Introduction to Game Theory

5. Lookahead Pathology

Dana Nau
University of Maryland

Motivation

- When discussing game-tree search in the previous session, I said:
> Deeper lookahead (i.e., larger depth bound d) usually gives better decisions
- For a many years, it was tacitly assumed that searching deeper would always give better decisions
> For my Ph.D. work in 1979, I showed that's not true
$>$ There are infinitely many game trees for which searching deeper gives worse decisions

P-Games

- A class of board-splitting games invented by Judea Pearl in 1980
- Playing board: chessboard of size $2^{\lfloor h / 2\rfloor} \times 2^{[h / 2]}$ instead of 8×8

- (or equivalently, a string of 2^{h} squares)

- Initial state: randomly label each square as "win" or "loss"
> I'll use green for win, white for loss
- Agents move in alternation
$>1^{\text {st }}$ move: remove either the left half or right half of the board
$>2^{\text {nd }}$ move: remove either the top half or bottom half of the board
- Continue until just one square is left
>"win" square => win for the last player
> "loss" square => loss for the last player
- This gives us a game tree of height h

Critical Nodes

- Let x be a node in a P-game
$>$ Suppose x 's height (number of moves from the end of the game) is h
- In order to talk about whether a deeper search at x gives a better or worse decision, x must be a node where the decision makes a difference
> x 's children shouldn't have the same minimax value
- x is critical if
$>$ it has a "loss" child y, i.e., $u^{*}(y)=-1$
$>$ and a "win" child z, i.e., $u^{*}(z)=1$
- Let $D(d, h)=P$ (choose the "win" child \mid minimax search to depth d from a critical node x of height h)

- Then $D(d, h)=P[\operatorname{Minimax}(y, d-1)<\operatorname{Minimax}(z, d-1)]$

$$
+0.5 P[\operatorname{MinimAX}(y, d-1)=\operatorname{MinimAX}(z, d-1)]
$$

$>$ where y and z are x 's loss child and win child

Probability of a Win Node

- Let $w=(3-\sqrt{ } 5) / 2 \approx 0.382$
$>$ i.e., $w=2-\varphi=1-1 / \varphi$, where φ is the golden ratio
- Suppose we assign a "win" or "loss" label to each square at random, with probability p that a square is labeled "win"
- Let x be a node of height h, and y and z be its children

$>$ If $p>w$, then as we increase h, $P[y$ and z are both wins for the last player $] \rightarrow 1$
$>$ If $p<w$, then as we increase h, $P[y$ and z are both losses for the last player $] \rightarrow 1$
$>$ If $p=w$, then for all $h, P\left[u^{*}(y) \neq u^{*}(z)\right]=p(1-p)$
- So from now on, let $p=w$
> This assures a reasonably good chance
 that a node at height h is critical

Evaluation Function

- Let $e(x)=$ (number of "win" squares) / (total number of squares)
$>$ The higher $e(x)$ is, the more likely that x is a win for the last player
\Rightarrow The lower $e(x)$ is, the more lik ${ }^{\prime}$ that x is a win for the other pla
- Now that we have e, it's possible to derive a formula for $D(d, h)$
> The derivation is complicated and I'll skip it
- But I'll show you the results

P-Games are Pathological

- If $d=h$, then $D(d, h)=1$
> i.e., searching to the game's end produces perfect play
- Likewise when $d=h-1$ (searching to just before the end)
- For node height $h \leq 7$, no pathology
> $D(d, h)$ generally increases as we increase d
- For node height $h>9$, there's lots of pathology
> $D(d, h)$ generally decreases as we increase d

Why are the games pathological?

- Hypothesis 1: maybe it's due to the evaluation function
$>$ Let the height of a node be its distance from the end of the game
$>$ At a node of height h, a depth- d minimax search will apply the evaluation function e to nodes of height $h-d$
- Increase the search depth $d=>$ decrease the node height $h-d$
- If e is less accurate at nodes whose height is low, this could make $D(d, h)$ decrease as we increase d
$>$ To find out, let's measure e 's accuracy as a function of node height
- e 's accuracy at a critical node x of height h
$=P$ [correct decision if we apply e directly to x 's children]
$=D(1, h)$
$>$ So let's look at $D(1, h)$ as $h \rightarrow 0$

Why are the games pathological?

