Introduction to Error Analysis

Part 1: the Basics

Andrei Gritsan
based on lectures by Petar Maksimović
$$
\text { February 1, } 2010
$$

Overview

- Definitions
- Reporting results and rounding
- Accuracy vs precision - systematic vs statistical errors
- Parent distribution
- Mean and standard deviation
- Gaussian probability distribution
- What a " 1σ error" means

Definitions

- $\mu_{\text {true }}$: 'true' value of the quantity x we measure
- x_{i} : observed value
- error on μ : difference between the observed and 'true' value, $\equiv \boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\text {true }}$
All measurement have errors \Rightarrow 'true' value is unattainable
- seek best estimate of 'true' value, μ
- seek best estimate of 'true' error $\equiv \boldsymbol{x}_{i}-\mu$

One view on reporting measurements (from the book)

- keep only one digit of precision on the error - everything else is noise
Example: $410.5163819 \rightarrow 4 \times 10^{2}$
- exception: when the first digit is 1 , keep two:

Example: $17538 \longrightarrow 1.7 \times 10^{4}$

- round off the final value of the measurement up to the significant digits of the errors
Example: $87654 \pm 345 \mathrm{~kg} \longrightarrow(876 \pm 3) \times 10^{2} \mathrm{~kg}$
- rounding rules:
- 6 and above \rightarrow round up
- 4 and below \rightarrow round down
- 5: if the digit to the right is even round down, else round up
(reason: reduces systematic erorrs in rounding)

A different view on rounding

From Particle Data Group (authority in particle physics): http://pdg.lbl.gov/2009/reviews/rpp2009-rev-rpp-intro.pdf

- between 100 and 354, we round to two significant digits Example: $87654 \pm 345 \mathrm{~kg} \longrightarrow(876.5 \pm 3.5) \times 10^{2} \mathrm{~kg}$
- between 355 and 949, we round to one significant digit Example: $87654 \pm 365 \mathrm{~kg} \rightarrow(877 \pm 4) \times 10^{2} \mathrm{~kg}$
- lie between 950 and 999, we round up to 1000 and keep two significant digits
Example: $87654 \pm 950 \mathrm{~kg} \longrightarrow(87.7 \pm 1.0) \times 10^{\mathbf{3}} \mathrm{kg}$

Bottom line:

Use consistent approach to rounding which is sound and accepted in the field of study, use common sense after all

Accuracy vs precision

- Accuracy: how close to 'true' value
- Precision: how well the result is determined (regardless of true value); a measure of reproducibility
- Example: $\mu=30$
- $x=23 \pm 2$ precise, but inacurate
$\Rightarrow \exists$ uncorrected biases
(large systematic error)
- $x=28 \pm 7$ acurate, but imprecise
\Rightarrow subsequent measurements will scatter around $\mu=30$ but cover the true value in most cases (large statistical (random) error)
\Rightarrow an experiment should be both acurate and precise

Statistical vs. systematic errors

- Statistical (random) errors:
- describes by how much subsequent measurements scatter the common average value
- if limited by instrumental error, use a better apparatus
- if limited by statistical fluctuations, make more measurements
- Systematic errors:
- all measurements biased in a common way
- harder to detect:
- faulty calibrations
- wrong model
- bias by observer
- also hard to determine (no unique recipe)
- estimated from analysis of experimental conditions and techniques
- may be correlated

Parent distribution

(assume no systematic errors for now)

- parent distribution: the probability distribution of results if the number of measurements $N \rightarrow \infty$
- however, only a limited number of measurements: we observe only a sample of parent dist., a sample distribution
\Rightarrow prob. distribution of our measurements only approaches parent dist. with $N \rightarrow \infty$
\Rightarrow use observed distribution to infer the parameters from the parent distribution, e.g., $\boldsymbol{\mu} \longrightarrow \mu_{\text {true }}$ when $\boldsymbol{N} \rightarrow \infty$

Notation

Greek: parameters of the parent distribution
Roman: experimental estimates of params of parent dist.

