
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321933164
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321933164
https://plusone.google.com/share?url=http://www.informit.com/title/9780321933164
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321933164
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321933164/Free-Sample-Chapter

 Praise for Introduction to Game Design, Prototyping, and

Development

 " Introduction to Game Design, Prototyping, and Development combines a solid grounding in
evolving game design theory with a wealth of detailed examples of prototypes for digital
games. Together these provide an excellent introduction to game design and development
that culminates in making working games with Unity. This book will be useful for both intro-
ductory courses and as a reference for expert designers. I will be using this book in my game
design classes, and it will be among those few to which I often refer."

 —Michael Sellers
Professor of Practice in Game Design, Indiana University, former Creative Director
at Rumble Entertainment, and General Manager at Kabam

 "Prototyping and play-testing are often the most misunderstood and/or underutilized steps
in the game design and development process. Iterative cycles of testing and refining are
key to the early stages of making a good game. Novices will often believe that they need to
know everything about a language or build every asset of the game before they can really get
started. Gibson's new book prepares readers to go ahead and dive in to the actual design and
prototyping process right away; providing the basics of process and technology with excellent
"starter kits" for different types of games to jumpstart their entry into the practice."

 —Stephen Jacobs
Associate Director, RIT Center for Media, Art, Games, Interaction and Creativity (MAGIC)
and Professor, School of Interactive Games and Media

 "Jeremy Gibson's Introduction to Game Design, Prototyping, and Development deftly combines
the necessary philosophical and practical concepts for anyone looking to become a Game
Designer. This book will take you on a journey from high-level design theories, through game
development concepts and programming foundations in order to make your own playable
video games. Jeremy uses his years of experience as a professor to teach the reader how to
think with vital game design mindsets so that you can create a game with all the right tools
at hand. A must-read for someone who wants to dive right into making their first game and a
great refresher for industry veterans."

 — Michelle Pun
Senior Game Designer, Zynga

This page intentionally left blank

 Introduction to Game
Design, Prototyping,

and Development

Essential References for Game Designers and Developers

These practical guides, written by distinguished professors and industry gurus,
cover basic tenets of game design and development using a straightforward,

common-sense approach. The books encourage readers to try things on their own
and think for themselves, making it easier for anyone to learn how to design and
develop digital games for both computers and mobile devices.

Visit informit.com/series/gamedesign for a complete list of available publications.

Make sure to connect with us!
informit .com/socialconnect

The Addison-Wesley
Game Design and Development Series

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

 Introduction to Game
Design, Prototyping,

and Development

From Concept to Playable
Game—with Unity® and C#

 Jeremy Gibson

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
the publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

 The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.
com .

 Visit us on the Web: informit.com/ aw

 Library of Congress Control Number: 2014936195

 Copyright © 2015 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

 ISBN-13: 978-0-321-93316-4
 ISBN-10: 0-321-93316-8

 Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, IN.

 Editor-in-Chief
Mark Taub

 Senior Acquisitions
Editor
Laura Lewin

 Senior Development
Editor
Chris Zahn

 Managing Editor
Kristy Hart

 Project Editor
Elaine Wiley

 Copy Editor
Keith Cline

Indexer
Ken Johnson

 Proofreader
Paula Lowell

 Technical Editors
Marc Destefano
Charles Duba
Margaret Moser

 Publishing Coordinator
Olivia Basegio

 Cover Designer
Chuti Prasersith

 Book Designer
Bumpy Design

 Compositor
Nonie Ratcliff

 Second Printing: January 2015

 This book is dedicated to:

 My wife Melanie, the love of my life,
for her love, intellect, and support

 My parents and sisters

 And my many professors, colleagues, and students
who inspired me to write this book.

This page intentionally left blank

 Contents at a Glance

 Part I Game Design and Paper Prototyping 1

 1 Thinking Like a Designer . 3

 2 Game Analysis Frameworks . 19

 3 The Layered Tetrad . 31

 4 The Inscribed Layer . 39

 5 The Dynamic Layer . 61

 6 The Cultural Layer . 79

 7 Acting Like a Designer . 89

 8 Design Goals . 105

 9 Paper Prototyping . 125

 10 Game Testing . 141

 11 Math and Game Balance . 155

 12 Puzzle Design . 185

 13 Guiding the Player . 197

 14 The Digital Game Industry . 211

 Part II Digital Prototyping . 223

 15 Thinking in Digital Systems . 225

 16 Introducing Our Development Environment: Unity 235

 17 Introducing Our Language: C# 253

 18 Hello World: Your First Program 263

 19 Variables and Components . 281

 20 Boolean Operations and Conditionals 299

 21 Loops . 315

 22 Lists and Arrays . 327

 23 Functions and Parameters . 349

 24 Debugging . 363

 25 Classes . 379

 26 Object-Oriented Thinking . 391

 27 The Agile Mentality . 405

x CONTENTS AT A GLANCE

 Part III Game Prototype Examples and Tutorials 417

 28 Prototype 1: Apple Picker . 419

 29 Prototype 2: Mission Demolition 449

 30 Prototype 3: Space SHMUP . 487

 31 Prototype 4: Prospector Solitaire 561

 32 Prototype 5: Bartok . 621

 33 Prototype 6: Word Game . 657

 34 Prototype 7: QuickSnap . 695

 35 Prototype 8: Omega Mage . 727

 Part IV Appendices . 791

 A Standard Project Setup Procedure 793

 B Useful Concepts Reference . 799

 C Online References . 851

 Index . 857

 Contents

 Preface . xxiv

 Part I Game Design and Paper Prototyping 1

 1 Thinking Like a Designer . 3

You Are a Game Designer. . 4

Bartok: A Game Exercise. . 4

The Definition of Game . 10

Summary . 17

 2 Game Analysis Frameworks 19

Common Frameworks for Ludology 20

MDA: Mechanics, Dynamics, and Aesthetics 20

Formal, Dramatic, and Dynamic Elements 24

The Elemental Tetrad . 27

Summary . 29

 3 The Layered Tetrad . 31

The Inscribed Layer . 32

The Dynamic Layer . 33

The Cultural Layer . 34

The Responsibility of the Designer 36

Summary . 37

 4 The Inscribed Layer. . 39

Inscribed Mechanics . 40

Inscribed Aesthetics . 46

Inscribed Narrative . 49

Inscribed Technology . 58

Summary . 59

xii CONTENTS

 5 The Dynamic Layer . 61

The Role of the Player . 62

Emergence . 63

Dynamic Mechanics . 64

Dynamic Aesthetics . 70

Dynamic Narrative . 75

Dynamic Technology . 77

Summary . 77

 6 The Cultural Layer . 79

Beyond Play . 80

Cultural Mechanics . 81

Cultural Aesthetics . 82

Cultural Narrative . 83

Cultural Technology . 84

Authorized Transmedia Are Not in the Cultural Layer 85

The Cultural Impact of a Game . 86

Summary . 87

 7 Acting Like a Designer . 89

Iterative Design . 90

Innovation . 97

Brainstorming and Ideation . 98

Changing Your Mind . 101

Scoping!. 103

Summary . 104

 8 Design Goals . 105

Design Goals: An Incomplete List 106

Designer-Centric Goals . 106

Player-Centric Goals . 109

Summary . 124

 CONTENTS xiii

 9 Paper Prototyping . 125

The Benefits of Paper Prototypes. 126

Paper Prototyping Tools . 127

An Example of a Paper Prototype. 129

Best Uses for Paper Prototyping 138

Poor Uses for Paper Prototyping 139

Summary . 140

 10 Game Testing .141

Why Playtest? . 142

Being a Great Playtester Yourself 142

The Circles of Playtesters . 143

Methods of Playtesting . 146

Other Important Types of Testing 152

Summary . 153

 11 Math and Game Balance . 155

The Meaning of Game Balance . 156

Installing Apache OpenOffice Calc 156

Examining Dice Probability with Calc 157

The Math of Probability . 165

Randomizer Technologies in Paper Games. 170

Weighted Distributions . 173

Permutations . 175

Positive and Negative Feedback 176

Using Calc to Balance Weapons . 177

Summary . 183

 12 Puzzle Design . 185

Puzzles Are Almost Everywhere. 186

Scott Kim on Puzzle Design . 186

Puzzle Examples in Action Games 193

Summary . 195

xiv CONTENTS

 13 Guiding the Player . 197

Direct Guidance. 198

Indirect Guidance. 200

Teaching New Skills and Concepts 207

Summary . 210

 14 The Digital Game Industry .211

About the Game Industry. 212

Game Education . 215

Getting into the Industry . 217

Don't Wait to Start Making Games!. 221

Summary . 222

 Part II Digital Prototyping . 223

 15 Thinking in Digital Systems. 225

Systems Thinking in Board Games 226

An Exercise in Simple Instructions 226

Game Analysis: Apple Picker. 229

Summary . 234

 16 Introducing Our Development Environment: Unity . . . 235

Downloading Unity . 236

Introducing Our Development Environment 237

Running Unity for the First Time 241

Setting Up the Unity Window Layout 246

Learning Your Way Around Unity 251

Summary . 251

 17 Introducing Our Language: C#. 253

Understanding the Features of C# 254

Reading and Understanding C# Syntax 259

Summary . 262

 CONTENTS xv

 18 Hello World: Your First Program 263

Creating a New Project . 264

Making a New C# Script . 266

Making Things More Interesting 271

Summary . 279

 19 Variables and Components. 281

Introducing Variables . 282

Strongly Typed Variables in C# . 282

Important C# Variable Types . 283

The Scope of Variables . 286

Naming Conventions . 286

Important Unity Variable Types . 288

Unity GameObjects and Components. 294

Summary . 297

 20 Boolean Operations and Conditionals 299

Booleans . 300

Comparison Operators . 303

Conditional Statements . 307

Summary . 313

 21 Loops .315

Types of Loops . 316

Set Up a Project . 316

while Loops . 316

do...while Loops . 319

for Loops . 320

foreach Loops . 322

Jump Statements within Loops . 322

Summary . 325

xvi CONTENTS

 22 Lists and Arrays . 327

C# Collections . 328

List . 328

Array . 333

Multidimensional Arrays . 337

Jagged Arrays . 340

Whether to Use Array or List . 344

Summary . 344

Summary Exercise . 344

Moving Forward . 347

 23 Functions and Parameters 349

Set Up the Function Examples Project 350

Definition of a Function. 350

Function Parameters and Arguments 353

Returning Values . 354

Proper Function Names . 356

When Should You Use Functions? 356

Function Overloading . 358

Optional Parameters . 359

The params Keyword. 359

Recursive Functions . 361

Summary . 362

 24 Debugging . 363

Getting Started with Debugging 364

Stepping Through Code with the Debugger. 369

Summary . 377

 25 Classes. 379

Understanding Classes . 380

Class Inheritance . 387

Summary . 390

 CONTENTS xvii

 26 Object-Oriented Thinking 391

The Object-Oriented Metaphor . 392

An Object-Oriented Boids Implementation 394

Summary . 403

 27 The Agile Mentality. 405

The Manifesto for Agile Software Development 406

Scrum Methodology . 407

Creating Your Own Burndown Charts 416

Summary . 416

 Part III Game Prototype Examples and Tutorials 417

 28 Prototype 1: Apple Picker . .419

The Purpose of a Digital Prototype. 420

Preparing . 421

Coding the Apple Picker Prototype 428

GUI and Game Management. 440

Summary . 448

Next Steps . 448

 29 Prototype 2: Mission Demolition 449

Getting Started: Prototype 2. 450

Game Prototype Concept. 450

Art Assets . 451

Coding the Prototype . 456

Summary . 485

 Next Steps . 485

 30 Prototype 3: Space SHMUP 487

Getting Started: Prototype 3. 488

Setting the Scene. 490

Making the Hero Ship . 491

Adding Some Enemies . 504

xviii CONTENTS

Spawning Enemies at Random . 509

Setting Tags, Layers, and Physics 510

Making the Enemies Damage the Player 513

Restarting the Game . 518

Shooting (Finally) . 519

Adding Power-Ups . 531

Resolving Race Conditions in Code 538

Making Enemies Drop Power-Ups 541

Programming Other Enemies . 543

Adding Particle Effects and Background 556

Summary . 558

Next Steps . 558

 31 Prototype 4: Prospector Solitaire 561

Getting Started: Prototype 4. 562

Build Settings . 562

Importing Images as Sprites . 564

Constructing Cards from Sprites 566

The Prospector Game . 583

Implementing Prospector in Code 585

Adding Scoring to Prospector . 604

Summary . 619

Next Steps . 620

 32 Prototype 5: Bartok. 621

Getting Started: Prototype 5. 622

Build Settings . 623

Coding Bartok . 624

Summary . 655

Next Steps . 655

 CONTENTS xix

 33 Prototype 6: Word Game . 657

Getting Started: Word Game Prototype. 658

About the Word Game . 658

Parsing the Word List . 660

Setting Up the Game . 665

Laying Out the Screen . 671

Adding Interactivity . 680

Adding Scoring . 684

Adding Animation . 687

Adding Color. 690

Summary . 692

Next Steps . 692

 34 Prototype 7: QuickSnap . 695

Getting Started: QuickSnap Prototype 696

Building the Scene . 697

Coding the Game . 706

Summary . 725

Next Steps . 726

 35 Prototype 8: Omega Mage. 727

Getting Started: Omega Mage Prototype 728

Building the Scene . 730

The Mage Character . 735

Mouse Interaction . 737

Movement . 741

The Inventory and Selecting Elements 747

Casting the Fire Ground Spell . 754

Changing Rooms . 764

Spawning Enemies . 768

Abstracting the Enemy Interface 782

xx CONTENTS

Making an EnemyFactory. 785

Summary . 789

Next Steps . 789

Thanks! . 789

 Part IV Appendices. 791

 A Standard Project Setup Procedure 793

 B Useful Concepts . 799

C# and Unity Coding Concepts . 801

Math Concepts . 822

Interpolation. 831

Roleplaying Games. 846

User Interface Concepts. 848

 C Online Reference . 851

Tutorials . 852

Unity Resources . 852

Programming . 853

Searching Tips . 854

Finding Assets . 854

Educational Software Discounts 855

 Index. 857

FOREWORD

 I have a theory about game designers and teachers. I think that, beneath the possible differ-
ences of our outer appearances, we're secretly the same; that many of the skills possessed by
a good game designer are the same skills held by a great teacher. Have you ever had a teacher
who held a class spellbound with puzzles and stories? Who showed you simple demonstrations
of skills that were easy for you to understand and copy, but were difficult for you to master?
Who gradually, cleverly, helped you put together pieces of information in your mind, maybe
without your even realizing it, until one day your teacher was able to step aside and watch you
do something amazing, something that you never would have thought was possible.

 We video game designers spend a lot of our time finding ways to teach people the skills they
need to play our games, while keeping them entertained at the same time. We sometimes
don't want people to be aware that we're teaching them, though—the best tutorial levels that
video games open with are usually the ones that simply seem like the beginning of a thrilling
adventure. I was lucky to work at the award-winning game studio Naughty Dog for eight amaz-
ing years, where I was the Lead or Co-Lead Game Designer on all three PlayStation 3 games in
the Uncharted series. Everyone at the studio was very happy with the sequence that opened
our game Uncharted 2: Among Thieves . It effectively taught each player all the basic moves they
would need to play the game, while keeping them on the edge of their seat because of the
gripping predicament our hero Nathan Drake found himself in, dangling over the edge of a cliff
in a ruined train carriage.

 Video game designers do this kind of thing over and over again as they create digital adven-
tures for us to play. Working on a sequence of player experiences like those found in the
 Uncharted games, I have to stay very focused on what the player has recently learned. I have
to present my audience with interesting situations that use their new skills and that are easy
enough that they won't get frustrated, but challenging enough that their interest will be held.
To do this with complete strangers, through the channels of communication that a game
provides—the graphics of the environments and the characters and objects within them, the
sounds that the game makes, and the interactivity of the game's controls—is tremendously
challenging. At the same time, it is one of the most rewarding things I know how to do.

 Now that I've become a professor, teaching game design in a university setting, I've discovered
firsthand just how many of the skills I developed as a game designer are useful in my teaching.
I'm also discovering that teaching is just as rewarding as game design. So it came to me as no

xxii FOREWORD

surprise when I discovered that Jeremy Gibson, the author of this book, is equally talented as a
game designer and a teacher, as you're about to find out.

 I first met Jeremy around ten years ago, at the annual Game Developers Conference in Northern
California, and we immediately hit it off. He already had a successful career as a game devel-
oper, and his enthusiasm for game design struck a chord with me. As you'll see when you begin
to read this book, he loves to talk about game design as a craft, a design practice and an emerg-
ing art. Jeremy and I stayed in touch over the years, as he went back to graduate school at Carn-
egie Mellon University's excellent Entertainment Technology Center to study under visionaries
like Doctor Randy Pausch and Jesse Schell. Eventually, I came to know Jeremy as a professor and
a colleague in the Interactive Media & Games Division of the School of Cinematic Arts at the
University of Southern California—part of USC Games, the program in which I now teach.

 In fact, I got to know Jeremy better than ever during his time at USC—and I did it by becoming
his student. In order to acquire the skills that I needed to develop experimental research games
as part of USC's Game Innovation Lab, I took one of Jeremy's classes, and his teaching trans-
formed me from a Unity n00b with some basic programming experience into an experienced
C# programmer with a strong set of skills in Unity, one of the world's most powerful, usable,
adaptable game engines. Every single one of Jeremy's classes was not only packed with infor-
mation about Unity and C#, but was also peppered with inspirational words of wisdom about
game design and practical pieces of advice related to game development—everything from
his thoughts about good "lerping," to great tips for time management and task prioritization,
to the ways that game designers can use spreadsheets to make their games better. I graduated
from Jeremy's class wishing that I could take it again, knowing that there was a huge amount
more that I could learn from him.

 So I was very happy when I heard that Jeremy was writing a book—and I became even happier
when I read the volume that you now hold in your hands. The good news for both you and me
is that Jeremy has loaded this book with everything that I wanted more of. I learned a lot in the
game industry about best practices in game design, production, and development, and I'm
happy to tell you that in this book, Jeremy does a wonderful job of summarizing those ways of
making games that I've found work best. Within these pages, you'll find step-by-step tutorials
and code examples that will make you a better game designer and developer in innumerable
ways. While the exercises in this book might get complex—game design is among the most
difficult things I know how to do—Jeremy won't ask you to do anything complicated without
guiding you through it in clear, easy-to-follow language.

 You'll also find history and theory in this book. Jeremy has been thinking deeply about game
design for a long time and is very well-read on the subject. In the first part of this volume,
you'll find an extraordinarily wide and deep survey of the state-of-the-art in game design
theory, along with Jeremy's unique and strongly developed synthesis of the very best ideas

 FOREWORD xxiii

he's encountered on his game design travels. Jeremy supports his discussion with interesting
historical anecdotes and fascinating glimpses of the long traditions of play in human culture,
all of which help to frame his conversation in valuable and progressive ways. He continually
pushes you to question your assumptions about games, and to think beyond the console, the
controller, the screen and the speakers, in ways that might just spur a whole new generation of
game innovators.

 Jeremy Gibson has moved on from USC, and now teaches at the University of Michigan Ann
Arbor, and I'm very happy for the generations of U-M students that he'll lead to new under-
standings of the craft of game design in the coming years. This spring, when Jeremy walked
into the restaurant at the annual GDC alumni dinner hosted by the USC Games program, the
room full of our current and former students came alive with whoops and cheers and moments
later broke out into applause. That tells you a lot about what Jeremy Gibson is like as a teacher.
You're lucky that, thanks to this book, he can now be your teacher too.

 The world of game design and development is changing at a rapid rate. You can be part of this
wonderful world—a world unlike any other I know, and which I love with all my heart. You can
use the skills you learn through reading this book to develop new prototypes for new kinds of
games, and in doing so you might eventually create whole new genres of games, in expressive
new styles, which appeal to new markets. Some of tomorrow's stars of game design are cur-
rently learning to design and program, in homes and schools all around the world. If you make
good use of this book, by following the advice and doing the exercises you find in here, it might
just help your chances of creating a modern game design classic.

 Good luck, and have fun!

 Richard Lemarchand
 Associate Professor, USC Games

 PREFACE

 Welcome to Introduction to Game Design, Prototyping, and Development. This book is based on
my work over many years as both a professional game designer and a professor of game design
at several universities, including the Interactive Media and Games Division at the University of
Southern California and the Department of Electrical Engineering and Computer Science at the
University of Michigan Ann Arbor.

 This preface introduces you to the purpose, scope, and approach of this book.

 The Purpose of This Book
 My goal in this book is quite simple: I want to give you all the tools and knowledge you need to
get started down the path to being a successful game designer and prototyper. This book is the
distillation of as much knowledge as I can cram into it to help you toward that goal. Unlike most
books out there, this book combines the disciplines of game design and digital development
(that is, computer programming) and wraps them both in the essential practice of iterative
prototyping. The emergence of advanced, yet approachable, game development engines such
as Unity has made it easier than ever before to create playable prototypes that express your
game design concepts to others, and the ability to do so will make you a much more skilled
(and employable) game designer.

 The book is divided into four parts:

 Part I: Game Design and Paper
Prototyping
 The first part of the book starts by exploring various theories of game design and the analyti-
cal frameworks for game design that have been proposed by several earlier books. This section
then describes the Layered Tetrad as a way of combining and expanding on many of the best
features of these earlier theories. The Layered Tetrad is explored in depth as it relates to various
decisions that you must make as a designer of interactive experiences. This part also covers
information about the interesting challenges of different game design disciplines; describes the
process of paper prototyping, testing, and iteration; and gives you concrete information to help
you become a better designer.

 PREFACE xxv

 Part II: Digital Prototyping
 The second part teaches you how to program in the C# language (pronounced "see-sharp").
This part draws upon my many years of experience as a professor teaching nontechnical stu-
dents how to express their game design ideas through digital code. If you have no prior knowl-
edge or experience with programming or development, this part is designed for you. However,
even if you do have some programming experience, you might want to take a look at this part
to learn a few new tricks or get a refresher on some approaches.

 Part III: Game Prototype Examples
and Tutorials
 The third part of the book encompasses several different tutorials, each of which guides you
through the development of a prototype for a specific style of game. The purpose of this part is
twofold: It reveals some best practices for rapid game prototyping by showing you how I per-
sonally approach prototypes for various kinds of games, and it provides you with several basic
foundations on which to build your own games in the future. Most other books on the market
that attempt to teach Unity (our game development environment) do so by taking the reader
through a single, monolithic tutorial that is hundreds of pages long. In contrast, this book takes
you through several much smaller tutorials. The final products of these tutorials are necessarily
less robust than those found in some other books, but it is my belief that the variety of projects
in this book will better prepare you for creating your own projects in the future.

 Part IV: Appendices
 This book has several important appendices that merit mention here. Rather than repeat
information throughout the book or require you to go hunting through various chapters for it,
any piece of information that is referenced several times in the book or that I think you would
be likely to want to reference later (after you've finished reading the book once) is placed in the
appendices. Appendix A is just a quick step-by-step introduction to the initial creation process
for a game project in Unity. The second and longest appendix is Appendix B , "Useful Concepts."
Though it has a rather lackluster name, this is the portion of the book that I believe you will
return to most often in the years following your initial read through the book. "Useful Concepts"
is a collection of several go-to technologies and strategies that I use constantly in my personal
game prototyping process, and I think you'll find a great deal of it to be very useful. The third
and final appendix is a list of good online references where you can find answers to questions
not covered in this book. It is often difficult to know the right places to look for help online; this
appendix lists those that I personally turn to most often.

xxvi PREFACE

 There Are Other Books Out There
 As a designer or creator of any kind, I think that it's absolutely essential to acknowledge those
on whose shoulders you stand. There have been many books written on games and game
design, and the few that I list here are those that have had the most profound effect on either
my process or my thinking about game design. You will see these books referenced many times
throughout this text, and I encourage you to read as many of them as possible.

 Game Design Workshop by Tracy Fullerton

 Initially penned by Tracy Fullerton, Chris Swain, and Steven S. Hoffman, Game Design Workshop
is now in its third edition. More than any other text, this is the book that I turn to for advice on
game design. This book was initially based on the Game Design Workshop class that Tracy and
Chris taught at the University of Southern California, a class that formed the foundation for the
entire games program at USC (and a class that I myself taught there from 2009–2013). The USC
Interactive Media and Games graduate program has been named the number one school for
game design in North America by Princeton Review every year that they have been ranking
game programs, and the Game Design Workshop book and class were the foundation for that
success.

 Unlike many other books that speak volumes of theory about games, Tracy's book maintains a
laser focus on information that helps budding designers improve their craft. I taught from this
book for many years (even before I started working at USC), and I believe that if you actually
attempt all the exercises listed in the book, you can't help but have a pretty good paper game
at the end.

 Fullerton, Tracy, Game Design Workshop: A Playcentric Approach to Creating Innovative
Games, 3rd ed. (Boca Raton, FL: CRC Press, 2014)

 The Art of Game Design by Jesse Schell

 Jesse Schell was one of my professors at Carnegie Mellon University and is a fantastic game
designer with a background in theme park design gained from years working for Walt Disney
Imagineering. Jesse's book is a favorite of many working designers because it approaches game
design as a discipline to be examined through 100 different lenses that are revealed through-
out the book. Jesse's book is a very entertaining read and broaches several topics not covered
in this book.