- The graph shows $D(1, h)$ as a function of h
- Notice that as $h \rightarrow 0, D(1, h) \rightarrow 1$
$>$ I.e., as x 's height decreases, $e(x)$ gets more accurate
- Thus the hypothesis is wrong
> The pathology isn't due to the evaluation function
$>$ It must be due to the game itself

Why are the games pathological?

- Hypothesis 2:
- In most board games,
> Some positions are "strong" (you're likely to win)
$>$ Others are "weak" (you're likely to lose)
$>$ Strong nodes are likely to have lots of strong children

- So if a node is strong, that means its sibling nodes are probably strong too
> Likewise for weak positions
- But in P-games, the values of sibling nodes are completely independent of each other
> Could the pathology be due to that?
- Let's modify P-games to make sibling nodes
 have similar values

N-Games

- Everything is the same as in a P-game, except for how the board is initialized:
$>$ First assign 1 or -1 at random to each edge of the game tree
> A node x 's "strength" = sum of the edges on the path from the root to x
$>$ If x is a terminal node,
- Label x "win" if $\operatorname{strength}(x)>0$
- Otherwise label x "loss"
- Use the same evaluation function as before

N-Games

- I don't know of a formula for computing $D(d, h)$ in N -games
> So, Monte Carlo simulation instead
- For every combination of node height h and search depth d, I averaged $D(d, h)$ over 3200 randomly generated N -games
> Result: at every node height h, searching deeper always helps
- So this suggests pathology is unlikely when there's a strong local similarity (correlation among sibling nodes)

Generalize to Other Games

- Suppose we do a minimax search to depth 2 at node a
$>e$ and h look equally good, and both look better than b
$>$ So we choose one of e and h at random, and move to it
- What's the probability that we made a best move?

Probability of Optimal Decision

- For every node x, let $s(x)=\{x$'s children $\}$
- Let $\operatorname{opt}(x, d)=\{$ the children of x that look best to a depth- d minimax search $\}$
$=\{y$ in $s(x) \mid \operatorname{minimax}(x, d)=\operatorname{minimax}(y, d-1)\}$
> In the example, $\operatorname{opt}(a, 2)=\{e, h\}$

- The children of x that really are the best are the ones in $\operatorname{opt}(x, \infty)$
$>$ I.e., search to the end of the game
$>$ In the example, $\operatorname{opt}(a, \infty)=\{e\}$
- If we choose from $\operatorname{opt}(x, d)$ at random, then the probability of choosing an optimal move is

$$
>P_{o p t}(x, d)=|\operatorname{opt}(x, d) \cap \operatorname{opt}(x, \infty)| / \mid \operatorname{opt}(x, d)
$$

- In the example, $P_{\text {opt }}(a, 2)=|\{e\}| /|\{e, h\}|=1 / 2$

Degree of Pathology

- The decision error at x is the probability that we didn't make the best choice:

$$
>P_{\mathrm{err}}(x, d)=1-P_{\mathrm{opt}}(x, d)
$$

- The degree of pathology at x is the probability that searching deeper increases the decision error:
$>p(x, i, j)=P_{\text {err }}(x, i) / P_{\text {err }}(x, j)$
$>$ where i and j are search depths, and $i>j$
- If $p(x, i, j)>1$ then we have lookahead pathology at x
- A game G is considered pathological if $p(x, i, j)$, averaged over many x, is >1
$>$ When G is pathological for some values of i and j, it usually is pathological for others

Influences on the Degree of Pathology

- Several factors affect the degree of pathology
- The most important ones:
$>$ Granularity
- Number of possible utility values
$>$ Branching factor
- Number of children of each node
> Local similarity
- Similarity among nodes that are close together in the tree
- There are several others
$>$ But most of them reduce to special cases of the ones above

