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Motivation 
  When discussing game-tree search in the previous session, I said: 

  Deeper lookahead (i.e., larger depth bound d) usually 
 gives better decisions 

  For a many years, it was tacitly assumed that searching deeper would 
always give better decisions 
  For my Ph.D. work in 1979, I showed that’s not true 
  There are infinitely many game trees for which searching deeper gives 

worse decisions 
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P-Games 
  A class of board-splitting games invented by Judea Pearl in 1980 

  Playing board: chessboard of size 2⎣h/2⎦ × 2⎡h/2⎤ instead of 8 × 8 
•  (or equivalently, a string of 2h squares) 

  Initial state: randomly label each square as “win” or “loss” 
  I’ll use green for win, white for loss 

  Agents move in alternation 

  1st move: remove either the left half 
or right half of the board 

  2nd move: remove either the top half 
or bottom half of the board 

  Continue until just one square is left 

  “win” square => 
win for the last player 

  “loss” square => 
loss for the last player 

  This gives us a game tree of height h 

h = 4 
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Critical Nodes 
  Let x be a node in a P-game  

  Suppose x’s height (number of moves from the end of the game) is h 
  In order to talk about whether a deeper search at x gives a better or worse 

decision, x must be a node where the decision makes a difference 
  x’s children shouldn’t have the same minimax value 

  x is critical if  

  it has a “loss” child y, i.e., u*(y) = –1 
  and a “win” child z, i.e., u*(z) = 1 

  Let D(d,h) = P(choose the “win” child | minimax 
  search to depth d from a critical 
  node x of height h) 

  Then  D(d,h) = P[MINIMAX(y,d–1) < MINIMAX(z,d–1)]  
                          + 0.5 P[MINIMAX(y,d–1) = MINIMAX(z,d–1)] 

  where y and z are x’s loss child and win child 

x 

y z 
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Probability of a Win Node 
  Let w  =  (3 – √5)/2  ≈  0.382 

  i.e.,  w  =  2 – ϕ  =  1 – 1/ϕ, 
where ϕ is the golden ratio 

  Suppose we assign a “win” or “loss” label 
to each square at random, with 
probability p that a square is labeled “win” 

  Let x be a node of height h, and y and z be its children 
  If p >w, then as we increase h,  

P[y and z are both wins for the last player] → 1 
  If p <w, then as we increase h,  

P[y and z are both losses for the last player] → 1 

  If p =w, then for all h,   P[u*(y) ≠ u*(z)] = p(1–p) 
  So from now on, let p = w 

  This assures a reasonably good chance 
that a node at height h is critical 

x 

y z 
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  Let e(x) = (number of “win” squares) / (total number of squares) 
  The higher e(x) is, the more likely 

that x is a win for the last player 
  The lower e(x) is, the more likely 

that x is a win for the other player 
  Now that we have e, it’s possible 

to derive a formula for D(d,h) 
  The derivation is complicated 

and I’ll skip it 
  But I’ll show you the results 

Evaluation Function 

e = 9/16 

e = 1/2 e = 5/8 

e = ½               e = ½              e = ½              e = ½  

=½       =½        =½        =½       =0        =1        =1        =½ 

e = 1    0    0    1    1    0    1    0    0    0    1    1    1    1    0    1 

Min 

Max 

Min 

Max 

e          e          e           e          e         e          e          e  
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1 2 3 4 5
k=3 0.947 1 1
k=4 0.902 0.914 1 1
k=5 0.849 0.872 0.893 1 1
k=6 0.805 0.807 0.83 0.825 1
k=7 0.765 0.769 0.773 0.79 0.806
k=8 0.731 0.725 0.73 0.728 0.741
k=9 0.701 0.695 0.692 0.694 0.691
k=10 0.675 0.666 0.663 0.658 0.658
k=11 0.652 0.644 0.638 0.633 0.629
k=12 0.633 0.623 0.617 0.611 0.607
k=13 0.616 0.607 0.6 0.594 0.589
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P-Games are Pathological 

  If d = h, then D(d,h) = 1  

  i.e., searching to the game’s end 
produces perfect play 

  Likewise when d = h–1 
(searching to just before the end) 

  For node height h ≤ 7, no pathology 
  D(d,h) generally 

increases as we increase d 

  For node height h > 9, there’s lots of 
pathology 
  D(d,h) generally decreases 

as we increase d 

D(d,h) 

d (search depth) 

   3 

   4 

   5 

   6 

   7 
   8 

   9 
 10 
 11 
 12 
 13 
  ↑  
  h (node height) 
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Why are the games pathological? 
  Hypothesis 1: maybe it’s due to the evaluation function 

  Let the height of a node be its distance from the end of the game 
  At a node of height h, a depth-d minimax search will apply the 

evaluation function e to nodes of height h–d 
•  Increase the search depth d => decrease the node height h–d 
•  If e is less accurate at nodes whose height is low, 

this could make D(d,h) decrease as we increase d 

  To find out, let’s measure e’s accuracy as a function of node height 
•  e’s accuracy at a critical node x of height h 