 Jesse Schell, The Art of Game Design: A Book of Lenses (Boca Raton, FL: CRC Press, 2008)

 PREFACE xxvii

 The Grasshopper by Bernard Suits

 While not actually a book on game design at all, The Grasshopper is an excellent exploration of
the definition of the word game. Presented in a style reminiscent of the Socratic method, the
book presents its definition of game very early in the text as the Grasshopper (from Aesop's
fable The Ant and the Grasshopper) gives his definition on his deathbed, and his disciples spend
the remainder of the book attempting to critique and understand this definition. This book also
explores the question of the place of games and play in society.

 Bernard Suits, The Grasshopper: Games, Life and Utopia (Peterborough, Ontario: Broadview
Press, 2005)

 Game Design Theory by Keith Burgun

 In this book, Burgun explores what he believes are faults in the current state of game design
and development and proposes a much narrower definition of game than does Suits. Burgun's
goal in writing this text was to be provocative and to push the discussion of game design
theory forward. While largely negative in tone, Burgun's text raises a number of interesting
points, and reacting to it helped me to refine my personal understanding of game design.

 Keith Burgun, Game Design Theory: A New Philosophy for Understanding Games (Boca
Raton, FL: A K Peters/CRC Press, 2013)

 Imaginary Games by Chris Bateman

 Bateman uses this book to argue that games are a legitimate medium for scholarly study. He
pulls from several scholarly, practical, and philosophical sources; and his discussions of books
like Homo Ludens by Johan Huizinga, Man, Play, and Games by Roger Caillois, and the paper "The
Game Game" by Mary Midgley are both smart and accessible.

 Chris Bateman, Imaginary Games (Washington, USA: Zero Books, 2011)

 Level Up! by Scott Rogers

 Rogers distills his knowledge from many years in the trenches of game development into a
book that is fun, approachable, and very practical. When he and I co-taught a level design class,
this was the textbook that we used. Rogers is also a comic book artist, and his book is full of
humorous and helpful illustrations that drive home the concepts of level, character, narrative,
and many other aspects of design.

 Scott Rogers, Level up!: The Guide to Great Video Game Design (Chichester, UK: Wiley, 2010)

xxviii PREFACE

 Our Digital Prototyping Environment:
Unity and C#
 All the digital game examples in this book are based on the Unity Game Engine and the C#
programming language. I have taught students to develop digital games and interactive
experiences for more than a decade, and in my experience, Unity is—by far—the best envi-
ronment that I have found for learning to develop games. I have also found that C# is the best
initial language for game prototypers to learn. Some other tools out there are easier to learn
and require no real programming (Game Maker and Game Salad are two examples), but Unity
allows you much more flexibility and performance in a package that is basically free (the free
version of Unity includes nearly all the capabilities of the paid version, and it is the version used
throughout this book). If you want to actually learn to program games, Unity is the engine you
want to use.

 Similarly, some programming languages are a little more approachable than C#. In the past,
I have taught my students both ActionScript and JavaScript. However, C# is the one language
I have used that continually impresses me with its flexibility and feature set. Learning C# means
learning not only programming but also good programming practices. Languages such as
JavaScript allow a lot of sloppy behaviors that I have found actually lead to slower develop-
ment. C# keeps you honest (via things like strongly typed variables), and that honesty will not
only make you a better programmer but will also result in your being able to code more quickly
(for example, strong variable typing enables very robust code hinting and auto-completion,
which makes coding faster and more accurate).

 Who This Book Is For
 There are many books about game design, and there are many books about programming.
This book seeks to fill the gap between the two. As game development technologies like Unity
become more ubiquitous, it is increasingly important that game designers have the ability to
sketch their design ideas not only on paper but also through working digital prototypes. This
book exists to help you learn to do just that:

 ■ If you're interested in game design but have never programmed, this book is perfect
for you. Part I introduces you to several practical theories of game design and presents you
with the practices that can help you develop and refine your design ideas. Part II teaches
you how to program from nothing to understanding object-oriented class hierarchies.
Since I became a college professor, the majority of my classes have focused on teaching
nonprogrammers how to program games. I have distilled all of my experience doing so
into Part II of this book. Part III takes you through the process of developing eight different
game prototypes across several different game genres. Each demonstrates fast methods to
get from concept to working digital prototype. Lastly, the appendices will explain specific

 PREFACE xxix

game development and programming concepts in-depth and guide you to resources to
learn more once you've finished the book. This in-depth content was moved to Appendix B ,
"Useful Concepts," so that you could continue to use that section of the book as a reference
in the years to come.

 ■ If you're a programmer who is interested in game design, Parts I and III of this book
will be of most interest to you. Part I introduces you to several practical theories for game
design and presents you with the practices that can help you develop and refine your
design ideas. You can skim Part II, which introduces C# and how it is used in Unity. If you are
familiar with other programming languages, C# looks like C++ but has the advanced fea-
tures of Java. Part III takes you through the process of developing eight different game pro-
totypes across several different game genres. Game development in Unity is very different
from what you may be used to from other game engines. Many elements of development
are taken care of outside of the code. Each prototype will demonstrate the style of develop-
ment that works best in Unity to get from concept to working digital prototype quickly. You
will also want to look carefully at Appendix B , which is full of detailed information about
various development concepts and is arranged as a reference that you can return to later.

 Conventions
 This book maintains several writing conventions to help make the text more easily
understandable.

 Any place that specific button names, menu commands, or other multi-word nouns are intro-
duced in the text, they will be listed in italics . This includes terms like the Main Camera Game
Object. An example menu command is Edit > Project Settings > Physics , which would instruct
you to select the Edit menu from the menu bar, choose the Project Settings sub-menu, and then
select Physics .

 Book Elements

 The book includes several different types of asides that feature useful or important information
that does not fit in the flow of the regular body text.

 note

 Callouts in this format are for information that is useful but not critical. Information
in notes will often be an interesting aside to the main text that provides a little bit
more info about the topic.

xxx PREFACE

t ip

 This element provides additional information that is related to the book content
and can help you as you explore the concepts in the book.

w arning

 BE CAREFUL Warnings cover information about things that you need to be
aware of to avoid mistakes or other pitfalls.

 SIDEBAR

 The sidebar is for discussions of longer topics that are important to the text but should
be considered separately from it.

 Code

 Several conventions apply to the code samples in this book. When specific elements from the
code listing are placed in regular paragraph text, they appear in a monospaced font. The vari-
able variableOnNewLine from the following code listing is an example of this.

 Code listings also utilize a monospaced font and appear as follows:

 1 public class SampleClass {
 2 public GameObject variableOnExistingLine; // 1
 3 public GameObject variableOnNewLine; // 2
 4 }

 1 Code listings are often annotated; in this case, additional information about the line
marked with // 1 would appear in this first annotation.

 2 Some code listings will be expansions on code that you've already written or that already
exists in the C# script file for another reason. In this case, the old lines will be at normal
weight , and the new lines will be at bold weight .

 PREFACE xxxi

Note that occasionally lines of code in the chapters are too long to fit on the printed page.
Where that occurs, a code-continuation arrow (➥) has been used to mark the continuation.
For example:

21 jagged List.Add (new List<string>(new string[] {"complex",
➥"initialization"}));

 Most of the code listings in the first two parts of the book will include line numbers (as seen in
the preceding listing). You do not need to type the line numbers when entering the code into
MonoDevelop (it will automatically number all lines). In the final part of the book, there are no
line numbers due to the size of the code listings.

 Book Website

 The website for this book includes all of the files referenced in the chapters, lecturer notes, and
finished versions of each tutorial prototype. It is available at http://book.prototools.net .

http://book.prototools.net

 ACKNOWLEDGMENTS

 A tremendous number of people deserve to be thanked here. First and foremost, I want to
thank my wife, Melanie, whose help and feedback on my chapters throughout the entire pro-
cess improved the book tremendously. I also want to thank my family for their many years of
support, with special thanks to my father for teaching me how to program as a child.

 As a new author, there were several people at Pearson who provided support to me and
shepherded me through this process. Chief among them were Chris Zahn, Laura Lewin, Olivia
Basegio, Elaine Wiley, and Keith Cline who each demonstrated laudable patience in working
with me. I also had the support of some fantastic technical reviewers: Marc Destefano, Charles
Duba, and Margaret Moser. Their keen eyes and minds found many places in the original text
that could be clarified or improved.

 I would also like to thank all the educators who have taught me and worked as my colleagues.
Special thanks go to Dr. Randy Pausch and Jesse Schell. Though I had worked as a professor and
game designer before meeting them, they each had a profound effect on my understanding of
design and education. I also owe tremendous thanks to Tracy Fullerton, Mark Bolas, and Scott
Fisher, who were friends and mentors to me in the years I taught at the University of Southern
California's Interactive Media and Games Division. There were also many other brilliant faculty
and friends at USC who helped me to flesh out the ideas in this book, including Adam Liszkie-
wicz, William Huber, Richard Lemarchand, Scott Rogers, Vincent Diamante, Sam Roberts, and
Logan Ver Hoef.

 Many of my friends in the industry have also helped me by giving me suggestions for the book
and feedback on the ideas presented therein. These included Michael Sellers, Nicholas For-
tugno, Jenova Chen, Zac Pavlov, Joseph Stevens, and many others.

 Thanks as well to all the fantastic students whom I have taught over the past decade. It is you
who inspired me to want to write this book and who convinced me that there was something
important and different about the way that I was teaching game development. Every day that I
teach, I find myself inspired and invigorated by your creativity, intelligence, and passion.

 Finally, I would like to thank you. Thank you for purchasing this book and for your interest in
developing games. I hope that this book helps you get started, and I would love to see what
you make with the knowledge you gain here.

 ABOUT THE AUTHOR

 Jeremy Gibson is a lecturer teaching computer game design for
the Electrical Engineering and Computer Science department at
the University of Michigan Ann Arbor and is the founder of ExNinja
Interactive, LLC. From 2009 to 2013, he was an Assistant Professor
teaching game design and protyping for the Interactive Media and
Games Division of the University of Southern California's School
of Cinematic Arts, which was the number one game design school
in North America throughout his tenure there. Jeremy serves the

IndieCade independent game festival as the Chair for Education and Advancement, where he
is responsible for the IndieXchange and GameU conference tracks, and he has spoken at the
Game Developers Conference every year since 2009.

 Jeremy earned a Master of Entertainment Technology degree from Carnegie Mellon University's
Entertainment Technology Center in 2007 and a Bachelor of Science degree in Radio, Televi-
sion, and Film from the University of Texas at Austin in 1999. Jeremy has worked as a program-
mer and prototyper for companies such as Human Code and frog design, has taught classes
for Great Northern Way Campus (in Vancouver, BC), Texas State University, the Art Institute of
Pittsburgh, Austin Community College, and the University of Texas at Austin, and has worked
for Walt Disney Imagineering, Maxis, and Electronic Arts/Pogo.com, among others. While in
graduate school, his team created the game Skyrates, which won the Silver Gleemax Award at
the 2008 Independent Games Festival. Jeremy also apparently has the distinction of being the
first person to ever teach game design in Costa Rica.

This page intentionally left blank

 C H A P T E R 16

 INTRODUCING

OUR DEVELOPMENT

ENVIRONMENT: UNITY

This is the start of your programming adventure.

In this chapter, you download Unity, the game

development environment that you will use

throughout the rest of this book. We talk about

why Unity is a fantastic game development tool for

any budding game designer or developer and why

we've chosen C# as the language for you to learn.

You also take a look at the sample project that

ships with Unity, learn about the various window

panes in the Unity interface, and move these panes

into a logical arrangement that will match the

examples you see in the rest of the book.

236 CHAPTER 16 INTRODUCING OUR DEVELOPMENT ENVIRONMENT: UNITY

 Downloading Unity
 First things first, let's start downloading Unity. The Unity installer is over 1 GB in size, so depend-
ing on your Internet speed, this could take anywhere from a few minutes to a couple of hours.
After you've gotten this process started, we can move on to talking about Unity.

 As of this writing, the latest major version of Unity is Unity 4. Because Unity is under constant
development, the current minor version should be something like 4.x.y, with the x and y being
sub-version numbers. Regardless of version, Unity is always available for free from Unity's
official website:

 http://unity3d.com/unity/download

 This should take you to a page that provides the latest download link for your system (see Fig-
ure 16.1). Unity is available for both PC and OS X, and it is nearly identical on both platforms.

 Figure 16.1 The web page to download Unity

 tip

 Unity is free, but you will still need to acquire a license, and this requires that you
have an available Internet connection the first time that you run the application.

http: //unity3d. com/unity/download

 INTRODUCING OUR DEVELOPMENT ENVIRONMENT 237

 Introducing Our Development
Environment
 Before you can begin prototyping in earnest, you first need to become familiar with Unity, our
chosen development environment. Unity itself can really be thought of as a synthesis program;
while you will be bringing all the elements of your game prototypes together in Unity, the
actual production of the assets will largely be done in other programs. You will program in
MonoDevelop; model and texture in a 3D modeling program like Maya, Autodesk 3ds Max, or
Blender; edit images in a photo editor such as Photoshop or GIMP; and edit sound in an audio
program such as Pro Tools or Audacity. Because a large section of this book is about program-
ming and learning to program in C# (pronounced "see-sharp"), you'll be spending most of the
time with tutorials using MonoDevelop, but it's still critically important to understand how to
use Unity and how to effectively set up your Unity environment.

 Why Choose Unity?
 There are many game development engines out there, but we've chosen to focus on Unity for
several reasons:

 ■ Unity is free: With the free version of Unity, you can create and sell games that run on OS
X, PC, the Web, Linux, iOS, Android, BlackBerry, Windows Phone, Windows Store, and more.
While the Pro version of Unity includes a few additional useful features, for a game designer
just learning to prototype, the free version is really all that you need. The Pro version nor-
mally costs $1,500 (or $75/month), but if you're a student, a one-year license for Unity Pro is
about ten times less!

 tip

 STUDENT PRICING If you are a student, you can purchase a 1-year educational
license for Unity Pro at a tremendous discount (about $150 instead of $1,500). This
license does prevent you from being able to sell your game directly to players, but
it lets you use the full power of Unity Pro to develop your game and make excel-
lent portfolio pieces. After you're done developing, if you know you've got a hit on
your hands, you can purchase the commercial version of Pro before attempting to
sell your game. Unity has also recently added Pro student licenses that do allow
you to sell your games, but those have a higher cost.

 To find the latest student pricing for Unity, I recommend searching the Web for
"unity educational student pricing." That will make sure that you're looking at the
latest.

 ■ Write once, deploy anywhere: The free version of Unity can build applications for OS X,
PC, the Web, Linux, iOS, Android, BlackBerry, Windows Phone, Windows Store, and more, all
from the same code and files. This kind of flexibility is at the core of Unity; in fact, it's what
the product and company are named for. There are also paid extensions to Unity Pro that

238 CHAPTER 16 INTRODUCING OUR DEVELOPMENT ENVIRONMENT: UNITY

professionals can use to create games for the PlayStation 3, Xbox 360, and several other
game consoles.

 ■ Great support: In addition to excellent documentation, Unity has an incredibly active
and supportive development community. Hundreds of thousands of developers are using
Unity, and many of them contribute to the discussions on Unity forums across the web.

 ■ It's awesome!: My students and I have joked that Unity has a "make awesome" button.
Although this is not strictly true, there are several phenomenal features built in to Unity
that will make your games both play and look better by simply checking an option box.
Unity engineers have already handled a lot of the difficult game programming tasks for
you. Collision detection, physics simulation, pathfinding, particle systems, draw call batch-
ing, shaders, the game loop, and many other tough coding issues are all included. All you
need to do is make a game that takes advantage of them!

 Why Choose C#?
 Within Unity, you have the choice to use any of three programming languages: UnityScript, C#,
or Boo. Very, very few people actually use Boo, so you're really left with two choices.

 UnityScript, A Version of JavaScript

 JavaScript is often seen as a language for beginners; it's easy to learn, the syntax is forgiving
and flexible, and it's also used for scripting web pages. JavaScript was initially developed in the
mid-1990s by Netscape as a "lite" version of the Java programming language. It was used as
a scripting language for web pages, though early on that often meant that various JavaScript
functions worked fine in one web browser but didn't work at all in another. The syntax of Java
Script was the basis for HTML5 and is very similar to Adobe Flash's ActionScript 3. Despite all of
this, it is actually JavaScript's flexibility and forgiving nature that make it an inferior language
for this book. As one example, JavaScript uses weak typing, which means that if we were to cre-
ate a variable (or container) named bob, we could put anything we wanted into that variable: a
number, a word, an entire novel, or even the main character of our game. Because the variable
bob doesn't have a variable type, Unity never really knows what kind of thing bob is, and that
could change at any time. These flexibilities in JavaScript make scripting more tedious and
prevent programmers from taking advantage of some of the most powerful and interesting
features of modern languages.

 C#

 C# was developed in 2000 as Microsoft's response to Java. They took a lot of the modern cod-
ing features of Java and put them into a syntax that was much more familiar to and comfort-
able for traditional C++ developers. This means that C# has all the capabilities of a modern
language. For you experienced programmers, these features include function virtualization
and delegates, dynamic binding, operator overloading, lambda expressions, and the powerful
Language INtegrated Query (LINQ) query library among many others. For those of you new
to programming, all you really need to know is that working in C# from the beginning will
make you a better programmer and prototyper in the long run. In my prototyping class at the

 INTRODUCING OUR DEVELOPMENT ENVIRONMENT 239

University of Southern California, I taught using both UnityScript and C# in different semesters,
and I found that students who were taught C# consistently produced better game prototypes,
exhibited stronger coding practices, and felt more confident about their programming abilities
than their peers who had been taught UnityScript in prior semesters of the class.

 RUNTIME SPEED OF EACH LANGUAGE

 If you've had some experience programming, you might assume that C# code in Unity
would execute faster than code written in JavaScript or Boo. This assumption would
come from the understanding that C# code is usually compiled while JavaScript and
Boo are interpreted (meaning that compiled code is turned into a computer's machine
language by a compiler as part of the coding process, while interpreted code is trans-
lated on-the-fly as the player is playing the game, making interpreted code generally
slower). However, in Unity, every time you save a file of C#, UnityScript, or Boo code,
Unity imports it, converts any of the three languages to the same Common Intermediate
Language (CIL), and then compiles that CIL into machine language. So, regardless of the
language you use, your Unity game prototypes will execute at the same speed.

 On the Daunting Nature of Learning a Language
 There's no way around it, learning a new language is tough. I'm sure that's one of the reasons
that you bought this book rather than just trying to tackle things on your own. Just like Spanish,
Korean, Mandarin, French, or any other human language, there are going to be things in C# that
don't make any sense at first, and there are places that I'm going to tell you to write something
that you don't immediately understand. There will also probably be a point where you are
just starting to understand some things about the language but feel utterly confused by the
language as a whole (which is the exact same feeling you'd have if you took one semester of
Spanish class and then tried to watch soap operas on Telemundo). This feeling comes for almost
all of my students about halfway through the semester, and by the end of the semester, every
one of them feels much more confident and comfortable with both C# and game prototyping.

 Rest assured, this book is here for you, and if you read it in its entirety, you will emerge with
not only a working understanding of C# but also several simple game prototypes that you can
use as foundations on which to build your own projects. The approach that I take in this book
comes from many semesters of experience teaching "nonprogrammers" how to find the hidden
coder within themselves and, more broadly, how to convert their game ideas into working pro-
totypes. As you'll see throughout this book, that approach is composed of three steps:

 1. Concept introduction: Before asking you to code anything for each project, I'll tell you
what we're doing and why. This general concept of what you're working toward in each
tutorial will give you a framework on which to hang the various coding elements that are
introduced in the chapter.

240 CHAPTER 16 INTRODUCING OUR DEVELOPMENT ENVIRONMENT: UNITY

 2. Guided tutorial: You'll be guided step by step through a tutorial that will demonstrate
these concepts in the form of a playable game. Unlike some other approaches, we will be
compiling and testing the game throughout the process so that you can identify and repair
bugs (problems in the code) as you go, rather than trying to fix all of them at the end. Addi-
tionally, I'll even guide you to create some bugs so that you can see the errors they cause
and become familiar with them; this will make it easier when you encounter your own bugs
later.

 3. Lather, rinse, repeat: In many tutorials, you'll be asked to repeat something. For instance,
in a top-down shooter game like Galaga , the tutorial would guide you through the process
of making one single enemy type, and then it would ask you to create three others on your
own. Don't skip this part! This repetition will really drive the concept home, and it will help
your understanding solidify later.

p ro tip

 90% OF BUGS ARE JUST TYPOS I've spent so much time helping students fix
bugs that now I can very quickly spot a typo in code. The most common include
the following:

 ■ Misspellings: If you type even one letter wrong, the computer won't have
any idea what you're talking about.

 ■ Capitalization: To your C# compiler, A and a are two completely different let-
ters, so variable , Variable , and variAble are all completely different words.

 ■ Missing semicolons: Just like almost every sentence in English should end
in a period, nearly every statement in C# should end in a semicolon (;). If
you leave the semicolon out, it will often cause an error on the next line. FYI:
A semicolon is used because the period was needed for decimal numbers
and what's called dot syntax in variable names and subnames (e.g., varName.
subVarName.subSubVarName).

 Earlier, I mentioned that most of my students feel confused and daunted by C# at about the
midway point of the semester, and it's at exactly that time that I assign them the Classic Games
Project. They are asked to faithfully recreate the mechanics and game feel of a classic game
over the course of four weeks. Some great examples have included Super Mario Bros., Metroid,
Castlevania, Pokemon, and even the original Legend of Zelda. By being forced to work things out
on their own, to schedule their own time, and to dig deeply into the inner workings of these
seemingly simple games, the students come to realize that they understand much more C#
than they thought, and that is the time that everything really falls into place. The key compo-
nent here is that the thought process changes from "I'm following this tutorial" to "I want to

 RUNNING UNITY FOR THE FIRST TIME 241

do this...now how do I make it happen?" At the end of this book, you will be prepared to tackle
your own game projects (or your own Classic Game Project, if you want). The tutorials in this
book can be a fantastic starting point on which to build your own games.

 Running Unity for the First Time
 Hopefully reading all of that will have given Unity enough time to download in the background.
Congratulations! You're about to embark on a challenging but rewarding journey.

 Installing Unity
 Depending on your personal system settings, the Unity installer should have placed itself in a
Downloads folder somewhere on your hard drive. I'm sure you've done this kind of thing several
times before, so find the file, run the installer with all default options, and let's get to work. This
is a big install, so it could take a while. In the final bit of the installation, it may look like it has
frozen; but don't worry, just give it some time to complete.

 Your First Launch: Licensing
 The first time you run Unity, it will open a built-in web page that will ask you to create a license
and register (see Figure 16.2), but it's really quite painless, and it shouldn't take much time at all.
You will need to choose between the free license and a 30-day trial of Unity Pro. At this time,
I recommend activating the free version of Unity, especially if you plan to work through this
book slowly. The Pro version will be nice to have for the prototype you'll make in Chapter 34 ,
"QuickSnap," so I recommend waiting until then to start the 30-day trial of Unity Pro. However,
choosing the 30-day Unity Pro trial now would allow you to see the beautiful reflections and
depth-of-field shaders in Figure 16.4 .

 You can choose to activate the 30-day trial any time, although you can only activate it once, and
once the trial is over, you will be reverted to the free version. If you choose the free version now,
you can always go back and upgrade to the Pro trial by selecting Unity > Manage License from
the menu bar on OS X (on PC, choose Help > Manage License).

 Once you click OK , you are prompted to create a Unity account. They'll send you an email to
confirm this (so you need to give them a valid email address). Then, you may be asked to take
part in a survey, which you can choose to skip if you want (through a link at the bottom of the
survey).

 After this, Unity will automatically open the AngryBots demo project. This is a large project, so it
may take several seconds to load. It may appear that Unity has frozen or is unresponsive, but if
you wait a bit, everything will show up.

242 CHAPTER 16 INTRODUCING OUR DEVELOPMENT ENVIRONMENT: UNITY

 Example Project: AngryBots
 When you first launch Unity, it will open a demo project and will show you a Welcome to Unity
window that pops up over the main Unity window. For now, close the Welcome to Unity window,
but feel free to explore the introductory videos and other links there later if you want more of
an introduction to Unity than is provided in this chapter.

 Unless you tell it not to (by holding the Option key at launch), Unity will open an existing
project every time you launch it. The default project for this is AngryBots (see Figure 16.3), a
game created internally by the Unity team to show off the capabilities of the engine. If for some
reason the default scene doesn't open automatically, you will need to double-click the Angry-
Bots Scene Asset to open it; it should be the first one listed in the Project window pane in the
bottom half of the screen. You'll see Project and several other window panes on screen that I'll
explain later, but for now, just click the large Play button at the top of the Unity window (the tri-
angle pointing to the right in the top, center of the Unity window) and enjoy playing this game
for a while. You can read about the controls for this game in the nearby tip.