How to Vary the Branching Factor

- Easy to get P -games and N -games of branching factor b
$>$ The board has size $b^{\lfloor h / 2\rfloor} \times b^{[h / 2\rceil}$
- (or equivalently, a string of b^{h} squares)
$>$ Each move: divide the board into b pieces
 instead of 2 pieces, and discard all but one of them
- Result: a b-ary tree of height h

How to Vary the Granularity

- P-game with infinite granularity:
> each square isn't "win" or "loss"
$>$ instead, its payoff is uniformly distributed over [0,1]
- N -game with infinite granularity:
$>$ Instead of assigning 1 or -1 to each edge, assign a random value from a normal (i.e., Gaussian) distribution
- P-game or N -game with granularity g :
$>$ Partition the interval $[0,1]$ into g intervals of equal size

How to Vary the Local Similarity

- Use a parameter $0 \leq s \leq 1$ that determines the amount of local similarity:
- $s=0 \Rightarrow$ P-game of granularity g
- $s=1 \Rightarrow$ N-game of granularity g
- $0<s<1=>$
$>$ Generate both P -game and N -game values for the nodes
$>$ For each terminal node, assign a payoff by making a random choice:
- The node's P-game value with probability s, or its N -game value with probability $1-S$

Evaluation Function and Experiments

- So now we can vary b, g, and s independently
$>$ Experiments to measure how they influence the degree of pathology
Nau, Luštrek, Parker, Bratko, and Gams. When Is It Better Not To Look Ahead?
Artificial Intelligence, to appear.
- We can't use the previous evaluation function
$>$ It only works when $g=2$
- Instead, use the following:
$>e(x)=x$'s actual minimax value, corrupted by Gaussian noise with standard deviation $\sigma=0.1$
$>$ For this evaluation function, accuracy is independent of node height

Granularity and Pathology

- Amount of granularity needed to avoid lookahead pathology
$>$ The space above the surface is pathological
> The space below the surface is nonpathological

Branching Factor and Pathology

- The degree of pathology as a function of branching factor, granularity, and local similarity
$>$ Color of each point $=$ value of $p(5,1)$
- Below the black lines: pathological
- Above the black lines: nonpathological.

p (root, 5, 1)

Does the Model Have Predictive Value?

- Does the model predict the trends in real games?
> Yes!
- Let's look at
$>$ chess
> kalah

Chess endgames

- Degree of pathology as a function of granularity in
$>$ KBBK chess endgames (average $b=13.52$ and $c f=0.58$)
$>$ KQKR chess endgames (average $b=16.93$ and $c f=0.37$)

Kalah

- An ancient African game
- Moves:
$>$ Pick up the seeds in a pit on your side of the board
$>$ Distribute them, one at a time, to a string of adjacent pits
- Objective: acquire more seeds than the opponent, by either
$>$ moving them to your "kalah"
$>$ capturing them from the opponent's pits
Player 1's side

Modified Kalah

- Kalah is normally played until no seeds are left on the board
> For computability, we limited the game to 8 moves
- To ensure a uniform branching factor
> We allowed players to "move" from an empty pit
> Such a move has no effect on the board
- We got different branching factors by varying the number of pits
- In Kalah, a player can move again if the last seed they placed lands in their kalah
> We eliminated that rule, to get strict alternation of moves

Player 1's side

Modified Kalah

- Degree of pathology in modified kalah as a function of granularity for several different branching factors

Modified Kalah

- The degree of pathology in modified kalah at several different branching factors, as a function of clustering factor (cf)
$=\quad$ standard deviation of the sibling nodes' utilities standard deviation of the utilities throughout the game tree
$>$ Higher $c f$ means less local similarity
> Curves are smoothed for clarity

Nau: Game Theory 28

Summary

- In most game trees
> Increasing the search depth usually improves the decision-making
- In pathological game trees
> Increasing the search depth usually degrades the decision-making
- Pathology is more likely when
$>$ The branching factor is high
> The number of possible payoffs is small
> Local similarity is low
- Even in ordinary non-pathological game trees, local pathologies can occur
> Work in progress: some of my students are developing algorithms to detect and overcome local pathologies

