
Introduction to Formal Proof

Bernard Sufrin

Trinity Term 2018

5: Theories

[05-theories]

Introduction to Formal Proof 5: Theories Theories

Theories

▷ The subject matter of predicate logic is “all models (over all signatures)”

○ Mathematical logicians consider the soundness and completeness of particular deductive
systems for the logic, and also consider its decidability.

▷ The subject matter of much of (formal) mathematics and computer science is (in one
sense) more constrained

○ We want to make proofs about models that satisfy certain laws (a.k.a. axioms)

○ We want to use sound deductive systems to make these proofs

∗ So we start with a sound deductive system (for FOL) ...

∗ add a signature (C,F ,P) and laws for the models we are interested in ...

∗ and see what happens next! (i.e. what we can prove)

○ The domain of discourse is left implicit ...

... though we sometimes have a particular domain of discourse in mind!

○ If we add a law that leads to contradiction then no model will satisfy our theory!

– 1 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: elementary group theory

Example: elementary group theory

▷ Constants: ι

▷ Functions: ⋅⊗⋅ ∼⋅

▷ Axiom Schemes (Laws):

T1 ⊗ (T2 ⊗T3) = (T1 ⊗T2)⊗T3

⊗-ass

ι⊗T = T
ι-id

∼ T ⊗T = ι
∼

▷ Example models: the integers with ι = 0,⊗ = +; the nonzero rationals or reals with
ι = 1,⊗ = ×; and (for any set S) the bijective functions in S → S with
ι = IdS ,⊗ = ⋅(composition).

– 2 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: elementary group theory

▷ Consequences can be proven using only equational reasoning, for example: T ⊗ ι = T

▷ In the “transitive equalities” presentation style the essence of the proof is:

1: T ⊗ ι
2: = T ⊗ (∼ T ⊗T) { Fold ∼

3: = (T⊗ ∼ T)⊗T { Unfold ⊗-ass
4: = ι⊗T { Unfold Thm T⊗ ∼ T = ι
4: = T { ι-id

▷ This concise presentation hides the details of the application of the transitivity rules:1

1 Jape treats ⊗ as right-associative and doesn’t fully bracket T1 ⊗ (T2 ⊗T3) in displays.

– 3 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: elementary group theory

▷ It also relies on a stylized concise form of reporting of “folds” and “unfolds”

L1 – 4 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: elementary group theory

▷ Inverses are unique

– 5 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: elementary group theory

▷ Completely formal proofs using associativity can be ... tedious, for example:

Here lines 3-8 could be summarised as: “by associativity of ⊗”, and interactive proof
assistants should provide some sort of interface that gets on with the details of “flattening,
then rebracketing” under the direction of the user.

– 6 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: theory of Natural Numbers

Example: theory of Natural Numbers

▷ Constants: 0

▷ Functions: succ ⋅, ⋅ + ⋅, ⋅ × ⋅, ...

▷ Laws:2

Γ ⊢ succ(T) /= 0
P3 (0 is the beginning)

Γ ⊢ succ(T1) = succ(T2)→ T1 = T2

P4 (injectivity)

Γ ⊢ φ(0) Γ, φ(m) ⊢ φ(succ(m))

Γ ⊢ φ(T)
P5 natinduction (m fresh)

▷ Nat induction is a schema parameterized by φ(⋅) – a formula in which ⋅ may appear.

▷ The “intended model” is the natural numbers.

▷ The even numbers also constitute a model; indeed there are infinitely many models! (why?)

2 These were first listed by Dedekind – but are usually attributed to Peano.

L2 – 7 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: theory of Natural Numbers

▷ Axiom schemas with parameters T1,T2 (terms)

0 +T2 = T2

+.0
succ(T1) +T2 = succ(T1 +T2)

+.1

0 ×T2 = 0
×.0

succ(T1) ×T2 = T2 + (T1 ×T2)
×.1

▷ These schemas characterize addition and multiplication (almost) uniquely

(but this needs to be proved)

▷ Consequences: commutativity and associativity of +,× distributivity of × through +, etc.,
etc.

L3 – 8 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: theory of Natural Numbers

An inductive proof using substitution (equals-elimination) to rewrite equal subterms within successive formulae

The proof consists of successive formulae that are equivalent up to substitution of equal terms

L4 – 9 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: theory of Natural Numbers

The same proof: using folds and unfolds, and presented in the transformational style

This is not exactly the same as the substitutivity proof, but all the “essential” steps in it are the same.