 Figure 16.2 Unity licensing window

 RUNNING UNITY FOR THE FIRST TIME 243

 Figure 16.3 The Unity window when it opens for the first time

t ip

 ANGRYBOTS CONTROLS

 ■ Movement is controlled by the W, A, S, and D or arrow keys.

 ■ The gun will always aim at your mouse pointer.

 ■ Hold down the left mouse button to fire.

 You must stand very close to any circular door for a couple of seconds for it to
open.

 There are several computers that you need to stand in front of in order to unlock
them (turn the color of electric wires coming out of them from red to green).

 Here are some things to notice while you're playing:

 ■ Shaders: AngryBots is rife with shaders (see Figure 16.4), code written specifically for the
graphics card with the sole purpose of making the game look amazing. Special ones to
check out include the following:

 A. The depth-of-field image effect that makes some parts of the scene in-focus while
others are out-of-focus (see letter A in Figure 16.4). This will only appear in Unity Pro.

244 CHAPTER 16 INTRODUCING OUR DEVELOPMENT ENVIRONMENT: UNITY

 B. The reflections on the floors (especially of the laser sight) (see letter B in Figure 16.4).
This will only appear in Unity Pro.

 C. The animated water droplets on the floor when outside (see letter C in Figure 16.4). This
appears regardless of whether you are using Unity Pro or free.

 As explained earlier, if you chose to activate the free license rather than the 30-day Unity Pro
trial, you will not see the most advanced shaders. This is one of the few differences between the
free and Pro versions of Unity.

AA

BB

CC

 Figure 16.4 Screen showing the effects of various shaders

 ■ Character rigging and animation: Unity makes use of animation blending to enable the
player character to walk in one direction while looking and shooting in another.

 ■ AI pathing: Enemies will move around objects in a room to find and attack the player.

 Feel free to explore the whole space and see what elements of AngryBots you might want to
use in your own project. Go ahead, I'll wait.

 ...

 ...

 RUNNING UNITY FOR THE FIRST TIME 245

 So, what did you think? Did you blow up the base, or did you escape the exploding station? Did
you find the white museum? The controls of this game are a little unusual, but regardless, it's a
good showcase for how beautiful Unity can look.

 Now, let's do something really cool.

 Compile and Deploy AngryBots for the Web
 Once you've clicked the blue Stop button at the top of the Unity window (the square next to the
Play button), choose File > Build Settings from the menu bar (meaning that you should choose
the item Build Settings from the File menu, as shown in Figure 16.5).

 Figure 16.5 Build Settings menu selection

 You should see the Build Settings window shown in Figure 16.6 .

 From here, be sure to click Web Player on the left and then check Offline Deployment in the Web
Player options area. Click Build and Run , and Unity will ask you where to save the files. Type
 AngryBots Web Build for the filename and click Save .

 Unity will process this for a while and build a web version of the game for you. Once it's built,
your web browser will automatically be opened and sent to the page you just made as shown
in Figure 16.7 . Depending on your browser, you may be prompted to give the Unity plug-in
permission to run.

246 CHAPTER 16 INTRODUCING OUR DEVELOPMENT ENVIRONMENT: UNITY

 Figure 16.6 Unity build settings for the web player

 And there you go. You've compiled AngryBots for the web. Unity makes things like this very easy
so that you can focus on the interesting work: game design and development.

 Setting Up the Unity Window Layout
 The last thing we need to do before we start actually making things in Unity is to get our
environment laid out properly. Unity is very flexible, and one of those flexibilities is that it
allows you to arrange its window panes however you like. You can see several window layouts
by choosing various options from the Layout pop-up menu in the top-right corner of the Unity
window (see Figure 16.8).

 SETTING UP THE UNITY WINDOW LAYOUT 247

 Figure 16.8 Position of the Layout pop-up menu and selection of the 2 by 3 layout

 Figure 16.7 AngryBots running in a browser window

248 CHAPTER 16 INTRODUCING OUR DEVELOPMENT ENVIRONMENT: UNITY

 Choose 2 by 3 from this pop-up menu. This will be the starting point for making our layout.

 Before doing anything else, let's make the Project pane look a little cleaner. Click on the options
pop-up for the Project pane (shown in the black circle in Figure 16.9) and choose One Column
Layout .

 Figure 16.9 Choosing the One Column Layout for the Project pane

 Unity enables you to both move window panes around and adjust the borders between them.
As shown in Figure 16.10 , you can move a pane by dragging its tab (the arrow cursor) or adjust a
border between panes by dragging the border between them (the left-right resize cursor).

 Figure 16.10 Two types of cursors for moving and resizing Unity's window panes

 When you drag a pane by its tab, a small ghosted version will appear (see Figure 16.11). Some
locations will cause the pane to snap into place. When this happens, the ghosted version of the
tab will appear in the new location.

 SETTING UP THE UNITY WINDOW LAYOUT 249

Snapped
Pane

Snapped
Pane

Ghosted
Pane

Ghosted
Pane

 Figure 16.11 Ghosted and snapped panes when moving them around the Unity window

 Play around with moving the window panes until your window looks like Figure 16.12 .

 Figure 16.12 Proper layout for the Unity window...but it's still missing something

250 CHAPTER 16 INTRODUCING OUR DEVELOPMENT ENVIRONMENT: UNITY

 Now the last thing we need to add is the Console pane. From the menu bar, choose Window >
Console. Then drag the Console pane below the Hierarchy pane. You'll also need to move the
Project pane after you've done this to create the final layout shown in Figure 16.13 .

 Figure 16.13 Final layout of the Unity window, including the Console pane

 Now you just need to save this layout in the Layout pop-up menu so that you don't have to
go through all that again. Click the Layout pop-up menu and choose Save Layout , as shown in
 Figure 16.14 .

 Figure 16.14 Saving the layout

 SUMMARY 251

 Save this layout with the name Game Dev, with a leading space before the G in Game (i.e.,
" Game Design"). By putting a space at the beginning of the name, you make sure that this lay-
out is sorted to the top of the menu. Now, any time you need to return to this layout, you
can simply choose it from this pop-up menu.

 Learning Your Way Around Unity
 Before we can really get into coding things, you need to get to know the various window panes
that you've just arranged. Refer back to Figure 16.13 as we discuss each pane:

 ■ Scene pane: The Scene pane allows you to navigate around your scene in 3D and to select,
move, rotate, and scale objects.

 ■ Game pane: The Game pane is where you will preview your actual gameplay; it's the win-
dow in which you played AngryBots before compiling the web build. This pane also shows
you the view from the Main Camera in your scene.

 ■ Hierarchy pane: The Hierarchy pane shows you every GameObject that is included in your
current scene. For now, you can think of each scene as a level of your game. Everything that
exists in your scene, from the camera to your player-character, is a GameObject.

 ■ Project pane: The Project pane contains all of the assets that are included in your project.
An asset is any kind of file that is part of your project, including images, 3D models, C#
code, text files, sounds, fonts and so on. The Project pane is a reflection of the contents of
the Assets folder within your Unity project folder on your computer hard drive. These assets
are not necessarily in your current scene.

 ■ Inspector pane: Any time you click on an asset in the Project pane or a GameObject in
the Scene or Hierarchy panes, you will be able to see and edit information about it in the
Inspector pane.

 ■ Console pane: The Console pane will allow you to see messages from Unity about errors
or bugs in your code as well as messages from yourself that will help you understand the
inner workings of your own code. 1 We will use the Console pane extensively in Chapter 18 ,
"Hello World: Your First Program," and Chapter 19 , "Variables and Components."

 Summary
 That's it for setup. Now, let's move on to actually developing! As you've seen in this chapter,
Unity can create some pretty stunning visuals and compelling gameplay. Though the process
of making beautiful 3D models and shaders is outside the scope of this book, it's important for
you to know the extent of Unity's graphical capabilities. In the next chapter, you'll learn more
about C#, the language you'll be using for game development.

 1 Unity's print() and Debug.Log() functions allow you to print messages to the Console pane.

This page intentionally left blank

This page intentionally left blank

INDEX

Numbers
 3D animation/model resources, 854 - 855
 3D printing, touch as an Inscribed Layer

aesthetic, 47 - 48

 A
 A Pattern Language , 45
 AAA (top) games, costs in developing, 213
 Achiever player type (diamonds), 67
 acquaintances as playtesters, 145
 action, fi ve-act dramatic narrative structures

 falling action (Act IV), 51
 rising action (Act II), 51

 action games
 Omega Mage

 changing rooms, 764 - 768
 creating an inventory, 747 - 754
 creating the game environment, 730 - 735
 customizing setup, 789
 damaging enemies, 772 - 777
 damaging players, 777 - 78 2
 enemy factories, 785 - 789
 enemy interfaces, 782 - 785
 EnemyBug GameObjects, 770 - 780
 EnemySpiker GameObjects, 780 - 782
 example of play, 728 - 729
 fi re ground spell, 754 - 762
 fi re spell, 761 - 762
 fi re-and-forget spells, 762 - 764
 ground spell, 756 - 761
 importing Unity asset packages, 729
 Mage GameObject (player character),

 735 - 737
 mouse interaction, 737 - 747
 project setup, 729

 selecting elements from inventory, 749 - 754
 spawning enemies, 768 - 782

 puzzles in, 188
 boss fi ghts, 195
 chain reaction puzzles, 194
 physics puzzles, 194
 sliding block/position puzzles, 193
 stealth puzzles, 194
 traversal puzzles, 194

 action lists (GameObjects), Apple Picker game
analysis, 231 - 232

 actions
 discernable actions (meaningful play), 64
 integrated actions (meaningful play), 64 - 65
 tracking and reacting to (empathetic

characters versus avatars), 57
 Activision, Kaboom! game analysis (systems

thinking), 229 - 234
 Adkinson, Peter

 innovation and the design process, 97 - 98
 ADL (Automated Data Logging) and

playtesting, 151
 Adobe software, educational software

discounts, 855
 Aeon of Strife , game mods and cultural

mechanics, 81 - 82
 aesthetics

 Cultural Layer (Layered Tetrad), 82
 cosplay, 82
 defi ning, 35
 fan art, 82
 gameplay as art, 83

 Dynamic Layer (Layered Tetrad), 70
 defi ning, 34
 environmental aesthetics, 70 , 73 - 74
 procedural aesthetics, 70 - 73

 Elemental Tetrad framework, 27 - 28

AESTHETICS858

 Inscribed Layer (Layered Tetrad), 46
 conveying information, 48 - 49
 conveying mood, 48
 defi ning, 33
 fi ve aesthetic senses, 47 - 48
 goals of aesthetic design, 48 - 49
 hearing, 47
 immediacy of sound (Inscribed Layer

aesthetics), 47
 smell, 48
 touch, 47 - 48
 vision, 47

 MDA framework, 21 - 24
 Snakes and Ladders , 21 - 24

 Agile software development methodologies,
 405 - 407 , 416

 Agon (competitive play), Le Jeux et Le Hommes
and the four diff erent kinds of play, 110

 Aguilar, Chris, Vectorized Playing
Cards 1.3

 Bartok , 622
 Prospector Solitaire , 562

 Alea (chance-based play), Le Jeux et Le Hommes
and the four diff erent kinds of play, 110

 Alexander, Christopher, and the purpose of
space (inscribed game mechanics), 45

 alpha phase (project development
process), 103

 ambiguous decisions, importance of, 121
 analysis phase (iterative design), 90 - 91

 audience, determining, 91
 fastest path to testing, determining, 92
 prior art, researching, 92
 repetition, importance of, 96 - 97
 resources, determining, 91 - 92

 analyzing game play (playtesting) in Bartok
 questions, asking, 7
 rounds, comparing, 9

 AND operator (&&) in C# coding, 300
 Anderson, Nels, and intent versus

execution, 187
 AngryBots , Unity project example, 242 - 246
 Animal Crossing , fulfi lling play as a player-centric

goal of game design, 110

 animation
 Bartok digital prototype, 623
 model resources and, 854 - 855
 procedural animation, 72
 Word Game , 687 - 690

 antagonism (Act II), three-act dramatic narrative
structure, 52

 Apache OpenOffi ce Calc. See Calc
 Apple Picker , 419

 Apple GameObject, 424 - 425
 AppleTree GameObject, 421 - 423
 art assets, 421 - 425
 Basket GameObject, 425
 C# coding, 425 - 426

 adding high scores, 445 - 448
 adding points, 441 - 442
 basic movement, 431 - 432
 catching apples, 439 - 440
 changing direction, 432 - 434
 destroying baskets, 444 - 445
 dropped apple notifi cations, 443 - 444
 dropping apples, 434 - 435
 Game Over screen, 448
 GUI and game management, 440 - 448
 increasing diffi culty, 448
 instantiating baskets, 437 - 438
 moving baskets via mouse, 438 - 439
 score counter, 440 - 441
 setting physics layers, 435 - 436
 Start screen, 448
 stopping apples from falling too far, 437

 camera setup, 425 - 426
 game analysis (systems thinking), 229

 GameObject action lists, 231 - 232
 GameObject fl owcharts, 232 - 234
 GameObjects, 230 - 231
 gameplay, 230

 preparing for, 421
 project setup, 420
 time-based games, 431 - 432

 ARG (Alternate Reality Games)
 Assassin , 17
 boundary mechanics, 44
 Majestic , 17

 859AVATARS

 arrays (C# coding), 328 , 333 - 344
 basic array creation, 333 - 334
 converting

 arrays to lists, 336 - 337
 lists to arrays, 331

 empty elements
 foreach loops and, 335
 empty elements within arrays, 334 - 335

 jagged arrays, 340 - 342
 lists versus, 344
 methods, 336
 multidimensional arrays, 337 - 340
 properties, 336
 static methods, 336
 zero indexed arrays, 331

 arrows, indirectly guiding players by, 202 - 203
 art

 art assets, 854
 fan art (cultural aesthetics), 82
 gameplay as art (cultural aesthetics), 83
 prior art, researching (analysis phase of

iterative design), 92
 procedural visual art, 71 - 72

 Art of Game Design: A Book of Lenses,
The , 4 , 11 , 20 , 27

 guiding players indirectly, 200 - 206
 interest as a player-centric goal of

design, 119
 listening during design phase (iterative

design), importance of, 93
 Ten Rules of Probability Every Game Designer

Should Know , 165 - 169
 testing phase (iterative design), 96

 Art of Puzzle Design, The
 eight steps of puzzle design, 191 - 192
 genres of puzzles, 187 - 188
 goals of eff ective design, 192 - 193
 reasons for playing puzzles, 189
 required modes of thought in solving, 189

 aspect ratios
 QuickSnap , 697
 Space SHMUP , 490

 Assassin , 17

 Assassin's Creed
 player guidance, 202 , 205
 limited possibilities and interactive or linear

narrative, 53 - 54
 resolution (screen), 73

 Assassin's Creed IV: Black Flag
 experiences and space (Inscribed Layer

mechanics), 46
 player guidance, 199
 premises narratives, examples of, 49

 asset packages (Unity)
 Prospector Solitaire , 562
 QuickSnap , 696- 697
 Space SHMUP , 488 - 490

 Assets folder (Unity), 265 - 266
 assigning tasks in burndown charts, 414 - 415
 AT (Automated Testing), 153
 Atkinson, Kevin, on word lists and

Word Game, 660
 Atlas Games, Lunch Money and house rules

(dynamic mechanics), 67
 attention and involvement as player-centric

goals of design, 118 - 120
 audience, determining (analysis phase of

iterative design), 91
 audio assets, Unity Asset Store, 854
 audio design, indirectly guiding players

by, 204 - 205
 auditory play environments (environmental

aesthetics), 73 - 74
 noisy environments, 74
 volume control, 74

 AutoDesk software, educational software
discounts, 855

Automated Testing (AT), 153
Automated Data Logging (ADL) and play

testing, 151
 autotelic empowerment as a player-centric goal

of design, 116 - 117
 avatars

 empathetic characters versus (interactive
versus linear narrative), 55 - 57

 multiple dialogue choices, 56 - 57
 role fulfi llment, 56
 silent protagonists, 56

AVERAGE DAMAGE (WEAPONS AND GAME BALANCE)860

 tracking and reacting to player
actions, 57

 guiding players indirectly by, 205
 average damage (weapons and game balance)

 calculating, 179
 charting, 179 - 180

 axis mapping
 InputManager (Unity), 491 - 494
 Microsoft controllers, 848 - 849

 B
 balance (See game balance)
 Bartle, Richard, and types of players, 67 - 68
 Bartok, 4-5

 analyzing game play, 7
 deblocking, 6 - 7
 digital prototype, building, 621 - 622 , 655

 backgrounds, 622 - 623
 build settings, 623 - 624
 card animation, 623
 creating cards, 624 - 629
 fanning the hand, 638 - 640
 game logic, 653 - 655
 layouts, 629 - 638
 LINQ (Language Integrated Query) and C#

coding, 640 - 641
 managing initial deal, 642 - 643
 managing turns, 646 - 653
 moving cards, 641 - 642
 rules of the game, 622
 sorting order (2D-depth), 643 - 646

 digital version, obtaining, 4 - 5
 dynamic procedures, 64
 objective, 5
 playtesting, 6 - 10
 riffl e shuffl ing, 7
 rounds, comparing, 9
 rules of, 5 , 8

 Bateman, Chris
 games, defi ning, 15
 Ilinx (vertigionous play), 110
 Imaginary Games , 15 , 110 , 115 - 116
 structured confl ict as a player-centric goal of

design, 115 - 116

 BDV (Burndown Velocity) and burndown charts,
 414 - 416

 Beale, Alan, on word lists and Word Game, 660
 Beck, Kent, Manifesto for Agile Software

Development , 406 - 407
 behavioral change, designing games for, 109
 Bejeweled 2 , 186
 beta phase (project development

process), 103
 beta tests (playtesting)

 closed playtesting, 150
 limited playtesting, 150
 open playtesting, 150 - 151

 Bethesda Softworks
 actions (players), tracking and reacting

to (empathetic characters versus
avatars), 57

 Creation Kit, game mods and cultural
mechanics, 82

 Fallout 3 , side quests, 54
 Skyrim

 confl icting objectives (Inscribed layer
mechanics), 42

 fi nal outcomes (dynamic mechanics), 69
 game mods and cultural mechanics, 82
 importance of objectives (Inscribed layer

mechanics), 42
 narrative game mods, 83
 side quests, 54

 Bézier curves, 841 - 843
 recursive function to solve, 844 - 845
 recursive functions and, 815

 Bioware
 Mass Eff ect

 multiple dialogue choices (empathetic
characters versus avatars), 57

 player interaction patterns, 43
 Star Wars: Knights of the Old Republic , limited

possibilities and interactive or linear
narrative, 53 - 54

 bitwise Boolean operators (C# coding),
 302 , 801 - 802

 Blade Runner , multiple dialogue choices
(empathetic characters versus avatars), 57

 Blender software, educational software
discounts, 855

 861BULLETS, DETERMINING PERCENT CHANCE OF TO HIT (WEAPONS AND GAME BALANCE)

 Blizzard
 Starcraft , game mods and cultural

mechanics, 81 - 82
 Warcraft III , game mods and cultural

mechanics, 81 - 82
 board games, systems thinking, 226
 Bogost, Ian, and the magic circle concept and

lusory attitude, 112
 Boids project (OOP in C# coding), 394

 building simple models, 394 - 396
 project setup, 394
 scripts, 397 - 403

 Book of Games: Strategies, Tactics & History,
The , 22

 bool variables (C# coding), 283
 Boolean operations (C# coding), 299 - 300 , 313

 bitwise Boolean operators, 302 , 801 - 802
 combining, 302 - 303
 logical equivalence of, 303
 AND operator (&&), 300
 NOT operator (!), 300
 OR operator (||), 300
 shorting operators versus non-shorting

operators, 301 - 302
 boss fi ghts as puzzles, 195
 Botermans, Jack

 Book of Games: Strategies, Tactics & History,
The , 22

 Snakes and Ladders , 22
 boundaries

 Alternative Reality Games, 44
 Formal, Dynamic, and Dramatic

framework, 25
 Inscribed Layer (Layered Tetrad), 40 , 44

 Box Collider component (GameObjects),
 272 , 295

 brainstorming (ideation), 98
 collection phase, 99
 collision phase, 100 - 101
 discussions, 101
 expansion phase, 98 - 99
 rating phase, 101

 Brice, Mattie, and Mainichi
 experiential understanding as a

player-centric goal of design, 122 - 123

 personal expression/communication as a
goal of game design, 108

 bridge puzzles, 188
 brightness . See also color

 environmental aesthetics (Dynamic
Layer), 73

 indirectly guiding players by (contrast), 204
 Brigs, Jeff , and music in C.P.U. Bach , 71
 bullets, determining percent chance of to hit

(weapons and game balance), 178
 Bungie and Halo

 inscribed dramatics, example of, 58
 limited possibilities and interactive or linear

narrative, 53 - 54
 prior art, researching (analysis phase of

iterative design), 92
 Red vs. Blue , machinima example, 83 - 84

 Burgun, Keith
 ambiguous decisions, importance of, 121
 fun in game design, the importance of,

 109 - 110
 Game Design Theory: A New Philosophy for

Understanding Games , 11 , 83 , 118
 gameplay as art (cultural aesthetics), 83
 games, defi ning, 11 , 14 - 15
 interesting decisions as a player-centric goal

of design, 120 - 121
 performative empowerment as a

player-centric goal of design, 118
 burndown charts, 409

 assigning tasks, 414 - 415
 BDV (Burndown Velocity), 414 - 416
 creating, 416
 estimated hours versus real hours, 413
 example of, 410 - 412
 prioritizing tasks, 414 - 415

 button mapping, Microsoft controllers, 848 - 849

 C
 C#, 253 , 262

 arrays, 328 , 333 , 344
 basic array creation, 333 - 334
 converting arrays to lists, 336 - 337
 converting lists to arrays, 331

 BUNGIE AND HALO862

 empty elements and foreach loops, 335
 empty elements within arrays, 334 - 335
 jagged arrays, 340 - 342
 lists versus arrays, 344
 methods, 336
 multidimensional arrays, 337 - 340
 properties, 336
 static methods, 336
 zero indexed arrays, 331

 Bézier curves and recursive functions, 815
 Boolean operations, 299 - 300 , 313

 bitwise Boolean operators, 302 , 801 - 802
 combining, 302 - 303
 logical equivalence of, 303
 AND operator (&&), 300
 NOT operator (!), 300
 OR operator (||), 300
 shorting operators versus non-shorting

operators, 301 - 302
 C# 4.0 Pocket Reference , 854
 camelCase naming conventions, 286
 classes, 379 - 380 , 390

 elements of, 380 - 381
 Enemy Class sample project, 381 - 384 ,

 387 - 388
 inheritance, 387 - 389
 instances, 289 - 288
 instances as GameObject components,

 385 - 387
 naming conventions, 287
Object-Oriented Programming (OOP),

258-259
 properties, 384 - 385
 subclasses, 388 - 389
 superclasses, 388 - 389

 collections, 327 - 328
 arrays, 328 , 333 - 337
 jagged, 340 - 342
 multidimensional, 337-340
 lists, 328 - 333
 jagged , 342 - 344

 comparison statements, 299 , 303 , 313
 Greater Than comparison

operator (>), 306

 Greater Than or Equal To comparison
operator (>=), 306 - 307

 Is Equal To comparison operator
(==), 304

 Less Than comparison operator (<), 306
 Less Than or Equal To comparison operator

(<=), 306 - 307
 Not Equal To comparison operator

(!=), 306
 compiled language, C# as, 254 - 256
 conditionals, 299 , 307

 if statements, 307 - 310
 switch statements, 310 - 313

 coroutines, 660, 802 - 803
 CSharp Yellow Book , 854
 debugging, 363 - 364

 attaching debugger to Unity, 372 - 374
 attaching/removing scripts, 366 - 367
 compile-time bugs, 364 - 366
 QuickSnap , 713 - 714
 runtime errors, 367 - 369
 stepping through code, 369 - 371 , 373 - 377
 variables, 375 - 376

 Enemy Class sample project
 class inheritance, 387 - 388
 project setup, 381 - 384

 enum, 500 , 803 - 804
 equality testing, 304
 features of (overview), 254
 function delegates, 525 - 531 , 805 - 807
 functions, 257 - 258 , 349 - 350 , 362

 defi ning, 350 - 353
 naming, 287 , 356
 optional parameters, 359
 overloading, 358
 parameters and arguments, 353 - 354
 params keyword, 359 - 361
 reasons for using, 356 - 357
 recursive functions, 361 - 362
 returning values, 354 - 356
 static functions, 288
 void, returning, 355 - 356

 GameObjects, 293 - 294
 Box Collider component, 295
 Capsule Collider component, 295
 Collider components, 295 - 296

 863C#

 Mesh Collider component, 295
 Mesh Filter component, 295
 Renderer component, 295
 RigidBody component, 296
 scripts as GameObject components,

 296 - 297
 Sphere Collider component, 295
 Transform component, 294 - 295

 interfaces, 782 - 785 , 807 - 810
 LINQ (Language Integrated Query)

and, 640 - 641
 lists, 328 - 331 , 344

 arrays versus lists, 344
 converting arrays to lists, 336 - 337
 converting lists to arrays, 331
 jagged lists, 342 - 344
 methods, 331
 properties, 331
 zero indexed lists, 331

 loops, 315 , 325
 do...while loops, 316 , 319 - 320
 for loops, 316 , 320 - 322 , 342
 foreach loops, 316 , 322 , 335
 infi nite loops, 317 - 318
 jump statements in loops, 322 - 324
 types of, 316
 while loops, 316 - 319

 managed code, C# as, 256
 modulus operator (%), 325
 MonoDevelop editor, creating C# scripts,

