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Motivation

® When discussing game-tree search in the previous session, I said:

» Deeper lookahead (i.e., larger depth bound d) usually
gives better decisions

® For a many years, it was tacitly assumed that searching deeper would
always give better decisions

» For my Ph.D. work in 1979, I showed that’s not true

> There are infinitely many game trees for which searching deeper gives
worse decisions
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P-Games

A class of board-splitting games invented by Judea Pearl in 1980
Playing board: chessboard of size 217/2] x 2[#2] instead of 8 x 8

e (or equivalently, a string of 2” squares)

Initial state: randomly label each square as “win” or “loss”

> I’ll use green for win, white for loss
Agents move 1n alternation

> 1t move: remove either the left half
or right half of the board

> 2" move: remove either the top half
or bottom half of the board

Continue until just one square is left
> “win” square => Min
win for the last player

> “loss” square =>
loss for the last player

Max

This gives us a game tree of height /4

Min

Max
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Critical Nodes

Let x be a node in a P-game
> Suppose x’s height (number of moves from the end of the game) is £

In order to talk about whether a deeper search at x gives a better or worse
decision, x must be a node where the decision makes a difference

» x’s children shouldn’t have the same minimax value

x 1s critical if

X
> 1t has a “loss” child y, i.e., u*(y) = -1
> and a “win” child z, 1.e., u*(z) = 1

Let D(d,h) = P(choose the “win” child | minimax y z

search to depth d from a critical
node x of height /)

Then D(d,h) = PIMINIMAX(y,d—1) < MINIMAX(z,d—1)]
+ 0.5 P[MINIMAX(y,d—1) = MINIMAX(z,d—1)]

> where y and z are x’s loss child and win child
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Probability of a Win Node

Letw = (3-V5)2 ~ 0.382

> 1e, w=2—-q¢ =1-1/,
where @ is the golden ratio

Suppose we assign a “win” or “loss” label
to each square at random, with
probability p that a square is labeled “win”

Let x be a node of height /, and y and z be its children

> If p >w, then as we increase /4,
P[y and z are both wins for the last player] — 1

> If p <w, then as we increase #,
Py and z are both losses for the last player] — 1

> If p =w, then for all h, Plu*(y) # u*(z)] = p(1-p)

So from now on, let p = w

> This assures a reasonably good chance
that a node at height # is critical
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Evaluation Function

® Let e(x) = (number of “win” squares) / (total number of squares)

» The higher e(x) 1s, the more likely
that x is a win for the last player

> The lower e(x) is, the more lik °
that x 1s a win for the other pla

® Now that we have e, 1t’s possible

: Mi
to derive a formula for D(d, h) v
> The derivation is complicated
and I’ll skip it e=12

Max

e But I’ll show you the results

e="% e="%
Min
e e e e
4 BARSAREEL
Max

e=1 0 0 1 1 O I O O O

e=9/16

1 1T 1 1 0 1
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P-Games are Pathological

If d= h, then D(d,h) =1 D(d.h)
1

> 1.e., searching to the game’s end /
produces perfect play 3
Likewise when d = h—1 09 4
(searching to just before the end) 5
08 | °
For node height 4 <7, no pathology 7
> D(d,h) generally ®
increases as we increase d 0.7 18
11
12
For node height 4 > 9, there’s lots of 0.6 11?

pathology

> D(d,h) generally decreases

as we increase d 0.5

h (node height)

1 2 3 4 5 6 7 8 9
d (search depth)

10 11 12 13
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Why are the games pathological?

e Hypothesis 1: maybe it’s due to the evaluation function
> Let the height of a node be its distance from the end of the game

» At anode of height %, a depth-d minimax search will apply the
evaluation function e to nodes of height #—d

* Increase the search depth d => decrease the node height 4—d

o Ifeis less accurate at nodes whose height is low,
this could make D(d,h) decrease as we increase d

» To find out, let’s measure e’s accuracy as a function of node height

e ¢’s accuracy at a critical node x of height £

= P[correct decision if we apply e directly to x’s children]
= D(1,h)

> So let’s look at D(1,h) as h — 0
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Why are the games pathological?

