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Overview
• Definitions

• Reporting results and rounding

• Accuracy vs precision – systematic vs statistical errors

• Parent distribution

• Mean and standard deviation

• Gaussian probability distribution

• What a “ 1σ error” means



Definitions

• µtrue: ‘true’ value of the quantity x we measure

• xi: observed value

• error on µ: difference between the observed and ‘true’
value, ≡ xi − µtrue

All measurement have errors ⇒ ‘true’ value is unattainable

• seek best estimate of ‘true’ value, µ

• seek best estimate of ‘true’ error ≡ xi − µ



One view on reporting measurements (from the book)

• keep only one digit of precision on the error – everything
else is noise
Example: 410.5163819 → 4 × 102

• exception: when the first digit is 1, keep two:
Example: 17538 → 1.7 × 104

• round off the final value of the measurement up to the
significant digits of the errors
Example: 87654 ± 345 kg → (876 ± 3) × 102 kg

• rounding rules:
• 6 and above → round up
• 4 and below → round down
• 5: if the digit to the right is even round down, else round

up
(reason: reduces systematic erorrs in rounding)



A different view on rounding

From Particle Data Group (authority in particle physics):

http://pdg.lbl.gov/2009/reviews/rpp2009-rev-rpp-intro.pdf

• between 100 and 354, we round to two significant digits

Example: 87654 ± 345 kg → (876.5 ± 3.5) × 102 kg

• between 355 and 949, we round to one significant digit

Example: 87654 ± 365 kg → (877 ± 4) × 102 kg

• lie between 950 and 999, we round up to 1000 and keep two
significant digits

Example: 87654 ± 950 kg → (87.7 ± 1.0) × 103 kg

Bottom line:

Use consistent approach to rounding which is sound and
accepted in the field of study, use common sense after all



Accuracy vs precision

• Accuracy: how close to ‘true’ value

• Precision: how well the result is determined (regardless
of true value); a measure of reproducibility

• Example: µ = 30

◮ x = 23 ± 2 precise, but inacurate
⇒ ∃ uncorrected biases
(large systematic error)

◮ x = 28 ± 7 acurate, but imprecise
⇒ subsequent measurements will scatter around
µ = 30 but cover the true value in most cases
(large statistical (random) error)

⇒ an experiment should be both acurate and precise



Statistical vs. systematic errors

• Statistical (random) errors:

• describes by how much subsequent measurements
scatter the common average value

• if limited by instrumental error, use a better apparatus
• if limited by statistical fluctuations, make more

measurements

• Systematic errors:

• all measurements biased in a common way
• harder to detect:
◮ faulty calibrations
◮ wrong model
◮ bias by observer

• also hard to determine (no unique recipe)
• estimated from analysis of experimental conditions and

techniques
• may be correlated



Parent distribution
(assume no systematic errors for now)

• parent distribution: the probability distribution of results if
the number of measurements N → ∞

• however, only a limited number of measurements: we
observe only a sample of parent dist., a sample distribution

⇒ prob. distribution of our measurements only approaches
parent dist. with N → ∞

⇒ use observed distribution to infer the parameters from the
parent distribution, e.g., µ → µtrue when N → ∞

Notation
Greek: parameters of the parent distribution

Roman: experimental estimates of params of parent dist.



Mean, median, mode

• Mean: of experimental (sample) dist:

x ≡ 1

N

N
∑

i=1

xi

. . . of the parent dist

µ ≡ lim
N→∞

(

1

N

∑

xi

)

mean ≡ centroid ≡ average

• Median: splits the sample in two equal parts

• Mode: most likely value (highest prob.density)



Variance
• Deviation: di ≡ xi − µ, for single measurement

• Average deviation:

〈xi − µ〉 = 0 by definition

α ≡ 〈|xi − µ|〉
but, absolute values are hard to deal with analytically

• Variance: instead, use mean of the deviations squared:

σ2 ≡ 〈(xi − µ)2〉 = 〈x2〉 − µ2

σ2 = lim
N→∞

(

1

N

∑

x2
i

)

− µ2

(“mean of the squares minus the square of the mean”)



Standard deviation

• Standard deviation: root mean square of deviations:

σ ≡
√

σ2 =
√

〈x2〉 − µ2

associated with the 2nd moment of xi distribution

• Sample variance: replace µ by x

s2 ≡ 1

N − 1

∑

(xi − x)2

N − 1 instead of N because x is obtained from the same
data sample and not independently



So what are we after?

• We want µ.