 266 - 271
 naming conventions, 286 - 287 , 810
 online resources, 853 - 854
 OOP (Object-Oriented Programming),

 258 -259, 391 , 403
 Boids project, 394 - 403
 defi ning through metaphors, 392 - 393

 operator precedence, 810
 order of operations, 810
 race conditions, 811 - 814
 reasons for choosing, 238 - 239
 reserve functions, 814 - 815
 runtime speed, 239
 scripts

 attaching to scene Main Camera, 797 - 798
 creating, 266 - 271 , 797
 elements of, 380 - 381
 GameObject components, scripts as,

 296 - 297
 search tips, 854
 software design patterns, 815

 Factory design pattern, 816
 Singleton design pattern, 815 - 816
 Strategy design pattern, 816 - 817

 strongly typed language, C# as, 256 - 257
 subclasses, 589 - 592
 superclasses, 591
 syntax of, 259 - 260
 systems thinking and, 227
 time-based games, 431 - 432
 tips for learning, 239 - 241
 Unity, online resources, 853 - 854
 variables, 256 - 257 , 282

 bool variables, 283
 char variables, 285
 class variables, 286
 Color variables, 290 - 291
 debugging C# coding, 375 - 376
 declaring, 282 - 283
 defi ning, 282 - 283
 equality testing, 304
 fl oat variables, 284
 instance variables, 289
 int variables, 284
 literal values, 282 - 283
M athf variables, 292
 naming conventions, 286- 287
 private variables, 287
 Quaternion variables, 291 - 292
 scope of, 286 , 817 - 820
S creen variables, 292
 string variables, 285
 SystemInfo variables, 293
 types of, 283 - 286
 Unity variables, 287 - 294
 Vector3 variables, 288 - 290

 XML and, 817 - 821

C#864

 Caillois, Roger, on Le Jeux et Le Hommes and the
four diff erent kinds of play, 110

 Calc, Open Offi ce
 charts, creating, 164
 COUNTIF formula, weighted probabilities,

 174 - 175
 dice probability, determining, 157 - 158

 adjusting column widths, 160
 charting results, 164
 counting die roll sums, 163 - 164
 creating Die A row, 160 - 161
 creating Die B row, 161 - 162
 creating probability distribution charts, 164
 creating rows, 159
 entering data in cells, 158 - 159
 labeling rows, 162 - 163
 spreadsheets, creating, 158
 summing dice role results, 163

 FLOOR formula, weighted probabilities,
 174 - 175

 formula editing, exiting, 164
 Function Wizard

 creating rows, 160 - 161
 INDEX formula, weighted probabilities,

 174 - 175
 installing, 156 - 157
 MOD formula, 160-161
RAND formula, weighted probabilities,

 174 - 175
 REPT formula, showing overall damage

(weapons and game balance), 181
 ROUND formula, showing overall damage,

(weapons and game balance), 181
 SUM formula, showing overall damage

(weapons and game balance), 181
 weapons, balancing, 177 - 178

 average damage, 179 - 180
 Chapter 9 prototype example, 182 - 183
 duplicating weapon data, 180 - 181
 overall damage, showing, 181
 percent chance for each bullet,

determining, 178
 rebalancing weapons, 177 - 178

 weighted probabilities, 174 - 175
 Call of Duty , limited possibilities and interactive

or linear narrative, 53 - 54
 Call of Duty: Modern Warfare , researching prior

art (analysis phase of iterative design), 92
 calls to action, directly guiding players by, 199
 camelCase naming conventions

(C# coding), 286
 camera setups

 Apple Picker , 425 - 426
 follow cameras, 462 - 466
 indirectly guiding players by, 203
 Mission Demolition , 451 - 453 , 462 - 466
 orthographic cameras, 425 - 426
 perspective cameras, 425 - 426
 Space SHMUP , 490

 campaigns (RPG), tips for running, 846 - 847
 Capsule Collider component

(GameObjects), 295
 card games

 Bartok , 621 - 622 , 655
 backgrounds, 622 - 623
 build settings, 623 - 624
 card animation, 623
 creating cards, 624 - 629
 fanning the hand, 638 - 640
 game logic, 653 - 655
 layouts, 629 - 638
 LINQ (Language Integrated Query) and C#

coding, 640 - 641
 managing the initial deal, 642 - 643
 managing turns, 646 - 653
 moving cards, 641 - 642
 rules of the game, 622
 sorting order (2D-depth), 643 - 646

 custom card decks, 172
 Poker

 game balance and, 176 - 177
 Red Dead Redemption rule mechanics, 44

 Prospector Solitaire , 561
 art assets, 614 - 615
 backgrounds, 614 - 615

 865CHARACTERS

 beginning/end of round announcements,
 615 - 616

 chain scoring, 605 - 607
 clickable card functionality, 597 - 600
 creating cards from sprites, 566 - 581
 displaying scores to players, 607 - 614
 draw and discard actions, 597 - 604
 earning points, 604 - 605
 example of play, 584 - 585
 game logic, 597 - 604
 giving player feedback on scores, 616 - 619
 gold cards, 620
 importing images as sprites, 564 - 566
 importing Unity asset packages, 562
 matching drawn cards, 600 - 604
 mine tableau layout, 585 - 592
 mobile device build settings, 562 - 563 , 620
 positioning cards on tableau, 592 - 594
 project setup, 562
 rules of the game, 583 - 584
 scoring, 604 - 619
 setting up sorting layers on tableau,

 594 - 597
 shuffl ing cards, 581 - 583

 randomization, 171 - 173
 riffl e shuffl ing, 7
 shuffl ing, 7 , 172 - 173
 Vectorized Playing Cards 1.3 by Chris Aguilar

 Bartok , 622
 Prospector Solitaire , 562

 careers in the digital game industry, 217
 following up, 218 - 219
 interviewing, 219 - 220
 networking, 217 - 218
 salaries, 220

 Cash, Bryan
 Skyrates , 111
 sporadic-play games and lusory attitude,

 111 - 112
 cells (Calc spreadsheets)

 adjusting column widths, 160
 entering data, 158 - 159
 MOD formula, 160 - 161
 SUM formula, 163

 chain reaction puzzles, 194

 chance-based play (Alea), Le Jeux et Le Hommes
and the four diff erent kinds of play, 110

 changing
 direction, Apple Picker , 432 - 434
 your mind (design process), 101

 char variables (C# coding), 285
 characters

 empathetic characters versus avatars
(interactive versus linear narrative), 55 - 57

 FDD framework, 26
 Inscribed Layer (Layered Tetrad), 49
 NPC, development of (interactive

narratives), 55
 charts (Calc)

 average damage (weapons and game
balance), 179 - 180

 creating, 164
 Cheap Ass Games, touch as an Inscribed Layer

aesthetic, 47
 Cheater player type, 68
 Chen, Jenova

 fl ow as a player-centric goal of design, 113
 Journey , 144 - 145
 tissue playtesters, 144 - 145

 chess puzzles, 188
 Chief Plenty-Coups and coup-counting as a

game, structured confl ict as a player-centric
goal of design, 115 - 116

 Chowanec, John, on fortune as a goal of game
design, 107

 Chrono Trigger , limited possibilities and
interactive or linear narrative, 53 - 54

 Chutes and Ladders , 26
 Cialdini, Robert B., and Infl uence: The Psychology

of Persuasion , 4
 citizens (player roles), 44
 Civilization , tables, 40 - 41
 class variables (C# coding)
 classes (C# coding), 379 - 380 , 390 . See also OOP

(Object-Oriented Programming) in C#
 elements of, 380 - 381
 Enemy Class sample project

 inheritance, 387 - 388
 project setup, 381 - 384

 inheritance, 387 - 388

CHARACTERS866

 instances, 289 - 288 , 385 - 387
 naming conventions, 287
 properties, 384 - 385
 subclasses, 388 - 389
 superclasses, 388 - 389

 clear decisions as part of player-centric
design, 122

 climaxes
 Red Dead Redemption , 53
 fi ve-act dramatic narrative structures, 51
 three-act dramatic narrative structure, 53

 closed playtesting (beta tests), 150
 Clover Studios and Okami

 empathetic characters versus avatars, 56
 touch as an Inscribed Layer aesthetic, 48

 code libraries and systems thinking, 228
 collaborators (player roles), 43
 collection phase (brainstorming/ideation), 99
 collections (C# coding), 327 - 328

 arrays, 328 , 333 , 344
 basic array creation, 333 - 334
 converting arrays to lists, 336 - 337
 converting lists to arrays, 331
 empty elements and foreach loops, 335
 empty elements within arrays, 334 - 335
 jagged arrays, 340 - 342
 lists versus arrays, 344
 methods, 336
 multidimensional arrays, 337 - 340
 properties, 336
 static methods, 336
 zero indexed arrays, 331

 lists, 328 - 331 , 344
 arrays versus lists, 344
 converting arrays to lists, 336 - 337
 converting lists to arrays, 331
 jagged lists, 342 - 344
 methods, 331
 properties, 331
 zero indexed lists, 331

 colleges/universities, Games Education
Programs, 215 - 217

 Collider components (GameObjects), 272 ,
 295 - 296

 Collins, Andy on XP (Experience Points) and
cumulative outcomes (dynamic mechanics),
 69

 collision phase (brainstorming/ideation),
 100 - 101

 color . See also brightness
 Color variables (C# coding), 290 - 291
 colorblindness, player considerations

(environmental aesthetics), 74
 indirectly guiding players by, 204
 Word Game , 690 - 692

 columns (Calc spreadsheets)
 adjusting widths, 160
 labeling rows, 162 - 163

 combat and gameplay development (paper
prototyping)

 control points, capturing, 137
 counterattacks, 135
 cover, 136
 health, 136
 interception fi re, 137
 weapons/fi ring, 134 - 135

 communication (personal) as a goal of game
design, 108

 community as a goal of game design,
107 - 108 , 120

 comparison statements (C# coding),
299 , 303 , 313

 Greater Than comparison operator (>), 306
 Greater Than or Equal To comparison

operator (>=), 306 - 307
 Is Equal To comparison operator (==), 304
 Less Than comparison operator (<), 306
 Less Than or Equal To comparison operator

(<=), 306 - 307
 Not Equal To comparison operator (!=), 306

 competition
 Agon (competitive play), Le Jeux et Le

Hommes and the four diff erent kinds of
play, 110

 867COSINE/SINE

 multilateral competition (player interaction
patterns), 43

 player roles, 43
 team competition (player interaction

patterns), 43
 unilateral competition (player interaction

patterns), 43
 compiling

 AngryBots , Unity project example, 245 - 246
 compile-time bugs, debugging in C# coding,

 364 - 366
 complex problems, breaking down (systems

thinking), 229
 computer languages and systems thinking, 227
 Concept of Flow , The, 113 - 114 , 116 - 117
 concepts

 developing concepts (paper prototyping),
 129 - 130

 new concepts, teaching by player
guidance, 207

 integration, 209
 sequencing, 207 - 209

 conditionals (C# coding), 299 , 307
 if statements, 307 - 310
 switch statements, 310 - 313

 conferences
 careers in the digital game industry, 217 - 218
 items to take when attending, 218

 confl ict (structured) as a player-centric goal of
design, 115 - 116

 confl icting objectives (Inscribed layer
mechanics), 42

 Conrad, Joseph, The Heart of Darkness as an
example of inscribed dramatics, 57 - 58

 Console pane (Unity), 251
 constraints, indirectly guiding players by, 200
 construction puzzles, 188
 contrast (brightness), indirectly guiding players

by, 204
 control points and gameplay development

(paper prototyping), capturing, 137
 controllers (Microsoft)

 axis mapping, 848 - 849
 button mapping, 848 - 849

 cooperative play (player interaction
patterns), 43

 Core War , example of player's role in game
design, 62

 coroutines (C# coding), 663 , 802 - 803
 cosine/sine, 822 - 825
 cosplay (cultural aesthetics), 82
 costs of AAA (top) game development, 213
 Counter Strike , game mods and cultural

mechanics, 81 - 82
 counterattacks, gameplay development (paper

prototyping), 135
 COUNTIF formula (Calc), weighted probabilities,

 174 - 175
 coup-counting, structured confl ict as a

player-centric goal of design, 115 - 116
 cover in gameplay development (paper

prototyping), determining, 136
 C.P.U. Bach , music in, 71
 Crazy Cakes , ADL (Automated Data Logging)

and playtesting, 151
 Creation Kit (Bethesda Softworks), game mods

and cultural mechanics, 82
 crossword puzzles, 188
 CSharp Yellow Book , 854
 Csíkszentmihályi, Mihaly

 autotelic empowerment as a player-centric
goal of design, 116 - 117

 Concept of Flow , 113 - 114 , 116 - 117
 fl ow as a player-centric goal of design,

 113 - 114
 Flow: The Psychology of Optimal Experience ,

 114 , 116 - 117
 Cultural Layer (Layered Tetrad), 34 - 35 , 37 - 38 ,

 79 , 87
 aesthetics, 82

 cosplay, 82
 defi ning, 35
 fan art, 82
 gameplay as art, 83

 cultural impact of games, 86 - 87

COSPLAY (CULTURAL AESTHETICS868

 defi ning, 80 - 81
 designer responsibilities, 37
 law and cultural impact of games, 86 - 87
 mechanics, 81

 custom game levels, 82
 defi ning, 35
 game mods, 81 - 82

 narrative, 83
 defi ning, 36
 fan fi ction as cultural narrative, 83
 game mods as cultural narrative, 83
 machinima, 83 - 84

 technology, 84
 defi ning, 36
 external tools (player-built) and cultural

technology, 84 - 85
 game technology used in other fi elds, 84

 transmedia, 85 - 86
 cumulative outcomes (dynamic mechanics), 69
 custom card decks, 172
 custom game levels (cultural mechanics), 82

 D
 damage, weapons and game balance

 average damage
 calculating, 179
 charting, 179 - 180

 overall damage, showing, 181
 deblocking in Bartok , 6 - 7
 debugging C# coding, 363 - 364

 attaching debugger to Unity, 372 - 374
 attaching/removing scripts, 366 - 367
 compile-time bugs, 364 - 366
 QuickSnap , 713 - 714
 runtime errors, 367 - 369
 stepping through code, 369 - 371 , 373 - 377
 variables, 375 - 376

 decimals and probability, 165 - 166
 decision-making as a player-centric goal of

design, 120 - 122
 ambiguous decisions, importance of, 121

 clear decisions, 122
 double-edged decisions, 121
 meaningful play (dynamic procedures)

 discernable actions, 121
 integrated actions, 121

 novel decisions, 121
 decks of cards

 Bartok , 621 - 622 , 655
 backgrounds, 622 - 623
 build settings, 623 - 624
 card animation, 623
 creating cards, 624 - 629
 fanning the hand, 638 - 640
 game logic, 653 - 655
 layouts, 629 - 638
 LINQ (Language Integrated Query) and C#

coding, 640 - 641
 managing the initial deal, 642 - 643
 managing turns, 646 - 653
 moving cards, 641 - 642
 rules of the game, 622
 sorting order (2D-depth), 643 - 646

 custom card decks, 172
 art assets, 614 - 615
 backgrounds, 614 - 615
 beginning/end of round announcements,

 615 - 616
 chain scoring, 605 - 607
 clickable card functionality, 597 - 600
 creating cards from sprites, 566 - 581
 displaying scores to players, 607 - 614
 draw and discard actions, 597 - 604
 earning points, 604 - 605
 example of play, 584 - 585
 game logic, 597 - 604
 giving player feedback on scores, 616 - 619
 gold cards, 620
 importing images as sprites, 564 - 566
 importing Unity asset packages, 562
 matching drawn cards, 600 - 604
 mine tableau layout, 585 - 592
 mobile device build settings, 562 - 563 , 620

 869DESIGN PHASE (ITERATIVE DESIGN)

 positioning cards on tableau, 592 - 594
 project setup, 562
 rules of the game, 583 - 584
 scoring, 604 - 619
 setting up sorting layers on tableau,

 594 - 597
 shuffl ing cards, 581 - 583

 Prospector Solitaire , 561
 randomization, 171 - 173
 riffl e shuffl ing, 7
 shuffl ing, 7 , 172 - 173
 Vectorized Playing Cards 1.3

 Bartok , 622
 Prospector Solitaire , 562

 Defense of the Ancients , game mods and cultural
mechanics, 81 - 82

 degrees (colleges/universities), Games
Education Programs, 215 - 217

 delegates (function) in C# coding, 805 - 807
 Demo Projects section (Unity website) , 852
 denouement (Act V), fi ve-act dramatic narrative

structures, 51
 deploying AngryBots , Unity project example,

 245 - 246
 design goals, 105 - 106 , 124

 designer-centric goals, 106
 community, 107 - 108
 fame, 107
 fortune, 107
 greater good, 108 - 109
 personal development/experience, 109
 personal expression/communication, 108

 player-centric goals, 106
 attention and involvement, 118 - 120
 empowerment, 116 - 118
 experiential understanding, 122 - 123
 fi ero, the concept of, 110
 fl ow, 113 - 115
 fun, 109 - 110
 interesting decisions, 120 - 122
 lusory attitude, 110 - 112
 structured confl ict, 115 - 116

 Design Patterns

 software design patterns, 815
 Factory design pattern, 816
 Singleton design pattern, 815 - 816
 Strategy design pattern, 816 - 817

 spawning enemies/enemy factories, 769 - 770
 design phase (iterative design), 90

 listening, importance of, 92 - 94
 repetition, importance of, 96 - 97

 designers, 89
 Agile software development methodologies,

 405 - 407 , 416
 brainstorming (ideation), 98

 collection phase, 99
 collision phase, 100 - 101
 discussions, 101
 expansion phase, 98 - 99
 rating phase, 101

 burndown charts, 409
 assigning tasks, 414 - 415
 BDV (Burndown Velocity), 414 - 416
 creating, 416
 estimated hours versus real hours, 413
 example of, 410 - 412
 prioritizing tasks, 414 - 415

 changing your mind (design process), 101
 designer-centric goals of design, 106

 community, 107 - 108
 fame, 107
 fortune, 107
 greater good, 108 - 109
 personal development/experience, 109
 personal expression/communication, 108

 ideation (brainstorming), 98
 collection phase, 99
 collision phase, 100 - 101
 discussions, 101
 expansion phase, 98 - 99
 rating phase, 101

 innovation, 97 - 98
 iterative design, 90

 analysis phase, 90 - 92
 design phase, 90
 implementation phase, 90 - 91
 testing phase, 91

DESIGNERS870

 overscoping (design process), 103 - 104
 player-centric goals of design, 106

 attention and involvement, 118 - 120
 empowerment, 116 - 118
 experiential understanding, 122 - 123
 fi ero, the concept of, 110
 fl ow, 113 - 115
 fun, 109 - 110
 interesting decisions, 120 - 122
 lusory attitude, 110 - 112
 structured confl ict, 115 - 116

 project development process, 102
 alpha phase, 103
 beta phase, 103
 gold phase, 103
 post-release phase, 103
 preproduction phase, 102
 production phase, 102 - 103

 responsibilities within Layered Tetrad
frameworks

 Cultural Layer, 37
 Dynamic Layer, 36 - 37
 Inscribed Layer, 36

 scoping and the design process, 103 - 104
 Scrum software development

methodologies, 407 , 416
 meetings, 409
 product backlogs/feature lists, 408
 releases/sprints, 408
 teams, 408

 development environments. See Unity
 development process (projects), 102

 Agile software development methodologies,
 405 - 407 , 416

 alpha phase, 103
 beta phase, 103
 burndown charts, 409

 assigning tasks, 414 - 415
 BDV (Burndown Velocity), 414 - 416
 creating, 416
 estimated hours versus real hours, 413
 example of, 410 - 412
 prioritizing tasks, 414 - 415

 gold phase, 103
 post-release phase, 103

 preproduction phase, 102
 production phase, 102 - 103
 Scrum software development

methodologies, 407 , 416
 meetings, 409
 product backlogs/feature lists, 408
 releases/sprints, 408
 teams, 408

 Diaconis, Persi, 7
 dialogue

 immediacy of sound (Inscribed Layer
aesthetics), 47

 multiple dialogue choices (empathetic
characters versus avatars), 56 - 57

 Diamante, Vincente, and music in Flower , 71
 dice probability, determining with Calc, 157 - 158

 cells (Calc spreadsheets), entering data in,
 158 - 159

 charting results, 164
 counting die roll sums, 163 - 164
 probability distribution charts, creating via

Calc, 164
 randomization, 170
 rows (Calc spreadsheets)

 adjusting column widths, 160
 creating Die A row, 160 - 161
 creating Die B row, 161 - 162
 creating rows, 159
 labeling rows, 162 - 163

 spreadsheets, creating, 158
 summing dice role results, 163
 Unity example, 825 - 829

 diffi culty, increasing, Apple Picker , 448
 digital game industry, 211 - 212 , 222

 changes to, 213
 costs of AAA (top) game development, 213
 freemium games, 214
 indie games, 214
 working conditions, 213

 Entertainment Software Association
Essential Facts list, 212

 Games Education Programs, 215 - 217
 getting into (careers in), 217

 following up, 218 - 219

 871DPS (DAMAGE PER SECOND) CALCULATORS

 interviewing, 219 - 220
 networking, 217 - 218
 salaries, 220

 projects
 joining, 221
 starting, 221 - 222

 digital prototypes, purpose of, 420
 digital systems thinking, 225 , 234

 Apple Picker game analysis, 229
 GameObject action lists, 231 - 232
 GameObject fl owcharts, 232 - 234
 GameObjects, 230 - 231
 gameplay, 230

 board games, 226
 breaking down complex problems into

simpler ones, 229
 code libraries, 228
 computer languages, 227
 development environment, 228
 simple instructions exercise, 226 - 227

 direction in Apple Picker , changing, 432 - 434
 directionality (contrast), indirectly guiding

players by, 204
 directly guiding players

 Assassin's Creed IV: Black Flag , 199
 Grand Theft Auto V , 199
 Kya: Dark Legacy , 198
 Legend of Zelda: Ocarina of Time , 199
 methods of, 199

 calls to action, 199
 instructions, 199
 maps/guidance systems, 199
 pop-ups, 199

 quality of guidance, determining, 198
 Skyrim , 198
 Valkyrie Chronicles , 198

 discernable actions (meaningful play), 64 , 121
 discounts (educational software), 855
 Disneyland , indirect guidance example, 202
 distributions (weighted) and game balance,

 173 - 175
 Doctor Who , foreshadowing and interactive

narrative, 55

 dot product, 829 - 830
 double-edged decisions as part of player-centric

design, 121
 do.while loops (C# coding), 316 , 319 - 320
 downloading, Unity, 236
 DPS (Damage Per Second) calculators,

player-built external tools as example of
cultural technology, 84

 Dramatic elements (FDD framework), 24 -26
 characters, 26
 premises, 25 - 26
 stories, 26

 dramatic narrative structures
 dynamic dramatics, 75

 emergent narrative, 76 - 77
 interactive narrative, 75 - 76

 fi ve-act dramatic narrative structure
 climax (Act III), fi ve-act dramatic narrative

structures, 51
 denouement (Act V), fi ve-act dramatic

narrative structures, 51
 exposition (Act I), fi ve-act dramatic

narrative structures, 50 - 51
 falling action (Act IV), fi ve-act dramatic

narrative structures, 51
 rising action (Act II), fi ve-act dramatic

narrative structures, 51
 inscribed dramatics, purposes of, 57 - 58
 three-act dramatic narrative structure

 antagonism (Act II), 52
 climaxes, 53
 exposition (Act I), 52
 Field, Syd, 51 - 52
 fi rst plot point, 52
 Foundations of Screenwriting, The , 51 - 52
 hooks, 52
 inciting incidents, 52
 resolution (Act III), 52
 second plot point, 52
 Star Wars: A New Hope as an example

of, 51 - 52
 Dungeons & Dragons , 846

 dynamic dramatics, 75 - 77
 Emergent Narrative (FDD framework), 27

DRAMATIC ELEMENTS (FDD FRAMEWORK)872

 interactive versus linear narrative, 55
 progression tables, 46
 tips for running good campaigns, 846 - 847
 XP (Experience Points) and cumulative

outcomes (dynamic mechanics), 69
 duplicating weapon data (game balance),

 180 - 181
 Dynamic elements (FDD framework), 24 , 26 - 27

 Emergence, 26 - 27
 Emergent Narrative, 27
 playtesting, 27

 Dynamic Layer (Layered Tetrad), 33 - 34 ,
37 , 61 , 77

 aesthetics, 70
 defi ning, 34
 environmental aesthetics, 70 , 73 - 74
 procedural aesthetics, 70 - 73

 designer responsibilities, 36 - 37
 dramatics, 75

 emergent narrative, 76 - 77
 interactive narrative, 75 - 76

 emergence
 Bartok , 63
 mechanics and unexpected emergence,

 63 - 64
 mechanics

 defi ning, 34 , 64
 house rules, 66 - 67
 meaningful play, 64 - 65
 outcomes, 69
 player intent, 67 - 68
 players, types of, 67 - 68
 procedures, 64
 strategy, 65 - 66

 narrative, defi ning, 34
 player's role in game design, 62 - 63
 technology, 34 , 77