D(1,h)
Lot

® The graph shows D(1,h)
as a function of /

® Notice thatas 7 — 0, D(1,h) — 1

> l.e., as x’s height decreases,
e(x) gets more accurate

® Thus the hypothesis is wrong 8l

> The pathology isn’t due to the
evaluation function

> It must be due to the game itself

0 s 0 5
h (node height)
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Why are the games pathological?

strong
position
strong strong
position position

e Hypothesis 2:

® In most board games,
» Some positions are “strong” (you’re likely to win)

> Others are “weak” (you’re likely to lose)

» Strong nodes are likely to have lots of strong children

e So if a node is strong, that means its
sibling nodes are probably strong too

> Likewise for weak positions

® But in P-games, the values of sibling nodes
are completely independent of each other

» Could the pathology be due to that?

® [et’s modify P-games to make sibling nodes
have similar values
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N-Games

® Everything is the same as in a P-game, except for how the board 1s initialized:

> First assign 1 or —1 at random to each edge of the game tree

> A node x

> If x 1s a terminal node,

2 (11

S

e Label x “win” if strength(x) > 0

e QOtherwise label x “loss”

® Use the same evaluation function as before

Max

Min 1 1

Max 1771 _1/\1

2 0 0 2 2 4 0 2

Min

strength” = sum of the edges on the path from the root to x

-2 0

240 0 2 4
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N-Games

® [ don’t know of a formula for computing D(d,/) in N-games

> So, Monte Carlo simulation instead

® For every combination of
node height / and search
depth d, I averaged D(d,h)
over 3200 randomly
generated N-games

> Result: at every
node height 4,
searching deeper
always helps

® So this suggests
pathology is unlikely
when there’s a strong
local similarity
(correlation among
sibling nodes)

D(d,h) ‘
0.99 k=3
0.98 k=4
0.97 k=5
0.96 k=6
0.95 v k=7
094 ¥ I:z
0.93 10
0.92 1
0.91 1
0.9 L

01 2 3 45 6 7 8 9 1011 12 13
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Generalize to Other Games

® Suppose we do a minimax search to depth 2 at node a

> e and & look equally good, and both look better than b

> So we choose one of e and /4 at random, 3 18
and move to it 3 8 3
TR
® What’s the probability that we S AR rIE
made a best move? ~5 =~-3 =8 =17 =8 =9
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Probability of Optimal Decision

For every node x, let s(x) = {x’s children}

. opt(a,2) ={e.h} [ ]8
Let opt(x,d) = {the children of x that look best
to a depth-d minimax search} -3 8 8
e
= {y in s(x) | minimax(x,d) = minimax(y,d—1)} R
> In the example, opt(a,2) = {e,h} C f g i
=5 =-3 =8 =17 =8 =9
The children of x that really are the best
are the ones in opt(x, ) opt(a=) ={e} [Zs
> l.e., search to the end of the game 4 8
> In the example, opt(a,©) = {e} b ;23
6 —4 8 16 7

If we choose from opt(x,d) at random, then the cl g f g I
probability of choosing an optimal move is / \ / \ / \ / \ / \

> P,,(x,d) = |opt(x,d) N opt(x,)| / |opt(x,d)

In the example, P,,(a,2) = [{e}|/|[{en}| ="
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Degree of Pathology

The decision error at x is the probability that we didn’t make the best
choice:

> P (x,d)=1-P,(xd)

The degree of pathology at x is the probability that searching deeper
increases the decision error:

> p(6L)) = Por(x,0) | Pop(x,))
» where i and j are search depths, and i > j
If p(x,i,j) > 1 then we have lookahead pathology at x
A game G is considered pathological if p(x,i,j), averaged over many x, 1s > 1

» When G i1s pathological for some values of 7 and j, it usually 1s
pathological for others
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Influences on the Degree of Pathology

® Secveral factors affect the degree of pathology
® The most important ones:
» QGranularity
e Number of possible utility values
> Branching factor
e Number of children of each node
> Local similarity
e Similarity among nodes that are close together in the tree
® There are several others

> But most of them reduce to special cases of the ones above
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How to Vary the Branching Factor

® FEasy to get P-games and N-games of branching factor b
» The board has size bl"/2] x pI#2]

 (or equivalently, a string of b squares)

» Each move: divide the board into b pieces
instead of 2 pieces,
and discard all but one of them