• Best estimate of µ is sample mean, x ≡ 〈x〉
• Best estimate of the error on x (and thus on µ is square root

of sample variance, s ≡
√

s2

Weighted averages

• P (xi) – discreete probability distribution

• replace
∑

xi with
∑

P (xi)xi and
∑

x2
i

by
∑

P (xi)x
2
i

• by definition, the formulae using 〈〉 are unchanged



Gaussian probability distribution

• unquestionably the most useful in statistical analysis

• a limiting case of Binomial and Poisson distributions (which
are more fundamental; see next week)

• seems to describe distributions of random observations for
a large number of physical measurements

• so pervasive that all results of measurements are always
classified as ‘ gaussian ’ or ‘ non-gaussian ’ (even on Wall
Street)



Meet the Gaussian

• probability density function :

• random variable x

• parameters ‘center’ µ and ‘width’ σ:

pG(x; µ, σ) =
1

σ
√

2π
exp

[

−1

2

(

x − µ

σ

)2
]

• Differential probability:

probability to observe a value in [x, x + dx] is

dPG(x; µ, σ) = pG(x; µ, σ)dx



• Standard Gaussian Distribution:
replace (x − µ)/σ with a new variable z:

pG(z)dz =
1

√
2π

exp

(

−z2

2

)

dz

⇒ got a Gaussian centered at 0 with a width of 1.

All computers calculate Standard Gaussian first, and then
‘stretch’ it and shift it to make pG(x; µ, σ)

• mean and standard deviation
By straight application of definitions:

◮ mean = µ (the ‘center’)
◮ standard deviation = σ (the ‘width’)

⇒ This makes Gaussian so convenient!



Interpretation of Gaussian errors

• we measured x = x0 ± σ0; what does that tell us?

• Standard Gaussian covers 0.683 from −1.0 to +1.0

⇒ the true value of x is contained by the interval
[x0 − σ0, x0 + σ0] 68.3% of the time!



The Gaussian distribution coverage



Introduction to Error Analysis
Part 2: Fitting

Overview
• principle of Maximum Likelihood

• minimizing χ2

• linear regression

• fitting of an arbitrery curve



Likelihood
• observed N data points, from parent population

• assume Gaussian parent distribution (mean µ, std.
deviation σ)

• probability to observe xi, given true µ, σ

Pi(xi|µ, σ) =
1

σ
√

2π
exp

[

−1

2

(

xi − µ

σ

)2
]

• probability to have measured µ′ in this single measurement,
given observed xi and σi, is called likelihood :

Pi(µ
′|xi, σi) =

1

σ
√

2π
exp

[

−1

2

(

xi − µ

σ

)2
]

• for N observations, total likelihood is

L ≡ P (µ′) = ΠN
i=1Pi(µ

′)



Principle of Maximum Likelihood

• maximizing P (µ′) gives µ′ as the best estimate of µ
(“the most likely population from which data might have come is
assumed to be the correct one”)

• for Gaussian individual probability distributions
(σi = const = σ)

L = P (µ) =

(

1

σ
√

2π

)N

exp

[

−1

2

∑

(

xi − µ

σ

)2
]

• maximizing likelihood ⇒ minimizing argumen of Exp.

χ2 ≡
∑

(

xi − µ

σ

)2



Example: calculating mean

• cross-checking...

dχ2

dµ′
=

d

dµ′

∑

(

xi − µ′

σ

)2

= 0

• derivative is linear

⇒
∑

(

xi − µ′

σ

)

= 0

⇒
µ′ = x ≡ 1

N

∑

xi

The mean really is the best estimate of the measured quantity.



Linear regression

• simplest case: linear functional dependence

• measurements yi, model (prediction) y = f(x) = a + bx

• in each point, µ ≡ y(xi) = a + bxi

( special case f(xi) = const = a = µ)

• minimize

χ2(a, b) =
∑

(

yi − f(xi)

σ

)2

• conditions for a minimum in 2-dim parameter space:

∂

∂a
χ2(a, b) = 0 ∂

∂b
χ2(a, b) = 0

• can be solved analytically, but don’t do it in real life
(e.g. see p.105 in Bevington)



Familiar example from day one: linear fit

• A program (e.g. ROOT) will do minimization of χ2 for you

 x label [units] 
1 2 3 4 5

 y
 la

be
l [

un
its

] 

1

1.5

2

2.5

3

3.5

4

4.5

5

 example analysis  example analysis 

• This program will give you the answer for a and b
(= µ ± σ)



Fitting with an arbitrary curve

• a set of measurement pairs (xi, yi ± σi)
(note no errors on xi!)

• theoretical model (prediction) may depend on several
parameters {ai} and doesn’t have to be linear

y = f(x; a0, a1, a2, ...)

• identical approach: minimize total χ2

χ2({ai}) =
∑

(

yi − f(xi; a0, a1, a2, ...)