 E
 editing formulas (Calc spreadsheets), 164
 education

 Games Education Programs, 215 - 217

 educational software discounts, 855
 Electronic Arts

 Crazy Cakes , ADL (Automated Data Logging)
and playtesting, 151

 Majestic , boundary mechanics, 44
 Elemental Tetrad framework (ludology),

20 , 27 - 29
 aesthetics, defi ning, 27 - 28
 mechanics, defi ning, 27
 story's role in, 28
 technology's role in, 28

 Elite Beat Agents , music in, 71
 emergence

 Dynamic Layer
 Bartok , 63
 mechanics and unexpected emergence,

 63 - 64
 FDD framework, 26 - 27

 Emergent Narrative (FDD framework), 27 , 76 - 77
 emotion, evoking

 dynamic dramatics, Planetfall , 76
 inscribed dramatics, 57

 empathetic characters versus avatars
(interactive versus linear narrative)

 actions (players), tracking and reacting to, 57
 multiple dialogue choices, 56 - 57
 role fulfi llment, 56
 silent protagonists, 56

 employment in the digital game industry, 217
 following up, 218 - 219
 interviewing, 219 - 220
 networking, 217 - 218
 salaries, 220

 empowerment as a player-centric goal of
design, 116 - 118

 Enemy Class sample project, project setup, 381
 engaging play as a player-centric goal of game

design, 110
 enjoyable play as a player-centric goal of game

design, 110
 enum (C# coding), 501, 803 - 804
 enumerating and probability, 166

 873EXTRAPOLATION (LINEAR)

 environmental aesthetics (Dynamic Layer),
 70 , 73

 auditory play environments, 73 - 74
 noisy environments, 74
 volume control, 74

 player considerations, 74
 colorblindness, 74
 epilepsy, 74
 headaches, 74
 migraines, 74

 visual play environments, 73
 brightness, 73
 resolution (screen), 73

 environments (procedural), 73
 epilepsy, player considerations (environmental

aesthetics), 74
 equipment (required), paper prototyping and

gameplay development, 132
 Ernst, James, on touch as an Inscribed Layer

aesthetic, 47
 estimated hours versus real hours (burndown

charts), 413
 Eve Online , player-built external tools as

example of cultural technology, 84 - 85
 Evil Hat Productions and FATE system , 846

 interactive versus linear narrative, 55
 tips for running good campaigns, 846 - 847

 expansion phase (brainstorming/ideation),
 98 - 99

 experience
 personal experience/development,

designing games for, 109
 shared experiences, developing

relationships through (dynamic
dramatics), 76

 space and experience (Inscribed Layer
mechanics), 46

 XP (Experience Points) and cumulative
outcomes (dynamic mechanics), 69

 experiential understanding as a player-centric
goal of design, 122 - 123

 Explorer player type (spades), 67
 exposition (Act I)

 fi ve-act dramatic narrative structures, 50 - 51
 three-act dramatic narrative structure, 52

 expressing yourself through game design
(designer-centric goals), 108

 external tools (player-built) and cultural
technology, 84 - 85

 extrapolation (linear), 835 - 837

 F
 Fable , limited possibilities and interactive or

linear narrative, 53 - 54
 Facade , autotelic empowerment as a

player-centric goal of design, 117
 Factory software design pattern, 816
 falling action (Act IV), fi ve-act dramatic narrative

structures, 51
 Fallout 3 , side quests, 54
 fame as a goal of game design, 107
 fan art (cultural aesthetics), 82
 fan fi ction as cultural narrative, 83
 Farmville

 lusory attitude and, 111 - 112
 spoilage mechanic, 112

 Farscape , foreshadowing and interactive
narrative, 55

 fastest path to testing, determining (analysis
phase of iterative design), 92

 FATE system , 846
 interactive versus linear narrative, 55
 tips for running good campaigns, 846 - 847

 FDD framework (ludology), 20 , 24 , 29
 defi ning, 24
 Dramatic elements, 24 - 26

 characters, 26
 premises, 25
 purposes of, 26
 stories, 26

 Dynamic elements, 24 , 26 - 27
 Emergence, 26 - 27
 Emergent Narrative, 27
 playtesting, 27

 Formal elements, 24 - 25
 boundaries, 25

 FABLE , LIMITED POSSIBILITIES AND INTERACTIVE OR LINEAR NARRATIVE874

 objectives, 25
 outcomes, 25
 player interaction patterns, 24
 procedures, 25
 resources, 25
 rules, 25

 feature lists/product backlogs (Scrum software
development methodologies), 408

 feedback (positive/negative), game balance,
 176 - 177

 feel, designing for, 9 - 10
 Fellowship of the Ring , emergent narrative

example, 77
 Field, Syd

 Foundations of Screenwriting, The , 51 - 52
 three-act dramatic structure, 51 - 52

 fi ero, the concept of (player-centric game
design), 110

 Final Fantasy III (U.S. release), NPC
development, 55

 Final Fantasy VI (Japanese release), NPC
development, 55

 Final Fantasy VII
 empathetic characters versus avatars, 56
 fi nal outcomes (dynamic mechanics),

example of, 69
 limited possibilities and interactive or linear

narrative, 53 - 54
 Final Fantasy X , limited possibilities and

interactive or linear narrative, 53 - 54
 fi nal outcomes (dynamic mechanics), 69
 fi ring weapons, gameplay development (paper

prototyping), 134 - 135 , 137 - 138
 fi rst plot point (three-act dramatic narrative

structure), 52
 fi ve-act dramatic narrative structure

 climax (Act III), 51
 denouement (Act V), 51
 exposition (Act I), 50 - 51
 falling action (Act IV), 51
 rising action (Act II), 51

 fl oat variables (C# coding), 284
 Flocks, Herds, and Schools: A Distributed Behavior

Model , OOP (Object-Oriented
Programming), 393

 FLOOR formula (Calc), weighted probabilities,
 174 - 175

 fl ow
 Flow: The Psychology of Optimal Experience ,

 114 , 116 - 117
 fl ow as a player-centric goal of design,

 113 - 115
 space and fl ow (Inscribed Layer

vmechanics), 45
 fl owcharts (GameObjects)

 Apple Picker game analysis, 232 - 234
 frames as, 232

 Flower , music in, 71
 Flurry Analytics , freemium games, 214
 focus testing, 152
 follow cameras, Mission Demolition , 462 - 466
 font-related resources, 855
 for loops (C# coding), 316 , 320 - 322 , 342
 force-quitting applications, 317 - 318

 OS X, 371
 Windows, 371 - 372

 foreach loops (C# coding), 316 , 322 , 335
 foreshadowing and interactive narrative, 55
Formal, Dramatic, and Dynamic (FDD)

Framework, 24-27
 Formal elements (FDD framework), 24 - 25

 boundaries, 25
 objectives, 25
 outcomes, 25
 player interaction patterns, 24
 procedures, 25
 resources, 25
 rules, 25

 formal group playtesting method, 146 - 147
 formal individual playtesting method, 147 - 148

 labs, 148 - 149
 running playtests, 149

 formulas (Calc spreadsheets)
 COUNTIF formula, weighted probabilities,

 174 - 175
 entering into cells, 158 - 159
 exiting formula editing, 164
 FLOOR formula, weighted probabilities,

 174 - 175

 875FULFILLING PLAY AS A PLAYER-CENTRIC GOAL OF GAME DESIGN

 INDEX formula, weighted probabilities,
 174 - 175

 MOD formula, 160 - 161
 RAND formula, weighted probabilities,

 174 - 175
 REPT formula, overall damage, showing

(weapons and game balance), 181
 ROUND formula, overall damage, showing

(weapons and game balance), 181
 SUM formula, 163

 overall damage, showing (weapons and
game balance), 181

 fortune as a goal of game design, 107
 Foundations of Screenwriting, The, and the

three-act dramatic structure, 51 - 52
 FPS (First-Person Shooter) games

 QuickSnap , 695
 adding sound/visual eff ects to shots,

 723 - 725
 aspect ratios, 697
 build settings, 696
 camera setup, 702 - 705
 comparing shots, 717 - 721
 customizing setup, 725 - 726
 debugging, 713 - 714
 deleting shots, 714 - 715
 displaying player progress, 721 - 723
 fi rst-person controllers, 697 - 698
 GUI elements, 703 - 705
 importing Unity asset packages, 696- 697
 layers, 703 - 705
 lightmapping, 698 - 701
 maximizing target window, 716 - 717
 project setup, 696
 quality settings, 701 - 702
 recording player progress, 721 - 723
 replacing shots, 715 - 716
 setting up, 706 - 707
 storing shots, 707 - 712

 fractions and probability, 165 - 166
 frames

 defi ning, 232
 fl owcharts (GameObjects), 232

 free will versus plot (interactive versus linear
narratives), 53 - 55

 freemium games, 214
 free-to-play games, 214
 Frequency , music in, 70 - 71
 Freytag, Gustav

 fi ve-act dramatic structure, 50 - 51
 Technique of Dramas, The , 50 - 51

 friends as playtesters, 144
 fulfi lling play as a player-centric goal of game

design, 110
 Fullerton, Tracy

 dynamic mechanics, 64
 FDD framework, 20 , 24 , 29

 boundaries, 25
 characters, 26
 Dramatic elements, 24 - 26
 Dynamic elements, 24 , 26 - 27
 Emergence, 26 - 27
 Emergent Narrative, 27
 Formal elements, 24 - 25
 objectives, 25
 outcomes, 25
 player interaction patterns, 24
 playtesting, 27
 premises, 25- 26
 procedures, 25
 resources, 25
 rules, 25
 stories, 26

 Game Design Workshop , 10 , 13 , 20 , 24 , 64
 player interaction patterns, 43

 games, defi ning, 10 , 13
 inscribed mechanics, 40
 player interaction patterns, 43

 fun in game design, the importance of
(player-centric game design goals), 109 - 110

 function delegates (C# coding), 525 - 531 ,
 805 - 807

 Function Wizard (Calc)
 MOD formula, 160 - 161
 rows, creating, 160 - 161

 functions (C# coding), 257 - 258 , 349 - 350 , 362
 defi ning, 350 - 353

FULLERTON, TRACY876

 naming, 286, 356
 overloading, 358
 parameters

 arguments and parameters, 353 - 354
 optional parameters, 359

 params keyword, 359 - 361
 reasons for using, 356 - 357
 recursive functions, 361 - 362
 returning

 values, 354 - 356
 void,, 355 - 356

 static functions, 288

 G
 game balance, 155 , 183

 defi ning, 156
 Calc, installing, 156 - 157
 dice probability, determining with Calc,

 157 - 158
 adjusting column widths, 160
 charting results, 164
 counting die roll sums, 163 - 164
 creating Die A row, 160 - 161
 creating Die B row, 161 - 162
 creating probability distribution charts, 164
 creating rows, 159
 entering data in cells, 158 - 159
 labeling rows, 162 - 163
 spreadsheets, creating, 158
 summing dice role results, 163
 Unity example, 825 - 829

 permutations, 175 - 176
 positive/negative feedback, 176 - 177
 randomization

 custom card decks, 172
 dice, 170
 playing cards, 171 - 173
 shuffl ing decks, 172 - 173
 spinners, 170

 Ten Rules of Probability Every Game Designer
Should Know , 165 - 169

 weapons, balancing, 177 - 178
 average damage, 179 - 180
 Chapter 9 prototype example, 182 - 183

 determining percent chance for each
bullet, 178

 duplicating weapon data, 180 - 181
 overall damage, showing, 181
 rebalancing weapons, 177 - 178

 weighted distributions, 173 - 175
 weighted probabilities, 174 - 175

 Game Design Theory: A New Philosophy for
Understanding Games , 11

 gameplay as art (cultural aesthetics), 83
 performative empowerment as a

player-centric goal of design, 118
 Game Design Workshop , 10 , 13 , 18 , 20 , 24 , 43
 Game Feel: A Game Designer's Guide to Virtual

Sensation , digital prototypes, 420
 Game Game, The , 15 - 16
 game industry (digital), 211 - 212 , 222

 changes to, 213
 costs of AAA (top) game development, 213
 freemium games, 214
 indie games, 214
 working conditions, 213

 Entertainment Software Association
Essential Facts list, 212

 Games Education Programs, 215 - 217
 getting into (careers in), 217

 following up, 218 - 219
 interviewing, 219 - 220
 networking, 217 - 218
 salaries, 220

 projects
 joining, 221
 starting, 221 - 222

 game mods
 cultural mechanics, 81 - 82
 narrative game mods, 83

 Game Over screen, Apple Picker , 448
 Game pane (Unity), 251
 game play analysis (playtesting) and Bartok

 questions, asking, 7
 rounds, comparing, 9

 GameCareerGuide.com , game developer salary
surveys, 220

 GameObjects, 281 , 293 - 294
 Apple Picker , 230 - 231

 877GAMEOBJECTS

 Apple GameObject, 424 - 425
 AppleTree GameObject, 421 - 423
 Basket GameObject, 425
 GameObject action lists, 231 - 232
 GameObject fl owcharts, 232 - 234

 Box Collider component, 272 , 295
 Capsule Collider component, 295
 class instances as GameObject components

(C# coding), 385 - 387
 Collider components, 272 , 295 - 296
 creating, 271 - 272
 editing, 272 , 277 - 278
 Mesh Collider component, 295
 Mesh Filter component, 272 , 295
 Mesh Renderer component, 272
 Mission Demolition

 adding levels, 479 - 485
 C# coding, 456 - 485
 camera setup, 451 - 453
 castles, 471 - 473
 clouds, 467 - 471
 directional light GameObject, 451
 follow cameras, 462 - 466
 game logic, 479 - 485
 ground GameObject, 451
 hitting the goal, 478 - 479
 instantiating projectiles, 458 - 462
 projectile component, 455 - 456
 projectile trails, 456 - 462
 returning shots, 473 - 474
 slingshot GameObject, 453 - 455
 slingshots, 456 - 462
 vection/sense of speed, 466 - 471

 Omega Mage
 EnemyBug GameObjects, 770 - 780
 EnemySpiker GameObjects, 780 - 782
 Mage GameObject (player character),

 735 - 737
 playing, 272 - 273
 prefabs, 273 - 277
 Renderer component, 295
 RigidBody component, 272 , 296
 scripts as GameObject components, 296 - 297
 Space SHMUP

 adding elements, 559 - 560

 adding enemies, 543 - 556
 art assets, enemies, 504 - 506
 aspect ratios, 490
 boosting weapons, 531 - 538
 camera bounds, 498 - 500
 camera setup, 490
 damaging players, 513 - 518
 directional light GameObject, 490
 enemies dropping power-ups, 541 - 543
 enemy attack/damage, 513 - 518
 enemy GameObjects, 504 - 506
 enemy scripts, 506 - 509 , 543 - 556
 function delegate for fi ring, 525 - 531
 hero shield, 493 - 495
 hero ship, 491 - 493
 hero ship bounds, 495 - 498
 layers, 510 - 513
 power-ups, 531 - 538 , 541 - 543
 restarting games, 518 - 519
 shooting, 519 - 531
 spawning enemies, 509 - 510
 tags, 511 - 513
 testing overlapping bounds, 500 - 504
 weapon defi nitions, 521 - 525

 Sphere Collider component, 295
 Transform component, 272 , 294 - 295

 gameplay as art (cultural aesthetics), 83
 gameplay development (paper

prototyping), 132
 control points, capturing, 137
 counterattacks, 135
 cover, 136
 health

 health packs, 136
 starting health, 136

 interception fi re, 137
 movement systems, 134 , 138
 objectives, 132
 required equipment, 132
 setup, 133
 visibility, 133 - 134 , 136
 weapons/fi ring, 134 - 135 , 137 - 138

 games, defi ning
 Bateman, Chris, 15
 Burgun, Keith, 11 , 14 - 15

GAMEOBJECTS878

 evolution of defi nitions, 16 - 17
 Fullerton, Tracy, 10 , 13
 importance of, 15 - 16
 importance of defi nitions, 17 - 18
 IndieCade, 17
 Meier, Sid, 10 , 13
 Midgley, Mary, 15 - 16
 nature of defi nitions, 16 - 17
 Pearce, Celia, 17
 Roberts, Sam, 17
 Schell, Jesse, 11 , 13 - 14
 Suits, Bernard, 10 - 15
 Wittgenstein, Ludwig, 15

 Games Education Programs, 215 - 217
 gametesting. See playtesting
 Gamma, Erich

 Design Patterns , 769 - 770 , 815 - 817
 software design, 815

 Factory design pattern, 816
 Singleton design pattern, 815 - 816
 Strategy design pattern, 816 - 817

 spawning enemies/enemy factories, 769 - 770
 Garfi eld, Richard

 innovation and the design process, 97 - 98
 RoboRally , 97 - 98

 Georgia Institute of Technology, interactive
narrative example, 75

 gizmos (Unity), 277
 GM (Game Master) strategies, paper

prototyping, 137
 goals, indirectly guiding players by, 200
 goals of design, 105 - 106 , 124

 designer-centric goals, 106
 community, 107 - 108
 fame, 107
 fortune, 107
 greater good, 108 - 109
 personal development/experience, 109
 personal expression/communication, 108

 player-centric goals, 106
 attention and involvement, 118 - 120
 empowerment, 116 - 118
 experiential understanding, 122 - 123
 fi ero, the concept of, 110
 fl ow, 113 - 115

 fun, 109 - 110
 interesting decisions, 120 - 122
 lusory attitude, 110 - 112
 structured confl ict, 115 - 116

 God of War , fl ow as a player-centric goal of
design, 115

 gold phase (project development process), 103
 Goldstone, Will, and Unity-related websites, 853
 Grand Theft Auto , resource mechanics, 45
 Grand Theft Auto V , player guidance, 199
 graphics (frames)

 defi ning, 232
 fl owcharts (GameObjects), 232

 Grasshopper, The , 10 - 11
 lusory attitude as a player-centric goal of

design, 110 - 111
 Suits, Bernard, 15

 greater good, designing games for the, 108 - 109
 Greater Than comparison operator (>) in C#

coding, 306
 Greater Than or Equal To comparison operator

(>=) in C# coding, 306 - 307
 Green, Ryan, and That Dragon, Cancer as a

personal expression/communication as a goal
of game design, 108

 Gregory and Tic-Tac-Toe , Kia, 65
 Groundhog Day , experiential understanding as a

player-centric goal of design, 122 - 123
 group playtesting methods, 146 - 147
 GUI (Graphical User Interfaces)

 Apple Picker , 440 - 448
 paper prototyping, 139

 guides, fan-made game guides (cultural
technology), 84 - 85

 guiding players, 210
 direct guidance, 199

 Assassin's Creed IV: Black Flag , 199
 calls to action, 199
 Grand Theft Auto V , 199
 instructions, 199
 Kya: Dark Legacy , 198
 Legend of Zelda: Ocarina of Time , 199
 maps/guidance systems, 199
 quality of guidance, determining, 198
 Skyrim , 198

 879 HEART OF DARKNESS, THE, AS EXAMPLE OF INSCRIBED DRAMATICS

 Valkyrie Chronicles , 198
 indirect guidance, 200

 arrows, 202 - 203
 Assassin's Creed , 205
 audio design, 204 - 205
 brightness, 204
 camera, 203
 color, 204
 constraints, 200
 contrast, 204
 directionality, 204
 Disneyland , 202
 goals, 200
 Guitar Hero , 200 - 201
 Journey , 201 - 202 , 206
 Kya: Dark Legacy , 205
 landmarks, 201 - 202
 light, 201 - 202
 Minecraft , 200
 NPC, 205 - 206
 physical interface, 200 - 201
 player avatars, 205
 Rock Band , 200 - 201
 similarities, 201
 texture, 204
 trails, 201
 Uncharted 3 , 203
 visual design, 201 - 204

 integration, 209
 quality of guidance, determining, 197 - 198
 teaching new skills/concepts, 207 - 209

 Guitar Hero , player guidance, 200 - 201

 H
 HAL Laboratories, Kirby and integrated actions

(meaningful play), 64 - 65
 Half-Life

 game mods and cultural mechanics, 81 - 82
 narrative premises, examples of, 49

 Halo
 inscribed dramatics, example of, 58
 limited possibilities and interactive or linear

narrative, 53 - 54

 prior art, researching (analysis phase of
iterative design), 92

 Red vs. Blue , machinima example, 83 - 84
 Hamlet on the Holodeck , interactive narrative

example, 75
 headaches, player considerations

(environmental aesthetics), 74
 health (avatar/character) in gameplay

development (paper prototyping)
 health packs, 136
 starting health, 136

 hearing (Inscribed Layer aesthetics), 47
 Heart of Darkness, The, as example of inscribed

dramatics, 57 - 58
 Heinsoo, Rob, on XP (Experience Points)

and cumulative outcomes (dynamic
mechanics), 69

 Hello World program, 263 , 279
 arrays in, 344 - 347
 C# scripts, creating, 266 - 271
 debugging C# coding, 364
 GameObjects

 creating, 271 - 272
 editing, 272
 playing, 272 - 273

 gizmos, 277
 lists in, 344 - 347
 naming projects, 266
 prefabs, 273 - 277
 scene views, changing, 277 - 278
 standard project setup procedures, 264

 Helm, Richard
 Design Patterns , 769 - 770 , 815 - 817
 software design, 815

 Factory design pattern, 816
 Singleton design pattern, 815 - 816
 Strategy design pattern, 816 - 817

 spawning enemies/enemy factories, 769 - 770
 Hierarchy pane (Unity), 251
 Hitchhiker's Guide to the Galaxy, The, and

autotelic empowerment as a player-centric
goal of design, 117

 Homo Ludens , magic circle concept and lusory
attitude, 112

HEINSOO, ROB, ON XP (EXPERIENCE POINTS) AND CUMULATIVE OUTCOMES880

 hooks (three-act dramatic narrative
structure), 52

 hours (estimated versus real) and burndown
charts, 413

 house rules (dynamic mechanics), 66 - 67
 Hoye, Mike

 Legend of Zelda: The Wind Waker, The , 83
 narrative game mods, 83

 HRS (Horizontal Re-Sequencing), procedural
music, 70

 Huizinga, Johan
 Homo Ludens , 112
 magic circle concept and lusory

attitude, 112
 Hunicke and MDA framework, Robin, 20 , 29

 aesthetics-based design, 21 - 24
 defi ning, 20 - 21
 designer views of games, 21
 player views of games, 21

 I
 ideation (brainstorming), 98

 collection phase, 99
 collision phase, 100 - 101
 discussions, 101
 expansion phase, 98 - 99
 rating phase, 101

 if statements (C# coding), 307 - 310
 Ilinx (vertigionous play)

 Imaginary Games , 110
 Jeux et Le Hommes, Le, and the four diff erent

kinds of play, 110
 Imaginary Games , 15

 Ilinx (vertigionous play), 110
 structured confl ict as a player-centric goal of

design, 115 - 116
 immediacy of objectives (Inscribed layer

mechanics), 41
 immediacy of sound (Inscribed Layer

aesthetics), 47
 immediate outcomes (dynamic mechanics), 69
 implementation phase (iterative design), 90 - 91 ,

 94 - 97

 importance of objectives (Inscribed layer
mechanics), 42

 iMUSE (Interactive MUsic Streaming Engine), 70
 inciting incidents (three-act dramatic narrative

structure), 52
 increasing diffi culty, Apple Picker , 448
 Incredible Machine, The , 188
 incremental innovation, 97
 INDEX formula (Calc), weighted probabilities,

 174 - 175
 indie games and the digital game industry, 214
 IndieCade Game Festival

 games, defi ning, 17
 indie games and the digital game

industry, 214
 scoping and the design process, 104

 indirectly guiding players, 200
 arrows, 202 - 203
 Assassin's Creed , 205
 audio design, 204 - 205
 brightness, 204
 camera, 203
 color, 204
 constraints, 200
 contrast, 204
 directionality, 204
 Disneyland , 202
 goals, 200
 Guitar Hero , 200 - 201
 Journey , 201 - 202 , 206
 Kya: Dark Legacy , 205
 landmarks, 201 - 202
 light, 201 - 202
 Minecraft , 200
 NPC, 205 - 206
 physical interface, 200 - 201
 player avatars, 205
 Rock Band , 200 - 201
 similarities, 201
 texture, 204
 trails, 201
 Uncharted 3 , 203

 881INSPECTOR PANE (UNITY)

 visual design, 201 - 204
 individual playtesting methods

 formal method, 147 - 148
 labs, 148 - 149
 running playtests, 149

 informal method, 146
 infi nite loops (C# coding), 317 - 318
 Infl uence: The Psychology of Persuasion , 4
 Infocom

 Hitchhiker's Guide to the Galaxy, The, and
autotelic empowerment as a player-centric
goal of design, 117