= P[correct decision if we apply e directly to x’s children] 
= D(1,h) 

  So let’s look at D(1,h) as h → 0 



Nau: Game Theory 9 

Why are the games pathological? 
  The graph shows D(1,h) 

as a function of h 
  Notice that as h → 0, D(1,h) → 1 

  I.e., as x’s height decreases, 
e(x) gets more accurate 

  Thus the hypothesis is wrong 
  The pathology isn’t due to the 

evaluation function 
  It must be due to the game itself 

h (node height) 

D(1,h) 
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Why are the games pathological? 

strong 
position 

strong 
position 

strong 
position   Hypothesis 2: 

  In most board games, 
  Some positions are “strong” (you’re likely to win) 
  Others are “weak” (you’re likely to lose) 
  Strong nodes are likely to have lots of strong children 

•  So if a node is strong, that means its 
sibling nodes are probably strong too 

  Likewise for weak positions 
  But in P-games, the values of sibling nodes 

are completely independent of each other 
  Could the pathology be due to that? 

  Let’s modify P-games to make sibling nodes 
have similar values 



Nau: Game Theory 11 

2    0    0    2    2    4    0    2   –2   0   –2  –4   0    0    2    4 

N-Games 
  Everything is the same as in a P-game, except for how the board is initialized: 

  First assign 1 or –1 at random to each edge of the game tree 
  A node x’s “strength” = sum of the edges on the path from the root to x 

  If x is a terminal node, 
•  Label x “win” if strength(x) > 0 

•  Otherwise label x “loss” 

  Use the same evaluation function as before 1                    –1 

–1     1 

   1   1                 1 –1              –1  –1               1   1 

1     –1 –1    1    –1    1   –1     1     1    1     1    –1  –1    –1   1    1 

Min 

Max 

Min 

Max 

–1     1 
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N-Games 
  I don’t know of a formula for computing D(d,h) in N-games 

  So, Monte Carlo simulation instead 
  For every combination of 

node height h and search 
depth d, I averaged D(d,h) 
over 3200 randomly 
generated N-games 

  Result: at every 
node height h, 
searching deeper 
always helps 

  So this suggests 
pathology is unlikely 
when there’s a strong  
local similarity 
(correlation among 
sibling nodes) 

1 2 3 4 5
k=3 0.982 1 1
k=4 0.97 0.978 1 1
k=5 0.941 0.969 0.982 1 1
k=6 0.936 0.953 0.976 0.987 1
k=7 0.924 0.955 0.964 0.98 0.985
k=8 0.933 0.947 0.959 0.966 0.979
k=9 0.938 0.952 0.962 0.968 0.983
k=10 0.939 0.95 0.96 0.969 0.974
k=11 0.934 0.94 0.95 0.958 0.965
k=12 0.913 0.924 0.944 0.951 0.958
k=13 0.91 0.926 0.935 0.943 0.947
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Generalize to Other Games 
  Suppose we do a minimax search to depth 2 at node a 

  e and h look equally good, and both look better than b 
  So we choose one of e and h at random, 

and move to it 

  What’s the probability that we 
made a best move? 

 a 

–3
 b  e 

8

8
 h 

8

d 
≈ 5

c  f g
≈ 8 ≈ 17≈ –3

 i  j
≈ 8 ≈ 9
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Probability of Optimal Decision 
  For every node x, let s(x) = {x’s children} 

  Let opt(x,d) = {the children of x that look best 
  to a depth-d minimax search} 

= {y in s(x) | minimax(x,d) = minimax(y,d–1)} 
  In the example, opt(a,2) = {e,h} 

  The children of x that really are the best 
are the ones in opt(x,∞) 

  I.e., search to the end of the game 
  In the example, opt(a,∞) = {e} 

  If we choose from opt(x,d) at random, then the 
probability of choosing an optimal move is 
  Popt(x,d) = |opt(x,d) ∩ opt(x,∞)| / |opt(x,d) 

  In the example, Popt(a,2) = |{e}| / |{e,h}| = ½ 

 a 

–4
 b  e 

8

8
 h 

7

d 
   6

c  f g
  8  16–4

 i  j
  7   9

… … … … … … … … … … … …

opt(a,∞) = {e}

 a 

–3
 b  e 

8

8
 h 

8

d 
≈ 5

c  f g
≈ 8 ≈ 17≈ –3

 i  j
≈ 8 ≈ 9

opt(a,2) = {e,h}
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Degree of Pathology 
  The decision error at x is the probability that we didn’t make the best 

choice: 
  Perr(x,d) = 1 – Popt(x,d) 

  The degree of pathology at x is the probability that searching deeper 
increases the decision error: 
  p(x,i,j) = Perr(x,i) / Perr(x,j) 
  where i and j are search depths, and i > j 

  If p(x,i,j) > 1 then we have lookahead pathology at x 
  A game G is considered pathological if p(x,i,j), averaged over many x, is > 1 

  When G is pathological for some values of i and j, it usually is 
pathological for others 
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Influences on the Degree of Pathology 
  Several factors affect the degree of pathology 
  The most important ones: 

  Granularity 
•  Number of possible utility values 

  Branching factor 
•  Number of children of each node 

  Local similarity 
•  Similarity among nodes that are close together in the tree 

  There are several others 
  But most of them reduce to special cases of the ones above 
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. . .