σi

)2

• minimization proceeds numerically



Fitting data points with errors on both x and y

• xi ± σx
i

, yi ± σy
i

• Each term in χ2 sum gets a correction from the σx
i

contribution:

∑

(

yi − f(xi)

σy
i

)2

→
∑ (yi − f(xi))

2

(σy
i )2 +

(

f(xi+σx
i
)−f(xi−σx

i
)

2

)2

x

y(x)

f(x−sx)

error on x

contribution
to y chi2

f(x)
f(x+sx)



Behavior of χ2 function near minimum

• when N is large, χ2(a0, a1, a2, . . .) becomes quadratic
in each parameter near minimum

χ2 =
(aj − a′

j
)2

σ2
j

+ C

• known as parabollic approximation

• C tells us about goodness of the overall fit (function of all
uncertaintines + other {ak} for k 6= j

• ∆aj = σj ⇒ ∆χ2 = 1
valid in all cases!

• parabollic error is the curvature at the minimum

∂2χ2

∂a2
j

=
2

σ2
j



χ2 shapes near minimum: examples

better errors
worse fit

a

χ2

asymmetric errors
better fit



Two methods for obtaining the error

1.

σ2
j

=
2

∂2χ2

∂a2

j

2. scan each parameter around minimum while others are fixed
until ∆χ2 = 1 is reached

• method #1 is much faster to calculate

• method #2 is more generic and works even when the shape
of χ2 near minimum is not exactly parabollic

• the scan of ∆χ2 = 1 defines a so-called one-sigma contour.
It contains the ‘truth’ with 68.3% probability
(assuming Gaussian errors)



What to remember

• In the end the fit will be done for you by the program

you supply the data, e.g. (xi, yi)

and the fit model, e.g. y = f(x; a1, a2, ...)

the program returns a1 = µ1 ± σ1, a2 = µ2 ± σ2,...
and the plot with the model line through the points

• You need to understand what is done

• In more complex cases you may need to go deep into code



Introduction to Error Analysis
Part 3: Combining measurements

Overview
• propagation of errors

• covariance

• weighted average and its error

• error on sample mean and sample standard deviation



Propagation of Errors

• x is a known function of u, v. . .

x = f(u, v, ...)

• assume that most probable value for x is

x̄ = f(ū, v̄, ...)

x̄ is the mean of xi = f(ui, vi, ...)

• by definition of variance

σx = lim
N→∞

[

1

N

∑

(xi − x̄)2

]

• expand (xi − x̄) in Taylor series:

xi − x̄ ≈ (ui − ū)

(

∂x

∂u

)

+ (vi − v̄)

(

∂x

∂v

)

+ · · ·



Variance of x

σ2
x

≈ lim
N→∞

1

N

∑

[

(ui − ū)

(

∂x

∂u

)

+ (vi − v̄)

(

∂x

∂v

)

+ · · ·
]2

≈ lim
N→∞

1

N

∑

[

(ui − ū)2

(

∂x

∂u

)2

+ (vi − v̄)2

(

∂x

∂v

)2

+2(ui − ū)(vi − v̄)

(

∂x

∂u

) (

∂x

∂v

)

+ · · ·
]

≈ σ2
u

(

∂x

∂u

)2

+ σ2
v

(

∂x

∂v

)2

+ 2σ2
uv

(

∂x

∂u

) (

∂x

∂v

)

+ · · ·

This is the error propagation equation.

σuv is COvariance. Describes correlation between errors on u
and v.

For uncorrelated errors σuv → 0



Examples

• x = u + a

where a =const. Thus ∂x/∂u = 1
⇒ σx = σu

• x = au + bv

where a, b =const.

⇒ σ2
x

= a2σ2
u

+ b2σ2
v
+ 2abσ2

uv

◮ correlation can be negative, i.e. σ2
uv

< 0

◮ if an error on u counterballanced by a proportional error
on v, σx can get very small!



More examples
• x = auv

(

∂x

∂u

)

= av

(

∂x

∂v

)

= au

⇒ σ2
x

= (avσu)2 + (auσv)
2 + 2a2uvσ2

uv

⇒ σ2
x

x2
=

σ2
u

u2
+

σ2
v

v2
+ 2

σ2
uv

uv2

• x = au

v

⇒ σ2
x

x2
=

σ2
u

u2
+

σ2
v

v2
−2

σ2
uv

uv2

• etc., etc.



Weighted average
From part #2: calculation of the mean

• minimizing

χ2 =
∑

(

xi − µ′

σi

)2

• minimum at dχ2/dµ′ = 0, but now σi 6= const.