– 10 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: theory of Natural Numbers

Comparison between the transformational proof and (a compact form) of the substitutive proof

(in the compact form, the uses of ”=-e ←” are left implicit)

– 11 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Theories with several types

Theories with several types

In which we indicate how to formalize a (rather weak) notion of types
thereby supporting proofs in theories in which several “types” are used

▷ For example suppose we want to build a theory of lists of numbers?

○ We expect to be able to prove things about all numbers

○ We expect to be able to prove things about all lists

○ We expect to be able to characterize functions recursively on lists and on numbers

○ The “untyped” induction and definition rules are no longer quite enough

– 12 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: typed theory of natural numbers

Example: typed theory of natural numbers

▷ The main idea: supplement signatures with “typing predicates”

○ Constants: 0

○ Functions: succ ⋅, ⋅ + ⋅, ⋅ × ⋅, ...

○ Predicates: N(⋅) meaning “⋅ is a natural number”

○ Laws:

N(0)
N0

N(T)

N(succ(T))
Nsucc

N(T)

succ(T) /= 0
P3

N(T1) N(T2)

succ(T1) = succ(T2)→ T1 = T2

P4

Γ ⊢ N(T) Γ ⊢ φ(0) Γ,N(m), φ(m) ⊢ φ(succ(m))

Γ ⊢ φ(T)
(nat induction)(fresh m)

(Here φ(.) is – as usual – a “formula abstraction”)

– 13 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: typed theory of natural numbers

▷ Arithmetic expressions are also typed:

N(T1) N(T2)

N(T1 +T2)
N+

N(T1) N(T2)

N(T1 ×T2)
N×

▷ Arithmetic operator definitions get the expected typing antecedents, for example:

N(T1) N(T2)

0 +T2 = T2

+.0
N(T1) N(T2)

succ(T1) +T2 = succ(T1 +T2)
+.1

▷ Theorems now have type premisses, for example

N(T1),N(T2),N(T3) ⊢ T1 + (T2 +T3) = (T1 +T2) +T3

+-assoc

▷ The typing antecedents of rules needed in the proof of a theorem are trivial to prove from
the typing premisses

– 14 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: typed theory of heterogeneous lists

Example: typed theory of heterogeneous lists

○ Constants: nil

○ Functions: ⋅ ∶ ⋅, ⋅ ++ ⋅...

○ Predicates: L(⋅)

○ Laws: (the elements of a heterogeneous list need not have the same type)

L(nil)
Lnil

L(TS)

L(T ∶ TS)
L:

L(TS)

T ∶ TS /= nil
:-

L(TS) L(TS ′)

T ∶ TS = T ′ ∶ TS ′ → T = T ′ ∧TS = TS ′
:-inj

Γ ⊢ L(T) Γ ⊢ φ(nil) Γ,L(xs), φ(xs) ⊢ φ(x ∶ xs)

Γ ⊢ φ(T)
(list induction)(fresh x , xs)

(Here φ(.) is – as usual – a “formula abstraction”)

– 15 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: typed theory of heterogeneous lists

▷ Catenation and reverse defined in the usual way but with typing information added

L(T)

L(rev(T))
Lrev

rev(nil) = nil
rev.0

L(TS)

rev(T ∶ TS) = rev(T) ++ (T ∶ nil)
rev.1

L(TS) L(TS ′)

L(TS ++ TS ′)
L++

L(TS)

nil ++ TS = TS
++ .0

L(TS) L(TS ′)

(T ∶ TS) ++ TS ′ = T ∶ (TS ++ TS ′)
++ .1

▷ “Typed” theories can be mixed: antecedents stop us inferring nonsense, e.g. nil ++ 0 = 0

▷ Theorems (as expected) have typing premisses, for example:

L(T1),L(T2),L(T3) ⊢ T1 ++ (T2 ++ T3) = (T1 ++ T2) +T3

++ -assoc

▷ The formal proofs of these theorems are a lot like those we know and love from FP

– 16 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Example: typed theory of heterogeneous lists

▷ Some additional, but trivial, work is needed to satisfy the typing antecedents: compare

L5 – 17 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Formal treatment of generalised induction hypotheses

Formal treatment of generalised induction hypotheses

▷ Notice that we have not used the logical quantifiers in the inductive proof of ++-assoc.

