that

codimX(Z ∩W ) = codimX(Z) + codimX(W ),

it could nonetheless happen that Z ∩W has some components of a higher dimension.
This issue disappears if Z andW intersect transversely, which means that for every point

p ∈ Z ∩W the equality TpZ + TpW = TpX holds on the level of tangent spaces. In that
case, we genuinely define [Z].[W ] = [Z ∩W ]. Note that if dim(Z) + dim(W ) < dim(X),
or equivalently i+ j > n, then the interection can only be transvere if Z ∩W = ∅, in which
case [Z].[W ] = 0 (this is also sensible because Ak(X) = 0 for k > n). To deal with the
remaining case of i + j ≤ n, we call upon an infamous black box:

Theorem 1.3.1 (The Moving Lemma). Let X be a smooth quasi-projective variety. For
any pair of cycles Z ∈ Zi(X), W ∈ Zj(X), there exist respectively rationally equivalent
cycles Z ′ ∈ Zi(X), W ′ ∈ Zj(X) such that they (or more precisely, all of their component
subvarieties) intersect transversely. The class [Z ′].[W ′] ∈ Ai+j(X) is independent of the
choice of transversal representatives Z ′,W ′.

Informally, the Moving Lemma (which we will not prove here) guarantees that any pair
of cycles may be perturbed into intersecting transversely. Indeed, transverse intersection
is a Zariski-open condition (non-transverseness may be expressed as the vanishing of cer-
tain determinants) and hence a generic representative of a rational equivalence class will
intersect transversely with a given other (appropriately codimensional) subvariety.

Remark 1.3.2. The approach to defining the interection product by invoking the Moving
Lemma is often viewed with some suspicion. And for good reason - this is the classical
approach to interssection theory, but its hisotry is fraught with technical mistakes and
confusion. To disspell a possible point misunderstanding: the Moving Lemma in the
above version can be rigorously proved, see e.g. the account in the Stacks Project. It is
however a lot more diffcult and technical than one might expect.

There exist other approaches to setting up the Chow ring however, a particularly pow-
erful one due to Fulton-MacPhearson worked out in complete rigor in Fulton’s Intersection
Theory monograph, and another due to Serre partially worked out in him Local Algebra.

However, since we work informally, and the restriction of working only with smooth
quasi-projective ambient varieties is perfectly acceptable for our purposes, we stick with
the Moving Lemma approach, preferring it for its high intuitive appeal.

1.4. Proper pushforward on Chow groups. In analogy with homology, Chow groups
admit covariant functoriality for proper morphisms. From the Poincare-duality perspec-
tive with de Rham cohomology of oriented differentiable manifolds, this functoriality cor-
responds to the theory of integration along the fibers, which might go some way towards
motivating the properness requirement.

Let f ∶ X → Y be a proper map of smooth varieties. We wish to define pushforward
f∗ ∶ Ai(X) → Ai(Y ) on Chow groups. By linearity, it suffices to define it on fundamental
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classes. For every subvariety Z ⊆ X its image f(Z) ⊆ Y is also a subvariety, of dimension
dim(f(Z)) ≤ dim(Z). We define

f∗[Z] ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0, dim(f(Z)) < dim(Z)

deg(f ∣Z)[f(Z)], dim(f(Z)) = dim(Z),

where the ddegree of the retricted map f ∣Z ∶ Z → f(Z) is2 the number of points in its
generic fiber (or in an arbitrary fiber, if counted with multiplicity). It is true, albeit far
from obvious, that this cycle-level definition respects rational equivalence, and as such
descends to Chow groups.

Example 1.4.1. Let X be a proper smooth variety of dimension n. Properness of X,
the algebro-geometric analogue of compactness, means that the morphism to the point
p ∶X → pt is proper (for instance, every projective variety is proper). Hence we get access
to a pushforward map of Chow groups p∗ ∶ Ai(X) → Ai(pt), called the degree map and
denote it p∗ = deg. Since clearly A0(pt) = Z and Ai(pt) = 0 for all i ≥ 1, the interesting
part of this map is deg ∶ A0(X) → Z. It may be described as follows: A0(X) is clearly
spanned by fundamental classes [x] of points x ∈ X, and the degree map is given by

∑i ni[xi] ↦ ∑i ni. In analogy with de Rham cohomology of differentiable manifolds, the
degree map An(X) → Z is sometimes also denoted by α ↦ ∫X α, which has the advantage
of including the variety X in the notation.

Example 1.4.2. To understand why properness is required for defining the degree map, let
us consider what goes wrong in the case of the affine line A1, the poster boy of non-proper
varieties. We claim that the class of a point [t] for any t ∈ A1 is rationally equivalent
to the empty subscheme, from which it follows that A0(A

1) = 0. Indeed, consider the
“diagonal” subvariety α ⊆ A1 ×P1, in terms of the inclusion A1 ⊆ P1. It defined a family
of subvarieties αt ∶= α∣A1×{t} ⊆ A1 for all t ∈ P1, which are equal to

αt =

⎧⎪⎪
⎨
⎪⎪⎩

{t} t ∈ A1 = P1 − {∞}

∅ t = ∞,

thus showing that [pt] = 0 ∈ A0(A
1). This is the stereotypical issue with the lack of

properness: the “holes” in the variety allow us to push points into them through rational
equivalence. Indeed, properness of a variety X may be characterized (this goes by the

Figure 2. Visual illustration of the rational equivalence {t} ≃rat ∅.

name of the Valuative Criterion) by only a slightly more refined property than demanding
that any map A1 →X extends uniquely along the inclusion A1 ⊆ P1 to a map P1 →X.

2Formally, it may be identified as deg(f ∣Z) = [K(Z) ∶ K(f(Z))], the degree of the field extension
K(f(Z)) → K(Z) induced by f between the field of rational functions on f(Z) and Z rsepetively.
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1.5. Pullback on Chow groups. In analogy with cohomology, Chow groups also admit
contravariant functoriality, but this time with respect to arbitrary morphisms.

Hence let f ∶X → Y be a morphim of smooth varieties, and we wish to defined pullback
f∗ ∶ Ai(Y ) → Ai(X) on Chow groups. By linearity, it once again suffices to define this map
on fundamental classes. If a subvariety Z ⊆ Y satisfies codimX(f−1(Z)) = codimY (Z),
we simply define3 f∗[Z] ∶= [f−1(Z)]. If a subvariety does not satisfy this codimension
estimate, that definition will clearly not work if we wish pullback to be compatible with
the grading. However, a version of the Moving Lemma allows us to move any subvariety
inside its rational equivalence class for f−1 to have correct codimension.

One salient feature of pullback, in contrast to pushforward, is that it is compatible with
intersection products. That is to say, f∗ ∶ A∗(Y ) → A∗(X) is a ring homomorphism.

Remark 1.5.1. The pullback functoriality and the intersection multiplication are not
only compatible, but also both defined similarly, by an application of the Moving Lemma.
In fact, the intersection product may be recovered from the pullbacks functoriality of Chow
groups. Indeed, the subvariety-level map (Z,W ) ↦ Z ×Z, which is easily seen to respect
rational equivalence, thus defines a map of Chow groups A∗(X)⊗ZA

∗(X) → A∗(X ×X).
Composing this map with the pullback ∆∗ ∶ A∗(X×X) → A∗(X), induced by the diagonal
embedding ∆ ∶X →X ×X, recovers the intersection product on the Chow ring.

The two functorialities of Chow groups are compatible through the projection formula,
which says that for any proper morphism f ∶X → Y of smooth varieties, the equality

f∗(α.f∗β) = f∗(α).β

holds inside the Chow ring A∗(Y ) for any cycles α ∈ A∗(X) and β ∈ A∗(Y ).

1.6. Chow ring of an affinely stratified variety. For a general variety, the Chow ring
is notoriously hard to compute. Most special cases in which we can determine it, and in
particular all of the ones relevant for us in these notes, follow from a simple observation
we encode in the following Proposition.

A stratification of a variety X consists of a disjoint union decomposition X = ∐iUi for
a family of locally closed subvarieties Ui ⊆ X, such that for every i the closure Ui is the
union of some of the subvarieties Uj . An affine stratification is a stratification in which
each stratum Ui is isomorphic to an affine space Ani for some ni ≥ 0.

Proposition 1.6.1. Let X be a variety with an affine stratification. Then the fundamental
classes of the closed strata [U i] generate the Chow groups A∗(X).

Proof. Let Z ⊆ X be a subvariety, contained in some U i. Assume that Z ≠ Uj and that
Ui ∩ Z ≠ ∅. Then we claim that there exists a rationally equivalent subvariety Z ′ ⊆ X,
which is fully contained in the bounadry ∂Ui. Iterating this process, we finally find that
either Z ≃rat [Uj] for some j, or else the dimensions reduces to 0.

To prove the claim, we choose an isomorphism An ≅ Ui which maps the origin to some
point in Ui −Z. Let the subvariety α ⊆ Ui ×P1 be the closure of

{(x, t) ∈ Ui × (A1
− {0}) ∶ tx ∈ Z}.

This α exhibits rational equivalence between α1 = Z and the fiber α0, obtained in the
limit as t→ 0, which is centairly contatined purely inside ∂Ui. �

Remark 1.6.2. The technique we employed in the above proof is a version of projection
away from the origin in An onto the “hyperplane at infinity”. It is literally that when
Ui ≅ Pn in which case ∂Ui ≅ Pn−1 is the literal hyperplane at infinity. In the context of
the above proposition, it may be that Ui is a more involved compactification of Ui ≅ An,
but as we have noted, the technique still applies.

3When f is a flat morphism, this formula works for an arbitrary subvariety Z ⊆ Y .
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Figure 3. The “projection from a point to the hyperplane at infinity”
argument, used in the proof of Proposition 1.6.1.

1.7. The Chow ring of projective space. A key application of the above Proposition
is to computing the Chow ring of projective space Pr. To obtain an affine stratification
on Pr, we conider the decompoition of it into the affine space Ar, and the hyperplane at
infinity H ≅ Pr−1. Iterating, we find an affine stratification

Pr
≅ Ar

∪Pr−1
≅ ⋯ ≅ Ar

∪Ar−1
∪⋯ ∪A1

∪ pt.

We have already identified the corresponding closed strata along the way, as the point,
the line, the plane, and so on up to a hyperplane inside Pr. Note that a point in Pr

is the intersection of r generic hyperplanes, a line is the intersection of r − 1 generic
hyperplanes, etc. Thus in terms of the hyperplane class ζ = [H] ∈ A1(Pr), the fun-
damental classes of the closed strata are ζr, ζr−1, . . . , ζ2, ζ respectively. By the Proposi-
tion 1.6.1 of the preceeding section, these classes generate their respective Chow groups
Ar(Pr),Ar−1(Pr), . . . ,A2(Pr),A1(Pr), while we already know from Example 1.4.1 that
A0(Pr) is generated by the fundamental class ζ0 = [Pr], which is the multiplicative unit in
the Chow ring. Consequently we have just determined the Chow ring of projective space
to be

A∗
(Pr

) = Z[ζ]/(ζr+1).

Exercise 1.7.1. Find an appropriate affine stratification on the product of projective
spaces Pr ×Ps (or if you wish more factors). Use it to compute the Chow ring to be

A∗
(Pr

×Ps
) = Z[α,β]/(αr+1, βs+1),

where the α = pr∗1(ζ) and β = pr∗2(ξ) are the pullbacks of the hyperplane classes ζ ∈ A1(Pr)

and ξ ∈ A1(Ps). You should really think about doing this (easy) exercise - we will be using
it indiscriminantly in the following Sections!

Remark 1.7.2. Familiarity with cohomology from algebraic topology and the rseult of
the preceding Exercie may lead you astray to unfounded spectulation that a Künneth-like
formula might hold for Chow rings. That is false, however, and the ring A∗(X × Y ) is
often much more complicated than A∗(X) ⊗Z A

∗(Y ).