0 =
∑

(

xi − µ′

σ2
i

)

=
∑

(

xi

σ2
i

)

− µ′

∑

(

1

σ2
i

)

⇒ so-called weighted average is

µ′ =

∑

(

xi

σ2

i

)

∑

(

1
σ2

i

)

• each measurement is weighted by 1/σ2
i

!



Error on weighted average

• N points contribute to a weighted average µ′

• straight application of the error propagation equation:

σ2
µ

=
∑

σ2
i

(

∂µ′

∂xi

)2

(

∂µ′

∂xi

)

=
∂

∂xi

∑

(xj/σ2
j
)

∑

(1/σ2
k)

=
1/σ2

i
∑

(1/σ2
k)

• putting both together

1

σ2
µ

=

[

∑

σ2
i

(

1/σ2
i

∑

(1/σ2
k)

)2
]

−1

=
∑ 1

σ2
k



Example of weighted average

• x1 = 25.0 ± 1.0

• x2 = 20.0 ± 5.0

• error

σ2 =
1

1/1 + 1/52
= 25/26 ≈ 0.96 ≈ 1.0

• weighted average

x̄ = σ2

(

25

12
+

20

52

)

=
25

26
×25 × 25 + 20 × 1

25
= 24.8

• result: x̄ = 24.8 ± 1.0

⇒ morale: x2 practically doesn’t matter!



Error on the mean
• N measurements from the same parent population ( µ, σ)

• from part #1: sample mean µ′ and sample standard
deviation are best estimators of the parent population

• but: more measurements still gives same σ:
◮ our knowledge of shape of parent population improves
◮ and thus of original true error on each point
◮ but how well do we know the true value? (i.e. µ?)

• if N points from same population with σ:

1

σ2
µ

=
∑ 1

σ2
=

N

σ2

⇒ σµ =
σ

√
N

≈ s
√

N
Standard deviation of the mean, or standard error.



Example: Lightness vs Lycopene content, scatter plot

Lightness
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Example: Lightness vs Lycopene content: RMS as Error

Lightness
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Lightness vs Lycopene content -- spread option

Points don’t scatter enough ⇒ the error bars are too large!



Example: Lightness vs Lycopene content: Error on Mean

Lightness
30 35 40 45 50 55
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Lightness vs Lycopene content

This looks much better!



Introduction to Error Analysis
Part 4: dealing with non-Gaussian cases

Overview

• binomial p.d.f.

• Poisson p.d.f.



Binomial probability density function

• random process with exactly two outcomes ( Bernoulli
process)

• probability for one outcome (“success”) is p

• probability for exactly r successes ( 0 ≤ r ≤ N ) in N
independent trials

• order of “successes” and “failures” doesn’t matter

• binomial p.d.f.:

f(r; N, p) =
N !

r!(N − r)!
pr(1 − p)N−r

• mean: Np

• variance: Np(1 − p)

• if r and s are binomially distributed with (Nr, p) and
(Ns, p), then t = r + s distributed with (Nr + Ns, p).



Examples of binomial probability

Binomial distribution always shows up when data exhibits
binary properties:

• event passes or fails
efficiency (an important exp. parameter) defined as

ǫ = Npass/Ntotal

• particles in a sample are positive or negative



Poisson probability density function

• probability of finding exactly n events in a given interval of
x (e.g., space and time)

• events are independent of each other and of x

• average rate of ν per interval

• Poisson p.d.f. ( ν > 0)

f(n; ν) =
νne−ν

n!

• mean: ν

• variance: ν

• limiting case of binomial for many events with low
probability:
p → 0, N → ∞ while Np = ν

• Poisson approaches Gaussian for large ν



Examples of Poisson probability

Shows up in counting measurements with small number of
events

• number of watermellons with circumference
c ∈ [19.5, 20.5]in.

• nuclear spectroscopy – in tails of distribution
(e.g. high channel number)

• Rutherford experiment



Fitting a histogram with Poisson-distributed content

Poisson data require special treatment in terms of fitting!

• histogram, i-th channel contains ni entries

• for large ni, P (ni) is Gaussian

Poisson σ =
√

ν approximated by
√

ni

(WARNING: this is what ROOT uses by default!)

• Gaussian p.d.f. → symmetric errors
⇒ equal probability to fluctuate up or down

• minimizing χ2 ⇒ fit (the ‘true value’) is equally likely to be
above and below the data!



Comparing Poisson and Gaussian p.d.f.

Expected number of events, x
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• 5 observed events

• Dashed: Gaussian at 5 with σ =
√

5

• Solid: Poisson with ν = 5

• Left: prob.density functions (note: Gauss can be < 0!)

• Right: confidence integrals (p.d.f integrated from 5)


