
INTRODUCTION TO GAUSS’S NUMBER THEORY

Andrew Granville

We present a modern introduction to number theory. There are many introductory
number theory books available, mostly developed more-or-less directly from Gauss’s book
Disquisitiones Arithmeticae. The core of our book is no different, indeed we have gone
back to Disquisitiones for inspiration, but we do not hesitate to bring forward more modern
ideas also.

Today’s introductory number theory course occupies an anachronistic place in the
typical curriculum. Although much of modern mathematics germinated from number
theoretic seed, the curriculum places it at the end of an undergraduate program, to give
examples of what students have learnt in other pure mathematics courses. In my experience
students often fail to appreciate the connection between this and those more abstract
courses — it would seem more natural to place number theory as a first year course to
inspire the mathematics that is to come. In this book we highlight the connections between
introductory number theory and other areas, but written without the assumption of that
knowledge, so this book can be used as either a last year or first year text.

There does seem to be a more-or-less standard course, those things a student must
know to have a basic grounding in number theory. We present this course as a dozen
chapter series at the start of the book. There are fifty additional chapters in the second
half of the book. Some of these are meant to further highlight the material in the first
12 chapters, and we will indicate there where they might be included. Others of these
chapters could be an additional lecture, or might be used as a student for an independent
reading project. Most of these can be read independently of the other chapters; quite a
few require the reader to figure out things for themselves, and point the reader to further,
deeper references.

We have chosen to give several proofs of various key results, not to confuse the reader
but to highlight how well the subject hangs together.

The most unconventional choice in our “basic course” is to give Gauss’s original proof
of the law of quadratic reciprocity. Almost all textbooks give Eisenstein’s proof based on
a surprising lattice point counting argument (which we give in section C8); while this is
elegant and highlights how different areas of mathematics support one another, it is largely
unmotivated and too complicated for a student to fully grasp in an introductory course.
Gauss’s original proof is much more motivated by the introductory material, and has been
reworked so as to be only slightly more complicated than Eisenstein’s proof.
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Notation

N – The natural numbers, 1, 2, 3, . . .
Z – The integers, . . . ,−3,−2,−1, 01, 2, 3, . . .

Throughout all variables are taken to be integers, unless otherwise specified.
Q – The rational numbers, that is the fractions a/b with a ∈ Z and b ∈ N.
R – The real numbers
C – The complex numbers

A[x] — The set of polynomials with coefficients from the set A, that is f(x) =
∑d

i=0 fix
i

where each fi ∈ A. Mostly we work with A = Z.∑
Some variables:

Certain conditions hold

summand and
∏

Some variables:
Certain conditions hold

summand,

mean that we sum, or product, the summand over the integer values of some variable,
satisfying certain conditions.
[t] — The integer part of t. That is, the largest integer ≤ t.
{t} — The fractional part of (real number) t. That is {t} = t−[t]. Notice that 0 ≤ {t} < 1.
(a, b) — The greatest common divisor of a and b.
[a, b] — The least common multiple of a and b.
b|a — means b divides a
pk∥a — means pk divides a, but not pk+1

I(a, b) — The ideal {am+ bn : m,n ∈ Z}
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1. The Euclidean Algorithm

1.1. Finding the gcd. You probably know the Euclidean algorithm, used to find the
greatest common divisor of two given integers. For example, to determine the greatest
common divisor of 85 and 48, we begin by subtracting the smaller from the larger, 48 from
85, to obtain 85−48 = 37. Now gcd(85, 48) = gcd(48, 37) and we apply the algorithm again
to the pair 48 and 37. So we subtract the smaller from the larger to obtain 48− 37 = 11,
so that gcd(48, 37) = gcd(37, 11). Next we should subtract 11 from 37, but then we would
only do so again, and a third time, so let’s do all that in one go and take 37− 3× 11 = 4,
to obtain gcd(37, 11) = gcd(11, 4). Similarly we take 11− 2×4 = 3, and then 4− 3 = 1, so
that the gcd of 85 and 48 is 1. This is the Euclidean algorithm that you learnt in school,
but did you ever prove that it really works?