Mean, median, mode

- Mean: of experimental (sample) dist:

$$
\bar{x} \equiv \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

... of the parent dist

$$
\begin{gathered}
\mu \equiv \lim _{N \rightarrow \infty}\left(\frac{1}{N} \sum x_{i}\right) \\
\text { mean } \equiv \text { centroid } \equiv \text { average }
\end{gathered}
$$

- Median: splits the sample in two equal parts
- Mode: most likely value (highest prob.density)

Variance

- Deviation: $d_{i} \equiv x_{i}-\mu$, for single measurement
- Average deviation:
$\left\langle x_{i}-\mu\right\rangle=0$ by definition
$\alpha \equiv\langle | x_{i}-\mu| \rangle$
but, absolute values are hard to deal with analytically
- Variance: instead, use mean of the deviations squared:

$$
\begin{aligned}
\sigma^{2} & \equiv\left\langle\left(x_{i}-\mu\right)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\mu^{2} \\
\sigma^{2} & =\lim _{N \rightarrow \infty}\left(\frac{1}{N} \sum x_{i}^{2}\right)-\mu^{2}
\end{aligned}
$$

("mean of the squares minus the square of the mean")

Standard deviation

- Standard deviation: root mean square of deviations:

$$
\sigma \equiv \sqrt{\sigma^{2}}=\sqrt{\left\langle x^{2}\right\rangle-\mu^{2}}
$$

associated with the 2 nd moment of x_{i} distribution

- Sample variance: replace $\boldsymbol{\mu}$ by \bar{x}

$$
s^{2} \equiv \frac{1}{N-1} \sum\left(x_{i}-\bar{x}\right)^{2}
$$

$N-1$ instead of N because \bar{x} is obtained from the same data sample and not independently

So what are we after?

- We want μ.
- Best estimate of $\boldsymbol{\mu}$ is sample mean, $\bar{x} \equiv\langle\boldsymbol{x}\rangle$
- Best estimate of the error on \bar{x} (and thus on μ is square root of sample variance, $s \equiv \sqrt{s^{2}}$

Weighted averages

- $P\left(x_{i}\right)$ - discreete probability distribution
- replace $\sum x_{i}$ with $\sum P\left(x_{i}\right) x_{i}$ and $\sum x_{i}^{2}$ by $\sum P\left(x_{i}\right) x_{i}^{2}$
- by definition, the formulae using \rangle are unchanged

Gaussian probability distribution

- unquestionably the most useful in statistical analysis
- a limiting case of Binomial and Poisson distributions (which are more fundamental; see next week)
- seems to describe distributions of random observations for a large number of physical measurements
- so pervasive that all results of measurements are always classified as ‘gaussian' or ‘non-gaussian’ (even on Wall Street)

Meet the Gaussian

- probability density function:
- random variable \boldsymbol{x}
- parameters 'center' μ and 'width' σ :

$$
p_{G}(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]
$$

- Differential probability:
probability to observe a value in $[x, x+d x]$ is $d P_{G}(x ; \mu, \sigma)=p_{G}(x ; \mu, \sigma) d x$
- Standard Gaussian Distribution:
replace $(x-\mu) / \sigma$ with a new variable z :

$$
p_{G}(z) d z=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) d z
$$

\Rightarrow got a Gaussian centered at 0 with a width of 1 .
All computers calculate Standard Gaussian first, and then 'stretch' it and shift it to make $p_{G}(x ; \mu, \sigma)$

- mean and standard deviation

By straight application of definitions:

- mean $=\mu$ (the 'center')
- standard deviation $=\sigma$ (the 'width')
\Rightarrow This makes Gaussian so convenient!

Interpretation of Gaussian errors

- we measured $x=x_{0} \pm \sigma_{0}$; what does that tell us?
- Standard Gaussian covers 0.683 from -1.0 to +1.0
\Rightarrow the true value of x is contained by the interval $\left[x_{0}-\sigma_{0}, x_{0}+\sigma_{0}\right] 68.3 \%$ of the time!

The Gaussian distribution coverage

Table 32.1: Area of the tails α outside $\pm \delta$ from the mean of a Gaussian distribution.