1.8. Degree of a projective variety. It follows from the determination of the Chow
ring of projective space in the previous Subsection that any subvariety X ⊆ Pn, or any
algebraic cycle more generally, is classified uniquely up to rational equivalence (and thus
completely for the purposes of intersection theory!) by two pieces of data: its dimension
n, and its degree d. In that case, we have [X] ≃ dζr−n.

Noting that ζr corresponds to the class of a point, we have deg(ζr) = 1, and so we
may extract the degree of an n-dimensional subvariety X ⊂ Pr through the degree map
deg ∶ A0(Pr) → Z of Example 1.4.1 as

d = deg(ζn[X]).

6



In words: the degree of an n-dimensional subvariety X ⊆ Pr is the number of points of
intersection between X and n general hyperplanes in Pr, or equivalently, between X and
a general (r − n)-plane in Pr.

Example 1.8.1. To clarify how this works, it is instructive to consider the case of a
hyperfuface X = V (F ) ⊆ Pr, cut out by a (non-zero) degree d homogenous polynomial
F ∈ Γ(Pr;O(d)) = k[t0, . . . , tr]d. This gives rise to a class [X] ∈ A1(Pr) of degree d, so
[X] = dζ. That means that there exists a rational equivalence X ≃rat dH for a general
hyperplane H ⊆ Pr, counted with multiplicity d. Let us fix such an H and select the
homogeneous coordinates on Pr so that H = V (x0), i.e. that this is the hyperplane at
infinity. To obtain the desired rational equivalence explicitly, consider the rational the
rational function f ∶= F /xd0 on Pr. It vanished precisely along X, and with the same
multiplicity as F , while it has an order d pole along H. Thus viewing it as an algebraic
map f ∶ Pr ↦ P1, it satisfies f∗({0}) = X and f∗({∞}) = dH. The family of fibers
αt ∶= f

∗({t}) ⊆ Pn for t ∈ P1 is the family4 of cycles which exhibits the rational equivalence.

Example 1.8.2. Another even more down-to-earth sanity check: consider an algebraic
plane curve C ⊆ Pn. In fact, consider a super classical one: the (projective closure of the
affine) algebraic curve of solutions to the equation y = F (x) for some degree d polynomial
F . To determine the degree of C, we should count its points of intersection with a general
line. If F has no iterated zeros, then we can take this line L to be the projective closure of
the line y = 0, since the intersection of C and L will then be transverse. In that case, the
degree of the curve C will be precisely the number of zeros of the polynomial C, which is
equal to d by the assumption of algebraic closedness of our underlying field.

In fact, we see that if F had iterated zeros, then the degree would still be the same,
recovering the fact that a degree d polynomial has precisely d roots, when counted with
multiplicity. Great, our high school math teacher wasn’t lying to us!

Exercise 1.8.3. Continuing with the setup of Exercise 1.7.1, let H ⊆ Pr × Ps be a hy-
persuface. We thus have [H] = dα + eβ, and (d, e) is called the bidegree of H. Give an
interpretation of the bidegree in the r = s = 1 case in terms of the standard isomorphism
of P1 ×P1 with a smooth quadric surface Q ⊆ P3, and the two rulings5 on Q.

1.9. Bezout’s Theorem. As an application of computing the Chow ring of Pr, we can
obtain one of the most classical results in all of Algebraic Geometry.

Proposition 1.9.1 (Bezout’s Theorem). Let C,C ′ ⊆ P2 be a pair of algebraic curves of
degrees d, d′, which intersect transversely. Then the intersection C ∩ C ′ consists of dd′
points. If we count the points of intersection with multiplicity, then the same remains true
if C and C ′ do not intersect transversely.

Proof. We have [C] = dζ and [C ′] = d′ζ, and so [C].[C ′] = dd′ζ2, with ζ2 being the class
of a point in P2. �

With our setup, generalizing Bezout’s Theorem to higher dimensions is easy, with vir-
tually the same proof: if X1, . . . ,Xr ⊆ Pr are hypersufaces of degrees d1, . . . , dr, then
deg([X1] . . . [Xr]) = d1⋯dr, which equals ∣X1 ∩ ⋯ ∩ Xr ∣ if they intersect jointly trans-
versely. Or another version: let X,Y ⊆ Pr be transversely-intersecting subvarieties of
dimensions n,m and degrees d, e, with n +m = r. Then ∣X ∩ Y ∣ = de. Etc.

4Formally, in terms of the definition of rational equivalence that we have given, this family would be
encoded by the graph of f , viewed as a subvariety α ∶= Γf ⊆ Pn

×P1.
5With the algebraic closure hypothesis we are working under, all smooth quadric surfaces are isomorphic.

But to be able to visualize the two ruling, try thinking about the one-sheeted hyperboloid.
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1.10. Enumerative problems and transversality issues. The versions of Bezout’s
Theorem we found in the previous Subsection are the first of many enumerative formulas
that we shall extracted from intersection theory. In some sense, they are stereotipical of
the endeavor: they are obtained by

● recognizing the cycles of interest inside the ambient variety,
● and then performing algebraic manipulation in the Chow ring of the ambient va-

riety to obtain the degree of the relevant intersection product.

However, the number obtained this way will only be the “correct answer” to the problem
when the cycles in question intersect transversely.

In good cases, “generic” choices of objects in question will lead to the relevant intersec-
tions being transverse. This technically needs to be verified on a case-by-case basis, tends
to require some understanding of the algebraic geometry of objects in question, and while
not usually hard can be tedious and technical. For this reason, we will almost exclusively
omit this verification, but will of course point out when we encounter the odd example
where that fails.

For those whose rigor-organ is incapable of sustaining such prolonged abuse, we offer a
remedy. The following Theorem, whose proof we of course will not give (but is not exremely
hard, and is easy to look up e.g. in Eisenbud-Harris), may be applied to affirmitively answer
the “generic transversality” issue in the vast majority of question that we shall encounter.
If that is the kind of thing that makes you happy, have fun figuring out which G applies
in each case!

Theorem 1.10.1 (Kleiman). Let G be a linear algebraic group acting transitively on a
variety X. For any two subvarieties Z,W ⊆ X and a generic g ∈ G, we have gZ ≃rat Z,
and the subvarieties gZ and W intersect transversely.

2. First applications

After we have spent the previous Section setting up Intersection Theory, we spend this
chapter eluminating the theory with some applications, and putting it to use to solve some
enumerative problems.

2.1. The Chow ring of a blowup of a surface at a point. Let S be an algebraic
surface, and p ∈ S a point. A standard construction in algebraic geometry is the blowup
of S along p, and we show in this section how the Chow rings A∗(S̃) and A∗(S) are
related. That will turn out to be a nice exercise in getting to grips with the pullback and
pushforward functoriality of the Chow groups. Just to have a leaving question though
(and don’t worry if you don’t know what all the terms mean - we will explain it all):

Question 1. What is the self-intersection number of the exceptional divisor inside the
blowup of a proper algebraic surface at a point?

Informally, the blowup amounts to leaving the rest of S unchanged, but inserting a copy
of the projective line P1 in place of the point p, so that each direction along which the
point p can be approached inside S determines a different point in S̃. Let’s quickly brush
up about how blowups work in general though:

Review 2.1.1 (Crash course in blowups). The blowup of an algebraic variety X along a

subvariety Y ⊆ X is an algebraic variety X̃ together with a map π ∶ X̃ → X for which the
pre-image π−1(Y ) is as an effective divisor, which is to say, a codimension 1 subvariety.
The blowup is universal for this property of turning Y into a divisor, which can serve as a
characterization (though more explicit constructions exist). The subvariety E = π−1(Y ) ⊆

X̃ is called the exceptional divisor, while away from it, the map π gives an isomorphism
X −E ≅X − Y. If the variety X is proper or projective, then so is its blowup X̃. ∎
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In the present case in question, we let X = S be a proper algebraic surface, and Y = {p}

be a point on it. The blowup S̃ is also a proper algebraic surface, and the exceptional
divisor E ⊆ S̃ is a curve on it, whose fundamental class we denote e ∶= [E] ∈ A1(S̃). Note

that the map π ∶ S̃ → S is proper generically one-to-one, as such has degree 1. It induces
by pullback a ring homomorphism π∗ ∶ A∗(S) → A∗(S̃), while puhforard along it induce

an additive homomorphim π∗ ∶ A∗(S̃) → A∗(S). Let us work degree-wise in the Chow ring

to determine each Chow group of A∗(S̃) in terms of those of A∗(S).
For any class α ∈ A2(S) = A0(S), we may by the Moving Lemma find a representative

cycle Z ∈ Z0(S) which is disjoint from p. Thus we find that π∗π∗α = π∗[π−1(Z)] = [Z] = α.

Since we already know that A2(S) ≅ Z and A2(S̃) ≅ Z, we conclude that the maps π∗ and

π∗ induce inverse isomorphisms A2(S) ≅ A2(S̃).
Next consider a class α ∈ A1(S). Once again we may write α = [Z] for a cycle rep-

resentative Z ∈ Z1(S) disjoint from p, and get π∗π∗α = α. Alas this time, the map

π∗ ∶ A1(S̃) → A1(S) will have a kernel: recalling the definition of puhforward from Sub-
section 1.4, since π(E) = p is zero-dimensional, we find that π∗e = 0. Since the map π
is isomorphic away from E, it follows that this is also the only class in the kernel of π∗.
Hence we obtain a short exact sequence

0→ ⟨e⟩ → A1
(S̃)

π∗
Ð→ A1

(S) → 0

which further admits a splitting via the map π∗ ∶ A1(S) → A1(S̃). Hence A1(S̃) is
generated by classes e and π∗α for α ∈ A1(S), and it remain to determine what the

subgroup ⟨e⟩ ⊆ A1(S̃), generated by the exceptional class e, is like.
Given a cycle α ∈ A1(S), the projection formula shows that

π∗(e.π∗(α)) = π∗(e).α = 0,

since π∗(e) = 0 as seen above. But e.π∗(α) ∈ A2(S̃), and we saw above that π∗ ∶ A2(S̃) →
A2(S) is an isomorphism. It follows that

e.π∗(α) = 0

for all α ∈ A1(S).
It remain to determine the class e2, for which we use a trick: fix an arbitrary curve

C ⊆ S through the point p (such a curve turns out to exist on any surface), which is

smooth at the point p. Its preimage in the blowup is reducible into π−1(C) = E ∪ C̃, the

exceptional divisor and a curve C̃ ⊆ S (usually called the proper transform of C) which
meets E transversely at a single point (corresponding to the tangential direction of C at
the point p).

Thus we have
π∗[C] = e + [C̃]

in A1(C̃), and multuplying by the class e, we get

0 = e.π∗[C] = e2 + [E ∩ C̃] = e2 + [pt].

In particular, applying the degree map deg ∶ A2(S̃) → Z, we recover the well-known fact
that

deg(e2) = −1,

or in words:

Answer to Question 1. The self-intersection of the exception divisor is −1.

That may be interpreted as attesting that E is firmly lodged inside S̃, and offer much
resistence to being moved/deformed into any other curve on S̃.

From the fact that deg(e2) = −1, we may deduce that the element e ∈ A2(S̃) is not
torsion. Thus we may collect the conclusions of all of our work in this Subsection together
as follows:
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Figure 4. Blowup of a surface S at a point p ∈ S (this picture is fully
accurate for S = P2, but the blowup of any other smooth smooth surface
looks the same locally), together with a proper transform C̃ ⊆ S of a curve
C ⊆ S. through p

Proposition 2.1.2. The pullback map π∗ ∶ A∗(S) → A∗(S̃) exhibits the graded ring iso-
morphism

A∗
(S̃) = (A∗

(S) ⊕Ze)/(e2 + 1)

with the element e = [E] in degreee one.

