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Definitions

Mirue: ‘true’ value of the quantity & we measure
& ;. observed value

error on p: difference between the observed and ‘true’
value, = T; — Uirue

All measurement have errors = ‘true’ value is unattainable
seek best estimate of ‘true’ value,

seek best estimate of ‘true’ error = x; — W



One view on reporting measurements (from the book)

keep only one digit of precision on the error — everything
else is noise

Example: 410.5163819 — 4 x 102

exception: when the first digitis 1, keep two:
Example: 17538 — 1.7 x 104

round off the final value of the measurement up to the
significant digits of the errors

Example: 87654 + 345 kg — (876 + 3) X 102 kg

rounding rules:
® 6 and above — round up
® 4 and below — round down

e 5: if the digit to the right is even round down, else round

up
(reason: reduces systematic erorrs in rounding)




A different view on rounding

From Particle Data Group (authority in particle physics):

http://pdg.lbl.gov/2009/reviews/rpp2009-rev-rpp-intro.pdf

between 100 and 354, we round to two significant digits
Example: 87654 + 345 kg — (876.5 & 3.5) X 102 kg

between 355 and 949, we round to one significant digit
Example: 87654 + 365 kg — (877 £ 4) X 10?% kg

lie between 950 and 999, we round up to 1000 and keep two
significant digits

Example: 87654 £ 950 kg — (87.7 &= 1.0) x 10° kg

Bottom line:

Use consistent approach to rounding which is sound and
accepted in the field of study, use common sense after all



Accuracy Vs precision

Accuracy: how close to ‘true’ value

Precision: how well the result is determined (regardless
of true value); a measure of reproducibility

Example: pu = 30

» x = 23 = 2 precise, but inacurate
—=> 3 uncorrected biases
(large systematic error)

» x = 28 = 7 acurate, but imprecise

—> subsequent measurements will  scatter around
g = 30 but cover the true value in most cases

(large statistical (random) error)

—> an experiment should be both acurate and precise



Statistical vs. systematic errors

Statistical (random) errors:

® describes by how much subsequent measurements
scatter the common average value

e if limited by instrumental error, use a better apparatus
@ if limited by statistical fluctuations, make more
measurements

Systematic errors:

® all measurements biased in a common way

® harder to detect:;

» faulty calibrations
» wrong model
» Dbias by observer

® also hard to determine (no unique recipe)

® estimated from analysis of experimental conditions and
techniques

® may be correlated



Parent distribution

(assume no systematic errors for now)

parent distribution:  the probability distribution of results if
the number of measurements IN — oC

however, only a limited number of measurements: we
observe only a sample of parent dist.,, a  sample distribution

—> prob. distribution of our measurements only approaches
parent dist. with [N — o0

—> use observed distribution to infer the parameters from the
parent distribution, e.g., &t — Mirue When N — 0O

Notation

Greek: parameters of the parent distribution

Roman: experimental estimates of params of parent dist.




Mean, median, mode

Mean: of experimental (sample) dist:

1 N

N 2

=1

xT
... of the parent dist
im (2
= lim | — xT;
H N—oco \ N ¢
mean = centroid = average

Median: splits the sample in two equal parts

Mode: most likely value (highest prob.density)




Variance
Deviation: d; = x; — p, for single measurement

Average deviation:

(x; — ) = 0 by definition
a = (|z; — pl)
but, absolute values are hard to deal with analytically

Variance: instead, use mean of the deviations squared.:

o? = ((x; — p)?) = (2*) — p?

1
2 _ s 2\ .2
o _]\lrlm ( g 5’37,> 1)

(“mean of the squares minus the square of the mean”)




Standard deviation

Standard deviation: root mean square of deviations:
o =Vo?=/(z?) — 2

associated with the 2nd moment of  a; distribution

Sample variance: replace p by @

1
2 —\2
s° = _1E(wi—az)

IN — 1 instead of IN because T is obtained from the same
data sample and not independently




So what are we after?

We want L.