α	δ
0.3173	1σ
4.55×10^{-2}	2σ
2.7×10^{-3}	3σ
6.3×10^{-5}	4σ
5.7×10^{-7}	5σ
2.0×10^{-9}	6σ

α	δ
0.2	1.28σ
0.1	1.64σ
0.05	1.96σ
0.01	2.58σ
0.001	3.29σ
10^{-4}	3.89σ

Introduction to Error Analysis

Part 2: Fitting

Overview

- principle of Maximum Likelihood
- minimizing χ^{2}
- linear regression
- fitting of an arbitrery curve

Likelihood

- observed N data points, from parent population
- assume Gaussian parent distribution (mean μ, std. deviation σ)
- probability to observe x_{i}, given true μ, σ

$$
P_{i}\left(x_{i} \mid \mu, \sigma\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]
$$

- probability to have measured μ^{\prime} in this single measurement, given observed x_{i} and σ_{i}, is called likelihood:

$$
P_{i}\left(\mu^{\prime} \mid x_{i}, \sigma_{i}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]
$$

- for N observations, total likelihood is

$$
L \equiv P\left(\mu^{\prime}\right)=\Pi_{i=1}^{N} P_{i}\left(\mu^{\prime}\right)
$$

Principle of Maximum Likelihood

- maximizing $P\left(\mu^{\prime}\right)$ gives μ^{\prime} as the best estimate of $\boldsymbol{\mu}$ ("the most likely population from which data might have come is assumed to be the correct one")
- for Gaussian individual probability distributions ($\sigma_{i}=$ const $=\sigma$)

$$
L=P(\mu)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \exp \left[-\frac{1}{2} \sum\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]
$$

- maximizing likelihood \Rightarrow minimizing argumen of Exp.

$$
\chi^{2} \equiv \sum\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}
$$

Example: calculating mean

- cross-checking...

$$
\frac{d \chi^{2}}{d \mu^{\prime}}=\frac{d}{d \mu^{\prime}} \sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma}\right)^{2}=0
$$

- derivative is linear
\Rightarrow

$$
\begin{aligned}
& \sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma}\right)=0 \\
& \mu^{\prime}=\bar{x} \equiv \frac{1}{N} \sum x_{i}
\end{aligned}
$$

The mean really is the best estimate of the measured quantity.

Linear regression

- simplest case: linear functional dependence
- measurements y_{i}, model (prediction) $y=f(x)=a+b x$
- in each point, $\mu \equiv \boldsymbol{y}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=a+\boldsymbol{b} \boldsymbol{x}_{\boldsymbol{i}}$
(special case $\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=$ const $=\boldsymbol{a}=\boldsymbol{\mu}$)
- minimize

$$
\chi^{2}(a, b)=\sum\left(\frac{y_{i}-f\left(x_{i}\right)}{\sigma}\right)^{2}
$$

- conditions for a minimum in 2-dim parameter space:

$$
\frac{\partial}{\partial a} \chi^{2}(a, b)=0 \quad \frac{\partial}{\partial b} \chi^{2}(a, b)=0
$$

- can be solved analytically, but don't do it in real life (e.g. see p. 105 in Bevington)

Familiar example from day one: linear fit

- A program (e.g. ROOT) will do minimization of χ^{2} for you example analysis

- This program will give you the answer for a and b $(=\mu \pm \sigma)$

Fitting with an arbitrary curve

- a set of measurement pairs $\left(x_{i}, y_{i} \pm \sigma_{i}\right)$ (note no errors on $\boldsymbol{x}_{\boldsymbol{i}}$!)
- theoretical model (prediction) may depend on several parameters $\left\{a_{i}\right\}$ and doesn't have to be linear

$$
y=f\left(x ; a_{0}, a_{1}, a_{2}, \ldots\right)
$$

- identical approach: minimize total χ^{2}

$$
\chi^{2}\left(\left\{a_{i}\right\}\right)=\sum\left(\frac{y_{i}-f\left(x_{i} ; a_{0}, a_{1}, a_{2}, \ldots\right)}{\sigma_{i}}\right)^{2}
$$

- minimization proceeds numerically

Fitting data points with errors on both x and y

- $x_{i} \pm \sigma_{i}^{x}, y_{i} \pm \sigma_{i}^{y}$
- Each term in χ^{2} sum gets a correction from the σ_{i}^{x} contribution:
$\sum\left(\frac{y_{i}-f\left(x_{i}\right)}{\sigma_{i}^{y}}\right)^{2} \rightarrow \sum \frac{\left(y_{i}-f\left(x_{i}\right)\right)^{2}}{\left(\sigma_{i}^{y}\right)^{2}+\left(\frac{f\left(x_{i}+\sigma_{i}^{x}\right)-f\left(x_{i}-\sigma_{i}^{x}\right)}{2}\right)^{2}}$