To do so, we must first carefully define what we have implicitly used in the above
paragraph:

We say that a is divisible by b (or a is a multiple of b), or b is a divisor of a (or b is a
factor of a), if there exists an integer q such that a = qb. For convenience we write “b|a”.
Exercise 1.1.1a. Prove that if b divides a then either a = 0 or |a| ≥ |b|.

Exercise 1.1.1b. Deduce that if a|b and b|a then b = ±a.

Exercise 1.1.1c. Prove that if a divides b and c then a divides bx+ cy for all integers x, y.

Exercise 1.1.1d. Prove that if a divides b, and b divides c, then a divides c.

In general we have

Lemma 1.1. If a and b > 0 are integers then there exist integers q and r, with 0 ≤ r ≤
b− 1, such that a = qb+ r. We call q the “quotient”, and r the “remainder”.

Proof. Let r be the smallest element of the set S := {a + nb ≥ 0 : n ∈ Z}. Evidently
the set is non-empty (as may be seen by selecting n sufficiently large) so that r exists.
Now r ≥ 0 by definition, and if r = a − qb then we have r < b else a − bq ≥ b so that
r − b = a− (q + 1)b ∈ S, contradicting the minimality of r.

Exercise 1.1.2. (i) Let [t] be the integer part of t, that is the largest integer ≤ t. Prove that q = [a/b].

(ii) Let {t} to be the fractional part of t, that is {t} = t− [t]. Prove that r = b{r/b} = b{a/b}.

We say that d is a common divisor of a and b if d divides both a and b. We are
interested here in the greatest common divisor of a and b, which is often written gcd(a, b)
or simply (a, b).1

Exercise 1.1.3. Show that if a and b are not both 0, then gcd(a, b) is a positive integer.

We say that a is coprime with b, or a and b are coprime integers or relatively prime if
(a, b) = 1.

1In the UK this is known as the highest common factor of a and b, and written hcf(a, b).
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Corollary 1.2. If a = qb+ r as in Lemma 1.1, then gcd(a, b) = gcd(b, r).

Proof. Let g = gcd(a, b) and h = gcd(r, b). Now g divides a and b, so g divides a− qb = r.
Therefore g is a common divisor of both r and b, and therefore g ≤ h. Similarly h divides
b and r, so h divides qb + r = a and hence h is a common divisor of both a and b, and
therefore h ≤ g. We have shown that g ≤ h and h ≤ g, which together imply that g = h.

Exercise 1.1.4. Use Corollary 1.2 to deduce that the Euclidean algorithm indeed yields the greatest

common divisor of the two given integers.

1.2. Linear combinations. Another aspect of the Euclidean algorithm is that one can
find a linear combination of a and b, over the integers, which equals gcd(a, b); that is, one
can find integers u and v such that

au+ bv = gcd(a, b).

We proceed as follows in our example above: 1 = 1 · 4− 1 · 3, and so we have

1 = 1 · 4− 1 · 3 = 1 · 4− 1 · (11− 2 · 4) = 3 · 4− 1 · 11,

as we had 3 = 11− 2 · 4. This then implies, since we had 4 = 37− 3 · 11, that

1 = 3 · (37− 3 · 11)− 1 · 11 = 3 · 37− 10 · 11.

Continuing in this way, we deduce:

1 = 3 · 37− 10 · (48− 37) = 13 · 37− 10 · 48 = 13 · (85− 48)− 10 · 48 = 13 · 85− 23 · 48,

that is, we have the desired linear combination of 85 and 48.
To prove that this method always works, we use Lemma 1.1 again: Suppose that

a = qb+ r so that gcd(a, b) = gcd(b, r) by Corollary 1.2, and we have bu− rv = 1 for some
integers u and v. Then

gcd(a, b) = gcd(b, r) = bu− rv = bu− (a− qb)v = b(u+ qv)− av,

the desired linear combination of a and b. This yields a proof of the following:

Theorem 1.3. If a and b are given integers then there exist integers u and v such that

au+ bv = gcd(a, b).