2.2. Degree of the dual variety. Next we address the following question:

Question 2. Let C ⊂ P2 be a smooth cubic curve, and let p ∈ P2 be a general point. How
many lines passing through the point p are tangent to X?

Instead of working with a degree 3 curve inside P2, let us work in slightly greater
generality of degree d smooth hypersurface X ⊆ Pn. Since the above Question is about
lines inside P2, it is useful to recall the general aparatus for dealing with those things.

Review 2.2.1 (Dual projective space). The dual projective space Pn∗ has as its points
hyperplanes H ⊆ Pn. A choice of homogeneous coordinates on Pn induces an isomorphism
Pn∗ ≅ Pn in the following way: it allows us to write any point in projective space as
[x0 ∶ . . . ∶ xn] ∈ Pn, and therefore any hyperplane H ⊆ Pn is defined by a linear equation
a0x0 + ⋯ + anxn = 0 for some scalars a0, . . . , an ∈ k. Sending H ∈ Pn∗ to the point
[a0 ∶ . . . ∶ an] ∈ Pn defines the desired isomorphism. The passage from Pn to Pn∗ is called
projective duality, and as we see, it interchanges points with hypersurfaces, hence also lines
with (n − 1)-planes, and in general i-planes with (n − i)-planes. ∎

A smooth hypersurface X ⊆ Pn defines a corresponding dual hypersufrace X∗ ⊆ Pn∗,
defined to consist of all hyperplanes which are tangent to X. What we are looking for is
the degree of X∗. Indeed, we know from Subsection 1.8 that, if η ∈ A1(Pn∗) denotes the
hyperplane class, then the degree of the dual hypersursace X∗ is given by

deg(X∗
) = deg([X∗

].ηn−1).

In the n = 2 case, η is the line class inside P2∗, which by projective duality coincides
corresponds to a point in P2, and so then deg(C∗) will compute the number of points of
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intersection between C∗, the lines tangent to C, and η, lines passing through a general
fixed point p ∈ P2.

Now that we have our work cut out for ourselves, we face the issue of how to approach
the dual hypersurface. One way to do so it is to consider the Gauss map G ∶ X → Pn∗
given by6 p↦ TpX, the image of which is clearly precisely X∗.

Remark 2.2.2. Note that the smoothness of X is essential for the Gauss map to make
sense, as the tangent space at a non-smooth point would not be a hypersurface, and as
such an element of the dual projective space Pn∗. Indeed, one characterization for an
n-dimensional variety X to be smooth at a point p ∈X is that dimTpX = n.

A bit more work than we are willing to put in right now shows that the Gauss map G

is birational (i.e. generically one-to-one). Thus we get [X∗] = [G(X)] = G∗[X] from the
definition of pushforward. Then the projection formula shows that

deg(X∗
) = deg([X∗

].ηn−1)

= ∫
Pn∗

G∗([X]).ηn−1

= ∫
Pn∗

G∗([X].G∗(η)n−1)

= ∫
X
G∗(η)n−1

Thus it remains to determine the class G∗[η] = [G−1(H)] for a general hyperplane H ⊆ Pn∗.
To do that, we must get a more explicit grasp on the Gauss map. Fix a homogeneous

polynomial F ∈ Γ(Pn;O(d)) = k[x0, . . . , xn]d which cuts out the hypersurface X. Thus
X = V (F ), which allows us to write down the definiting equation of the tangent space at
a point p ∈X and so yield

G(p) = {[t0 ∶ . . . ∶ tn] ∈ Pn
∶ ∂F∂x0

(p)t0 +⋯ + ∂F
∂xd

(p)tn = 0} ∈ Pn∗.

Under the isomorphism Pn∗ ≅ Pn, determined by the choice of homogeneous coordinates,
the Gauss map G ∶X → Pn is thus given by p↦ [ ∂F∂x0

(p) ∶ . . . ∶ ∂F∂xd (p)].

If the hyperplane H ⊆ Pn∗ is cut out in terms of the isomorphism Pn∗ ≅ Pn by the
linear equation ax∗0 + ⋯ + a0x

∗
n = 0, then G−1(H) is the intersection in Pn of X with the

hypersurface V (G) ⊆ Pn cut out by the polynomial G = a0
∂F
∂x0

+⋯ + an
∂F
∂xn

. This defining

polynomial is homogeneous of degree d − 1 (derivatives drop the degree of a polynomial
down by one), and so deg(V (G)) = d − 1. It follows that

∫
X
G∗(η)n−1 = ∫

Pn
[X].[V (G)]

n−1
= d(d − 1)n−1.

By our preceeding effort in this Subsection, we know this to be the degreee of the dual
hypersurface X∗.

Answer to Question 2. There are 3(3 − 1)2−1 = 6 lines passing through a general point
in P2 tangent to a given smooth cubic curve.

Of course, computing the degree of the dual hypersurface bought us much more than
what we bargained for. For instance, we find the classical fact that the degree of the dual
curve C∗ ⊆ P2∗ to a smooth degree d plane curve C ⊆ P2 has degree d(d − 1).

Another enumerative problem that we are now in position to answer is:

Question 3. Let S ⊂ P3 be a smooth cubic surface and L ⊆ P3 a general line. How many
planes containing L are tangent to S?

6We are being purpusefully a little sloppy here. What we mean by TpX here is the projective tangent
space, sometimes denoted TpX, which is canonically a projective subspace of TpP

n
= Pn via the inclusion

X ⊆ Pn. Alas, we will continue to be sloppy with our notation and simply use TpX, and hope it is clear
from context what we mean by that.
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In this case, the degree of the dual is deg(S∗) = deg([S∗]η2). The class η correponds by
projective duality to all plane in P3 passing through a general point, and since two general
points determine a unique line, η2 is the class of all plane in P3 containing a general line.

Answer to Question 3. There are 3(3 − 1)3−1 = 12 planes in P3 containing a general
line and tangent to a given smooth cubic surface.

Etc. :)

2.3. Spaces of hypersurfaces. Before we continue on our adventure, let us take a breif
pause to think about how hypersurfaces in projective space work, since various enumerative
questions regarding them will occupy us for much of the rest of these notes.

A degree d hypersurface H ⊆ Pn may always be written as H = V (F ), i.e. as the
vanishing locus of some degree d polynomial F . Thus (non-zero) points of the space od
degree d polynomials in n + 1 variables Γ(Pn;O(d)) (which you might be more used to
denoting k[x0, . . . , xn]d) give rise to degree d hypersufaces. But of course, the vanishing
locus of F is invariant under scaling F , hence the actual space of degree d hypersufcaces
in Pn is the projectivization P(Γ(Pn;O(d))).

Determining the dimension of Γ(Pn;O(d)), i.e. the number of distinct degree d mono-

mials in n + 1 variables, is a basic combinatorics question, and yields the answer (
n+d
n

).
Therefore the space of degree d hypersufaces in Pn may be identified with the projective
space PN for N = (

n+d
n

) − 1.

Example 2.3.1. Let us consider how this works in low degrees:

● For d = 1, we have N = (
n+1
n

) − 1 = n, showing that hyperplanes in Pn are
parametrized by another copy of Pn. Indeed, this is the dual projective space
Pn∗ discussed in the previous Subsection.

● For d = 2 and n = 2, we find that the space of plane conics has dimension N =

(
2+2
2
) − 1 = 5. This identification is given explicity by sending

V (a0x
2
0 + a1x

2
1 + a2x

2
2 + a3x0x1 + a4x1x2 + a5x2x0) ↦ [a0 ∶ a1 ∶ a2 ∶ a3 ∶ a4 ∶ a5] ∈ P5.

● For d = 3 and n = 2, we get N = (
2+3
2
) − 1 = 9, identifying the space of plane cubics

with the projective space P9.
● For d = 2 and n = 3 we get N = (

3+2
3
) − 1 = 9, identifying the space of quadric

surfaces in P3 with P9 as well.

Determining these dimensions alone allows us to answer some very basic enumerative
problems.

Question 4. Let p1, . . . , p5 ∈ P2 be points in the plane in general position. How many
conics pass through all five?

The condition that a point [x0, x1, x2] ∈ P2 lies on a conic corresponding to the point
[a0 ∶ . . . ∶ a5] ∈ P5 amounts to asking that a0x

2
0+a1x

2
1+a2x

2
2+a3x0x1+a4x1x2+a5x2x0 = 0.

In particular, it is linear in the ai, and therefore cuts out a hypersurface in the space
of conics P5. A little work shows that if the points in P5 are in general position, the
hypersurfaces they will cut out in P5 will meet transversely. Thus:

Answer to Question 4. Five points in general position in the plane determine a unique
conic passing through all five.

Similarly, nine points in the plane determine a plane conic, nine points in 3-space
determine a quadric surface, etc.

Remark 2.3.2. For the algebraic geometers reading this, you might notice that we’ve
encountered a friend! Indeed, the map P2 → P5∗, sending a point in the plane to the
hypersurface of plane cubics passing through that point, is precisely the Veronese map
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ν ∶ P2 → P5 sending [x0 ∶ x1 ∶ x2] ↦ [x20 ∶ x
2
1 ∶ x

2
2 ∶ x0x1 ∶ x1x2 ∶ x2x3]. More generally, the

arbitrary Veronese embedding arises the same way: the map νd ∶ P
n → PN for N = (

n+d
n

)−1

may be described (via a fixed standard isomorphism PN∗ ≅ PN ) as sending a point p ∈ Pn

to the hypersurface of degree d hypersurfaces in Pn that pass through p.

2.4. Linear systems. An r-dimensional linear system of degree d hypersurfaces in Pn is
a family of subvarieties

{Ht = V (t0F0 +⋯ + trFr) ⊆ Pn
}t∈Pr

for some collection of (linearly independent) F0, . . . , Fr ∈ Γ(Pn;O(d)). Thus for every
value of t = [t0, . . . , tr] ∈ Pr, there is a degree d hypersuface Ht ⊆ Pn in the linear system,
and as we see, its dependence on the parameter t is linear.

Linear systems therefore provide some of the simplest examples of families of varieties.
As such, they have been studied extensively in the rich history of Algebraic Geometry,
and have traditional names for low dimensions:

● A linear system of dimesnion 1 is called a pencil.
● A linear system of dimension 2 is called a fan.

Figure 5. Pencils of lines in the plane, and an actual pencil for comparison.

Equivalently, an r-dimensional linear system is an r-plane inside the space of degree
d hypersurfaces PN for N = (

n+d
n

) − 1. This is the relevance to intersection theory: if

ζ ∈ A1(PN) denotes the hyperplane class, it follows that

● ζN−1 is the class of a pencil,
● ζN−2 is the class of a fan,
● ζr is the class of a general (N − r)-dimensional linear systems.

Thus if we are considering some condition on degree d hypersurfaces in Pn, which cor-
responds to an r-codimensional subvariety Z ⊆ PN , the degree of Z, being given by
deg(Z) = deg([Z].ζN−r), has the geometric interpretation of counting the number of ele-
ments in general r-dimensional linear system which satisfy the condition given by Z. That
is how local systems will usually enter into our discussion.

Remark 2.4.1. The archaic term “pencil” is incredibly thoroughly embedded in the
English-laguage literature on geometry (algebraic and otherwise). According to Wikipedia,
it seems to have been introduced into the English language at the strt of the 20th century
by the American mathematician G. B. Halsted, employed at no other than the Univeristy
of Texas at Austin! How appropriate then that we should discuss pencils here, in this UT
Summer Minicourse!7

7That said, Halsted was fired from UT Austin because of his staunch support of R. L. Moore, the
staunch racist, the stain of whose name the Physics-Mathematics-Astronomoy building at UT succeded to
shrug only a week ago! So perhaps it’s OK that history seems to have to some extent forgotten Halsted.
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2.5. Singular hypersurfaces.