Best estimate of gt is sample mean, T = ()

Best estimate of the error on @ (and thus on p is square root
of sample variance, s = V/ 82

Welighted averages

P (x;) - discreete probability distribution

replace > ax; with > P(x;)x; and ) 333 by > P(:cz)wf

by definition, the formulae using () are unchanged



Gaussian probability distribution

unquestionably the most useful in statistical analysis

a limiting case of Binomial and Poisson distributions (which
are more fundamental; see next week)

seems to describe distributions of random observations for
a large number of physical measurements

so pervasive that all results of measurements are always
classified as * gaussian ' or  non-gaussian ' (even on Wall
Street)



Meet the Gaussian

probability density function

® random variable x
® parameters ‘center’ pu and ‘width’ o

( ) 1 1 (:B — W
4 b o) — eXxX — —
pG 7["’9 0-\/% p

Differential probability:

probability to observe avalue in  [x, x + dx] is
dPg(x; uy, 0) = pa(x; p, o)dx




Standard Gaussian Distribution:
replace (x — ) /o with a new variable z:

(s = e ()
s z = eXxX _— s
be V2o P 2

—> got a Gaussian centered at 0 with a width of 1.

All computers calculate Standard Gaussian first, and then
‘stretch’ it and shift it to make pa(x; @, o)

mean and standard deviation
By straight application of definitions:

» mean = p (the ‘center’)
» standard deviation = o (the ‘width’)

—> This makes Gaussian so convenient!



Interpretation of Gaussian errors

we measured * = Iy = 0g; what does that tell us?
Standard Gaussian covers 0.683 from —1.0to +1.0

—> the true value of x is contained by the interval
[ZBO — 004 L —+ 0'0] 68.3% of the time!



The Gaussian distribution coverage

Table 32.1: Area of the tails a outside +4 from the mean of a Gaussian
distribution.

5 ) v )
0.3173 lo 0.2 1.28¢0
4.55 x10—2 20 0.1 1.640
2.7 x103 30 0.05 1.960
6.3x107° 4o 0.01 2.580
5.7x1077 5o 0.001 3.290
2.0x10~9 60 104 3.890
f(x: 1.0)




Introduction to Error Analysis

Part 2: Fitting

Overview
® principle of Maximum Likelihood

® minimizing X2
® linear regression

o fitting of an arbitrery curve



Likelihood

observed IN data points, from parent population

assume Gaussian parent distribution (mean

deviation o)
probability to observe

Pi(willia U) —

probability to have measured

x;, giventrue u,o

1

2

M, std.

Xr; —

(

o

given observed x; and o, is called likelihood :

Pi(,u'|€137:90'7:) —

for I[N observations, total likelihood is

L = P(y') = II.L, Pi(p)

1

2

(

Xr; —

u)z

o

u)2

1’ in this single measurement,




Principle of Maximum Likelihood

maximizing P (u’) gives p’ as the best estimate of

(“the most likely population from which data might have come is
assumed to be the correct one”)

for Gaussian individual probability distributions
(o; = const = 0O)

L=Pp) = (m}%>NeXp _; T (:c; N)z—

maximizing likelihood => minimizing argumen of EXxp.

X252(wi_u>2

o



Example: calculating mean

cross-checking...
dx* d x; — p'\’
X _ Z ( 12 ) —0
dp’ dp’ o
derivative is linear

—

/

=z

N2

The mean really is the best estimate of the measured quantity.



Linear regression

simplest case: linear functional dependence
measurements y;, model (prediction) y = f(x) = a + bx

in each point, pu = y(x;) = a + bx;
( special case f(x;) = const = a = )

x*(a,b) =) (y — f(mi)>2

o

minimize

conditions for a minimum in 2-dim parameter space:
o) o)
%Xz(aa b) =0 %Xz(aa b) =0

can be solved analytically, but don’t do it in real life
(e.g. see p.105 in Bevington)



Familiar example from day one: linear fit

A program (e.g. ROOT) will do minimization of X2 for you
example analysis

y label [units]
D
EaN ol o1

20
4

| | | | | | | | | | | | | | | | | | | | | | | |
1 2 3 4 5
x label [units]

This program will give you the answer for a and b
(= p =t o)




Fitting with an arbitrary curve

a set of measurement pairs  (x;, y; £ o)
(note no errors on &;!)