Exercise 1.2.1. Prove that if there exist integers u and v such that au+ bv = 1 then gcd(a, b) = 1.

Exercise 1.2.2. Prove that if d divides both a and b then d divides gcd(a, b).

Exercise 1.2.3. Prove that if a divides m, and b divides n then gcd(a, b) divides gcd(m,n). In particular

show that if a divides m, and b divides n where gcd(m,n) = 1 then gcd(a, b) = 1.
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Corollary 1.4. If gcd(a,m) = gcd(b,m) = 1 then gcd(ab,m) = 1

Proof. By Theorem 1.3 there exist integers r, s, u, v such that au + mv = br + ms = 1.
Therefore ab(ur) + m(bvr + aus + msv) = (au + mv)(br + ms) = 1. Hence gcd(ab,m)
divides 1 by exercise 1.2.2, and the result follows from exercise 1.1.3.

Corollary 1.5. We have gcd(ma,mb) = m · gcd(a, b) for all integers m ≥ 1.

Proof. By Theorem 1.3 there exist integers r, s, u, v such that au + bv = gcd(a, b) and
(ma)r + (mb)s = gcd(ma,mb). Now gcd(ma,mb) divides ma and mb so it divides mau+
mbv = m · gcd(a, b). Similarly gcd(a, b) divides a and b, so that m · gcd(a, b) divides ma
and mb, and therefore gcd(ma,mb) by exercise 1.2.2. The result follows for exercise 1.1.1b.

Exercise 1.2.4. Deduce that if A and B are given integers with g =gcd(A,B) then gcd(A/g,B/g) = 1.

(Hint: Try m = g, A = ma, B = mb in Corollary 1.4.)

Exercise 1.2.5. Show that any rational number u/v where u, v ∈ Z with v ̸= 0, may be written as r/s

where r and s are coprime integers with s > 0.

We define the set of linear combinations of two integers as follows:

I(a, b) := {am+ bn : m,n ∈ Z}.

This definition can be extended to an arbitrary set of integers in place of {a, b}; that is

I(a1, . . . ak) := {a1m1 + a2m2 + . . .+ akmk : m1,m2, . . . ,mk ∈ Z}.

Corollary 1.6. If a and b are given non-zero integers then we have I(a, b) = I(g) where
g :=gcd(a, b); that is

{am+ bn : m,n ∈ Z} = {gk : k ∈ Z}.

Proof. By Theorem 1.3 we know that there exist u, v ∈ Z such that au+bv = g. Therefore
a(uk) + b(vk) = gk so that gk ∈ I(a, b) for all k ∈ Z; that is I(g) ⊂ I(a, b). On the other
hand, as g divides both a and b, there exist integers A,B such that a = gA, b = gB, and
so any am+ bn = g(Am+Bn) ∈ I(g). That is I(a, b) ⊂ I(g). The result now follows from
the two inclusions.

Exercise 1.2.6. Show that I(a1, . . . ak) = I(g) for any non-zero integers a1, . . . ak, where g =gcd(a1, . . . ak).

Exercise 1.2.7. Deduce that if we are given integers a1, a2, . . . , ak, not all zero, then there exist integers
m1,m2, . . . ,mk such that

m1a1 +m2a2 + . . .+mkak = gcd(a1, a2, . . . , ak).

We say that the integers a1, a2, . . . , ak are relatively prime if gcd(a1, a2, . . . , ak) = 1. We say that they

are pairwise coprime if gcd(ai, aj) = 1 whenever i ̸= j.