Question 5. How many elements in a general pencil of degree d hypersurfaces in Pn are
singular?

This is easy to answer by direct inspection in some cases for n = 2:

● Since no line can be singular, the answer for d = 1 is zero.
● For d = 2, we may note that a general pencil of conics St = V (t0F0 + t1F1) ⊆ P2

consists precisely of all the conics passing through the four points of intersection
S0 ∩S∞ = V (F0) ∩ V (F1). Indeed, we saw above that a conic is uniquely specified
by five general point it passes through, therefore there there is a single remaining
parameter left determining the element of the pencil. Now determining the singular
conics through four point is simple: there are three possible configurations of pairs
of lines passing through the four point in general position. Thus a general pencil
of plane conics contains three singular conics.

Figure 6. A general pencil of plane conics.

For higher values of n and d, it is harder to approach in such an ad hoc way. Instead, we
consider the subvariety D ⊆ PN for N = (

n+d
n

) − 1 in the space of all degree d hypersurface
H ⊆ Pn spanned by all the H which are singular. It turns out (as is surprisingly often the
case) to be easier to study the incidence correspondence

Σ ∶= {(H,p) ∈ PN
×Pn

∶ p ∈Hsing}.

Under the projection map p ∶ Σ → Pn, its image is precisely p(Σ) = D. It can be shown
(this is essentially the famous Bertini’s Theorem) that the map p is generically one-to-one
onto its image (geometrically: a general singular hypersurface only has a single singular
point), from which it follows that

[D] = [p(Σ)] = p∗[Σ].

On the other hand as a subvariety Σ ⊆ PN ×Pn, the incidence correspondence consists of
all (V (F ), p) ∈ PN ×Pn which satisfy the equations F (p) = 0 and ∂F

∂x0
(p) = ⋯ = ∂F

∂xn
(p) = 0.

Thanks to our characteristic zero assumption, we have

F = 1
d (x0

∂F
∂x0

+⋯ + xn
∂F
∂xn

) ,
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for any degree d polynomial F , and so the first of the equations cutting out Σ is implied
by the rest. Hence Σ is cut out by the n + 1 equations ∂F

∂xi
(p) = 0, each of which is linear

with respect to the coefficients of F , and has degree (d − 1) with respect to the variables
xi. Each vanishing locus Hi = V ( ∂F∂xi

(p)) thus satisfies

[Hi] = α + (d − 1)β ∈ A∗
(PN

×Pn
)

for α and β pullbacks of the hyperplane classes from PN and Pn respectively. For a general
choice of F , the equations ∂F

∂xi
(p) = 0 will be independent, and hence the hyperplane

Hi ⊆ Pn ×PN transverse. Thus [Σ] = (α + (d − 1)β)n+1 and so

[D] = p∗[Σ] = p∗((α + (d − 1)β)n+1).

From the definition of pushforward, it follows that the pushforward will kill any class
containing a power βi for i < n, as that would cause a dimension mismatch between the
relevant subvariety and it image under the projection p ∶ PN ×Pn → PN . For i = n, we
instead get p∗(αβn) = ζ ∈ A1(PN) be the hyperplane class. Recalling also that βn+1 = 0,
we obtain through a binomial expansion

[D] = p∗((α + (d − 1)β)n+1) = (d − 1)n(
n + 1

n
)ζ = (n + 1)(d − 1)nζ

In particular, D ⊆ PN is a hypersurface of degree (n + 1)(d − 1)n. Indeed, it is tradi-
tionally called the discriminant hypersurface.

Answer to Question 5. A general pencil of degree d hypersurfaces in Pn contains preciely
(n + 1)(d − 1)n singular elements.

For instance, a pencil of plane conics contains (2+1)(3−1)2 = 12 singular conics. Linear
systems of plane cubics are a good toy case to play around with - let us study them in
detail in the next Subsection!

2.6. Linear systems of plane cubics. As we have noted in Subsection 2.3, the spaces of
plane cubics may be identified with P9. By classifying the possible types of plane cubics,
we obtain a stratification of this space as:

Figure 7. Stratification of plane cubics by type, indications how a cubic
of one type can degenerate into one of another (i.e. which strata are in the
closure of other ones), and dimensions of strata.

This raises a number of exciting enumerative question about local system of plane
cubics, which we will now bite into.
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Remark 2.6.1. The following questions (and in fact all such questions in these notes) all
ask “the right questions”, i.e. they are phrased in terms of linear systems of the precise
correct dimension for the answers to turn out to be finite. That is not due to any arcane
trickery: as we will see in the course of answering them, there is always only one such
dimension available, and we will determine it as a byproduct of the solution process.

Question 6. How many element of a general fan of plane cubics are reducible?

A cubic curve is reducible if and only if its defining polynomial factors as F = LQ into
a linear factor L and a quadratic factor Q. That is to say, the locus Φ ⊆ P9 of reducible
cubics is the image of the embedding φ ∶ P2 × P5 → P9 sending the pair of a line and
a conic into their union. In particular the subvariety Φ ⊆ P9 is 7-dimensional, and so
its degree will give precisely the answer to the desired question. The map φ is clearly
generically one-to-one, and so [Φ] = φ∗[P2 ×P5]. The degree of Φ may thus be obtained
by the projection formula as

deg(Φ) = ∫
P9
φ∗([P2

×P5
]).ζ7 = ∫

P9
φ∗(φ∗ζ7) = ∫

P2×P5
φ∗ζ7.

If we denote by α,β ∈ A1(P2 ×P5) the pullback of the hyperplane classes from P2 and P5

respectively, then we may observe that φ∗ζ = α + β. Since α3 = 0 and β6 = 0, and α2β5 is
the class of a point, we find the degree in question to be

deg(Φ) = ∫
P2×P5

φ∗ζ7 = ∫
P2×P5

(α + β)7 = (
7

2
) = 21.

Answer to Question 6. A general fan of plane cubics contains 21 reducible cubics.

Another type of singular plane cubic is what we will call a triangle: a reduced cubic
consisting of a union of three lines.

Question 7. How many triangles does a 3-dimensional linear system of plane cubics
contain?

As before, we note that the locus of triangles ∆ ⊆ P9 may be obtained as the image of
the map δ ∶ P2 × P2 × P2 → P9, sending a triple of lines to their union. It follows that
∆ is 6-dimensional, and so its degree will be obtained by intersecting it with a general
3-dimensional linear system, hence answering the question at hand.

But unlike the previous case, the map δ is not generically one-to-one. Indeed, permuting
the three lines amongst themselves has no effect on their union. That is to say, δ kills the
action of the symmetric group Σ3, which is transitive on each of its generic fiber, showing
that δ is has degree ∣Σ3∣ = 6. Thus it follows from the definition of proper pushforward
that δ∗[P2 ×P2 ×P2] = 6[δ(P2 ×P2 ×P2)] = 6[∆].

Now we may procede as before with the projection formula to get

deg(∆) = 1
6 ∫P9

δ∗([P2
×P2

×P2
]).ζ6 = 1

6 ∫P2×P2×P2
δ∗ζ6.

Denoting by α1, α2, α3 ∈ A1(P2 × P2 × P2) the hyperplane class of each component, we
have δ∗ζ = α1 + α2 + α3. Since α3

i = 0 and α2
1α

2
2α

2
3 i, we find as before

1
6 ∫P2×P2×P2

δ∗ζ6 = 1
6 ∫P2×P2×P2

(α1 + α2 + α3)
6
=

1

6
(

6

2,2,2
) =

6!

6 ⋅ 8
= 15.

Answer to Question 7. A general 3-dimensional linear system of plane cubics contains
15 triangles.

Yet another type of singular plane cubics are asterisks, which is to say, unions of three
lines, all of which pass through the same point.

Question 8. How many triangles does a general 4-dimensional linear system of plane
cubics contain?

16



The locus of asterisks ∗ ⊆ P9 is a subvariety of ∆, and in particular coreesponds to
a subvariety I ⊆ P2 × P2 × P2. If we are considering a triple of lines Li ⊆ P2 cut out
by linear equations ai0x0 + ai1x1 + ai2x2 = 0, then basic linear algebra tells us that the
condition that L1 ∩ L2 ∩ L3 is non-empty is equivalent to the equation detA = 0 for the
matrix A = (aij) ∈ k

3×3. From the form of the determinant detA, as a polynomial in in
the variables aij , we see that the locus of intersecting triples of lines I ⊆ P2 ×P2 ×P2 is
a hypersurface with fundamental class [I] = α1 + α2 + α3. As before, we have ∗ = δ(I)
with the map δ ∶ I → ∗ generically six-to-one, showing that the locus of asterisks ∗ ⊆ P9 is
5-dimensional. Therefore the answer to Question 8 will be given by its degree, which we
compute just like before to obtain

deg(∗) = 1
6 ∫P9

δ∗([I]).ζ5 = 1
6 ∫P2×P2×P2

[I].δ∗ζ5 = 1
6 ∫P2×P2×P2

(α1 + α2 + α3)
6
= 15.

Answer to Question 8. A general 4-dimensional linear system of plane cubics contains
exactly 15 asterisks.

Exercise 2.6.2. Perform a similar analysis of the loci þ, X, III ⊆ P9 of the remaining
types of singular cubics. That is, determine how-many-dimensional linear systems you
need to take to find a finite number of such singular cubics in a generic one, and then
compute those numbers.

Exercise 2.6.3. Do what we did in this Subsection for plane cubics for plane conics, and
for quadric surfaces in P3.

3. Lines in 3-space

3.1. Grassmanians in general. The Grassman variety or more commonly Grassmanian
G(k,n) parametrizes k-dimensinal linear subspaces of an n-dimensional vector space. That
is to say, k-planes through the origin inside the affine space An. An alternative indexing
convention that we will find particularly useful is to denote G(k,n) ∶= G(k + 1, n + 1),
which thus parametrizes (projective) k-planes inside the projective space Pn.

Determining the dimension of the Grassmanian is a matter of basic linear algebra: to
specify a k-dimensional linear subspace in an n-dimensional vector space requires, after
picking a basis, to specify an n× k-matrix, but we must discount for all the different ways
we could have selected a basis for the k-dimensional subspace. In total, there are thus
nk − k = (n − k)k parameters. That is to say, dim(G(k,n)) = (n − k)(k + 1).

Remark 3.1.1. The classical way of verifying that Grassmanians are objects of algebraic
geometry is by exhibiting them as projective varieties. This may be achieved through the
Plücker embedding G(k,n) → PN for N = (

n
k
)−1, sending a k-dimensional linear subspace

V ⊆ An to the 1-dimensional linear subspace ΛkV ⊆ ΛkAn ≅ AN+1. The image of the
Plücker emebedding may be seen to be cut out by certain determinantial equations, called
the Plücker relations, which thus confirms the algebraic nature of the Grassmanian. A
modern approach is to instead focus on the fact that Grassmanians parametrize linear
subspaces, and make that as a definition in terms of a universal property, e.g. folloing the
so-called functor of points approach.

For our purposes, it suffices to know that Grassmanians are proper (quasi-)projective
varieties, and as such a good ambient space for Intersection Theory.

3.2. Schubert cycles in the Grassmanian of lines in P3. From now on we specialize
to considering the Grassmanian G(1,3), whose points are lines L ⊆ P3. As such, it will
help us answer a rich variety of enumerative questions involving lines in 3-space. We know
from the dimension counting in the previous Subsection that G(1,3) is a (3−1)(1+1) = 4-
dimensional. Let us determine its Chow ring!