theoretical model (prediction) may depend on several
parameters {a;} and doesn't have to be linear

Yy = f(ma Ag, A1, A2, )

identical approach: minimize total X2

2(fa}) — Z (y — f(x3; ag, a1, as, ...))2

O;

minimization proceeds numerically



Fitting data points with errors on both x and y

I xT i Yy
r; TO0;,Y; T O

Each term in X2 sum gets a correction from the a';?"

contribution:

i — f(x:) : (Y — F(xi))?
Z (y Y ) _> Z (0¥)? + :Zf(wi-l-df);f(wz‘—df))z

1

_ | contribution
Jla—sx to y chi2

__________________

error on X

=Y



Behavior of X2 function near minimum

when N is large, x*(ag, a1, @z, ...) becomes quadratic
In each parameter near minimum

a; — a'’)?
X2:(J 23) —|—C
j

g’

known as parabollic approximation

C tells us about goodness of the overall fit (function of alll
uncertaintines + other {ay} for k # j

Aa; = 0 = Ax? =1
valid in all cases!

parabollic error is the curvature at the minimum

0?2 2

2 2
Baj o



X2 shapes near minimum: examples

A X2

better errors
worse fit

asymmetric errors
better fit



Two methods for obtaining the error

0'2 — 2
J  92x2
80,32.

scan each parameter around minimum while others are fixed
until Ax? = 1 is reached

method #1 is much faster to calculate

method #2 is more generic and works even when the shape
of X2 near minimum is not exactly parabollic

the scan of sz = 1 defines a so-called one-sigma contour.
It contains the ‘truth’ with 68.3% probability

(assuming Gaussian errors)



What to remember

In the end the fit will be done for you by the program

you supply the data, e.g. (&3, Y;)
and the fit model, e.g. y = f(x;aq,as,...)

the program returns a{ = 1 @£ 01, Q2 = U & O3,...
and the plot with the model line through the points

You need to understand what is done

In more complex cases you may need to go deep into code



Introduction to Error Analysis
Part 3: Combining measurements

Overview

® propagation of errors
® covariance
® weighted average and its error

® error on sample mean and sample standard deviation



Propagation of Errors

x 1S a known function of wu, v...
r = f(u,v,...)
assume that most probable value for @ is
x = f(u,v,...)
T is the mean of x; = f(u;, v, ...)
by definition of variance

: 1 _
e = N [N (@i~ $)2]
expand (a; — &) in Taylor series:

vi—z (=) (o) + = 0) (5o )+



Variance of @

1 I o 0

: 1 ~ oz ? Ox
g oo () - ()

+2(u; — @) (v; — 0) (8'%) (Zi) + .- ]
- o o) e o) e (50) (5 -

This is the error propagation equation.

O . 1S COvariance. Describes correlation between errors on u
and v.

For uncorrelated errors 0, — 0O



Examples

r=u-+ a

where a =const. Thus dx/0u = 1
—> Oy — Oy

r = au + bv

where a, b =const.
2 __ 2.2 2 2 2
— o, =a“oc; + b°oc. + 2abo;

» correlation can be negative, i.e. 0'12“; <0

» if an error on u counterballanced by a proportional error
on v, 0, can get very smalll



More examples

r — auv

<8m> ((?w)
—_ —= av — = au
ou Ov

= 02 = (avo,)? + (auo,)? + 2a*uvo?,

L % % % o %w
€T u? V2 uv?
r = a2
v
o2 o2 o2 2
— “x_ Tu oy v g uwy
a2 u? V2 Uv?

etc., etc.



Welighted average

From part #2: calculation of the mean

e-3 (257

minimum at dx?/dp’ = 0, but now o; 7 const.

-5 () -2 () -2 (3

minimizing

o; o

—> so-called weighted average is

L =
> (&)

each measurement is weighted by 1 /07!