 Planetfall , developing relationships through
shared experience, 76

 informal individual playtesting method, 146
 information, conveying (Inscribed Layer

aesthetics), 48 - 49
 inheritance in classes (C# coding), 387
 innovation and the design process, 97 - 98
 Inscribed Layer (Layered Tetrad), 32 , 37 , 39 , 59

 aesthetics, 46
 defi ning, 33
 fi ve aesthetic senses, 47 - 48
 goals of aesthetic design, 48 - 49
 hearing, 47
 immediacy of sound (Inscribed Layer

aesthetics), 47
 information, conveying, 48 - 49
 mood, conveying, 48
 smell, 48
 touch, 47 - 48
 vision, 47

 designer responsibilities, 36
 mechanics, 40

 boundaries, 40 , 44
 defi ning, 32
 objectives, 40 - 42
 player relationships, 40 , 42 - 44
 resources, 40 , 45
 rules, 40 , 44
 spaces, 40 , 45 - 46
 tables, 40 , 46

 narrative, 49
 characters, 49
 components of, 49 - 50

 defi ning, 33
 fi ve-act dramatic structure, 50 - 51
 inscribed dramatics, purposes of, 57 - 58
 interactive versus linear narrative, 53 - 57
 linear versus interactive narrative, 53 - 57
 plots, 50
 premises, 49
 settings, 49
 three-act dramatic structure, 51 - 52

 technology, 58
 defi ning, 33
 paper game technologies, 58 - 59

 Inspector pane (Unity), 251
 editing GameObjects, 272
 GameObjects, components of, 294

 installing
 Calc, 156 - 157
 Unity, 241

 instance variables (C# coding), 289
 instructions

 directly guiding players by, 199
 simple instructions exercise (systems

thinking), 226 - 227
 int variables (C# coding), 284
 integration

 integrated actions (meaningful play),
 64 - 65 , 121

 teaching players by, 209
 interactive narrative

 characters, 49
 components of, 49 - 50
 dynamic dramatics, 75

 developing relationships through shared
experience, 76

 interactive fi ction and player experience,
 75 - 76

 fi ve-act dramatic structure, 50 - 51
 linear narrative versus, 53

 empathetic characters versus avatars,
 55 - 57

 foreshadowing, 55
 limited possibilities, 53 - 54
 NPC development, 55
 pen-and-paper RPG, 55
 plot versus free will, 53 - 55
 side quests, 54

INSTALLING882

 plots, 50
 premises, 49
 settings, 49
 three-act dramatic structure, 51 - 52

 interception fi re, gameplay development (paper
prototyping), 137

 interest as a player-centric goal of design,
 118 - 120

 interesting decisions as a player-centric goal of
design, 120 - 122

 interesting polling (playtesting), 152
 interfaces (C# coding), 769 - 770 , 782 - 785 ,

 807 - 810
 Internet's role in playtesting, 145 - 146 , 150

 closed playtesting, 150
 limited playtesting, 150
 open playtesting, 150 - 151

 interpolation, 831
 interpolating values other than position,

 834 - 835
 linear interpolation, 831

 easing, 837 - 841
 time-based linear interpolation, 831 - 832
 Zeno's Dichotomy Paradox and linear

interpolation, 833 - 834
 intersectional innovation, 97 , 99
 interviewing, fi nding a career in the digital

game industry, 219 - 220
 investigators (playtesting), defi ning, 142
 involvement and attention as player-centric

goals of design, 118 - 120
 Is Equal To comparison operator (==), 304
 iterative design, 90

 analysis phase, 90 - 91
 determining audience, 91
 determining fastest path to testing, 92
 determining resources, 91 - 92
 importance of repetition, 96 - 97
 researching prior art, 92

 design phase, 90
 importance of listening, 92 - 94
 importance of repetition, 96 - 97

 implementation phase, 90 - 91 , 94 - 97
 repetition, importance of, 96 - 97

 testing phase, 91 , 95 - 97

 J
 jagged arrays (C# coding), 340 - 342
 jagged lists (C# coding), 342 - 344
 JavaScript, 238 - 239
 Jenkins on transmedia, Henry, 86
 Jeux et Le Hommes, Le, and the four diff erent

kinds of play, 110
 jobs in the digital game industry, 217

 following up, 218 - 219
 interviewing, 219 - 220
 networking, 217 - 218
 salaries, 220

 Johansson, Frans
 innovation and the design process, 97
 Medici Eff ect, The , 97

 Johnson, Ralph
 Design Patterns , 769 - 770 , 815 - 817
 software design, 815

 Factory design pattern, 816
 Singleton design pattern, 815 - 816
 Strategy design pattern, 816 - 817

 spawning enemies/enemy factories, 769 - 770
 joining game projects in development, 221
 Journey , 41

 player guidance, 201 - 202 , 206
 tissue playtesters, 144 - 145

 jump statements in loops (C# coding), 322 - 324
 justifi cation (inscribed dynamics), 57 - 58

 K
 Kaboom!, game analysis (systems thinking), 229

 GameObject action lists, 231 - 232
 GameObject fl owcharts, 232 - 234
 GameObjects, 230 - 231
 gameplay, 230

 Kaplan, Larry, on Kaboom! game analysis
(systems thinking), 229 - 234

 883 LAYERED TETRAD

 Killer player type (clubs), 67
 Kim, Scott, and puzzle design

 action puzzles, 188
 Art of Puzzle Design, The , 186

 eight steps of puzzle design, 191 - 192
 genres of puzzles, 187 - 188
 goals of eff ective design, 192 - 193
 reasons for playing puzzles, 189
 required modes of thought in solving, 189

 bridge puzzles, 188
 chess puzzles, 188
 construction puzzles, 188
 crossword puzzles, 188
 eight steps of puzzle design, 191 - 192
 genres of puzzles, 187 - 188
 goals of eff ective design
 puzzles, defi ning, 186 - 187
 reasons for playing puzzles, 189
 required modes of thought in solving,

 189 - 190
 story puzzles, 188
 strategy puzzles, 188
 Sudoku , 188

 Kirby , integrated actions (meaningful play),
 64 - 65

 Klei Entertainment, Mark of the Ninja and intent
versus execution, 187

 Kya: Dark Legacy and player guidance, 198 , 205

 L
 lab setups for formal individual playtesting,

 148 - 149
 labeling rows (Calc spreadsheets), 162 - 163
 landmarks

 indirectly guiding players by, 201 - 202
 space and landmarks (Inscribed Layer

mechanics), 45 - 46
 languages (computer) and systems

thinking, 227
 Larson, Josh, and That Dragon, Cancer as a

personal expression/communication as a goal
of game design, 108

 Last of Us, The, and screen resolution, 73
 law and cultural impact of games, 86 - 87

 layer masks and bitwise Boolean operators (C#
coding), 801 - 802

 Layered Tetrad
 Cultural Layer, 34 - 35 , 37 - 38 , 79 , 87

 aesthetics, 35 , 82 - 83
 cultural impact of games, 86 - 87
 defi ning, 80 - 81
 designer responsibilities, 37
 law and cultural impact of games, 86 - 87
 mechanics, 35 , 81 - 82
 narrative, 36 , 83 - 84
 technology, 36 , 84 - 85
 transmedia, 85 - 86

 designer responsibilities
 Cultural Layer, 37
 Dynamic Layer, 36 - 37
 Inscribed Layer, 36

 Dynamic Layer, 33 - 34 , 37 , 61 , 77
 aesthetics, 34
 designer responsibilities, 36 - 37
 dramatics, 75 - 77
 emergence, 63 - 64
 mechanics, 34 , 64 - 69
 narrative, 34
 player's role in game design, 62 - 63
 technology, 34 , 77

 Inscribed Layer, 32 , 37 , 39 , 46 - 49 , 59
 aesthetics, 33
 boundaries, 40 , 44
 designer responsibilities, 36
 mechanics, 32 , 40 - 46
 narrative, 33
 objectives, 40 - 42
 player relationships, 40 , 42 - 44
 resources, 40 , 45
 rules, 40 , 44
 spaces, 40 , 45 - 46
 tables, 40 , 46
 technology, 33

 introduction to, 31 - 32
 Lazzaro, Nicole, and the concept of fi ero

(player-centric game design), 110
 Learn section (Unity website), 852
 LeBlanc, Mark, and MDA framework, 20 , 29

 aesthetics-based design, 21 - 24

 LAYERED TETRAD 884

 defi ning, 20 - 21
 designer views of games, 21
 player views of games, 21

 Legend of Zelda: Ocarina of Time, The, and player
guidance, 199

 Legend of Zelda, The
 resource mechanics, 45
 silent protagonists (empathetic characters

versus avatars), 56
 Legend of Zelda: The Wind Waker, The

 inscribed dramatics, example of, 57 - 58
 narrative game mods, 83

 Legend of Zelda: Twilight Princess, The, and touch
as an Inscribed Layer aesthetic, 48

 LeMarchand, Richard
 attention and involvement as player-centric

goals of design, 118 - 120
 engaging play as a player-centric goal of

game design, 110
 Less Than comparison operator (<) in C#

coding, 306
 Less Than or Equal To comparison operator (<=)

in C# coding, 306 - 307
 Level Up! The Guide to Great Video Game Design ,

 64 , 202
 levels (custom) and cultural mechanics, 82
 licensing Unity, 241 - 242
 light, indirectly guiding players by, 201 - 202
 limited playtesting (beta tests), 150
 limited possibilities and interactive

narrative, 53 - 54
 Linderman, Frank Bird,

 Chief Plenty-Coups and coup-counting as a
game, 115 - 116

 structured confl ict as a player-centric goal of
design, 115 - 116

 linear extrapolation, 835 - 837
 linear interpolation, 831

 easing, 837 - 841
 time-based linear interpolation, 831 - 832
 Zeno's Dichotomy Paradox and linear

interpolation, 833 - 834
 linear narrative

 characters, 49
 components of, 49 - 50

 fi ve-act dramatic structure, 50 - 51
 interactive narrative versus linear

narrative, 53
 empathetic characters versus avatars,

 55 - 57
 foreshadowing, 55
 limited possibilities, 53 - 54
 NPC development, 55
 pen-and-paper RPG, 55
 plot versus free will, 53 - 55
 side quests, 54

 plots, 50
 premises, 49
 settings, 49
 three-act dramatic structure, 51 - 52

 LineRenderer (Unity), ground spells in Omega
Mage , 756 - 761

 LINQ (Language Integrated Query) and C#
coding, 640 - 641

 Lionhead Studios, Fable and the limited
possibilities of interactive or linear narrative,
 53 - 54

 listening, importance of during design phase
(iterative design), 92 - 94

 lists (C# coding), 328 - 331 , 344
 arrays versus lists, 344
 converting arrays to lists, 336 - 337
 converting lists to arrays, 331
 jagged lists, 342 - 344
 methods, 331
 properties, 331
 zero indexed lists, 331

 long-term objectives, space and (Inscribed
Layer mechanics), 46

 loops (C# coding), 315 , 325
 do.while loops, 316 , 319 - 320
 for loops, 316 , 320 - 322 , 342
 foreach loops, 316 , 322

 empty array elements and foreach loops,
 335

 infi nite loops, dangers of, 317 - 318
 jump statements in loops, 322 - 324
 modulus operator (%), 324
 project setup, 300 - 301

 885LUSORY ATTITUDE

 types of, 316
 while loops, 316 - 319

 Lucas, George
 scoping and the design process, 104
 Star Wars: A New Hope as an example of

three-act dramatic narrative structure,
 51 - 52

 LucasArts
 iMUSE (Interactive MUsic Streaming

Engine), 70
 X-Wing

 information, conveying (Inscribed Layer
aesthetics), 48 - 49

 music in, 70
 ludology, 19 . See also Layered Tetrad

 Elemental Tetrad framework, 20 , 27 - 29
 aesthetics, 27 - 28
 mechanics, 27
 story's role in, 28
 technology's role in, 28

 FDD framework, 20 , 24 , 29
 boundaries, 25
 characters, 26
 Dramatic elements, 24 , 25 - 26
 Dynamic elements, 24 , 26 - 27
 Emergence, 26 - 27
 Emergent Narrative, 27
 Formal elements, 24 - 25
 objectives, 25
 outcomes, 25
 player interaction patterns, 24
 playtesting, 27
 premises, 25- 26
 procedures, 25
 resources, 25
 rules, 25
 stories, 26

 MDA framework, 20 , 29
 aesthetics-based design, 21 - 24
 defi ning, 20 - 21
 designer views of games, 21
 player views of games, 21

 Ludwig, Manfred

 optimal strategy, determining (dynamic
mechanics), 65 - 66

 Up The River , 65 - 66
 Lunch Money , house rules (dynamic

mechanics), 67
 lusory attitude, 13 - 14 , 110 - 112

 M
 machinima, 83 - 84
 magic circle concept and lusory attitude, 112
 Magic:The Gathering , illegal cards and

emergence (Dynamic Layer), 64
 Mainichi

 experiential understanding as a
player-centric goal of design, 122 - 123

 personal expression/communication as a
goal of game design, 108

 Majestic , 17 , 44
 Mangle of Play, The, and the cultural aspects of

game development, 80 - 81
 Manifesto for Agile Software Development ,

 406 - 407
 maps/guidance systems, directly guiding

players by, 199
 Marathon , researching prior art (analysis phase

of iterative design), 92
 Mario Kart and game balance, 177
 Mark of the Ninja , intent versus execution, 187
 Mass Eff ect

 multiple dialogue choices (empathetic
characters versus avatars), 57

 player interaction patterns, 43
 resolution (screen), 73

 Mateas, Michael
 autotelic empowerment as a player-centric

goal of design, 117
 Façade , 117

 math and game balance, 155 , 183
 balance, defi ning, 156

MACHINIMA886

 Calc, installing, 156 - 157
 dice probability, determining with Calc,

 157 - 158
 adjusting column widths, 160
 charting results, 164
 counting die roll sums, 163 - 164
 creating Die A row, 160 - 161
 creating Die B row, 161 - 162
 creating probability distribution charts, 164
 creating rows, 159
 entering data in cells, 158 - 159
 labeling rows, 162 - 163
 spreadsheets, creating, 158
 summing dice role results, 163
 Unity example, 825 - 829

 permutations, 175 - 176
 positive/negative feedback, 176 - 177
 randomization

 custom card decks, 172
 dice, 170
 playing cards, 171 - 173
 shuffl ing decks, 172 - 173
 spinners, 170

 Ten Rules of Probability Every Game Designer
Should Know , 165 - 169

 weapons, balancing, 177 - 178
 average damage, 179 - 180
 Chapter 9 prototype example, 182 - 183
 duplicating weapon data, 180 - 181
 overall damage, showing, 181
 percent chance for each bullet,

determining, 178
 rebalancing weapons, 177 - 178

 weighted distributions, 173 - 175
 weighted probabilities, 174 - 175

 math concepts
 Bézier curves, 841 - 845
 dice probability, Unity example, 825 - 829
 dot product, 829 - 830
 extrapolation (linear), 835 - 837
 interpolation

 easing linear interpolation, 837 - 841
 interpolating values other than position,

 834 - 835
 linear interpolation, 831

 time-based linear interpolation, 831 - 832
 Zeno's Dichotomy Paradox and linear

interpolation, 833 - 834
 recursive Bézier curves, 844 - 845
 sine/cosine, 822 - 825

 mathf variables (C# coding), 292
 MDA framework (ludology), 20 , 29

 aesthetics-based design, 21 - 24
 defi ning, 20 - 21
 designer views of games, 21
 player views of games, 21

 meaningful play
 dynamic mechanics, 64 - 65
 dynamic procedures

 discernable actions, 121
 integrated actions, 121
 interesting decisions as a player-centric

goal of design, 120 - 121
 mechanics

 attention and involvement as a
player-centric goal of design, 120

 Cultural Layer (Layered Tetrad), 81
 custom game levels, 82
 defi ning, 35
 game mods, 81 - 82

 Dynamic Layer (Layered Tetrad)
 defi ning, 34 , 64
 defi ning strategies, 65
 designing for strategies, 66
 determining optimal strategy, 65 - 66
 determining player intent, 67 - 68
 emergence (unexpected), 63 - 64
 house rules, 66 - 67
 meaningful play, 64 - 65
 outcomes, 69
 player types, 67 - 68
 procedures, 64

 Elemental Tetrad framework, 27
 Inscribed Layer (Layered Tetrad), 40

 boundaries, 40 , 44
 defi ning, 32
 objectives, 40 - 42
 player relationships, 40 , 42 - 44
 resources, 40 , 45

 887 MISSION DEMOLITION

 rules, 40 , 44
 spaces, 40 , 45 - 46
 tables, 40 , 46

 reinforcing via inscribed dramatics, 58
 spoilage mechanic (Farmville), 112

 Medici Eff ect, The , innovation and the design
process, 97

 medium-term objectives and space (Inscribed
Layer mechanics), 46

 meetings and Scrum software development
methodologies, 409

 Meier, Sid
 Civilization , tables, 40 - 41
 C.P.U. Bach , music in, 71
 games, defi ning, 13
 interesting decisions as a player-centric goal

of design, 121
 melee, pronunciation of, 42
 Meretzky, Steven

 developing relationships through shared
experience, 76

 Planetfall , 76
 Mesh Collider component (GameObjects), 295
 Mesh Filter component (GameObjects), 272 , 295
 Mesh Renderer component (GameObjects), 272
 Microsoft controllers

 axis mapping, 848 - 849
 button mapping, 848 - 849

 Midgley, Mary
 Game Game, The , 15 - 16
 games, defi ning, 15 - 16

 migraines, player considerations (environmental
aesthetics), 74

 Miles, Rob, and CSharp Yellow Book , 854
 Mimicry, Le Jeux et Le Hommes and the four

diff erent kinds of play, 110
 Minecraft

 autotelic empowerment as a player-centric
goal of design, 117

 player guidance, 200
 player-built external tools as example of

cultural technology, 84
 procedural environments, 73

 Minority Media, Papa y Yo as a personal
expression/communication as a goal of game
design, 108

 Mission Demolition , 449 , 485
 art assets, 451 - 456
 C# coding, 456

 adding levels, 479 - 485
 castles, 471 - 473
 clouds, 467 - 471
 follow cameras, 462 - 466
 game logic, 479 - 485
 hitting the goal, 478 - 479
 instantiating projectiles, 458 - 462
 projectile trails, 474 - 478
 returning shots, 473 - 474
 slingshots, 456 - 462
 vection/sense of speed, 466 - 471

 camera setup, 451 - 453
 concept of, 450 - 451
 directional light GameObject, 451
 ground GameObject, 451
 project setup, 450
 projectile component, 455 - 456
 sequence of events during play, 450 - 451
 slingshot GameObject, 453 - 455

 mission types (paper prototyping), determining,
 131 - 133

 MMORPG (Massively Multiplayer Online
Role-Playing Game), player interaction
patterns, 43

 MOD formula (Calc), 160 - 161
 model/animation resources, 854 - 855
 Modern Warfare as example of inscribed

dramatics, 58
 modifying games (cultural mechanics),

81 - 83
 modulus operator (%) in C# coding, 324
 Mojang and Minecraft

 autotelic empowerment as a player-centric
goal of design, 117

 player guidance, 200
 player-built external tools as example of

cultural technology, 84
 procedural environments, 73

 MISSION DEMOLITION888

 money as a goal of game design, 107
 MonoDevelop editor

 creating C# scripts, 266 - 271
 debugging C# coding

 attaching debugger to Unity, 372 - 374
 stepping through code, 369 - 371 , 373 - 377
 variables, 375 - 376

 Monopoly
 confl icting objectives (Inscribed layer

mechanics), 42
 immediate outcomes (dynamic mechanics),

example of, 69
 resource mechanics, 45
 roles of players (player relationships),

defi ning, 43
 mood, conveying (Inscribed Layer

aesthetics), 48
 motivation (inscribed dynamics), 57 - 58
 mouse interaction, programming in Omega

Mage , 737 - 741
 movement, 741 - 747
 moving when dragging, 746 - 747
 tap indicators, 743 - 745

 movement systems, developing, 127 - 128 , 138
 MUD (Multi-User Dungeon) games, 67 - 68
 multidimensional arrays (C# coding), 337 - 340
 multilateral competition (player interaction

patterns), 43
 multiplayer games

 puzzles and, 186
 roles of players (player relationships),

defi ning, 44
 multiple individual players versus game (player

interaction patterns), 43
 Murray, Janet

 developing relationships through shared
experience, 76

 Hamlet on the Holodeck , 75
 interactive narrative, 75
 Planetfall , 76

 music, 70
 C.P.U. Bach , music in, 71
 Elite Beat Agents , 71
 Flower , music in, 71

 Frequency , 70 - 71
 HRS (Horizontal Re-Sequencing), 70
 immediacy of sound (Inscribed Layer

aesthetics), 47
 iMUSE (Interactive MUsic Streaming

Engine), 70
 Osu Tatake Ouendan! , 71
 PaRappa the Rapper , 70 - 71
 PCO (Procedural Composition), procedural

music, 71
 VRO (Vertical Re-Orchestration), procedural

music, 70 - 71
 Myst , 188

 N
 Nakamura, Jeanne

 autotelic empowerment as a player-centric
goal of design, 116 - 117

 Concept of Flow , 113 - 114 , 116 - 117
 fl ow as a player-centric goal of design,

 113 - 114
 naming

 C# naming conventions, 286 - 287
 projects in Unity, 266

 narrative
 attention and involvement as player-centric

goals of design, 120
 Cultural Layer (Layered Tetrad), 83

 defi ning, 36
 fan fi ction as cultural narrative, 83
 game mods as cultural narrative, 83
 machinima, 83 - 84

 Dynamic Layer (Layered Tetrad), defi ning, 34
 emergent narrative, 76 - 77
 Inscribed Layer (Layered Tetrad), 49

 characters, 49
 components of, 49 - 50
 defi ning, 33
 fi ve-act dramatic structure, 50 - 51
 inscribed dramatics, purposes of, 57 - 58
 interactive versus linear narrative, 53 - 57
 linear versus interactive narrative, 53 - 57
 plots, 50
 premises, 49

 889 OKAMI

 settings, 49
 three-act dramatic structure, 51 - 52

 interactive narrative (dynamic dramatics), 75
 developing relationships through shared

experience, 76
 interactive fi ction and player experience,

 75 - 76
 Naughty Dog

 Uncharted
 inscribed dramatics, example of, 58
 limited possibilities and interactive or

linear narrative, 53 - 54
 role fulfi llment (empathetic characters

versus avatars), 56
 Uncharted 2: Drake's Deception , machinima

example, 84
 Uncharted 3

 particle systems (procedural visual art),
 71 - 72

 player guidance, 203
 navigating Unity, 251
 negative/positive feedback, game balance,

 176 - 177
 networking, fi nding a career in the digital game

industry, 217 - 218
 Neverwinter Nights, narrative game mods, 83
 Nintendo, Mario Kart and game balance, 177
 noisy environments (environmental

aesthetics), 74
 Not Equal To comparison operator (!=) in C#

coding, 306
 NOT operator (!) in C# coding, 300
 novel decisions as part of player-centric

design, 121
 NPC (Non-Player Characters)

 development of (interactive narratives), 55
 indirectly guiding players by, 205 - 206

 O
 objectives

 FDD framework, 25
 gameplay development (paper prototyping),

 132
 Inscribed Layer (Layered Tetrad), 40 - 41

 confl icting objectives, 42
 immediacy of objectives, 41
 importance of objectives, 42
 long-term objectives and space, 46
 medium-term objectives and space, 46
 short-term objectives and space, 46

 objects, C# as OOC (Object-Oriented Coding),
 258 - 259

 Okami
 empathetic characters versus avatars, 56
 touch as an Inscribed Layer aesthetic, 48

 Omega Mage
 changing rooms, 764 - 768
 creating the game environment, 730 - 735
 customizing setup, 789
 damaging players, 777 - 782
 enemies, 768 - 770

 damaging, 772 - 777
 enemy factories, 785 - 789
 EnemyBug GameObjects, 770 - 780
 EnemySpiker GameObjects, 780 - 782
 interfaces, 782 - 785

 example of play, 728 - 729
 fi re ground spell, 754 - 762
 fi re spell, 761 - 762
 fi re-and-forget spells, 762 - 764
 ground spell, 756 - 761
 importing Unity asset packages, 729
 inventories

 camera setup, 748 - 749
 creating, 747 - 748
 selecting elements, 749 - 754

 Mage GameObject (player character),
 735 - 737

 mouse interaction, 737 - 741
 moving when dragging, 746 - 747
 tap indicators, 743 - 745

 movement, 741 - 747
 project setup, 729

 online playtesting, 150
 closed playtesting, 150
 limited playtesting, 150
 open playtesting, 150 - 151

 OMEGA MAGE 890

 online resources
 animation/model resources, 854 - 855
 art assets, 854
 audio assets, 854
 C# resources, 853 - 854
 educational software discounts, 855
 font-related resources, 855
 game developer salary surveys, 220
 model/animation resources, 854 - 855
 Unity

 tutorials, 852
 Unity-related websites, 852 - 853

 OOC (Object-Oriented Coding), C# as, 258 - 259
 OOP (Object-Oriented Programming) in C# . See

also classes (C# coding), 391 , 403
 Boids project, 394

 building simple models, 394 - 396
 project setup, 394
 scripts, 397 - 403

 defi ning through metaphors, 392 - 393
 open playtesting (beta tests), 150 - 151
 OpenOffi ce Calc. See Calc
 OR operator (||) in C# coding, 300
 Origin Systems, Ultima IV , actions (players),

tracking and reacting to (empathetic
characters versus avatars), 57

 orthographic cameras, 425 - 426
 OS X

 force-quitting applications, 317 - 318 , 371
 right-clicking and, 265 , 849 - 850
 Unity, new project setup procedures,