We approach this the same way as we computed the Chow ring of projective space:
by finding an affine stratification. Fix a complete flat, which is to say a nested sequence
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p ∈ Λ ⊆H ⊆ P3 of a point p, a line Λ passing through that point, and a plane H containing
that line. Using it, we define the following subvatrieties of G(1,3):

Σ0 ∶= {L ⊆ P3
} = G(1,3)

Σ1 ∶= {L ⊆ P3
∶ L ∩Λ ≠ ∅}

Σ2 ∶= {L ⊆ P3
∶ p ∈ L}

Σ1,1 ∶= {L ⊆ P3
∶ L ⊆H}

Σ2,1 ∶= {L ⊆ P3
∶ p ∈ L ⊆H}

Σ2,2 ∶= {L ⊆ P3
∶ L = Λ} = {Λ}

called the Schubert cycles. Counting degrees of freedom of the lines they contain, we find
that they have dimensions 4,3,2,2,1,0 respectively.

Figure 8. Determining that an element L ∈ Σ1 has 3 degrees of freedom,
while L ∈ Σ1,1 has 2 degrees of freedom.

Thus, while we may complain about the unintuitive indexing convention for Schubert
cycles (which only truly shines for higher-dimensional Grassmanians), we should appreci-
ate the convenience of having

codimG(1,3)Σi,j = i + j.

To get a feeling for them, it might be helpful to draw out the Schubert cycles:
We note that the Schubert cycles are related by inclusions as

Σ1,1

{Λ} = Σ2,2 Σ2,1 Σ1 Σ0 = G(1,3),

Σ2

and leave the verification that they form an affine stratification to the reader. We do so
since proving that, while essential for allowing us to apply Proposition 1.6.1 and determine
generators for the Chow groups, will play no further role in our discussion.

Exercise 3.2.1. Verify that the Schubert cycles define an affine stratification on G(1,3).

3.3. The Chow ring of G(1,3). The fundamental classes of Schuber cycles are denoted

σi,j ∶= [Σi,j] ∈ A
i+j

(G(1,3))

and called Schubert classes. By Proposition 1.6.1, each Chow group Ak(G(1,3)) is gen-
erated by the Schubert classes σi,j for i+ j = k. For k = 0 and k = 4, we find σ0 and σ2,2 to
just be the fundamental class of the whole Grassmanian and the point class respectively.
The “interesting” Schubert classes are σ1,1, σ2 ∈ A

2(G(1,3)) and σ2,1 ∈ A
3(G(1,3)).
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Figure 9. Stratification of plane cubics by type, indications how a cubic
of one type can degenerate into one of another (i.e. which strata are in the
closure of other ones), and dimensions of strata.

Now that we know the generators of the Chow groups, we must determine the multipli-
cation rules between them. Some of that is easy: the square σ22,1 vanishes for dimension

reasons (it would live in A6(G(1,3)) = 0), the product of anything with the point class
σ2,2 is again σ2,2, and finally σ0 is the multiplicative unit in the Chow ring A∗(G(1,3)).
The more interesting products, we may determine by rephrasing them as basic geometry
problems:

● The product σ1,1σ1 is the class of the subvariety in G(1,3) consisting of lines
L ⊆ P3 intersecting a general line Λ ⊆ P3 and lying inside a general plane H ⊆ P3.
Since Λ and H are generic, their intersection is a point p ∈ Λ∩H, and the condition
is equivalent to asking for lines L ⊆ P3 passing through p and lying on H. That is
preicisely the Schubert cycle Σ2,1, and so

σ1,1σ1 = σ2,1.

● The product σ2σ1 is the class of lines in P3 that pass through a general point
p ∈ P3 and intersect a general line Λ ⊆ P3. The poin p and line Λ determine a
unique plane H ⊆ P3 on which they both lie, and so the condition in question is
now equivalent to the Schubert cycle Σ2,1. This shows that

σ2σ1 = σ2,1.

● The product σ1,1σ2 corresponds to lines in P3 which lie on a general plane H ⊆ P3

and pass through a general point p ∈ P3. Alas, a general point in 3-space will not
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lie on a general surface. Thus no lines satisfy this condition, and

σ1,1σ2 = 0.

● The product σ21,1 is the class of lines in P3 which lie inside a general pair of planes

H,H ′ ⊆ P3. Since H ∩H ′ = L is a single line, we find that this is just the Schubert
cycle Σ2,2, from which we deduce

σ21,1 = σ2,2.

● Similarly, the product σ22 corrsponds to lines containing a general pair of points
p, p′ ∈ P3. But a pair of points determine a unique line, so we once more get Σ2,2

and therefore
σ22 = σ2,2.

● Finally the product σ1σ2,1 is the class of lines in P2 which intersect a general line
L ⊆ P3, are contained in a general plane H ⊆ P3, and pass through a general point
p ∈ H. The intersection L ∩H is another point p′ ∈ H, and so the condition is
equivalent to demanding that a line passes through the points p and p′. But once
again, a pair of lines determines a unique line on which they both lie, so only a
single line will satisfy this condition. Hence the cycle in question is (rationally
equivalent to) Σ2,2 and the product in the Chow ring is

σ1σ2,1 = σ2,2.

The one remaining product that we have not yet determined is σ21, and that is because
it is a touch more difficult. Playing the same game as above, σ21 ∈ A

2(G(1,3)) is the class
of lines in P3 which intersect two general lines L,L′ ∈ P3. Unlike the geometry problems
encountered so far in this Subsection, this is less obvious. In fact, by noting that σ41 will
be in A4(G(1,3)), and as such a multiple of the point class σ2,2, we can turn this into an
enumerative problem:

Question 9. How many lines in P3 meet four general lines?

To answer this, we observe that, since σ21 is an element of the Chow group A2(G(1,3)),
which we know to be generated by the Schubert classes σ1,1 and σ2, we have σ21 = aσ1,1+bσ2
for the as-of-yet-undetermined coefficients a, b ∈ Z. We determine these coefficients by
using the multiplication rules we derived so far: since σ21,1 = σ2,2 is the point class while
σ2σ1,1 = 0, we get

bσ2,2 = σ
2
1σ1,1.

The right-hand side corresponds to a more tractible geometric problem: the lines in P2

which intersect two general lines L,L′ ⊆ P3 and also lie on a general plane H ⊆ P3. Since
the intersections L ∩H and L ∩H ′ determine two points through which any such curve
must pass, we find the cycle in question to be Σ2,2. That is to say, σ21σ1,1 = σ2,2, which
shows that b = 1. Playing a similar game, we find that

aσ2,2 = σ
2
1σ2,

which corresponds to lines in P3 meeting two general lines L,L′ ∈ P3 and passing through
a point p ∈ P3. The point p and the lines L resp. L′ determine planes H,H ′ ⊆ P3,
whose intersection is the only line satisfying the requirement. That once again means that
σ21σ2 = σ2,2 and hence a = 1. Combining these computations, we find the last remaining
product of Schubert classes to be

σ21 = σ1,1 + σ2.

Consequently we may answer Question 9 by computing

deg(σ41) = deg(σ21,1 + σ
2
2) = deg(2σ2,2) = 2.

Answer to Question 9. There are precisely two lines in P3 meeting four general lines.
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With this, the Chow ring A∗(G(1,3)) is fully determined. Now that we have it, let us
use it to do some more enumerative computations!

3.4. Lines meeting curves. The leading question for this Subsection is

Question 10. How many lines in P3 meet four general twisted cubics?

Once again, we work slightly more generally than necessary, to prove a slightly cooler
result. Let C ⊆ P3 be a curve of degeee d (twisted cubics would correspond to d = 3) and
consider the subvariety

ΓC ∶= {L ⊆ P3
∶ L ∩C ≠ ∅} ⊆ G(1,3)

of the Grassmanian, consisting of all lines which meet the curve C. To determine the
dimension of ΓC , we note that there are 3 degree of freedom for such lines: one for the
point at which they meet C, and two for degrees of freedom for a line passing through
a fixed point in P3 (as that is just that the Schubert cycle Σ2). The correspondig cycle
γC ∶= [ΓC] is thus an element of A1(G(1,3)), and as such of the form γC = aσ1 for some
coefficient a ∈ Z that we must now determine.

Since σ1σ2,1 = σ2, we get a = deg(γCσ2,1). This is asking for the number of lines inside
a general plane H ⊆ P3, passing through a fixed point p ∈ H, and intersecting the curve
C. Thus all such lines must meet the intersection C ∩H, which by Bezout’s theorem (and
the plane H being generic, and hence intersecting C transversely) consists of precisely d
distinct points p1, . . . , pd. The lines in question are now precisely the n lines determined
by p and each one of the points p1, . . . , pd respectively. Hence a = d and so γC = dσ1.

For any four general curves C1, . . . ,C4 ⊆ P3 of degrees d1, . . . , d4, the class γC1⋯γC4

belongs to A4(G(1,3)), showing that the number deg(γC1⋯γC4) of lines which meet all
four of the curves, is finite and equal to

deg(γC1⋯γC4) = deg(d1⋯d4σ
4
1) = 2d1⋯d4.

In particular, by choosing d1 = ⋯ = d4 = 3, we find the answer to the leading question of
this Subsection.

Answer to Question 10. Precisely 2 ⋅ 34 = 164 linear in P3 meet four general twisted
cubics.

Of course, we may use the fact that γC = dσ1 for a degree d-curve C ⊆ P3 to solve
other enumerative problems as well. For instance, we find that the numer of lines meeting
a general curve C of degree d, a general curve C ′ of degree d′, and a general point, is
deg(γCγC′σ2) = dd

′.

3.5. Secant lines to cubic curves. Recall that a secant line to a curve C ⊆ P3 (also
called chord spanned by C) is a line which intersects it in at least two points.

Question 11. How many common secant lines do two general twisted cubics have?

To solve this problem, we consider the subvariety ΨC ⊆ G(1,3) of secant lines to a
cubic curve C ⊆ P3. Note in particular that any tangent curve, which is to say, a line
that intersects C at a point with degree ≥ 2, is counted as a secant here, albeit the space
of “genuine secants” is a dense open subset of ΨC , and so a general secant will not be a
tangent line.

There are two degrees of freedom available to a secant line to the cubic curve C: the
location of the two points of intersection. Thus dim(ΨC) = 2 and so its fundamental
class ψC = [ΨC] ∈ A

2(G(1,3)) may be written in the form ψC = aσ1,1 + bσ2. We find the
coefficients as a = deg(ψCσ1,1) and b = deg(ψCσ2).

Determining the first one is simple: σCσ1,1 is the class of all the lines lying on a general
plane H ⊆ P3, and which meet C in at least 3 points. that is equivalent to saying that they
must meet the locus H ∩C, which consists of d distinct points by Bezout’s Theorem, in at
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Figure 10. Degrees of freedom of a secant line to C.

least two points. Of course, any two points determine a unique line that passes through
them, thus there are precisely (

3
2
) = 3 such lines. That is to say, a = 3.

For the coefficient b, we need to be a little trickier. The class σCσ2 consists of all those
secants to C which also pass through a fixed general point p ∈ P3. To determine their
number, we choose a general plane H ⊆ P3 and consider projection from the point p to
H. That is the map C → H given by sending any point q ∈ C to the point of intersection
H ∩L beteen the plane H and the unique line L passing through the points p and q. The
image of this map will be a plane curve C ′ ⊆H ≅ P2 , and we see that the map C → C ′ is
generically 1 ∶ 1, and as such C ′ will be generically smooth amd have the same degree as
C. But at the ramification points of the projection map, the curve C ′ will have a double
point, and as such, a singularity. With the generic choice of H, this will be an ordinary
double point. Harkening back to our analysis of the space of plane cubics, we note that
the generic plane cubic with an ordinary double point is the nodal cubic. Hence C ′ is a
nodal cubic, and as it has only a single singular point, it follows that b = 1.

Figure 11. The projection from a point argument illustrated.