Error on weighted average

NN points contribute to a weighted average ~ /

straight application of the error propagation equation:
ou'\?
2 2
o’ = o; | —
2= (o)

(o) - 2 Y(@i/0?) _ 1/o?
o) ~ Oz S-(1/0%)  L(1/0})

putting both together

aiz - = (ZZ(/Tm) -X.;

2
k




Example of weighted average
Xrq1 = 25.0-1.0
xs = 20.0 £ 5.0

error

1
ol = = 25/26 ~ 0.96 ~ 1.0
1/1+1/52

weighted average

_ 5 (20 20 20 25 X 25+20x%x1
T=0" | —=+ -] = X = 24.8
12 52 26 25

result: € = 24.8 = 1.0

—> morale: x4 practically doesn’t matter!



Error on the mean

IN measurements from the same parent population (  u, o)

from part #1: sample mean ' and sample standard
deviation are best estimators of the parent population

but: more measurements still gives same o

» our knowledge of shape of parent population improves
» and thus of original true error on each point

» but how well do we know the true value? (i.e. ?)

if /N points from same population with o

1 1 N
a2 -2 a2
o o o

Standard deviation of the mean, or standard error.



Example: Lightness vs Lycopene content, scatter plot

lyc:Light
120

e
o
o O

Lycopene content
O
o
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70

60

50

30 40 50 60
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Example: Lightness vs Lycopene content. RMS as Error

Lightness vs Lycopene content -- spread option

-
o
ol

100
95
90
85
80
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65

°%

Lycopene content

d
/4-|
Rl
L4

—

~

)

35 40 45 50 55
Lightness

o

Points don’t scatter enough  => the error bars are too large!



Example: Lightness vs Lycopene content: Error on Mean

Lightness vs Lycopene content

c 100F
g
s 9F
o -
o 90
CICJ -
o 85
8 -
j 805—

75;—

70

65;—

| | | | | | | | | | | | | | | | | | | | | | | |
53035 40 45 50 55
Lightness

This looks much better!



Introduction to Error Analysis

Part 4. dealing with non-Gaussian cases

Overview

® binomial p.d.f.

® Poisson p.d.f.



Binomial probabllity density function

random process with exactly two outcomes ( Bernoulli
process)

probability for one outcome (“success”) is P

probability for exactly 7 successes (0 < r < IN)in [N
independent trials

order of “successes” and “failures” doesn’'t matter

binomial p.d.f.
N!
r; N, p) = "(1—p)N"
f(r; N, p) AN —1)1P (1—p)
mean: INp

variance: Np(1 — p)

if 7 and s are binomially distributed with ~ (IN., p) and
(Ng, p), then t = r + s distributed with  (IN,. + N, p).



Examples of binomial probability

Binomial distribution always shows up when data exhibits
binary properties:

event passes or fails
efficiency (an important exp. parameter) defined as

€ = Npass /Ntotal

particles in a sample are positive or negative



Poisson probability density function

probability of finding exactly 7 events in a given interval of
x (e.g., space and time)

events are independent of each other and of @
average rate of v per interval
Poisson p.d.f. (v > 0)

n_ B —v

Ve

n!

f(n;v) =

mean: v/
variance: vV

limiting case of binomial for many events with low
probability:
p — 0, N — ocowhile Np=v

Poisson approaches Gaussian for large v



Examples of Poisson probability

Shows up in counting measurements with small number of
events

number of watermellons with circumference
C & [19.5, 20.5]in.

nuclear spectroscopy — in tails of distribution
(e.g. high channel number)

Rutherford experiment



Fitting a histogram with Poisson-distributed content

Poisson data require special treatment in terms of fitting!
histogram, 1-th channel contains 1; entries
for large m;, P(n;) is Gaussian

Poisson o = \/; approximated by n;
(WARNING: this is what ROOT uses by default!)

Gaussian p.d.f. — symmetric errors
—> equal probability to fluctuate up or down

minimizing x2 —> fit (the ‘true value’) is equally likely to be
above and below the data!



Comparing Poisson and Gaussian p.d.f.

Prob(5 | x)

©
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5 observed events

-2 0 2 4 6 8 10 12 14 16 18
Expected number of events, x

Cummulative Probability
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6 8 10 12 14
Expected number of events, x

Dashed: Gaussian at 9 with o = \/3

Solid: Poissonwith v = 5

Left: prob.density functions

(note: Gauss can be < 0V

Right: confidence integrals (p.d.f integrated from 5)