Behavior of χ^{2} function near minimum

- when N is large, $\chi^{2}\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ becomes quadratic in each parameter near minimum

$$
\chi^{2}=\frac{\left(a_{j}-a_{j}^{\prime}\right)^{2}}{\sigma_{j}^{2}}+C
$$

- known as parabollic approximation
- C tells us about goodness of the overall fit (function of all uncertaintines + other $\left\{a_{k}\right\}$ for $k \neq j$
- $\Delta a_{j}=\sigma_{j} \quad \Rightarrow \quad \Delta \chi^{2}=1$ valid in all cases!
- parabollic error is the curvature at the minimum

$$
\frac{\partial^{2} \chi^{2}}{\partial a_{j}^{2}}=\frac{2}{\sigma_{j}^{2}}
$$

χ^{2} shapes near minimum: examples

better errors
worse fit
asymmetric errors better fit

Two methods for obtaining the error

1.

$$
\sigma_{j}^{2}=\frac{2}{\frac{\partial^{2} \chi^{2}}{\partial a_{j}^{2}}}
$$

2. scan each parameter around minimum while others are fixed until $\Delta \chi^{2}=1$ is reached

- method \#1 is much faster to calculate
- method \#2 is more generic and works even when the shape of χ^{2} near minimum is not exactly parabollic
- the scan of $\Delta \chi^{2}=1$ defines a so-called one-sigma contour. It contains the 'truth' with 68.3% probability (assuming Gaussian errors)

What to remember

- In the end the fit will be done for you by the program
you supply the data, e.g. $\left(x_{i}, y_{i}\right)$ and the fit model, e.g. $y=f\left(x ; a_{1}, a_{2}, \ldots\right)$
the program returns $a_{1}=\mu_{1} \pm \sigma_{1}, a_{2}=\mu_{2} \pm \sigma_{2}, \ldots$ and the plot with the model line through the points
- You need to understand what is done
- In more complex cases you may need to go deep into code

Introduction to Error Analysis

Part 3: Combining measurements

Overview

- propagation of errors
- covariance
- weighted average and its error
- error on sample mean and sample standard deviation

Propagation of Errors

- \boldsymbol{x} is a known function of $u, v \ldots$

$$
x=f(u, v, \ldots)
$$

- assume that most probable value for x is

$$
\bar{x}=f(\bar{u}, \bar{v}, \ldots)
$$

\bar{x} is the mean of $x_{i}=f\left(u_{i}, v_{i}, \ldots\right)$

- by definition of variance

$$
\sigma_{x}=\lim _{N \rightarrow \infty}\left[\frac{1}{N} \sum\left(x_{i}-\bar{x}\right)^{2}\right]
$$

- expand $\left(x_{i}-\bar{x}\right)$ in Taylor series:

$$
x_{i}-\bar{x} \approx\left(u_{i}-\bar{u}\right)\left(\frac{\partial x}{\partial u}\right)+\left(v_{i}-\bar{v}\right)\left(\frac{\partial x}{\partial v}\right)+\cdots
$$

Variance of x

$$
\begin{aligned}
& \sigma_{x}^{2} \approx \lim _{N \rightarrow \infty} \frac{1}{N} \sum {\left[\left(u_{i}-\bar{u}\right)\left(\frac{\partial x}{\partial u}\right)+\left(v_{i}-\bar{v}\right)\left(\frac{\partial x}{\partial v}\right)+\cdots\right]^{2} } \\
& \approx_{N \rightarrow \infty} \lim _{N} \frac{1}{N} \sum\left[\left(u_{i}-\bar{u}\right)^{2}\left(\frac{\partial x}{\partial u}\right)^{2}+\left(v_{i}-\bar{v}\right)^{2}\left(\frac{\partial x}{\partial v}\right)^{2}\right. \\
&\left.+2\left(u_{i}-\bar{u}\right)\left(v_{i}-\bar{v}\right)\left(\frac{\partial x}{\partial u}\right)\left(\frac{\partial x}{\partial v}\right)+\cdots\right] \\
& \approx \sigma_{u}^{2}\left(\frac{\partial x}{\partial u}\right)^{2}+\sigma_{v}^{2}\left(\frac{\partial x}{\partial v}\right)^{2}+2 \sigma_{u v}^{2}\left(\frac{\partial x}{\partial u}\right)\left(\frac{\partial x}{\partial v}\right)+\cdots
\end{aligned}
$$