Remark 3.5.1. The preceding argument is the reason why we chose to restrict our at-
tention to cubic curves in this Subsection. For a general degree d-curve C ⊆ P3, we would
still have ψC = aσ1,1 + bσ2, and the same argument as above would show that a = (

d
2
). But

the argument to determine b relied on special knowledge of cubics we have. Nonetheless,
as you can find in the Eisenbud-Harris book, it can be made to work for a general degree d
curve as well. The projection from a point trick is still used, but determining the number
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of double points of the projected curve C ′ ⊆ P3 requires a bit more work. It turns out
that b = (

d−1
2
) − g where g is the genus of C. For a twisted cubic we have d = 3 and g = 0,

recovering d = 1 as above.

Thus we have ψC = 3σ1,1 + σ2 and so

deg(ψ2
C) = deg(9σ21,1 + σ

2
2) = 10.

Answer to Question 11. Two general twisted cubics have precisely 10 common secants.

3.6. Tangents to surfaces. Yet another enumerative problem we are now equipped to
tackle:

Question 12. How many lines in P3 are tangent to four general quadric surfaces?

Let S ⊆ P3 be a smooth algebraic surface of degree d. We wish to consider the subvariety
TS ⊆ G(1,3) of lines which are at some point tangent to S. Using once again the informal
degree-of-freedom-counting, we find that a tangent line L ⊆ TpS for p ∈ S has three degrees
of freedom: two for moving around the point p along the surface S, and one for rotating
the line around inside the fixed tangent space TpS. Thus dimTS = 3 and so its class
τS ∶= [TC] ∈ A

1(G(1,3)) is of the form τS = aσ1 for some coefficient a ∈ Z.
Said coefficient is given by a = deg(τSσ2,1), which is the answer to the following enumer-

ative question: for a general plane H ⊆ P3 and poin p ∈ H, how many lines L ⊆ H which
pass through the point p are tangent to S? Of course, that is equivalent to counting the
number of tangent lines in H ≅ P2 to the algebraic curve C ∶= S ∩H ⊆ H ≅ P2 through a
general point. The plane curve C ∩H of course has the same degree d as the surface S,
and so this is precisely the question addressed in Subsection 2.2. I.e. the sought coefficient
a is the degree of the dual curve C∗ ⊆ P2∗, which we know from Subsection 2.2 to be equal
to d(d − 1).

Figure 12. The two tangent lines to a quadric surface S that lie on a
general plane H and pass through a general point p ∈H.

Hence we have found that τS = d(d − 1)σ1. This allows us to solve several enumerative
question, for instance the computation

deg(τ4S) = d
4
(d − 1)4 deg(σ41) = 2d4(d − 1)4

solves by setting d = 2 the leading question of this Subsection:

Answer to Question 12. There are 2 ⋅24 ⋅(2−1)4 = 32 lines in P3 tangent to four general
quadric surfaces.

Of course, we can combine the Chow classe computations we have made in this Section.
For instance, since γC = dσ1, ψC′ = 3σ1,1 + σ2. and τS = eσ1 for a curve C ⊆ P3 of degree
d, a twisted cubic C ′ ⊆ P3, and a degree e surface S ⊆ P3, we get

deg(σCψC′τS) = dedeg((σ1,1 + σ2)(3σ1,1 + σ2)) = dedeg(3σ21,1 + σ
2
2) = 4de.
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That means for instance that there are precisely 8⋅5⋅2 = 80 lines in P3 which simultaneously
intersect a general quintic curve, are secant to a twisted cubic, and are tangent to a quadric
surface. Enjoy deriving more such conseqneces for yourself! :)

4. Chern classes and the 27 lines on a cubic

Now that we have seen how to do several fun computations with lines in 3-space, let us
spend this Section to perhaps the most famous one: the existence of 27 lines on a smooth
cubic surface. Thus without furter ado, the leading question for this whole Subsection:

Question 13. How many lines does a smooth cubic surface in P3 contain?

4.1. Game plan. Any cubic surface S ⊆ P3 is cut out by some cubic polynomial F ∈

Γ(P3;O(3)). A line L ⊆ P3 lies on X if any only if F ∣L = 0. In principle though, F ∣L is a
cubic polynomial on the line L ≅ P1 itself. That is, for every L ∈ G(1,3), we are interested
in the element F ∣L of the vector space Γ(L;O(3)). There is a name for a family of vector
spaces, parametrized by the points of a base space: a vector bundle.

Thus the lines on cubic surfaces problem leads us to consider the vector bundle E on
G(1,3), which we define somewhat informally be specifying its fiber over every point
L ∈ G(1,3) as EL ∶= Γ(L;O(3)). This is to say, the vector bundle of cubic forms on lines
in P3.

Any polynomial F ∈ Γ(P3;O(3)) defines a global section sF ∈ Γ(G(1,3);E ) fiber-wise
by sF (L) ∶= F ∣L ∈ Γ(L;O(3)) = EL, and if F is non-zero, then so is sF . A line L ⊆ P3 lies
on a cubic X = V (F ) if and only if the section sF vanishes at the point L ∈ G(1,3). That
is to say, what we wish to study is the vanishing locus V (sF ).

4.2. The top Chern class. Let E be a rank r vector bundle on a variety X. Suppose
that s ∈ Γ(X;E ) is a non-zero global section. Then we define the r-th Chern class of E to
be the class of the vanishing locus

cr(E ) ∶= [V (s)].

Since the vector bundle E has rank r, the locus V (s) is locally (for instance, working on
a small enough open U ⊆ X on which E ∣U ≅ O⊕r

U ) cut out by r equations. It thus has
codimension r, and so we have cr(E ) ∈ Ar(X).

In our case of interest, we have X = G(1,3), and E is the vector bundle of cubic forms

on lines. Since its fiber is EL = Γ(L;O(3)) ≅ Γ(P1;O(3)) is (
3+1
1
) = 4-dimensional (in terms

of the homogeneous coordinates x0, x1, its elements look like a0x
3
0+a1x

2
0x1+x2x0x

2
1+a4x

3
1),

it follows that the rank of E is r = 4. Thus we are looking for the Chern class

c4(E ) = [V (sF )] ∈ A
4
(G(1,3)).

Remark 4.2.1. We may read off from this that cubic surfaces are really the only ones
among algebraic surfaces in P3 that have a chance to generically contain finitely many
lines. That is because an analogous analysis as above would show that the locus of lines on
a generic degree d hypersurface in P3 would be the degree dim Γ(P1;O(d)) = (

d+1
1
) = d+1-

th Chern class of the appropriate vector bundle on G(1,3), and as such an element of
Ad+1(G(1,3)). But since the Grassmanian is 4-dimensional, this class must vanish for all
degrees d + 1 ≩ 4.

Thus the only possibilities for a surface with finitely many lines are degrees d = 1,2,3.
A plane clearly contains infinitely many lines, and a quadric surface turns out to as well
- it contains two pencils of lines, comprising the famous double ruling on the one-sheeted
hyperboloid. Thus only cubic surfaces are left as an option.

So far we have done nothing but repackaged our ignorance: we slapped a fancy name
onto our object of study. Before we can reap the benefits of doing so, we need to drop
further down the deep end of the theory of Chern classes. But when we come back out on
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the other side, it will be what we will have learned in Wonderland that will allow us to do
the Futterwacken and the famous 27-lines computation alike.

4.3. Chern classes and their properties. Let us return to the general setting from the
start of the previous Subsection. That is, X is a general variety, and E a rank r vector
bundle on X.

As the name suggests, cr(E ) is not the only Chern class that a vector bundle possesses
- in fact, it is only the top-degree one! To define the one of next-lowest-degree, let us
suppose s, s′ ∈ Γ(X;E ) are two linearly independent global sections of E . We define the
(r − 1)-st Chern class of E as the class cr−1(E ) of the locus of linear dependence of s and
s′, i.e. the locus of those points x ∈ X for which the values s(x) and s′(x) are linearly
dependent in the fiber Ex. Said differently, it is the class of the vanishing locus

cr−1(E ) = [V (s ∧ s′)].

By a similar codimension consideration to the one we performed above, we see that cr−1(E )

lives in the Chow group Ar−1(X).
In general, for linearly independent sections s1, . . . , sr−i ∈ Γ(X;E ), we may compute the

i-th Chern class of E as

ci(E ) ∶= [V (s1 ∧⋯ ∧ sr−i)] ∈ Ai(X),

or equivalently, the locus of linear independence of the sections s1, . . . , sr−i. It is sometimes
convenient to arrange all the Chern classes together into the total Chern class

c(E ) ∶= 1 + c1(E ) +⋯ + cr(E ) ∈ A∗
(X)

(where the role of the 0-th Chern class is played by the multuplicative unit 1 = [X], i.e.
the fundamental class of the whole variety).

Remark 4.3.1. This approach to Chern classes only works for vector bundles with suf-
ficiently many global sections. Unlike in differential geometry or algebraic topology, that
is a steep restriction in the realm of algebraic geometry (for instance (the Serre twisting
sheaves O(n) have no non-zero global sections for any n < 0).

The main properties of Chern classes may be summarized in the following Proposition:

Proposition 4.3.2. There exists a unique theory of Chern classes

c(E ) = 1 + c1(E ) +⋯ + cr(E ) ∈ A∗
(X)

for any degree r vector bundle E on a variety X, so that

(1) (Functoriality) For any map f ∶X → Y , there is a canonical isomorphism

f∗c(E ) = c(f∗E )

between the Chow ring pullback of the total Chern class of E on Y , and the total
Chern class of the vector bundle pullback f∗E on X.

(2) (Additivity) For any short exact sequence 0→ E ′ → E → E ′′ → 0 of vector bundles,
the total Chern classes satisfy

c(E ) = c(E ′
)c(E ′

).

(3) (Compatibility) If a vector bundle E is generated by global sections, then c(E )

agrees with its definition in the previous Subsection.

Remark 4.3.3. This is a continuation of Example 1.2.1. The first Chern class c1 lands
inside the Chow group A1(X) = Cl(X), i.e. the divisor class group. If we restrict c1 only
to line bundles (rank 1 vector bundles), and pass to isomorphism classes, then the first
Chern class defines the famous bijection c1 ∶ Pic(X) ≅ Cl(X) between the Picard group:
the group of line bundles up to isomorphisms, and the divisor class group.
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For our purposes, the relevant part of this remark is the observation that the formula
c1(L ⊗L ′) = c1(L ) + c1(L

′) holds in A1(X) for any pair of line bundles L ,L ′ on X.
When the two line bundles admit non-zero global sections, this is quite easy to see from
the explicit formula for the top Chern class that we have given above.

4.4. Chern classes of the tautological bundle on G(1,3). As an example of how
Chern classes work, and with the foresight that this will be useful to us in a little bit, we
work out in detail the computation of Chern classes of a particularly simple vector bundle.

The tautological bundle V on G(1,3) is defined fiber-wise as VL ∶= Γ(L;O(1)). That
is to say, its fiber over a point L ∈ G(1,3) is the vector space of linear forms on the line

L. Since dim Γ(L;O(1)) = dim Γ(P1;O(1)) = (
1+1
1
) = 2, this gives rise to a rank 2 vector

bundle on the Grassmanian G(1,3).

Remark 4.4.1. In terms of the alternative perspective on the Grassmanian G(1,3) =

G(2,4) as parametrizing 2-dimensional linear subspaces V ⊆ A4, the dual to the tautolog-
ical vector bundle V ∗ is given fiber-wise as having fiber at a point V ∈ G(2,4) equal to
V ∗
V = V . Equivalently, its total space can be identified with the incidence correspondence

{(V, p) ∈ G(2,4) ×A4
∶ p ∈ V }

viewed as a vector bundle over G(2,4) through the projection map (V, p) ↦ V . We hope
that somewhat clarifies our choice of the adjective “tautological” as the name.