We have seen how the Euclidean algorithm can be used to find the gcd of two given
integers a and b, and to find integers u, v such that au+ bv = gcd(a, b). This is more than
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the mere existence of u and v, which is all that was claimed in Theorem 1.3; the price
for obtaining the values of u and v is a somewhat complicated analysis of the Euclidean
algorithm. However if we only want to prove that such u and v exist, we can give an easier
proof:

Non-constructive proof of Theorem 1.3. Let h be the smallest positive integer that belongs
to I(a, b), say h = au+ bv. Then g := gcd(a, b) divides h, as g divides both a and b.

Lemma 1.1 implies that there exist integers q and r, with 0 ≤ r ≤ h − 1 such that
a = qh+ r. Therefore

r = a− qh = a− q(au+ bv) = a(1− qu) + b(−qv) ∈ I(a, b),

which contradicts the minimality of h, unless r = 0; that is h divides a. An analogous
argument reveals that h divides b, and so h divides g by exercise 1.2.2.

Hence g divides h, and h divides g, so that g = h as desired.

In section C1 we discuss how the sets I(a, b) generalize to other number domains, and
discuss some of the basic theory attached to that. This is recommended to be inserted
here particularly for classes in which many of the students have had a course in algebra.

Up until now we have considered the Euclidean algorithm, one step at a time. It is
convenient to give appropriate notation for the steps of the Euclidean algorithm, so that
we can consider all the steps together:

1.3. Continued Fractions. If a > b > 1 with (a, b) = 1 then Lemmas 1.1 and 1.2 yield
that there exists integers q and r, with b > r ≥ 1 such that

a

b
= q+

r

b
= q+

1
b
r

.

And then we can repeat this with the pair of integers b and r. Thus going back to our
original example, where we were finding the gcd of 85 and 48, we begin by noting that

85

48
= 1+

37

48
,

and then
48

37
= 1+

11

37
, so that

85

48
= 1+

1
48
37

= 1+
1

1+ 11
37

.

We continue like this:

37

11
= 3+

4

11
,
11

4
= 2+

3

4
, and

4

3
= 1+

1

3
,

so that

85

48
= 1+

1

1+ 11
37

= 1+
1

1+ 1
3+ 4

11

= 1+
1

1+ 1
3+ 1

2+ 3
4

= 1+
1

1+ 1
3+ 1

2+ 1

1+ 1
3

.
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This is the continued fraction for 85
48 and is more conveniently written as [1, 1, 3, 2, 1, 3].

Notice that this is the sequence of quotients ai from the various divisions, that is

a

b
= [a0, a1, a2, . . . , ak] := a0+

1

a1+
1

a2+
1

a3+...+ 1
ak

.

Exercise 1.4.1. Show that if ak > 1 then [a0, a1, . . . , ak] = [a0, a1, . . . , ak − 1, 1]. Prove that the set

of positive rational numbers are in 1− 1 correspondence with the finite length continued fractions that do

not end in 1.

Taking the rationals corresponding to the first part of the continued fraction, namely
[1] = 1, [1, 1] = 2, [1, 1, 3], . . . gives

1+
1

1+ 1
3

=
7

4
, 1+

1

1+ 1
3+ 1

2

=
16

9
, 1+

1

1+ 1
3+ 1

2+ 1
1

=
23

13
,

which are increasingly good approximations (1.75, 1.777 . . . , 1.7692 . . . ) to 85/48 =
1.770833 . . . . We call these the convergents rj/sj , j ≥ 1 for a continued fraction, de-
fined by

rj
sj
= [a0, a1, a2, . . . , aj ], so that a/b = rk/sk. We will show in section C2 that

rjsj−1 − rj−1sj = (−1)j−1, so if u = (−1)k−1sk−1 and v = (−1)krk−1 then

au+ bv = 1.