® Result: a h-ary tree of height 4
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How to Vary the Granularity

® P-game with infinite granularity:

> each square isn’t “win” or “loss”

> 1nstead, its payoff 1s uniformly distributed over [0,1]
® N-game with infinite granularity:

> Instead of assigning 1 or —1 to each edge, assign a random value from a
normal (i.e., Gaussian) distribution

® P-game or N-game with granularity g:

> Partition the interval [0,1] into g intervals of equal size
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How to Vary the Local Similarity

Use a parameter 0 < s < 1 that determines the amount of local similarity:
s =0 => P-game of granularity g
s =1 => N-game of granularity g ]
0<s<]1 =
» Generate both
P-game and

N-game values
for the nodes

» For each

terminal
node,

assign a payoff by making a random choice:

e The node’s P-game value with probability s,
or its N-game value with probability 1—s
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Evaluation Function and Experiments

® So now we can vary b, g, and s independently

> Experiments to measure how they influence the degree of pathology

Nau, Lustrek, Parker, Bratko, and Gams.
When Is It Better Not To Look Ahead?

Artificial Intelligence, to appear.

® We can’t use the previous evaluation function
> It only works when g =2
® Instead, use the following:

> e(x) =x’s actual minimax value,
corrupted by Gaussian noise with standard deviation o = 0.1

> For this evaluation function, accuracy is independent of node height
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Granularity and Pathology

® Amount of granularity needed to avoid lookahead pathology
> The space above the surface is pathological

» The space below the surface is nonpathological

Granularity
)
(=

‘
10
9
8
o 7
4 °  Branching
<3
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Branching Factor and Pathology

® The degree of pathology as a function of branching factor, granularity, and
local similarity

» Color of each point
=value of p(5,1) 4

p(root, 5, 1)

2
® Below the N R
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o
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similarity .
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Does the Model Have Predictive Value?

® Does the model predict the trends in real games?

> Yes!
® [ect’slook at

> chess
> kalah
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Chess endgames

Degree of pathology as a function of granularity in
» KBBK chess endgames (average b = 13.52 and cf'= 0.58)
» KQKR chess endgames (average b = 16.93 and ¢f= 0.37)

{ A/><\
i
§:
%
0.3 T T T
0 10 20 30 40 50
Granularity
—KBBK (b=13.52) —KQKR (b=16.93)
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Kalah

® An ancient African game
® Moves:
> Pick up the seeds in a pit on your side of the board
> Distribute them, one at a time, to a string of adjacent pits
® Objective: acquire more seeds than the opponent, by either
» moving them to your “kalah”

> capturing them from the opponent’s pits

Player 1's side

@@@OQ@@
OO0

Player 2's side
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Modified Kalah

e Kalah 1s normally played until no seeds are left on the board
» For computability, we limited the game to 8 moves
® To ensure a uniform branching factor

> We allowed players to “move” from an empty pit

» Such a move has no effect on the board
® We got different branching factors by varying the number of pits
® In Kalah, a player can move again if the last seed they placed lands in their kalah

> We eliminated
that rule, to get Player 1's side

ﬁw“@@@@@@@
OO0

Player 2's side
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® Degree of pathology in modified kalah as a function of granularity

Modified Kalah

for several different branching factors

Pathology p(root,5,1)

l 9

1.1

0.9

0.8

0.7

0.6

T

T

14

T

T

-4

= il plie glle gle o
mununnn
o L N SNV 08 |

A

0

10

15

20

25 30

Granularity

50

55

Nau: Game Theory 27



Modified Kalah

® The degree of pathology in modified kalah at several different branching
factors, as a function of clustering factor (cf)

>

standard deviation of the sibling nodes’ utilities

standard deviation of the utilities throughout the game tree

Higher ¢f means
less local similarity

Curves are
smoothed for clarity

Pathology p(root,5.1)
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Summary

In most game trees

> Increasing the search depth usually improves the decision-making

In pathological game trees

> Increasing the search depth usually degrades the decision-making

Pathology is more likely when
» The branching factor is high
> The number of possible payoffs 1s small

> Local similarity is low

Even 1n ordinary non-pathological game trees, /ocal pathologies can occur

> Work in progress: some of my students are developing algorithms to

detect and overcome local pathologies
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