 794 - 796
 Osu Tatake Ouendan!

 fulfi lling play as a player-centric goal of
game design, 110

 music in, 71
 outcomes

 Dynamic Layer (Layered Tetrad), 69
 FDD framework, 25

 overall damage, showing (weapons and game
balance), 181

 overscoping (design process), 103 - 104

 P
 Pajitnov, Alexi

 Art of Puzzle Design, The , 186
 eight steps of puzzle design, 191 - 192
 genres of puzzles, 187 - 188
 goals of eff ective design, 192 - 193
 reasons for playing puzzles, 189
 required modes of thought in solving, 189

 Tetris , 186
 panes (Unity), 251

 Console pane, 251
 Game pane, 251
 Hierarchy pane, 251
 Inspector pane, 251
 layouts, confi guring, 246 - 251
 Project pane, 251
 Scene pane, 251

 Papa Sangre , sound as an Inscribed Layer
aesthetic, 47

 Papa y Yo , personal expression/communication
as a goal of game design, 108

 paper games
 Dungeons & Dragons , 846 - 847
 FATE system , 846 - 847
 progression, 59
 randomization, 59

 custom card decks, 172
 dice, 170
 playing cards, 171 - 173
 shuffl ing decks, 172 - 173
 spinners, 170

 state tracking, 59
 tips for running good campaigns, 846 - 847

 paper prototyping, 125 , 140
 benefi ts of, 126
 best uses for, 138 - 139
 example of, 129

 determining mission types, 131 - 133
 gameplay development, 132 - 137
 GM strategies, 137
 initial concept development, 129 - 130
 playtesting, 138
 prototype construction, 131 - 133

 movement systems, 127 - 128 , 134 , 138
 poor uses for, 139

 891PHYSICS GAMES

 tools for, 127 - 129
 PaRappa the Rapper , music in, 70 - 71
 particle systems (procedural visual art), 71 - 72
 Passage , 11 - 12
 Pauling, Linus, brainstorming (ideation), 98
 PCO (Procedural Composition), procedural

music, 71
 Pearce, Celia, and game defi nitions, 17
 pen-and-paper RPG

 Dungeons & Dragons , 846 - 847
 FATE system , 846 - 847
 progression, 59
 randomization, 59

 custom card decks, 172
 dice, 170
 playing cards, 171 - 173
 shuffl ing decks, 172 - 173
 spinners, 170

 state tracking, 59
 tips for running good campaigns, 846 - 847

 performative empowerment as a player-centric
goal of design, 118

 permutations, 175 - 176
 permutations without repeating

elements, 176
 repeating elements in, 176

 personal development/experience, designing
games for, 109

 personal expression/communication as a goal
of game design, 108

 perspective cameras, 425 - 426
 Philosophical Investigations , 15
 physical interface, indirectly guiding players

by, 200 - 201
 physics games

 Mission Demolition , 449 , 485
 adding levels, 479 - 485
 art assets, 451 - 456
 C# coding, 456 - 485
 camera setup, 451 - 453
 castles, 471 - 473
 clouds, 467 - 471
 concept of, 450 - 451
 directional light GameObject, 451

 follow cameras, 462 - 466
 game logic, 479 - 485
 ground GameObject, 451
 hitting the goal, 478 - 479
 instantiating projectiles, 458 - 462
 project setup, 450
 projectile component, 455 - 456
 projectile trails, 474 - 478
 returning shots, 473 - 474
 sequence of events during play, 450 - 451
 slingshot GameObject, 453 - 455
 slingshots, 456 - 462
 vection/sense of speed, 466 - 471

 puzzles in, 194
 Planetfall

 developing relationships through shared
experience, 76

 interactive narrative example, 75
 player interaction patterns, 24

 Inscribed Layer (Layered Tetrad), 43
 cooperative play, 43
 multilateral competition, 43
 multiple individual players versus game, 43
 player versus player, 43
 single player versus game, 43
 team competition, 43
 unilateral competition, 43

 Mass Eff ect , 43
 players

 avatars, indirectly guiding players by, 205
 Bartle's four players who suit MUDs, 67 - 68
 community as a goal of game design,

 107 - 108 , 120
 environmental aesthetics (Dynamic

Layer), 74
 colorblindness, 74
 epilepsy, 74
 headaches, 74
 migraines, 74
 volume control, 74

 external tools (player-built) and cultural
technology, 84 - 85

 gameplay development (paper prototyping),
 132 - 137

 guiding, 197 - 198 , 210
 direct guidance, 198 - 199

 PLANETFALL892

 indirect guidance, 200 - 206
 teaching new skills/concepts, 207 - 209

 intent, determining (dynamic mechanics),
 67 - 68

 interaction patterns (FDD framework), 24 , 43
 movement systems and gameplay

development (paper prototyping),
134 , 138

 player versus player (player interaction
patterns), 43

 player-centric goals of design, 106
 attention and involvement, 118 - 120
 empowerment, 116 - 118
 experiential understanding, 122 - 123
 fi ero, the concept of, 110
 fl ow, 113 - 115
 fun, 109 - 110
 interesting decisions, 120 - 122
 lusory attitude, 110 - 112
 structured confl ict, 115 - 116

 relationships at the Inscribed Layer (Layered
Tetrad), 40 , 42

 roles of, 43 - 44 , 62 - 63
 teaching new skills/concepts

 integration, 209
 sequencing, 207 - 209

 types of, Bartle's four players who suit MUDs,
 67 - 68

 playing cards/card decks
 Bartok , 621 - 622 , 655

 backgrounds, 622 - 623
 build settings, 623 - 624
 card animation, 623
 creating cards, 624 - 629
 fanning the hand, 638 - 640
 game logic, 653 - 655
 layouts, 629 - 638
 LINQ (Language Integrated Query) and C#

coding, 640 - 641
 managing the initial deal, 642 - 643
 managing turns, 646 - 653
 moving cards, 641 - 642
 rules of the game, 622
 sorting order (2D-depth), 643 - 646

 custom card decks, 172

 Poker
 game balance and, 176 - 177
 Red Dead Redemption rule mechanics, 44
 art assets, 614 - 615
 backgrounds, 614 - 615
 beginning/end of round announcements,

 615 - 616
 chain scoring, 605 - 607
 clickable card functionality, 597 - 600
 creating cards from sprites, 566 - 581
 displaying scores to players, 607 - 614
 draw and discard actions, 597 - 604
 earning points, 604 - 605
 example of play, 584 - 585
 game logic, 597 - 604
 giving player feedback on scores, 616 - 619
 gold cards, 620
 importing images as sprites, 564 - 566
 importing Unity asset packages, 562
 matching drawn cards, 600 - 604
 mine tableau layout, 585 - 592
 mobile device build settings, 562 - 563 , 620
 positioning cards on tableau, 592 - 594
 project setup, 562
 rules of the game, 583 - 584
 scoring, 604 - 619
 setting up sorting layers on tableau,

 594 - 597
 shuffl ing cards, 581 - 583

 Prospector Solitaire , 561
 randomization, 171 - 173
 riffl e shuffl ing, 7
 shuffl ing, 7 , 172 - 173
 Vectorized Playing Cards 1.3

 Bartok , 622
 Prospector Solitaire , 562

 playtesting, 141 , 153
 ADL (Automated Data Logging), 151
 analyzing game play, Bartok , 7
 AT (Automated Testing), 153
 Bartok , 6 - 10
 beta tests

 closed playtesting, 150
 limited playtesting, 150
 open playtesting, 150 - 151

 893POST-RELEASE PHASE (PROJECT DEVELOPMENT PROCESS)

 data tables, Inscribed Layer mechanics
(Layered Tetrad), 46

 Dynamic elements (FDD framework), 27
 feel, designing for, 9 - 10
 fl ukes, 8
 focus testing, 152
 importance of, 142
 interesting polling, 152
 investigators (playtesting), defi ning, 142
 methods of testing, 146

 formal group testing, 146 - 147
 formal individual testing, 147 - 149
 informal individual testing, 146
 online playtesting, 150 - 151
 scripts, 147

 paper prototyping, 138
 playtesters

 acquaintances as playtesters, 145
 circle of playtesters, 143 - 146
 defi ning, 142
 friends as, 144
 Internet as, 145 - 146
 tissue playtesters, 144 - 145
 ways to be a great playtester, 142 - 143
 you as, 143 - 144

 QA (Quality Assurance) testing, 152 - 153
 questions, asking, 7
 rounds, comparing, 9
 rules, modifying, 8
 usability testing, 152

 plots
 fi rst plot point (three-act dramatic narrative

structure), 52
 free will versus plot (interactive versus linear

narratives), 53 - 55
 Inscribed Layer (Layered Tetrad), 50
 second plot point (three-act dramatic

narrative structure), 52
 Pogo.com, Crazy Cakes playtesting and ADL

(Automated Data Logging), 151
 point-and-click adventure games, loss of

popularity, 117
 points, adding in Apple Picker , 441 - 442
 Pokemon

 epilepsy, 74

 transmedia example, 85
 Poker

 game balance and, 176 - 177
 Red Dead Redemption rule mechanics, 44

 polling (interest) and playtesting, 152
 pop-ups, directly guiding players by, 199
 position puzzles/sliding blocks in action

games, 193
 positive/negative feedback, game balance,

 176 - 177
 possible outcomes of probability, 166
 post-release phase (project development

process), 103
 power-ups, building in Space SHMUP , 531 - 538 ,

 541 - 543
 practical probability versus theoretical

probability, 169
 prefabs (Unity), 273 - 277
 premises

 FDD framework, 25
 Inscribed Layer (Layered Tetrad)

 defi ning, 49
 examples of, 49

 preproduction phase (project development
process), 102

 Prince of Persia , limited possibilities and
interactive or linear narrative, 53 - 54

 Prince of Persia: The Sands of Time , limited
possibilities and interactive or linear
narrative, 53 - 54

 prior art, researching (analysis phase of iterative
design), 92

 prioritizing tasks in burndown charts, 414 - 415
 probability

 adding probabilities, 166
 decimals, 165 - 166
 dice probability, determining with Calc,

 157 - 158
 adjusting column widths, 160
 charting results, 164
 counting die roll sums, 163 - 164
 creating Die A row, 160 - 161
 creating Die B row, 161 - 162
 creating probability distribution charts, 164
 creating rows, 159

 POWER-UPS, BUILDING IN SPACE SHMUP894

 creating spreadsheets, 158
 entering data in cells, 158 - 159
 labeling rows, 162 - 163
 summing dice role results, 163
 Unity example, 825 - 829

 enumeration, 166
 fractions, 165 - 166
 multiplying probabilities, 166 - 167
 one minus the probability, 167 - 168
 possible outcomes, 166
 practical probability versus theoretical

probability, 169
 range of probabilities, 166
 sought outcomes, 166
 Ten Rules of Probability Every Game Designer

Should Know , 165 - 169
 theoretical probability versus practical

probability, 169
 weighted probabilities, 174 - 175

 probability tables, Inscribed Layer mechanics
(Layered Tetrad), 46

 procedural aesthetics (Dynamic Layer), 70
 procedural animation, 72
 procedural environments, 73
 procedural music, 70

 HRS (Horizontal Re-Sequencing), 70
 PCO (Procedural Composition), procedural

music, 71
 VRO (Vertical Re-Orchestration), procedural

music, 70 - 71
 procedural visual art, 71 - 72

 procedural music, 70
 procedures

 Dynamic Layer (Layered Tetrad), 64
 FDD framework, 25

 product backlogs/feature lists (Scrum software
development methodologies), 408

 production phase (project development
process), 102 - 103

 Professor Layton, Myst , 188
 Profi ler (Unity), 663 - 665
 programming . See also systems thinking

 C#, 253 , 262
 compiled language, C# as, 254 - 256

 creating scripts, 266 - 271
 features of (overview), 254
 functions, 257 - 258
 managed code, C# as, 256
 OOC (Object-Oriented Coding), C# as,

 258 - 259
 reasons for choosing, 238 - 239
 runtime speed, 239
 strongly typed language, C# as, 256 - 257
 syntax of, 259 - 260
 tips for learning, 239 - 241
 variables, 256 - 257

 Hello World program, 263 , 279
 creating C# scripts, 266 - 271
 creating GameObjects, 271 - 272
 creating projects in Unity, 264 - 266
 editing GameObjects, 272 , 277 - 278
 gizmos, 277
 naming projects, 266
 playing, 272 - 273
 prefabs, 273 - 277
 standard project setup procedures, 264

 JavaScript, 238 , 239
 naming projects, 266

 progression
 inscribed dramatics, 58
 paper game technologies, 59

 progression tables, Inscribed Layer mechanics
(Layered Tetrad), 46

 project development process, 102
 alpha phase, 103
 beta phase, 103
 gold phase, 103
 post-release phase, 103
 preproduction phase, 102
 production phase, 102 - 103

 Project pane (Unity), 251 , 264 - 266
 Project Wizard (Unity), new project setup

procedures, 794 - 796
 projects

 Agile software development methodologies,
 405 - 407 , 416

 Apple Picker . See Apple Picker
 arrays (C# coding), 328 , 333 - 337

 895PROJECTS

 Hello World program, 344 - 347
 jagged arrays, 340 - 342
 multidimensional arrays, 337 - 340

 Bartok . See Bartok
 Boids project (OOP in C# coding), 394

 building simple models, 394 - 396
 project setup, 394
 scripts, 397 - 403

 burndown charts, 409
 assigning tasks, 414 - 415
 BDV (Burndown Velocity), 414 - 416
 creating, 416
 estimated hours versus real hours, 413
 example of, 410 - 412
 prioritizing tasks, 414 - 415

 C#, Boids project (OOP in C# coding),
 394 - 403

 classes (C# coding)
 Enemy Class sample project, 381 - 384 ,

 387 - 388
 inheritance, 387 - 389
 instances as GameObject components,

 385 - 387
 properties, 384 - 385
 subclasses, 388 - 389
 superclasses, 388 - 389

 collections (C# coding), 328
 arrays, 333 - 337
 Hello World program, 344 - 347
 jagged arrays, 340 - 342
 jagged lists, 342 - 344
 lists, 328 - 333
 multidimensional arrays, 337 - 340

 debugging C# coding, 363 - 364
 attaching debugger to Unity, 372 - 374
 attaching/removing scripts, 366 - 367
 compile-time bugs, 364 - 366
 runtime errors, 367 - 369
 stepping through code, 369 - 371 , 373 - 377
 variables, 375 - 376

 development process
 Agile software development

methodologies, 405 - 407 , 416
 burndown charts, 409 - 416

 Manifesto for Agile Software Development ,
 406 - 407

 Scrum software development
methodologies, 407 - 409 , 416

 Enemy Class sample project
 class inheritance, 387 - 388
 project setup, 381 - 384

 functions (C# coding), 349 - 350
 arguments and parameters, 353 - 354
 defi ning, 350 - 353
 naming, 356
 optional parameters, 359
 overloading, 358
 params keyword, 359 - 361
 reasons for using, 356 - 357
 recursive functions, 361 - 362
 returning values, 354 - 356
 void, returning, 355 - 356

 Hello World program. See Hello World
program

 joining game projects in development, 221
 lists (C# coding), 328 - 333

 Hello World program, 344 - 347
 jagged lists, 342 - 344

 loops (C# coding)
 do.while loops, 319 - 320
 foreach loops, 322
 jump statements in loops, 322 - 324
 for loops, 320 - 322
 modulus operator (%), 324
 project setup, 300 - 301
 while loops, 316 - 319

 Mission Demolition . See Mission Demolition
 naming, 266
 Omega Mage. See Omega Mage
 OOP (Object-Oriented Programming), Boids

project (OOP in C# coding), 394 - 403
 Prospector Solitaire . See Prospector Solitaire
 QuickSnap . See QuickSnap
 Scrum software development

methodologies, 407 , 416
 meetings, 409
 product backlogs/feature lists, 408
 releases/sprints, 408

PROJECTS896

 teams, 408
 setup procedures, 264 , 793 , 796

 attaching C# scripts to scene Main Camera,
 797 - 798

 creating C# scripts, 797
 new projects, 794 - 796
 saving scenes, 796 - 797

 Space SHMUP . See Space SHMUP
 starting, 221 - 222
 Word Game . See Word Game

 Projects folder (Unity), viewing contents of, 265
 Prospector Solitaire , 561

 art assets, 614 - 615
 backgrounds, 614 - 615
 beginning/end of round announcements,

 615 - 616
 clickable card functionality, 597 - 600
 draw and discard actions, 597 - 604
 example of play, 584 - 585
 game logic, 597 - 604
 gold cards, 620
 importing Unity asset packages, 562
 matching drawn cards, 600 - 604
 mine tableau layout, 585 - 592

 positioning cards on tableau, 592 - 594
 setting up sorting layers, 594 - 597

 mobile device build settings, 562 - 563 , 620
 project setup, 562
 rules of the game, 583 - 584
 scoring

 chain scoring, 605 - 607
 displaying scores to players, 607 - 614
 earning points, 604 - 605
 giving player feedback on scores, 616 - 619

 shuffl ing cards, 581 - 583
 sprites

 creating cards from sprites, 566 - 581
 importing images as sprites, 564 - 566

 protagonists (player roles), 43 , 56
 prototypes (digital)

 Apple Picker . See Apple Picker
 Bartok . See Bartok
 Game Feel: A Game Designer's Guide to Virtual

Sensation , 420
 Mission Demolition . See Mission Demolition

 Omega Mage. See Omega Mage
 Prospector Solitaire . See Prospector Solitaire
 purpose of, 420
 QuickSnap . See Quick Snap
 Space SHMUP . See Space SHMUP
 Word Game . See Word Game

 prototypes (paper), 125 , 140
 benefi ts of, 126
 best uses for, 138 - 139
 example of, 129

 gameplay development, 132 - 137
 GM strategies, 137
 initial concept development, 129 - 130
 mission types, determining, 131 - 133
 playtesting, 138
 prototype construction, 131 - 133

 movement systems, 127 - 128 , 134 , 138
 poor uses for, 139
 tools for, 127 - 129

 puzzles and puzzle design, 185 , 195
 action games, sliding blocks/position

puzzles, 193
 action puzzles, 188
 Art of Puzzle Design, The , 186

 eight steps of puzzle design, 191 - 192
 genres of puzzles, 187 - 188
 goals of eff ective design, 192 - 193
 reasons for playing puzzles, 189
 required modes of thought in solving, 189

 boss fi ghts, 195
 bridge puzzles, 188
 chain reaction puzzles, 194
 chess puzzles, 188
 construction puzzles, 188
 crossword puzzles, 188
 defi ning, 186 - 187
 eight steps of puzzle design, 191 - 192
 genres of puzzles, 187 - 188
 goals of eff ective design, 191 - 192
 Kim, Scott, 186 - 193
 multiplayer games, 186
 physics puzzles, 194
 QuickSnap , 695

 897 QUICKSNAP

 adding sound/visual eff ects to shots,
 723 - 725

 aspect ratios, 697
 build settings, 696
 camera setup, 702 - 705
 comparing shots, 717 - 721
 customizing setup, 725 - 726
 debugging, 713 - 714
 deleting shots, 714 - 715
 displaying player progress, 721 - 723
 fi rst-person controllers, 697 - 698
 GUI elements, 703 - 705
 importing Unity asset packages, 696- 697
 layers, 703 - 705
 lightmapping, 698 - 701
 maximizing target window, 716 - 717
 project setup, 696
 quality settings, 701 - 702
 recording player progress, 721 - 723
 replacing shots, 715 - 716
 setting up, 706 - 707
 storing shots, 707 - 712

 reasons for playing puzzles, 189
 required modes of thought in solving,

 189 - 190
 stealth puzzles, 194
 story puzzles, 188
 strategy puzzles, 188
 Sudoku , 188
 traversal puzzles, 194

 Q
 QA (Quality Assurance) testing, 152 - 153
 Quake , machinima example, 84
 Quake 2 , game mods and cultural mechanics, 81
 quaternion variables (C# coding), 291 - 292
 quest outcomes (dynamic mechanics), 69
 questions, asking (game play analysis), Bartok , 7
 QuickSnap , 695

 aspect ratios, 697
 build settings, 696
 camera setup, 702 - 705
 customizing setup, 725 - 726
 debugging, 713 - 714

 fi rst-person controllers, 697 - 698
 GUI elements, 703 - 705
 importing Unity asset packages, 696- 697
 layers, 703 - 705
 lightmapping, 698 - 701
 maximizing target window, 716 - 717
 project setup, 696
 quality settings, 701 - 702
 recording/displaying player progress,

 721 - 723
 setting up, 706 - 707
 shots

 adding sound/visual eff ects, 723 - 725
 comparing, 717 - 721
 deleting, 714 - 715
 replacing, 715 - 716

 R
 race conditions (C# coding), 812 - 814
 RAND formula (Calc), weighted probabilities,

 174 - 175
 randomization

 dice, 170
 paper game technologies, 59
 playing cards, 171 - 172

 custom card decks, 172
 shuffl ing decks, 172 - 173

 spinners, 170
 rate of fi re (weapons), gameplay development

(paper prototyping), 134 - 135 , 137 - 138
 rating phase (brainstorming/ideation), 101
 Ravensburger and Up The River

 inscribed dramatics, example of, 58
 optimal strategy, determining (dynamic

mechanics), 65 - 66
 real hours versus estimated hours (burndown

charts), 413
 rebalancing weapons, 177 - 178
 recursive Bézier curves, 844 - 845
 recursive functions (C# coding), 361 - 362
 Red Dead Redemption

 climax, example of (dramatic narrative
structure), 53

 Poker in, 44
 rule mechanics, 44

RACE CONDITIONS (C# CODING)898

 Red vs. Blue , machinima example, 83 - 84
 registering Unity, 241 - 242
 relationships, developing through shared

experiences (dynamic dramatics), 76
 releases/sprints (Scrum software development

methodologies), 408
 Renderer component (GameObjects), 295
 REPT formula (Calc), showing overall damage

(weapons and game balance), 181
 required equipment (paper prototyping and

gameplay development), 132
 researching prior art (analysis phase of iterative

design), 92
 reserve functions (C# coding), 814 - 815
 resolution (Act III), three-act dramatic narrative

structure, 52
 resolution (screen), environmental aesthetics

(Dynamic Layer), 73
 resources

 animation/model resources, 854 - 855
 art assets, 854
 audio assets, 854
 C# resources

 C# 4.0 Pocket Reference, 3rd Edition , 854
 CSharp Yellow Book , 854
 online resources, 853 - 854
 search tips, 854

 determining (analysis phase of iterative
design), 91 - 92

 educational software discounts, 855
 FDD framework, 25
 font-related resources, 855
 Inscribed Layer (Layered Tetrad), 40 , 45
 model/animation resources, 854 - 855
 online resources

 game developer salary surveys, 220
 Unity tutorials, 852
 Unity-related websites, 852 - 853

 restarting games, Space SHMUP , 518 - 519
 reward (inscribed dramatics), 58
 Reynolds, Craig W.