This is really just a convenient reworking of the Euclidean algorithm, as we explained it
above, for finding u and v. Bachet de Meziriac, the celebrated editor and commentator of
Diophantus, introduced this method to Renaissance mathematicians in the second edition
of his brilliantly named book Pleasant and delectable problems which are made from
numbers (1624). Such methods had been known from ancient times, certainly to 8th
century Indian scholars, probably to Archimedes, and possibly to the Babylonians.
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2. Congruences.

2.1. Basic Congruences. If a divides b− c then we write b ≡ c (mod a), and say that
b and c are congruent modulo a, where a is the modulus. The numbers involved should
be integers, not fractions, and the modulus can be taken in absolute value; that is b ≡ c
(mod a) if and only if b ≡ c (mod |a|), by definition.

For example, −10 ≡ 15 (mod 5), and −7 ≡ 15 (mod 11), but −7 ̸≡ 15 (mod 3). Note
that b ≡ b (mod a) for all integers a and b.2

The integers ≡ a (mod m) are precisely those of the form a+km where k is an integer.
We call this set of integers a congruence class or residue class mod m, and any particular
element of the congruence class is a residue.

Theorem 2.1. Suppose that m is a positive integer. Exactly one of any m consecutive
integers is ≡ a (mod m).

Proof. Suppose that we are given the m consecutive integers x, x+ 1, . . . , x+m− 1. One
of these is of the form a+ km, where k is an integer, if and only if there exists an integer
k for which

x ≤ a+ km < x+m.

Subtracting a from each term here and dividing through by m, we find that this holds if
and only if

x− a

m
≤ k <

x− a

m
+1.

Hence k must be an integer from an interval of length one with just one endpoint included
the interval. One easily sees that such an integer k is unique, indeed it is the smallest
integer that is ≥x−a

m .
A number theoretic proof that there is at most one such integer goes as follows:

If x+ i ≡ a (mod m) and x+ j ≡ a (mod m), where 0 ≤ i < j ≤ m− 1 then i ≡ a−x ≡ j
(mod m), so that m divides j − i which is impossible as 1 ≤ j − i ≤ m− 1.

Theorem 2.1 implies that any m consecutive integers yields a complete set of residues
(mod m); that is every congruence class (mod m) is represented by one element of the
given set of m integers. For example, every integer has a unique residue amongst the least
non-negative residues (mod m),

0, 1, 2, . . . (m− 1)

(which is also a direct consequence of Theorem 1.1), amongst the least positive residues
(mod m), 1, 2, . . . ,m, and also amongst −(m − 1), −(m − 2), . . . , −2, −1, 0. If the
residue is not 0 then these residues occur in pairs, one positive the other negative, and
one of each pair is ≤ m/2 in absolute value, which we call the absolutely least residue
(mod m) (and when m is even we select m/2 rather than −m/2). For example 2 is the
absolutely least residue of −13 (mod 5), whereas −3 is the least negative residue. 5 is

2We adopt the symbol ≡ because of the analogies between equality and congruence; to avoid ambi-
guity we have made a minor distinction between the two notations, by adding the extra bar.
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its own least positive residue mod 7, and −2 is the least negative residue as well as the
absolutely least.

We defined a complete set of residues to be any set of representatives for the residue
classes mod m, one for each residue class. A reduced set of residues has representatives
only for the residue classes that are coprime with m. For example {0, 1, 2, 3, 4, 5} is a
complete set of residues (mod 6), whereas {1, 5} is a reduced set of residues.

Exercise 2.1.1. Prove that the set of integers in the congruence class a (mod d) can be partitioned into

the set of integers in the congruence classes a (mod kd), a+ d (mod kd), . . . , a+ (k − 2)d (mod kd) and

a+ (k − 1)d (mod kd).

Exercise 2.1.2. Show that if a ≡ b (mod m) then (a,m) = (b,m).