Having rank 2, the tautological bundle possesses two Chern classes: c2(V ) ∈ A1(G(1,3))
and c1(V ) ∈ A2(G(1,3)). To compute them, let us choose two global sections. As with E
before, we exhibit them by restriction of two linear polynomials F,G ∈ Γ(P3;O(1)), that
is, we define sF , sG ∈ Γ(G(1,3);V ) fiber-wise as sF (L) = F ∣L and sG(L) = G∣L. If F and
G are linearly independent, the same will hold for sF and sG.

● Now the top Chern class is c2(V ) = [V (sF )] consists of those lines L ⊆ P3 which
are contained in the plane H ∶= V (F ) ⊆ P3. Recalling the computation of the
Chow ring of the Grassmanian from the previous Section, we can recognize that
as the Schubert class σ1,1. Thus

c2(V ) = σ1,1 ∈ A
2
(G(1,3)).

● The first Chern class is conversely c1(V ) = [V (sF ∧ sG)], the locus of those lines
L ⊆ P3 for which sF (L) and sG(L) are linearly dependent. That means that there
exist some non-zero coefficients t0, t1 for which 0 = t0F ∣L + t1G∣L = (t0F + t1G)∣L.
That is to say, there exists an element on the pencil of planes {Ht = V (t0F +t1G) ⊆

P3}t∈P1 which contains L.
Any plane Ht certainly passes through the line Λ ∶= V (F ) ∩ V (G), and since

lines planes satisfying this property are a 1-dimensional family, it follows that that
is precisely this pencil. That is to say, the family {Ht ⊆ P3}t∈P1 consists of all the
planes which contain the line Λ. Thus for the line L to be contained in one of the
planes Ht, it is necessary and sufficient that L and Λ intersect.

Therefore the locus V (sF ∩ sG) ⊆ P3 consists of all lines L ⊆ P3 which intersect
a general line Λ ⊆ P3. That is precisely the Schubert cycle Σ1, and so

c1(V ) = σ1 ∈ A
1
(G(1,3)).

In particular, the total Chern class of the tautological bundle on the Grassmanian is

c(V ) = 1 + σ1 + σ1,1 ∈ A
∗
(G(1,3)).

To relate this to our end-goal of computing the Chern class c4(E ), let us explain how
the vector bundles E and V are related. Since any cubic form is comprised of (a sum of)
triple products of linear forms, we have E = Sym3(V ).
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4.5. The Splitting Principle, in theory. One of the most powerful techniques for
performing Chern clas computations is the so-called Splitting Principle. Said somewhat
informally, it states that:

Splitting Principle. Any statement about the Chern classes ci(E ) that can be made for a
vector bundle E under the assumption (false as it may be!) that its splits as E = L1⊕⋯⊕Lr

into a sum of line bundles, will be true if re-expressed from the Chern classes c1(Lj) into
the Chern classes ci(E ) of E .

That sounds incredibly false, but the more in-depth reasn for why it holds is that for
any vector bundle E on a variety X, there exists some map f ∶ F →X for which

● the vector bundle pullback f∗E admits a filtration

f∗E = E0 ⊇ E1 ⊇ ⋯ ⊇ Er ⊇ 0

with each successive quotient Li ∶= Ei−1/Ei (the associated graded of the filtration,
as the jargon goes) being a line bundle on F .

● the Chow ring pullback f∗ ∶ A∗(X) → A∗(F ) is injective.

Note that from the perspective of the Chern classes, a filtration as above is just as good
as a splitting f∗E = L1 ⊕ ⋯ ⊕ Lr. That is to say, Chern classes are by their additivity
property blind to the difference between split and non-split short exact sequences8.

Thus we may manipulate the Chern classes ci(E ) as if E split into a sum of line bundles,
by actually looking at the classes f∗ci(E ) = ci(f

∗E ) inside A∗(F ), which are equal to
ci(L1 ⊕⋯⊕Lr), and then using the injectivity of f∗ to pull the obtained formulas back
to A∗(X).

Proof sketch. To construct f ∶ F → X, it suffices to construct a map p ∶ P → X such that
p∗ ∶ A∗(X) → A∗(P ) is injective, and the pullback bundle p∗E filts into a short exact
sequence

0→ E ′
→ p∗E →L → 0

for a line bundle L on P and a rank r − 1 vector bundle E ′. The desired f ∶ F → X is
then obtained by iteratively applying the same proceedure to the vector bundle E ′ on P ,
and so on, until the rank drops to zero.

We claim that the (fiber-wise) projectivization P ∶= PX(E ∨) of the dual bundle E ∨ of
E does the job. To see why that is, let us briefly recall how projectivizations of vector
bundles work9.

Informally, the points of the projectivization PX(E ) of a vector bundle E on X consist of
pairs (x,V ) of a point x ∈X and a 1-dimensional linear subspace V ⊆ Ex, and the projection
map p ∶ PX(E ) → X sends (x,V ) ↦ x. It follows that the pullback vector bundle p∗E
has fibers (p∗E )(x,V ) = Ex. On the other hand, PX(E ) also admits the tautological line
bundle O(−1), given fiber-wise by O(−1)(x,V ) = V . Through the inclusion, this defines a
vector subbundle O(−1) ⊆ p∗E is a line subbundle.

Applying this to the dual bundle E ∨, and since E has finite rank r, the rank 1 subbundle
O(−1) ⊆ p∗E ∨ corresponds to a rank (r − 1)-subbundle O(−1)∨ ⊆ p∗E . This is the desired
vector subbundle E ′ ∶= O(−1)∨ of p∗E on P = PX(E ∨). �

8Lest one think this is a shortcoming and not a perk, we should point out that this observation served
at the key motivation for Grothendieck to introduce the “Grothendieck group” K0 in his work on the
Riemann-Roch Theorem, beginning the road to algebraic K-theory, a huge and highly active area of
modern math. In fact, K-theory boasts the honor of having a spot among the keywords in the standard
math index classification used say by the arXiv. One of these days someone will explain to me why poor
old homotopy theory is in contrast denied this basic privilige.

9For the scheme theorists among us, of course the conciseness of defining it as PX(E ) ∶=

ProjX(SpecX(E ∨)) can not be beat. The universal property hinted at in the informal description we
give below is then a fun exercise to prove starting from the relative Proj approach.
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Remark 4.5.1. The space f ∶ F → X constructed above is sometimes called the flag
variety of E . Indeed, we may see from its iterative construction that it parametrizes
complete flags in E . This can be made rigorous from the functor of points perspective,
but informally, it amounts to saying that the points of F may be identified with tuples
(x;V1, . . . , Vr−1) of a point x ∈ X and a chain of proper inclusions of linear subspaces
Ex ⊇ Vr−1 ⊇ Vr−2 ⊇ ⋯V1 ⊇ 0, i.e. a complete flag on the vector space Ex.

4.6. The Splitting Principle, in action. As an example of how using the Splitting
Principle works in practice, let us determine how the Chern classes of a symmetric power
ci(Sym3(V )) may be expressed in terms of the Chern classes ci(V ) of a rank 2 vector
bundle V .

(Wait! That’s precisely the same situation as the one that we were describing at the
end of the previous Subsection. What a wild coincidence!)

Let us suppose (in all likelihood falsely, but by the Splitting Principle, we know does
not matter) that V = L ⊕L ′ and let us denote by α = c1(L ) and β = c1(L

′) the Chern
classes of the line bundle summands. The classes α and β are usually called the Chern
roots of V . From the additivity of the total Chern class, we obtain

c(V ) = c(L )c(L ′
) = (1 + α)(1 + β) = 1 + α + β + αβ.

Reading off each degree, we obtain the expressions10

c1(V ) = α + β, c2(V ) = αβ

for the Chern classes of V in terms of its Chern roots α and β.
On the other hand, by using basic linear algebra to determine how the third symmetric

power of the sum of two 1-dimensional vector spaces works, we find that

Sym3
(V ) = Sym3

(L ⊕L ′
) ≅ L ⊗3

⊕ (L ⊗2
⊗L ′) ⊕ (L ⊗L ′⊗2) ⊕L ′⊗3.

Passing to the total Chern class, and recalling that c1(L ⊗L ′) = c1(L ) + c1(L
′) holds

for any pair of line bundles, we get

c(Sym3
(V )) = (1 + 3α)(1 + 2α + β)(1 + α + 2β)(1 + 3β).

By focusing on each degree separately, we obtain formulas for the individual Chern classes.
It remains to massage the formulas until we can replace all the occurences of α and β inside
them by α + β and αβ, which we saw above are the Chern classes of V . In degree 1, that
is

c1(Sym3
(V )) = (3 + 2 + 1)α + (1 + 2 + 3)β

= 6(α + β)

= 6c1(V ),

in degree 2 we get the much messier

c2(Sym3
(V )) = (6 + 3 + 2)α2

+ (3 + 6 + 9 + 4 + 6 + 1)αβ + (2 + 3 + 6)β2

= 11α2
+ 29αβ + 11β2

= 11(α + β)2 + 18αβ,

= 11c1(V )
2
+ 18c2(V ),

10As the reader experienced with polynomials might recognize, we would be obtaining elementary
symmetric polynomials in r variables if we were assuming splitting into r factors, which is to say, if V had
rank r.
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in degree 3 things are not much better, but at least not much worse either

c3(Sym3
(V )) = 6α3

+ (12 + 18 + 3 + 6)α2β + (6 + 3 + 18 + 12)αβ2 + 6β3

= 6(α3
+ β3) + (18 + 21)(α2β + αβ2)

= 6(α + β)3 + 21(α + β)αβ

= 6c1(V )
3
+ 21c1(V )c2(V ),

and finally in degree 4 we find

c4(Sym3
(V )) = 3α(2α + β)(α + 2β)3α

= 3α(2α2
+ 5αβ + 2β2)3β

= 9αβ(2(α + β)2 + αβ)

= 9c2(V )(2c1(V )
2
+ c2(V )).

Hopefully the reader has found this fully worked-out computation highly illuminating,
because to be frank, it was not the most fun to type out.

4.7. The finishline. Now we have assembled all the moving pieces, and it remains just
to assemble them! In Subsection 4.2 we found that the class of lines which lie on a general
cubic surface is encoded as the Chern class c4(E ) of the vector bundle of cubic forms on
lines E over G(1,3). In Subection 4.4, we recognized that E = Sym3(V ) of the tautological
bundle V on G(1,3), whose Chern classes we also computed there in terms of Schubert
classes to be

c1(V ) = σ1, c2(V ) = σ1,1.

Finally in Subection 4.6, we used the Splitting Principle to find c4 of a symmetric power.
Putting all this togehter, and using the Schubert calculus rules for σ21,1 = σ2,2 and σ1,1σ2 = 0
that we learned in the last Section, we get

c4(E ) = 9σ1,1(2σ
2
1 + σ1,1) = 9σ1,1(3σ1,1 + 2σ2) = 27σ2,2.

Voila, we have obtained (most of) the famous Cayley-Salmon Theorem:

Answer to Question 13. There are precisely 27 lines on any smooth cubic surface.

To be clear, we have not done all the work we claim here: what we have shown was
only that a general cubic surface will contain 27 lines. It takes some additional work to
determine that the dense open subset inside the space of conic surfaces P8 for which this
will be achieved is coincides with the locus of smooth conic surfaces.

Exercise 4.7.1. 11 Determine general algebraic 3-folds in P4 of which degree contain
finitely many lines, and compute how many.

4.8. More bang for our buck. In order to answer the leading question of this section,
we only needed have computed c4(E ). But since we put in the work to determine all the
lower Chern classes as well, let us reap some fun conseqneces.

Question 14. Let L ⊆ P3 be a line and {St ⊆ P3}t∈P1 be a general pencil of cubic surfaces.
How many of the lines inside the surfaces St interect the line L?