This is the error propagation equation.
$\sigma_{u v}$ is COvariance. Describes correlation between errors on u and v.
For uncorrelated errors $\sigma_{u v} \rightarrow 0$

Examples

- $\boldsymbol{x}=\boldsymbol{u}+\boldsymbol{a}$
where $a=$ const. Thus $\partial x / \partial u=1$
$\Rightarrow \sigma_{\boldsymbol{x}}=\boldsymbol{\sigma}_{\boldsymbol{u}}$
- $\boldsymbol{x}=\boldsymbol{a u}+\boldsymbol{b} \boldsymbol{v}$
where $a, b=$ const.

$$
\Rightarrow \sigma_{x}^{2}=a^{2} \sigma_{u}^{2}+b^{2} \sigma_{v}^{2}+2 a b \sigma_{u v}^{2}
$$

$>$ correlation can be negative, i.e. $\sigma_{u v}^{2}<0$

- if an error on u counterballanced by a proportional error on v, σ_{x} can get very small!

More examples

- $\boldsymbol{x}=\boldsymbol{a u v}$

$$
\begin{gathered}
\left(\frac{\partial x}{\partial u}\right)=a v \quad\left(\frac{\partial x}{\partial v}\right)=a u \\
\Rightarrow \sigma_{x}^{2}=\left(a v \sigma_{u}\right)^{2}+\left(a u \sigma_{v}\right)^{2}+2 a^{2} u v \sigma_{u v}^{2} \\
\Rightarrow \quad \frac{\sigma_{x}^{2}}{x^{2}}=\frac{\sigma_{u}^{2}}{u^{2}}+\frac{\sigma_{v}^{2}}{v^{2}}+2 \frac{\sigma_{u v}^{2}}{u v^{2}}
\end{gathered}
$$

- $\boldsymbol{x}=\boldsymbol{a} \frac{u}{v}$

$$
\Rightarrow \quad \frac{\sigma_{x}^{2}}{x^{2}}=\frac{\sigma_{u}^{2}}{u^{2}}+\frac{\sigma_{v}^{2}}{v^{2}}-2 \frac{\sigma_{u v}^{2}}{u v^{2}}
$$

- etc., etc.

Weighted average

From part \#2: calculation of the mean

- minimizing

$$
\chi^{2}=\sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma_{i}}\right)^{2}
$$

- minimum at $d \chi^{2} / d \mu^{\prime}=0$, but now $\sigma_{i} \neq$ const.

$$
0=\sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma_{i}^{2}}\right)=\sum\left(\frac{x_{i}}{\sigma_{i}^{2}}\right)-\mu^{\prime} \sum\left(\frac{1}{\sigma_{i}^{2}}\right)
$$

\Rightarrow so-called weighted average is

$$
\mu^{\prime}=\frac{\sum\left(\frac{x_{i}}{\sigma_{i}^{2}}\right)}{\sum\left(\frac{1}{\sigma_{i}^{2}}\right)}
$$

- each measurement is weighted by $1 / \sigma_{i}^{2}$!

Error on weighted average

- N points contribute to a weighted average $\boldsymbol{\mu}^{\prime}$
- straight application of the error propagation equation:

$$
\begin{gathered}
\sigma_{\mu}^{2}=\sum \sigma_{i}^{2}\left(\frac{\partial \mu^{\prime}}{\partial x_{i}}\right)^{2} \\
\left(\frac{\partial \mu^{\prime}}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}} \frac{\sum\left(x_{j} / \sigma_{j}^{2}\right)}{\sum\left(1 / \sigma_{k}^{2}\right)}=\frac{1 / \sigma_{i}^{2}}{\sum\left(1 / \sigma_{k}^{2}\right)}
\end{gathered}
$$

- putting both together

$$
\frac{1}{\sigma_{\mu}^{2}}=\left[\sum \sigma_{i}^{2}\left(\frac{1 / \sigma_{i}^{2}}{\sum\left(1 / \sigma_{k}^{2}\right)}\right)^{2}\right]^{-1}=\sum \frac{1}{\sigma_{k}^{2}}
$$

Example of weighted average

- $x_{1}=25.0 \pm 1.0$
- $x_{2}=20.0 \pm 5.0$
- error

$$
\sigma^{2}=\frac{1}{1 / 1+1 / 5^{2}}=25 / 26 \approx 0.96 \approx 1.0
$$

- weighted average

$$
\bar{x}=\sigma^{2}\left(\frac{25}{1^{2}}+\frac{20}{5^{2}}\right)=\frac{25}{26} \times \frac{25 \times 25+20 \times 1}{25}=24.8
$$

- result: $\overline{\boldsymbol{x}}=24.8 \pm 1.0$
\Rightarrow morale: x_{2} practically doesn't matter!