Exercise 2.1.3. Prove that the property of congruence modulo m is an equivalence relation on the

integers. To prove this one must establish (i) a ≡ a (mod m); (ii) a ≡ b (mod m) implies b ≡ a (mod m);

and (iii) a ≡ b (mod m) and b ≡ c (mod m) imply a ≡ c (mod m).

One consequence of this is that congruent numbers have the same least residues,
whereas non-congruent numbers have different least residues.

The main use of congruences is that it simplifies arithmetic when we are looking into
questions about remainders. This is because the usual rules for addition, subtraction and
multiplication work for congruences; division is a little more complicated, as we shall see.

Lemma 2.2. If a ≡ b (mod m) and c ≡ d (mod m) then

a+ c ≡ b+ d (mod m)

a− c ≡ b− d (mod m)

and ac ≡ bd (mod m).

Proof. By hypothesis there exist integers u and v such that a− b = um and c− d = vm.
Therefore

(a+ c)− (b+ d) = (a− b) + (c− d) = um+ vm = (u+ v)m

so that a+ c ≡ b+ d (mod m),

(a− c)− (b− d) = (a− b)− (c− d) = um− vm = (u− v)m

so that a− c ≡ b− d (mod m), and

ac− bd = a(c− d) + d(a− b) = a · vm+ b · um = (av + bu)m

so that ac ≡ bd (mod m).

Exercise 2.1.4. Show that for any integers k and l we have ka+ lc ≡ kb+ ld (mod m).

To see that division does not work so easily, we try to divide each side of 8 ≡ 2
(mod 6) by 2, which yields the incorrect “4 ≡ 1 (mod 6)”. To make this correct we need
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to divide the modulus through by 2 also so as to obtain 4 ≡ 1 (mod 3). However even this
is not the whole story, for if we wish to divide both sides of 21 ≡ 6 (mod 5) through by
3, we cannot also divide the modulus, since 3 does not divide 5. However, in this case one
does not need to divide the modulus through by 3, indeed 7 ≡ 2 (mod 5). So what is the
general rule? We shall return to this question in Lemma 3.5. For now the only observation
we make is the following easy exercise:

Exercise 2.1.5. Prove that if a ≡ b (mod m) then a ≡ b (mod d) for any divisor d of m.

Let Z[x] denote the set of polynomial with integer coefficients.

Corollary 2.3. If f(x) ∈ Z[x] and a ≡ b (mod m) then f(a) ≡ f(b) (mod m).

Proof. Since a ≡ b (mod m) we have a2 ≡ b2 (mod m) by Lemma 2.2, and then ak ≡ bk

(mod m) for all integers k, by induction. Now, writing f(x) =
∑d

i=0 fix
i where each fi is

an integer, we have

f(a) =
d∑

i=0

fia
i ≡

d∑
i=0

fib
i = f(b) (mod m),

by exercise 2.1.4.

This result can be extended to polynomials in many variables.

Exercise 2.1.6. Prove that if f(t) ∈ Z[t] and r, s ∈ Z then r − s divides f(r)− f(s).

Therefore, for any given polynomial f(x) ∈ Z[x], the sequence f(0), f(1), f(2), f(3), . . .
modulo m is periodic of period m, that is the values repeat every mth time, repeated in-
definitely. More precisely f(n+m) ≡ f(n) (mod m) for all integers n.

Example: If f(x) = x3 − 8x+ 6 and m = 5 then we get the sequence

f(0), f(1), . . . = 1, 4, 3, 4, 3, 1, 4, 3, 4, 3, 1 . . .

and the first five terms 1, 4, 3, 4, 3 repeat infinitely often. Moreover we get the same pattern
if we run though the consecutive negative integer values for x.

Note that in this example f(x) is never 0 or 2 (mod 5). Thus neither of the two
equations

x3 − 8x+ 6 = 0 and x3 − 8x+ 4 = 0

can have solutions in integers.