▷ Consider the “catenate-reverse-to” function +<+ defined by

L(T1) L(T2)

L(T1 +<+ T2)
L+<+

L(T2)

nil +<+ T2 = T2

+<+.0
L(T1) L(T2)

(T ∶ T1) +<+ T2 = T1 +<+ (T ∶ T2)
+<+.1

▷ We want to prove (by induction on T1) that

L(T1),L(T2) ⊢ T1 +<+ T2 = rev(T1) ++ T2

– 18 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Formal treatment of generalised induction hypotheses

▷ Using the list induction recipe blindly we start the proof as follows:

▷ But the proof stalls (why?) at the crux – on attempting use the induction hypothesis (8) to bridge 10 and 11

▷ At this point a lecturer or tutor usually uses the mantra: “there is nothing special about T2”

▷ This appears to allow the proof to be completed, but the result is highly informal.

– 19 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Formal treatment of generalised induction hypotheses

This problem can (only) be overcome by proving a more general result.

– 20 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Formal treatment of generalised induction hypotheses

▷ The technique we use is to arrange to prove a more general result by induction on xs ,
namely:

L(xs) ⊢ ∀ys ⋅L(ys)→ xs +<+ ys = rev(xs) ++ ys

which will give us the more general induction hypothesis we were seeking in the stalled
proof.

▷ This is done by setting up a proof of the more general theorem

⊢ ∀xs ⋅L(xs)→ ∀ys ⋅L(ys)→ xs +<+ ys = rev(xs) ++ ys

▷ The result we originally set out to prove, namely:

L(T1),L(T2) ⊢ T1 +<+ T2 = rev(T1) ++ T2

can now be established (by ∀-e followed by →-e) from this theorem.

– 21 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Contents

Contents

Extending Predicate Logic . 1
Theories . 1
Example: elementary group theory . 2
Example: theory of Natural Numbers . 7

Theories with several types . 12
Theories with several types . 12

Example: typed theory of natural numbers .13
Example: typed theory of heterogeneous lists . 15

Indispensability of the logical quantifiers . 18
Formal treatment of generalised induction hypotheses 18

– 22 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Notes

Note 1: 4R
The proof trees shown here were made with Jape, using a system including derived equational “rewrite” rules

Γ ⊢ T1 = T2

Γ ⊢ T [T1/χ] = T [T2/χ]
rewriteLR

Γ ⊢ T1 = T2

Γ ⊢ T [T2/χ] = T [T1/χ]
rewriteRL

These rules enable the direct use of (equational) laws to rewrite one side or the other of an equation while conducting a goal-directed proof search in an
equational theory.

The rule rewriteLR is used when we make an “Unfold” goal transformation, such as the move at the at the top right of the tree where we use the theorem
(T⊗ ∼ T) = ι to transform the proof goal (T⊗ ∼ T)⊗T = T into the proof goal ι⊗T = T – whence it is closed by application of the ι-id axiom.

The rule rewriteRL is used when we make a “Fold” goal transformation, such as the move at the top left of the tree where the rule the goal
T ⊗ ι = T ⊗ (∼ T ⊗T) is transformed by using the ∼ axiom ∼ T ⊗T = ι to rewrite T ⊗ ι as T ⊗ (∼ T ⊗T).

Note 2: 7R
By convention we may omit the “Γ ⊢” in presenting P3 and P4; because they are free of antecedents. It should be clear that we cannot do so in presenting
the induction rule, since one of its antecedents transforms the collection of hypotheses.

Note 3: 8R
Here, and in future, we apply the convention of omitting the Γ ⊢ when presenting antecedent-free rules.

Note 4: A derived equality rule 9R

In our inductive proof of associativity of + we used the derived rule

T1 = T2 ϕ[T2/χ]

ϕ[T1/χ]
=-e←

– 23 – 23rd December, 2012@18:01 [431]

Introduction to Formal Proof 5: Theories Notes

to simplify the backward proof-search we did in Jape.

Note 5: 17R
There are two different views of a single proof shown here. The proof was made with Jape set up to satisfy the typing laws automatically.

– 24 – 23rd December, 2012@18:01 [431]

	Foils
	Extending Predicate Logic
	Theories
	Example: elementary group theory
	Example: theory of Natural Numbers

	Theories with several types
	Theories with several types
	Example: typed theory of natural numbers
	Example: typed theory of heterogeneous lists

	Indispensability of the logical quantifiers
	Formal treatment of generalised induction hypotheses

	Notes
	A derived equality rule