Error on the mean

- N measurements from the same parent population (μ, σ)
- from part \#1: sample mean μ^{\prime} and sample standard deviation are best estimators of the parent population
- but: more measurements still gives same σ :
- our knowledge of shape of parent population improves
- and thus of original true error on each point
- but how well do we know the true value? (i.e. μ ?)
- if N points from same population with σ :

$$
\begin{aligned}
& \frac{1}{\sigma_{\mu}^{2}}=\sum \frac{1}{\sigma^{2}}=\frac{N}{\sigma^{2}} \\
\Rightarrow \quad & \sigma_{\mu}=\frac{\sigma}{\sqrt{N}} \approx \frac{s}{\sqrt{N}}
\end{aligned}
$$

Standard deviation of the mean, or standard error.

Example: Lightness vs Lycopene content, scatter plot

Example: Lightness vs Lycopene content: RMS as Error

Lightness vs Lycopene content -- spread option

Points don't scatter enough \Rightarrow the error bars are too large!

Example: Lightness vs Lycopene content: Error on Mean

This looks much better!

Introduction to Error Analysis

Part 4: dealing with non-Gaussian cases

Overview

- binomial p.d.f.
- Poisson p.d.f.

Binomial probability density function

- random process with exactly two outcomes (Bernoulli process)
- probability for one outcome ("success") is p
- probability for exactly r successes $(0 \leq r \leq N)$ in N independent trials
- order of "successes" and "failures" doesn't matter
- binomial p.d.f.:

$$
f(r ; N, p)=\frac{N!}{r!(N-r)!} p^{r}(1-p)^{N-r}
$$

- mean: $N p$
- variance: $N p(1-p)$
- if r and s are binomially distributed with $\left(N_{r}, p\right)$ and $\left(N_{s}, p\right)$, then $t=r+s$ distributed with $\left(N_{r}+N_{s}, p\right)$.

Examples of binomial probability

Binomial distribution always shows up when data exhibits binary properties:

- event passes or fails efficiency (an important exp. parameter) defined as

$$
\epsilon=N_{\text {pass }} / N_{\text {total }}
$$

- particles in a sample are positive or negative

Poisson probability density function

- probability of finding exactly n events in a given interval of x (e.g., space and time)
- events are independent of each other and of \boldsymbol{x}
- average rate of $\boldsymbol{\nu}$ per interval
- Poisson p.d.f. $(\nu>0)$

$$
f(n ; \nu)=\frac{\nu^{n} e^{-\nu}}{n!}
$$

- mean: $\boldsymbol{\nu}$
- variance: $\boldsymbol{\nu}$
- limiting case of binomial for many events with low probability:
$p \rightarrow 0, N \rightarrow \infty$ while $N p=\nu$
- Poisson approaches Gaussian for large $\boldsymbol{\nu}$

Examples of Poisson probability

Shows up in counting measurements with small number of events

- number of watermellons with circumference $c \in[19.5,20.5]$ in.
- nuclear spectroscopy - in tails of distribution
(e.g. high channel number)
- Rutherford experiment

Fitting a histogram with Poisson-distributed content

Poisson data require special treatment in terms of fitting!

- histogram, i-th channel contains $\boldsymbol{n}_{\boldsymbol{i}}$ entries
- for large $n_{i}, P\left(n_{i}\right)$ is Gaussian

Poisson $\sigma=\sqrt{\nu}$ approximated by $\sqrt{n_{i}}$
(WARNING: this is what ROOT uses by default!)

- Gaussian p.d.f. \rightarrow symmetric errors
\Rightarrow equal probability to fluctuate up or down
- minimizing $\chi^{2} \Rightarrow$ fit (the 'true value') is equally likely to be above and below the data!

Comparing Poisson and Gaussian p.d.f.

- 5 observed events
- Dashed: Gaussian at 5 with $\sigma=\sqrt{5}$
- Solid: Poisson with $\nu=5$
- Left: prob.density functions (note: Gauss can be <0 !)
- Right: confidence integrals (p.d.f integrated from 5)