Exercise 2.1.7. Let f(x) ∈ Z[x]. Suppose that f(r) ̸≡ 0 (mod m) for all integers r in the range

0 ≤ r ≤ m− 1. Deduce that there does not exist an integer n for which f(n) = 0.

2.2. Tests for divisibility. There are easy tests for divisibility based on ideas from this
section. For instance since

a+ 10b+ 100c+ . . . ≡ a+ b+ c+ . . . (mod 9)

we can test the first number for divisibility by 9, by testing the latter. Similarly we can use
this same test for divisibility by 3, since 3 divides 9. For example, is 7361842509 divisible
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by 9? This holds if and only if 7 + 3 + 6 + 1 + 8 + 4 + 2 + 5 + 0 + 9 = 45 is divisible by 9,
which holds if and only if 4 + 5 = 9 is divisible by 9, which it is.

For the modulus 11 we have that 102 = 100 ≡ 1 (mod 11) and, in general, that

102k = (102)k ≡ 1k ≡ 1 (mod 11) and 102k+1 = 102k · 10 ≡ 1 · (−1) ≡ −1 (mod 11).

Therefore
a+ 10b+ 100c+ . . . ≡ a− b+ c . . . (mod 11).

Therefore 7361842509 is divisible by 11 if and only if 7−3+6−1+8−4+2−5+0−9 = 1
divisible by 11, which it is not.

One may deduce similar rules to test for divisibility by any integer, though we will
need to develop our theory of congruences. We return to this theme in section 7.7.

Exercise 2.2.1. Invent tests for divisibility by 2 and 5 (easy), and also by 7 and 13 (similar to the above).

Try and make one test that tests for divisibility by 7, 11 and 13 simultaneously.
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3. The basic algebra of number theory

A prime number is an integer n > 1 whose only positive divisors are 1 and n. Hence
2, 3, 5, 7, 11, . . . are primes. Integer n > 1 is composite if it is not prime.

3.1. The Fundamental Theorem of Arithmetic. All the way back to ancient Greek
times, mathematicians recognized that abstract lemmas allowed them to prove sophisti-
cated theorems. The archetypal result is “Euclid’s Lemma”, an important result that first
appeared in Euclid’s “Elements” (Book VII, No. 32).

Euclid’s Lemma. If c divides ab and gcd(c, a) = 1 then c divides b.

This has the following important consequence, taking c = p prime:

Theorem 3.1. If prime p divides ab then p must divide at least one of a and b.

The hypothesis in Theorem 3.1 that p is prime, and the hypothesis in Euclid’s Lemma
are certainly necessary, as may be understood from the example where 4 divides 2 · 6, but
4 does not divide either 2 or 6.

We begin by giving Gauss’s proof of Theorem 3.1, which is (arguably) more intuitive
than the usual proof of Euclid’s lemma:

Gauss’s proof of Theorem 3.1. Suppose that this is false so there exist positive integers a
and b that are not divisible by p, and yet ab is divisible by p (if a or b is negative, replace
them by −a or −b, respectively). Pick the counterexample with b as small as possible, and
note that 0 < b < p else if n is the least residue of b mod p, then n ≡ b ̸≡ 0 (mod p) and
an ≡ ab ≡ 0 (mod p), contradicting the minimality of b.

We also have b > 1 else p divides a · 1 = a.
Let B be the least positive residue of p (mod b), so that 1 ≤ B < b < p, and therefore

p̸ |B. Writing B = p− kb for some integer k we have

aB = a(p− kb) = pa− (ab)k ≡ 0 (mod p),

since ab is divisible by p. However p does not divide either a or b, and so this contradicts
the minimality of b.

The slick, but unintuitive proof of Euclid’s lemma. Since gcd(c, a) = 1 there exist integers
m and n such that cm+ an = 1 by Theorem 1.3. Hence c divides

c · bm+ ab · n = b(cm+ an) = b.

Corollary 3.2. If am = bn then a/gcd(a, b) divides n.