. . . . . .

… … … …

… … … … … … … …

How to Vary the Branching Factor 

  Easy to get P-games and N-games of branching factor b 
  The board has size b⎣h/2⎦ × b⎡h/2⎤ 

•  (or equivalently, a string of bh squares) 
  Each move: divide the board into b pieces 

instead of 2 pieces, 
and discard all but one of them 

  Result: a b-ary tree of height h 
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How to Vary the Granularity 
  P-game with infinite granularity: 

  each square isn’t “win” or “loss” 
  instead, its payoff is uniformly distributed over [0,1] 

  N-game with infinite granularity: 
  Instead of assigning 1 or –1 to each edge, assign a random value from a 

normal (i.e., Gaussian) distribution 
  P-game or N-game with granularity g: 

  Partition the interval [0,1] into g intervals of equal size 
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. . .

. . . . . .

… … … …

… … … … … … … …

How to Vary the Local Similarity 
  Use a parameter 0 ≤ s ≤ 1 that determines the amount of local similarity: 
  s = 0  =>  P-game of granularity g 
  s = 1  => N-game of granularity g 
  0 < s < 1  => 

  Generate both 
P-game and 
N-game values 
for the nodes 

  For each 
terminal 
node, 
assign a payoff by making a random choice: 
•  The node’s P-game value with probability s, 

or its N-game value with probability 1–s 
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Evaluation Function and Experiments 
  So now we can vary b, g, and s independently 

  Experiments to measure how they influence the degree of pathology 

  We can’t use the previous evaluation function 
  It only works when g = 2 

  Instead, use the following: 
  e(x) = x’s actual minimax value, 

         corrupted by Gaussian noise with standard deviation σ = 0.1 
  For this evaluation function, accuracy is independent of node height 

Nau, Luštrek, Parker, Bratko, and Gams. 
When Is It Better Not To Look Ahead? 
Artificial Intelligence, to appear. 
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Granularity and Pathology 
  Amount of granularity needed to avoid lookahead pathology 

  The space above the surface is pathological 
  The space below the surface is nonpathological 
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Branching Factor and Pathology 
  The degree of pathology as a function of branching factor, granularity, and 

local similarity 
  Color of each point  

= value of p(5,1)  
  Below the 

black lines: 
pathological 

  Above the 
black lines: 
nonpathological. 
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Does the Model Have Predictive Value? 
  Does the model predict the trends in real games? 

  Yes! 

  Let’s look at 
  chess 
  kalah 
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Chess endgames 
  Degree of pathology as a function of granularity in 

  KBBK chess endgames (average b = 13.52 and cf = 0.58) 
  KQKR chess endgames (average b = 16.93 and cf = 0.37) 
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Kalah 
  An ancient African game 
  Moves: 

  Pick up the seeds in a pit on your side of the board 
  Distribute them, one at a time, to a string of adjacent pits 

  Objective: acquire more seeds than the opponent, by either 
  moving them to your “kalah” 
  capturing them from the opponent’s pits 
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Modified Kalah 
  Kalah is normally played until no seeds are left on the board 

  For computability, we limited the game to 8 moves  
  To ensure a uniform branching factor 

  We allowed players to “move” from an empty pit  
  Such a move has no effect on the board 

  We got different branching factors by varying the number of pits 

  In Kalah, a player can move again if the last seed they placed lands in their  kalah 
  We eliminated 

that rule, to get 
strict alternation 
of moves 
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Modified Kalah 
  Degree of pathology in modified kalah as a function of granularity 

for several different branching factors 
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Modified Kalah 
  The degree of pathology in modified kalah at several different branching 

factors, as a function of clustering factor (cf) 
=           standard deviation of the sibling nodes’ utilities         

 standard deviation of the utilities throughout the game tree  
  Higher cf means 

less local similarity 

  Curves are 
smoothed for clarity 
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Summary 
  In most game trees 

  Increasing the search depth usually improves the decision-making 
  In pathological game trees 

  Increasing the search depth usually degrades the decision-making 
  Pathology is more likely when 

  The branching factor is high 
  The number of possible payoffs is small 
  Local similarity is low 

  Even in ordinary non-pathological game trees, local pathologies can occur 
  Work in progress: some of my students are developing algorithms to 

detect and overcome local pathologies 