 Flocks, Herds, and Schools: A Distributed
Behavior Model , 393

 OOP (Object-Oriented Programming), 393
 riffl e shuffl ing, 7

 right-clicking and OS X, 265 , 849 - 850
 RigidBody component (GameObjects), 272 , 296
 rising action (Act II), fi ve-act dramatic narrative

structures, 51
 Roberts, Sam, and game defi nitions, 17
 RoboCup tournaments, example of player's role

in game design, 62
 RoboRally , innovation and the design process,

 97 - 98
 Rock Band , player guidance, 200 - 201
 Rockstar Studios

 Grand Theft Auto , resource mechanics, 45
 Grand Theft Auto V , player guidance, 199
 Red Dead Redemption

 climax, example of (dramatic narrative
structure), 53

 Poker and rule mechanics, 44
 Rocky Horror Picture Show, The, and audience

participation, 62
 Rogers, Scott

 Disneyland as example of indirect
guidance, 202

 emergence (Dynamic Layer), mechanics and
unexpected emergence, 63 - 64

 Level Up! The Guide to Great Video Game
Design , 64 , 202

 Rogue , fi nal outcomes example (dynamic
mechanics), 69

 Rohrer, Jason
 attention and involvement as player-centric

goals of design, 120
 Passage , 11 - 12

 role fulfi llment (empathetic characters versus
avatars), 56

 roles of players (player relationships),
defi ning, 43

 citizens, 44
 collaborators, 43
 competitors, 43
 multiplayer games, 44
 protagonists, 43

 Romeo and Juliet
 empathetic characters versus avatars, 55 - 56
 fi ve-act dramatic narrative structures,

example of, 50 - 51

 899 SCHELL, JESSE

 Rooster Teeth Productions, Red vs. Blue
machinima example, 83 - 84

 ROUND formula (Calc), showing overall damage
(weapons and game balance), 181

 rounds, comparing in Bartok (game play
analysis), 9

 rows (Calc spreadsheets)
 creating, 159

 Die A row, 160 - 161
 Die B row, 161 - 162

 labeling, 162 - 163
 RPG (Role-Playing Games)

 Dungeons & Dragons , 846 - 847
 FATE system , 846 - 847
 tips for running good campaigns, 846 - 847

 rules
 FDD framework, 25
 feel, designing for, 9 - 10
 house rules (dynamic mechanics), 66 - 67
 Inscribed Layer (Layered Tetrad), 40 , 44
 modifying, Bartok , 8

 Rules of Play: Game Design Fundamentals , 64 ,
 120 - 121

 runtime errors, debugging (C# coding), 367 - 369
 Ryan, Malcolm, and Bartok, 4

 S
 salaries in the digital game industry, 220
 Salen, Katie

 meaningful play
 defi ning, 64
 interesting decisions as a player-centric

goal of design (dynamic procedures),
 120 - 121

 Rules of Play: Game Design Fundamentals , 64 ,
 120 - 121

 scenes (Unity)
 saving, 796 - 797
 Scene pane, 251

 Schell, Jesse
 Art of Game Design: A Book of Lenses, The , 4 ,

 11 , 20 , 27

 indirectly guiding players, 200 - 206
 inscribed mechanics, 40 - 41
 interest as a player-centric goal of design,

 119
 listening, importance of during design

phase (iterative design), 93
 Ten Rules of Probability Every Game

Designer Should Know , 165 - 169
 testing phase (iterative design), 96

 Elemental Tetrad framework, 20 , 27 - 29
 aesthetics, 27 - 28
 mechanics, 27
 story's role in, 28
 technology's role in, 28

 games, defi ning, 11 , 13 - 14
 indirectly guiding players, 200 - 206
 interest as a player-centric goal of design,

 119
 listening, importance of during design

phase (iterative design), 93
 probability, 165 - 169
 Skyrates , 111 - 112
 Ten Rules of Probability Every Game Designer

Should Know , 165 - 169
 testing phase (iterative design), 96

 schools, Games Education Programs, 215 - 217
 scoping (design process), 103 - 104
 score counter, Apple Picker , 440 - 441
 screen variables (C# coding), 292
 Scripting Reference (Unity), 430 - 431
 scripts

 C# scripts, creating, 266 - 271
 formal group playtesting method, 147
 GameObject components, scripts as,

 296 - 297
 Scrum software development methodologies,

 407 , 416
 meetings, 409
 product backlogs/feature lists, 408
 releases/sprints, 408
 teams, 408

 searches (online), C# resources, 854
 second plot point (three-act dramatic narrative

structure), 52
 sequencing, teaching players by, 207 - 209

 SCHELL, JESSE 900

 serious games, 109
 setting up projects in Unity, 793 , 796

 C# scripts
 attaching to scene Main Camera, 797 - 798
 creating, 797

 new projects, 794 - 796
 saving scenes, 796 - 797

 settings, Inscribed Layer (Layered Tetrad), 49
 Settlers of Catan

 resource mechanics, 45
 strategy, designing for (dynamic

mechanics), 66
 setup (paper prototyping and gameplay

development), 133
 Shakespeare, William, and Romeo and Juliet

 empathetic characters versus avatars, 55 - 56
 fi ve-act dramatic narrative structures,

example of, 50 - 51
 shared experiences, developing relationships

through (dynamic dramatics), 76
 SHMUP (shoot-em-up) games. See Space

SHMUP
 shorting operators versus non-shorting

operators (C# coding), 301 - 302
 short-term objectives and space (Inscribed

Layer mechanics), 46
 shuffl ing card decks, 7 , 172 - 173
 side quests and interactive narrative, 54
 Sierra OnLine, Space Quest II and autotelic

empowerment as a player-centric goal of
design, 117

 silent protagonists (empathetic characters
versus avatars), 56

 similarities, indirectly guiding players by, 201
 sine/cosine, 822 - 825
 single player versus game (player interaction

patterns), 43
 Singleton software design pattern, 815 - 816
 skills, teaching by player guidance, 207

 integration, 209
 sequencing, 207 - 209

 Skyrates
 closed playtesting, 150

 open playtesting, 150 - 151
 sporadic-play games, 111

 Skyrim
 confl icting objectives (Inscribed layer

mechanics), 42
 fi nal outcomes (dynamic mechanics),

example of, 69
 game mods and cultural mechanics, 82
 importance of objectives (Inscribed layer

mechanics), 42
 narrative game mods, 83
 player guidance, 198
 side quests, 54

 sliding blocks/position puzzles in action
games, 193

 smell (Inscribed Layer aesthetics), 48
 Snakes and Ladders

 aesthetics-based design example, 21 - 24
 American name change, 26
 strategic game play, modifying for, 23 - 24

 Factory design pattern, 816
 Singleton design pattern, 815 - 816
 Strategy design pattern, 816 - 817

 social change, designing games for, 109
 social network games and lusory attitude,

 111 - 112
 Socializer player type (hearts), 67
 software design patterns, 815
 software development

 Agile methodologies, 405 - 406 , 416
 Manifesto for Agile Software Development ,

 406 - 407
 burndown charts, 409

 assigning tasks, 414 - 415
 BDV (Burndown Velocity), 414 - 416
 creating, 416
 estimated hours versus real hours, 413
 example of, 410 - 412
 prioritizing tasks, 414 - 415

 Scrum methodologies, 407 , 416
 meetings, 409
 product backlogs/feature lists, 408
 releases/sprints, 408
 teams, 408

 901 SPEC OPS: THE LINE

 software, educational software discounts, 855
 Somethin' Else, Papa Sangre , sound as an

Inscribed Layer aesthetic, 47
 sought outcomes of probability, 166
 sound

 auditory play environments (environmental
aesthetics), 73 - 74

 noisy environments, 74
 volume control, 74

 immediacy of (Inscribed Layer aesthetics), 47
 sound eff ects, 47

 Space Quest II , autotelic empowerment as a
player-centric goal of design, 117

 Space SHMUP , 487
 adding elements, 559 - 560
 adding enemies, 543 - 556
 art assets, enemies, 504 - 506
 aspect ratios, 490
 backgrounds, 556 - 558
 boosting weapons, 531 - 538
 bounds

 camera bounds, 498 - 500
 hero ship bounds, 495 - 498
 testing overlapping bounds, 500 - 504

 camera setup, 490
 damaging players, 513 - 518
 directional light GameObject, 490
 enemies dropping power-ups, 541 - 543
 enemy attack/damage, 513 - 518
 enemy GameObjects, 504 - 506
 enemy scripts, 506 - 509 , 543 - 556
 fi ne-tuning game play, 559
 function delegate for fi ring, 525 - 531
 hero shield, 493 - 495
 hero ship, 491 - 493
 importing Unity asset packages, 488 - 490
 layers, 510 - 513
 particle eff ects, 556 - 558
 physics, 511 - 513
 power-ups, 531 - 538 , 541 - 543
 project setup, 488 - 490
 race conditions, 538 - 541
 restarting games, 518 - 519
 shooting, 519 - 531
 spawning enemies, 509 - 510

 starfi elds, 556 - 558
 tags, 511 - 513
 weapon defi nitions, 521 - 525

 spaces, Inscribed Layer (Layered Tetrad), 40 , 45
 experiences, 46
 fl ow, 45
 landmark, 45 - 46
 long-term objectives, 46
 medium-term objectives, 46
 purposes of space, 45
 short-term objectives, 46

 Spec Ops: The Line
 inscribed dramatics, example of, 57 - 58
 limited possibilities and interactive or linear

narrative, 53 - 54
 speed (sense of)/vection, Mission Demolition ,

 466 - 471
 Spider-Man 2 , quest outcomes (dynamic

mechanics), example of, 69
 spinners (randomization), 170
 spoilage mechanic (Farmville), 112
 Spoilsport player type, 68
 sporadic-play games and lusory attitude,

 111 - 112
 Spore , procedural animation, 72
 spreadsheet programs. See Calc
 spreadsheets (Calc)

 cells, entering data, 158 - 159
 columns

 adjusting column widths, 160
 labeling rows, 162 - 163

 creating, 158
 formulas, exiting formula editing, 164
 rows

 creating, 159
 creating Die A row, 160 - 161
 creating Die B row, 161 - 162
 labeling rows, 162 - 163

 sprints/releases (Scrum software development
methodologies), 408

 sprites and Prospector Solitaire
 creating cards from sprites, 566 - 581
 importing images as sprites, 564 - 566

 Stack Overfl ow website, C# online
resources, 853

 SPEED (SENSE OF)/VECTION, MISSION DEMOLITION902

 Star Control , confl icting objectives (Inscribed
layer mechanics), 42

 Star Wars: A New Hope
 narrative

 premises, examples of, 49
 settings, example of, 49

 scoping and the design process, 104
 three-act dramatic narrative structure,

example of, 51 - 52
 Star Wars: Knights of the Old Republic , limited

possibilities and interactive or linear
narrative, 53 - 54

 Starcraft , game mods and cultural
mechanics, 81 - 82

 Start screen, Apple Picker , 448
 state tracking, paper game technologies, 59
 static functions (C# coding), 288
 stealth puzzles, 194
 Steinkuehler and the cultural aspects of game

development , Constance, 80 - 81
 Stern and autotelic empowerment as a

player-centric goal of design in Facade ,
Andrew, 117

 stories
 Elemental Tetrad framework, story's

role in, 28
 FDD framework, 26
 story puzzles, 188

 strategy
 defi ning, 65
 designing for, 66
 modifying Snakes and Ladders for strategic

game play, 23 - 24
 optimal strategy, determining, 65 - 66
 strategy puzzles, 188
 Strategy software design pattern, 816 - 817

 string variables (C# coding), 285
 structured confl ict as a player-centric goal of

design, 115 - 116
 subclasses (C# coding), 388 - 389 , 589 - 592
 Sudoku , 188
 Suits, Bernard

 games, defi ning, 10 - 15
 Grasshopper, The , 10- 11 , 15 , 110 - 111
 lusory attitude, 13 - 14 , 110 - 111

 SUM formula (Calc), 163 , 181
 Super Mario Brothers , integrated actions

(meaningful play), 64 - 65
 Super Mario Galaxy , particle systems (procedural

visual art), 71 - 72
 superclasses (C# coding), 388 - 389 , 591
 Swain, Chris

 FDD framework, 20 , 24 , 29
 boundaries, 25
 characters, 26
 Dramatic elements, 24 - 26
 Dynamic elements, 24 , 26 - 27
 Emergence, 26 - 27
 Emergent Narrative, 27
 Formal elements, 24 - 25
 objectives, 25
 outcomes, 25
 player interaction patterns, 24
 playtesting, 27
 premises, 25- 26
 procedures, 25
 resources, 25
 rules, 25
 stories, 26

 game design, 18
 Game Design Workshop , 10 , 18 , 20 , 24
 iterative design, 90

 Swink, Steve
 digital prototypes, 420
 Game Feel: A Game Designer's Guide to Virtual

Sensation , 420
 switch statements (C# coding), 310 - 313
 SystemInfo variables (C# coding), 293
 systems thinking, 225 , 234

 Apple Picker game analysis, 229
 GameObject action lists, 231 - 232
 GameObject fl owcharts, 232 - 234
 GameObjects, 230 - 231
 gameplay, 230

 board games, 226
 breaking down complex problems into

simpler ones, 229
 code libraries, 228
 computer languages, 227
 development environment, 228

 903THREE-ACT DRAMATIC NARRATIVE STRUCTURE

 simple instructions exercise, 226 - 227

 T
 tables

 Civilization , 40 - 41
 Inscribed Layer (Layered Tetrad), 40 , 46

 playtest data, 46
 probability tables, 46
 progression tables, 46

 Tales of the Arabian Nights , probability tables, 46
 teaching new skills/concepts, sequencing,

 207 - 209
 team competition (player interaction

patterns), 43
 Team Fortress 2

 Dynamic Layer (Layered Tetrad) example,
 36 - 37

 freemium games, 214
 Technique of Dramas, The , fi ve-act dramatic

structure, 50 - 51
 technology

 Cultural Layer (Layered Tetrad), 84
 defi ning, 36
 external tools (player-built) and cultural

technology, 84 - 85
 game technology used in other fi elds, 84

 Dynamic Layer (Layered Tetrad), defi ning, 34
 dynamic technology, 77
 Elemental Tetrad framework, 28
 Inscribed Layer (Layered Tetrad), 58

 defi ning, 33
 paper game technologies, 58 - 59

 Tekken , fulfi lling play as a player-centric goal of
game design, 110

 Ten Rules of Probability Every Game Designer
Should Know , 165 - 169

 testing phase (iterative design), 91 , 95 - 96 . See
also playtesting

 fastest path to testing, determining (analysis
phase of iterative design), 92

 repetition, importance of, 96 - 97
 Tetris , 186
 text

 font-related resources, 855

 text-based adventure games, loss of
popularity, 117

 texture (contrast), indirectly guiding players
by, 204

 That Dragon, Cancer , personal expression/
communication as a goal of game design, 108

 thatgamecompany
 Flower , music in, 71
 Journey , 41 , 201 - 202

 theoretical probability versus practical
probability, 169

 three-act dramatic narrative structure
 antagonism (Act II), 52
 climaxes, 53
 exposition (Act I), 52
 Field, Syd, 51 - 52
 fi rst plot point, 52
 Foundations of Screenwriting, The , 51 - 52
 hooks, 52
 inciting incidents, 52
 resolution (Act III), 52
 second plot point, 52
 Star Wars: A New Hope as an example of,

 51 - 52
 Tic-Tac-Toe , optimal strategy, determining

(dynamic mechanics), 65
 time-based games, 431 - 432
 time-based linear interpolation, 831 - 832
 tissue playtesters, 144 - 145
 Titanfall , researching prior art (analysis phase of

iterative design), 92
 Tolkien, J.R.R., Fellowship of the Ring as an

emergent narrative example, 77
 Tomb Raider , role fulfi llment (empathetic

characters versus avatars), 56
 Tony Hawk's Pro Skater , performative

empowerment as a player-centric goal of
design, 118

 top (AAA) games, costs in developing, 213
 touch (Inscribed Layer aesthetics), 47 - 48
 tracking (state), paper game technologies, 59
 trails, indirectly guiding players by, 201
 Transform component (GameObjects), 272 ,

 294 - 295

THREE-ACT DRAMATIC NARRATIVE STRUCTURE904

 transmedia and Cultural Layer (Layered Tetrad),
 85 - 86

 traversal puzzles, 194
 Tueber, Klaus

 designing for strategy (dynamic
mechanics), 66

 Settlers of Catan, 66
 tutorials (Unity), 852

 Demo Projects section (Unity website), 852
 Learn section (Unity website), 852

 U
 Ultima IV , tracking and reacting to (empathetic

characters versus avatars), 57
 Uncharted

 inscribed dramatics, example of, 58
 limited possibilities and interactive or linear

narrative, 53 - 54
 role fulfi llment (empathetic characters

versus avatars), 56
 Uncharted 2: Drake's Deception , machinima

example, 84
 Uncharted 3

 particle systems (procedural visual art),
 71 - 72

 player guidance, 203
 unilateral competition (player interaction

patterns), 43
 Unity, 235 , 237 , 251

 AngryBots project example, 242 - 246
 Apple Picker. See Apple Picker
 art assets, Unity Asset Store, 854
 aspect ratios

 QuickSnap, 69
 Space SHMUP , 490

 asset packages
 Omega Mage , 729
 Prospector Solitaire , 562

 QuickSnap , 696- 697
 Space SHMUP , 488 - 490

 Assets folder, 265 - 266
 audio assets, Unity Asset Store, 854
 axis mapping, InputManager (Unity),

 491 - 494
 Bézier curves, 842 - 845
 C# coding

 attaching scripts to scene Main Camera,
 797 - 798

 coroutines, 802 - 803
 creating scripts, 266 - 271 , 797
 interfaces, 807 - 810
 online resources, 853 - 854
 race conditions, 812 - 814

 creating projects in, 264 - 266
 debugging C# coding

 attaching debugger to Unity, 372 - 374
 stepping through code, 369 - 371 , 373 - 377
 variables, 375 - 376

 downloading, 236
 educational software discounts, 855
 equality testing, 304
 fi rst-person controllers, QuickSnap , 697 - 698
 force-quitting, 371 - 372
 functions (C# coding), defi ning, 350 - 353
 GameObjects, 281 , 293 - 294

 Box Collider component, 295
 Box Colllider component, 272
 Capsule Collider component, 295
 Collider components, 295 - 296
 Colllider components, 272
 creating, 271 - 272
 editing, 272 , 277 - 278
 gizmos, 277
 Mesh Collider component, 295
 Mesh Filter component, 272
 Mesh Renderer component, 272
 Mesh Filter component, 295
 playing, 272 - 273
 prefabs, 273 - 277
 Renderer component, 295
 RigidBody component, 272 , 296

 905 UNITY

 scripts as GameObject components,
 296 - 297

 Sphere Collider component, 295
 Transform component, 272 , 294 - 295

 InputManager, axis mapping, 491 - 494
 Inspector pane

 editing GameObjects, 272
 GameObject components, 294

 installing, 241
 interpolation

 easing linear interpolation, 837 - 841
 interpolating values other than position,

 834 - 835
 time-based linear interpolation, 831 - 832
 Zeno's Dichotomy Paradox and linear

interpolation, 833 - 834
 licensing, 241 - 242
 lightmapping, QuickSnap , 698 - 701
 linear extrapolation, 836 - 837
 LineRenderer, ground spells in Omega Mage ,

 756 - 761
 naming projects, 266
 navigating, 251
 panes, 251

 confi guring layout, 246 - 251
 Console pane, 251
 Game pane, 251
 Hierarchy pane, 251
 Inspector pane, 251
 Project pane, 251
 Scene pane, 251

 particle systems (procedural visual art),
 71 - 72

 Profi ler, 663 - 665
 Project pane, creating new projects, 264 - 266
 project setup procedures, 793 , 796

 attaching C# scripts to scene Main Camera,
 797 - 798

 creating C# scripts, 797
 new projects, 794 - 796
 saving scenes, 796 - 797

 Project Wizard, new project setup
procedures, 794 - 796

 Projects folder, viewing contents of, 265

 Prospector Solitaire , importing Unity asset
packages, 562

 QuickSnap , importing Unity asset packages,
 696- 697

 reasons for choosing, 237 - 238
 recursive Bézier curves, 844 - 845
 registering, 241 - 242
 Scripting Reference, 430 - 431
 sine/cosine, 822 - 825
 Space SHMUP

 aspect ratios, 490
 importing Unity asset packages, 488 - 490

 systems thinking and, 228
 tutorials, 852

 Demo Projects section (Unity website) , 852
 Learn section (Unity website), 852

 variables, 287 - 289
 color variables, 290 - 291
 instance variables, 289
 mathf variables, 292
 quaternion variables, 291 - 292
 screen variables, 292
 SystemInfo variables, 293
 Vector3 variables, 288 - 290

 web resources
 Goldstone's websites, Will , 853
 Unity Asset Store, 854
 Unity Gems website, 852

 website
 Demo Projects section (Unity website) , 852
 Learn section (Unity website), 852
 tutorials, 852

 universities/colleges, Games Education
Programs, 215 - 217

 Up The River
 inscribed dramatics, example of, 58
 optimal strategy, determining (dynamic

mechanics), 65 - 66
 usability testing, 152
 user interfaces

 Microsoft controllers
 axis mapping, 848 - 849
 button mapping, 848 - 849

 OS X and right-clicking, 849 - 850

UNITY906

 V
 Valkyria Chronicles , 129, 198
 Valve

 Counter Strike , game mods and cultural
mechanics, 81 - 82

 Half-Life , game mods and cultural
mechanics, 81 - 82

 Team Fortress 2 , Dynamic Layer (Layered
Tetrad) example, 36 - 37

 variables (C# coding), 256 - 257 , 282
 bool variables, 283
 char variables, 285
 class variables, 286
 debugging C# coding, 375 - 376
 declaring, 282 - 283
 defi ning, 282 - 283
 equality testing, 304
 fl oat variables, 284
 int variables, 284
 literal values, 283
 naming conventions, 286 - 287
 private variables, 287
 scope of, 286 , 817 - 820
 string variables, 285
 types of, 283 - 286
 Unity variables, 287 - 289

 color variables, 290 - 291
 instance variables, 289
 mathf variables, 292
 quaternion variables, 291 - 292
 screen variables, 292
 SystemInfo variables, 293
 Vector3 variables, 288 - 290

 vection/sense of speed, Mission Demolition ,
 466 - 471

 Vector3 variables (C# coding), 288 - 290
 Vectorized Playing Cards 1.3

 Bartok , 622
 Prospector Solitaire , 562

 vertiginous play (Ilinx)
 Imaginary Games , 110
 Jeux et Le Hommes, Le, and the four diff erent

kinds of play, 110
 visibility (paper prototyping and gameplay

development), 133 - 134 , 136

 vision (Inscribed Layer aesthetics), 47
 Vissides, John

 Design Patterns , 769, 815
 software design, 815

 Factory design pattern, 816
 Singleton design pattern, 815 - 816
 Strategy design pattern, 816 - 817

 spawning enemies/enemy factories, 769 - 770
 visual art (procedural), 71 - 72
 visual design, indirectly guiding players by,

 201 - 204
 visual play environments (environmental

aesthetics), 73
 brightness, 73
 resolution (screen), 73

 volume control, auditory play environments
(environmental aesthetics), 74

 VRO (Vertical Re-Orchestration), procedural
music, 70 - 71

 W
 Warcraft III , game mods and cultural mechanics,

 81 - 82
 wealth as a goal of game design, 107
 weapons and game balance, 177 - 178

 average damage
 calculating, 179
 charting, 179 - 180

 Chapter 9 prototype example, 182 - 183
 duplicating weapon data, 180 - 181
 overall damage, showing, 181
 percent chance for each bullet,

determining, 178
 rebalancing weapons, 181 - 182

 weapons/fi ring, gameplay development (paper
prototyping), 134 - 135 , 137 - 138

 web resources, game developer salary
surveys, 220

 websites
 animation/model resources, 854 - 855
 art assets, 854
 audio assets, 854
 educational software discounts, 855
 font-related resources, 855

 907 WORLD OF WARCRAFT

 scoring, 684 - 687
 setting up, 664 - 671

 working in the digital game industry, 217
 following up, 218 - 219
 interviewing, 219 - 220
 networking, 217 - 218
 salaries, 220
 working conditions, 213

 World of Warcraft
 player interaction patterns, 43
 player-built external tools as example of

cultural technology, 84
 Wright, Will

 procedural animation, 72
 Spore , 72

 Wyatt, James, on XP (Experience Points)
and cumulative outcomes (dynamic
mechanics), 69

 X-Y-Z
 XML (Extensible Markup Language)

 C# coding and, 817 - 821
 Omega Mage , creating the game

environment, 730 - 735
 XP (Experience Points) and cumulative

outcomes (dynamic mechanics), 69
 X-Wing

 information, conveying (Inscribed Layer
aesthetics), 48 - 49

 music in, 70
 Yager Development, Spec Ops: The Line and

limited possibilities and interactive or linear
narrative, 53 - 54

 Yee, Nick, on types of players, 68
 Zeno's Dichotomy Paradox and linear

interpolation, 833 - 834
 Zimmerman, Eric

 meaningful play, 64 , 120 - 121
 Rules of Play: Game Design Fundamentals , 64 ,

 120 - 121
 Zork , interactive narrative example, 75 - 76

 Goldstone's websites, Will , 853
 model/animation resources, 854 - 855
 Stack Overfl ow website, C# online resources,

 853
 Unity Gems website, 852
 Unity website

 Learn section (Unity website), 852
 tutorials, 852

 weighted distributions and game balance,
 173 - 175

 weighted probabilities in Calc, 174 - 175
 Westwood Studios, Blade Runner and multiple

dialogue choices (empathetic characters
versus avatars), 57

 while loops (C# coding), 316 - 319
 Williams, John, X-Wing , music in, 70
 Windows

 force-quitting applications, 317 - 318 ,
 371 - 372

 Unity, new project setup procedures,
 794 - 796

 windows (Unity). See panes (Unity)
 Wittgenstein, Ludwig

 games, defi ning, 15
 Philosophical Investigations , 15

 Wizards of the Coast
 Dungeons & Dragons , 846

 dynamic dramatics, 75 - 77
 emergent narrative example, 76 - 77
 interactive versus linear narrative, 55
 progression tables, 46
 tips for running good campaigns, 846 - 847
 XP (Experience Points) and cumulative

outcomes (dynamic mechanics), 69
 RoboRally , innovation and the design

process, 97 - 98
 Word Game , 657 , 692 - 693

 adding color, 690 - 692
 adding interactivity, 680 - 684
 animation, 687 - 690
 design goals, 658 - 659
 layouts, 671 - 680
 parsing the word list, 660 - 663
 project setup, 658

 WRIGHT, WILL 908

 Zubek, Robert, and MDA framework, 20 , 29
 aesthetics-based design, 21 - 24
 defi ning, 20 - 21
 designer views of games, 21
 player views of games, 21

 Zynga , freemium games, 214

	Contents
	Preface
	16 Introducing Our Development Environment: Unity
	Downloading Unity
	Introducing Our Development Environment
	Running Unity for the First Time
	Setting Up the Unity Window Layout
	Learning Your Way Around Unity
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