To answer this, we interpret the third Chern class of the bundle of cubic forms on lines
E . We choose two general cubic polynomials F,G ∈ Γ(P3;O(3)), which give rise to global
sections sF , sG of E . Then c3(E ) is the locus of all those lines L ⊆ P3 for which there exist
some coefficients t0, t1 for which 0 = t0sF (L) + t1sG(L) = st0F+t1G(L), which is equivalent
to saying that L ⊆ V (t0F + t1G) = St. That is, c3(E ) is the given by the locus of lines in
P3 which are contained in some element of a general pencil of cubic surfaces.

11You are going to have a lot of work with this one - along the way, you might need to compute the
Chow ring of the Grassmanian G(1,4). Luckily, the Schubert calculus approach still works, albeit you
may need to think a bit harder to figure out precisely what the Schubert cycles should be.
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Figure 13. The illustration by Greg Egan of the 27 lines on the Clebsch
cubic, cut out by the equation (x0 + x1 + x2 + x3)

3 = x30 + x
3
1 + x

3
2 + x3 = 0.

Check out the AMS Blogs post by John Baez for more about it, including
a gorgeous animation of the Clebsch surface rotating.

It follows from this interpretation of the third Chern class of E that Question 14 may
be rephrased in terms of intersection theory as asking us to compute the product σ1c3(E ).
Thankss to our work from Subection 4.6, we can express the Chern class in question in
terms of Schubert cycles as

c3(E ) = 6σ31 + 21σ1σ1,1 = (12 + 21)σ1,2 = 33σ1,2,

and so we get as the answer to the enumerative problem

deg(σ1c3(E )) = 33.

Answer to Question 14. There are 33 lines contained in elements of a general pencil
of cubic surfaces intersecting a given line L ⊆ P3.

Another one:

Question 15. Let p ∈ P3 and H ⊆ P3 be a point and a line. How many lines contained
in elements of a general fan of cubic surfases {St ⊆ P3}t∈P2

(1) pass through the point p?
(2) lie on the plane H?

Just as above, wwe may interpret the second Chern class of E as the locus of lines
L ⊆ P3 which are contained in some element of a general fan of cubic surfaces. Then

c2(E ) = 11σ21 + 18σ1,1 = 29σ1,1 + 11σ2.

Recalling the rules σ21,1 = σ
2
2 = σ2,2, σ1,1σ2 = 0 of Schubert calculus, the answers to the two

enumerative questions are now computed as

deg(σ2c2(E)) = 11, deg(σ1,1c2(E)) = 29.

Answer to Question 15. Of the lines on the elements of a general fan of cubic surfaces,
11 of them pass through any fixed point p ∈ P3, and 29 of them lie on any given plane
H ⊆ P3.

Exercise 4.8.1. Give an interpretation of c1(E ) in terms of local systems of cubic surfaces,
and find the relevant finite number the way we did for c2 and c3 in this subsection.

Exercise 4.8.2. How many elements in a general pencil of quartic surfaces contain a line?
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5. Afterthoughts: the Adjunction Formula

This Section is an appendix of sorts, having previous little to do with intersection
theory. We will spend most of it discussing the Adjunction Formula, and will derive some
enumerative consequences from it, tying back to the previously discussed matrial. Though
we will try to keep up the minimal-prerequisite & thorough-explanation style of the rest of
the notes, this Section will inadvertently require more machinery. Thus we hope the reader
is familiar with Kähler differentials (the algebro-geometric theory of differential forms),
and some light homological algebra of quasi-coherent sheaves. But if these things are not
your mathematical friends yet, then don’t fret - firstly, they are much less scary than they
seem, and secondly, you will miss little or nothing by skipping this Section altogether.

5.1. The canonical divisor. The canonical divisor of a smooth variety X may be most
succinctly described as KX ∶= c1(Ω

1
X) ∈ A1(X), which is to say, the first Chern class of

the bundle12 of Kähler differentials Ω1
X .

If X is n-dimensional, then this is equivalent to c1(Ω
n
X), the first Chern class of the line

bundle Ωn
X ∶= ⋀

nΩ1
X of (algebraic) differential n-forms on X. That is to say, if ω ∈ Ωn(X)

is a generic non-zero differential volume form, then the canonical divisor may be viewed
as the class of the vanishing locus KX = [V (ω)].

Example 5.1.1. Let X = Pn be the projective space. Any differential 1-form ω on X (i.e.
local section of Ω1

X) may be written in terms of homogeneous coordinates as ω = ∑ fi dxi.
In principle, the functions fi might be taken to be any rational functions in the variables
x0, . . . , xn, but since ω has to be invariant under re-scaleing, and d(λx)i = λdxi, it follows
that fi must be homogeneous of degree −1. Thus sending ω ↦ (f0, . . . , fn) defines a map

of vector bundles Ω1
Pn → O(−1)⊕(n+1) on Pn, which turns out to be injective, and fit into

the so-called Euler short exact sequence

0→ Ω1
Pn → O(−1)⊕(n+1) → OPn → 0.

Applying the first Chern class to this sequence, we find that

−(n + 1)ζ = c1(O(−1)⊕(n+1)) = c1(Ω1
Pn) + c1(OPn) =KPn + 0.

Thus we have expressed the canonical class of projective space in terms of the hyperplane
class ζ = c1(O(1)) ∈ A1(Pn) to be KPn = −(n + 1)ζ. In particular for n = 3, we get
KP3 = −4ζ.

Example 5.1.2. When X is a proper smooth algebraic curve, its genus may be defined
as the dimension g ∶= dim Ω1(X). With that, an easy application of the Riemann-Roch
Theorem shows that deg(KX) = 2g − 2.

5.2. The adjunction formula. The adjunction formula is a classical and frequently
useful recipe for expressing the canonical class of an effective divisor (e.g. a hypersurface,
if the ambient variety is a projective space).

Let Y ⊆X be a subvariety, and let I ⊆ OX be the sheaf of ideals cutting out Y inside X.
This allows us to express the kernel of the canonical map Ω1

X ∣Y → Ω1
Y , given by restricting

a 1-form on X to Y , and find the short exact sequence

0→ I /I 2
→ Ω1

X ∣Y → Ω1
Y → 0

of quasi-coherent sheaves13 on Y .
Now let us specialize to the context where Y = D is an effective divisor. In that case,

the ideal sheaf I may be identified with the sheaf L (−D) associated to the divisor −D

12We restricted our attention only to smooth varieties here, so that the sheaf of Kähler differentials is
a vector bundle (an equivalent condition to smoothness of X). However, had we the full theory of Chern
classes of coherent sheaves at our disposal, this restriction would not be necessary.

13The quotient sheaf I /I 2 is here viewed as a quasi-coherent OY -module through the usual identifi-
cation OY = OX/I .
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- indeed, the way that the proceedure of associating sheaves to divisors works, L (−D)

is precisely the sheaf of all those functions on X which vanish at D. In particular, the
ideal sheaf I is in that case an invertible sheaf, i.e. a line bundle14 which allows for the
following manipulation

I /I 2
= I ⊗OX

OX/I

= I ⊗OX
OD

= L (−D) ⊗OX
OD

= L (−D)∣D.

In conclusion, the short exact sequence from before takes on the form

0→L (−D)∣D → Ω1
X ∣D → Ω1

D → 0.

We apply the first Chern class and get

KX ∣D = c1(Ω
1
X) = c1(L (−D)∣D) + c1(Ω

1
D) = −D2

+KD.

Using that KX ∣D =KX .D, we find the usual form of the adjunction formula

KD =KX .D +D2
= (KX +D).D.

5.3. Applications of the adjunction formula. The adjunction formula is extremely
versitile, as we hope the following examples adequately portray:

Example 5.3.1. Let X ⊆ Pn be a degree d hypersurface. The adjunction formula tells us
that

KX = (KPn + [X]).[X].

By the definition of degree, the fundamental class of X is expressable as [X] = dζ in terms
of the hyperplane class on Pn, and we have computed above that KPn = −(n + 1)ζ. Thus
the canonical class of X is given by

KX = d(d − n − 1)ζ2.

Example 5.3.2. Specializing the previous Example further, let C ⊆ P2 be a smooth
algebraic plane curve of degree d. By the previous Example, its fundamental class is
KC = d(d−3)ζ2, but since we are working in P2, the square ζ2 is the point class. It follows
that

2g − 2 = deg(KC) = d(d − 3),

where g is the genus of C, and if we express it, we get the relation

g =
d(d − 3) − 2

2
=

(d − 1)(d − 2)

2
= (

d − 1

2
),

known as the genus-degree formula. This hallmark of the theory of algebraic plain curves
shows that the genus of a plane curve is always entirely determined by its degree. Note
that this is false for space curves: the twisted cubic in P3 has degree 3, while a line has
degree 1, but both are rational, and as such of genus 0.

Example 5.3.3. Let S ⊆ P3 be an algebraic surface of degree d and L ⊆ S a line inside
S. Then
C ⊆ S a smooth degree e genus g curve. That is to say, we have [S] = dζ and [C] = eζ2.

We saw above that KS = d(d − 4)ζ2,
Using the adjunction formula for the inclusion C ⊆ S, we get the equality

KL = (KS + [L]).[L]

in the Chow ring A∗(S). Since ζ2 is the line class in A∗(P3), we have [L] = ζ2∣S . Above
we saw that KS = (d − 4)ζ ∣S , and since ζ2∣S .ζ ∣S = ζ3∣S is the point class on S due to

14In fact, that is precisely one possible characterization of effective Cartier divisors - closed subschemes
the ideal sheaves of which are invertible.
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restriction (and pullbacks in general) being ring homomorphisms between Chow rings, the
adjunction formula takes on the form

KL = (d − 4)[pt] + [L]2.

When we pass to degrees, we get (since the genus of a line is always 0)

−2 = d − 4 + deg(L2
),

expressing the self-intersection number of a line L inside the surface S as 2 − d.
Testing the formula deg(L2) = 2 − d out for low degrees:

● For d = 1, we find that deg(L2) = 2 − 1 = 1. Indeed, any line in the plane has a
self-intersection number 1, since any perturbation of the line will make it intersect
the original line in one and precisely one point by Bezout’s theorem.

● For d = 2, we find that deg(L2) = 2−2 = 0. This makes sense the quadric surface S
admits a ruling (two in fact), and a perturbation of a line will simply move it along
the ruling, making it disjoint with the original one. Hence the self-intersection
number of any line inside a quadric should indeed be zero.

● For d = 3, we find that deg(L2) = 2 − 3 = −1.

5.4. What this means the 27 lines in our friend, the smooth cubic surface.
According to the Adjunction Formula computation of the last Subsection, each of the 27
lines inside a smooth cubic surface S intersects itself −1 times. That is not as farfetch’d
as it might seem: there are only finitely many lines inside S, and so we can hardly expect
to be able to deform them very much.

Figure 14. The 27 lines in terms of the blowup of P2 at six points, screen-
shot from a computer program of Claus Michael Ringel, from his website.

To bring these notes full-circle, let us tie this back to the first (non-projective space)
application of intersection theory that we looked in Subsection 2.1 Indeed, we met there
another smooth algebraic surface containing a line of self-intersection −1: the blowup at a
point. It turns out that any smooth cubic surface inside P3 may be obtained by blowing
up the plane P2 at six distinct points. This creates five exceptional divisors in the blow-up,
accounting for 6 of the 27 lines of self-intersection −1. Where are the rest hiding?
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Well, the proper transform of any line connecting two of the six base points in P2 at
which we are blowing up will give rise to a line inside the blowup. Perhaps slightly less
obviously, the proper transform any conic passing through five of the six base points (and
remember, a plane conic is determined uniquely by any five points it passes through) is
also a line in the blowup. Fittingly, we thus conclude these notes on enumerative geometry
with the following computation:

6 + (
6

2
) + (

6

5
) = 6 + 15 + 6 = 27.
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