Proof. Let a/gcd(a, b) = A and b/gcd(a, b) = B so that (A,B) = 1 by exercise 1.2.4, and
Am = Bn. Therefore A|Bn with (A,B) = 1 so that A|n by Euclid’s Lemma.

Exercise 3.1.1. Prove that if prime p divides a1a2 . . . ak then p divides aj for some j, 1 ≤ j ≤ k.

With this preparation we are ready to prove the first great theorem of number theory,
which appears in Euclid’s “Elements”:
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The Fundamental Theorem of Arithmetic. Every integer n > 1 can be written as a
product of primes in a unique way (up to re-ordering).

By “re-ordering” we mean that although one can write 12 as 2× 2× 3, or 2× 3× 2, or
3 × 2 × 2, we count all of these as the same product, since they involve the same primes,
each the same number of times.

Proof. We first show that there is a factorization of n into primes. We prove this by
induction on n: If n is prime then we are done; since n = 2, 3 are prime this also starts our
induction hypothesis. If n is composite then it must have a divisor a for which 1 < a < n,
and so b = n/a is an integer for which 1 < b < n. Then, by the induction hypothesis,
both a and b can be factored into primes, and so n = ab equals the product of these two
factorizations.

Now we prove that there is just one factorization for each n ≥ 2. If this is not true
then let n be the smallest integer ≥ 2 that has two distinct factorizations,

p1p2 · · · pr = q1q2 · · · qs,

where the pi and qj are primes. Now prime pr divides q1q2 · · · qs, and so pr divides qj for
some j, by exercise 3.1.1. Re-ordering the qj if necessary we may assume that j = s, and
we have that pr = qs since qs is a prime and hence its only prime divisor is itself. If we
divide through both factorizations by pr = qs we have two distinct factorizations of

n/pr = p1p2 · · · pr−1 = q1q2 · · · qs−1,

which contradicts the minimality of n unless n/pr = 1. But then n = pr is prime, and by
the definition (of primes) it can have no other factor.

It is useful to write the factorizations of natural numbers in a standard form, like

n = 2n23n35n57n7 . . . ,

with each ni ≥ 0, and where only finitely many of the ni are non-zero. Usually we only
write down those prime powers where ni ≥ 1, for example 12 = 22 · 3 and 50 = 2 · 52.
Exercise 3.1.2. Prove that every natural number has a unique representation as 2km with k ≥ 0 and m

an odd natural number.

Exercise 3.1.3. Show that if all of the prime factors of an integer n are ≡ 1 (mod m) then n ≡ 1

(mod m). Deduce that if n ̸≡ 1 (mod m) then n has a prime factor that is ̸≡ 1 (mod m).

Exercise 3.1.4. Show that if all of the prime factors of an integer n are ≡ 1 or 3 (mod 8) then n ≡ 1 or

3 (mod 8). Prove this with 3 replaced by 7. Generalize this as much as you can.

We write pe∥n if pe is the highest power of p that divides n; thus 32∥18 and 111∥1001.
Suppose that n =

∏
p prime p

np , a =
∏

p p
ap , b =

∏
p p

bp .3 If n = ab then

2n23n35n5 · · · = 2a23a35a5 · · · 2b23b35b5 · · · = 2a2+b23a3+b35a5+b5 · · · ,
3Here, and often hereafter, we suppress writing “prime” in the subscript of

∏
, for convenience.
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so by the fundamental theorem of arithmetic we have np = ap + bp for each prime p. As
ap, bp ≥ 0 for each prime p, we can deduce that 0 ≤ ap ≤ np. In the other direction if
a = 2a23a35a5 . . . with each 0 ≤ ap ≤ np then a divides n since we can write n = ab where
b = 2n2−a23n3−a35n5−a5 . . .

Therefore the number of divisors a of n is equal to the number of possibilities for the
exponents ap, that is each ap is an integer in the range 0 ≤ ap ≤ np. There are therefore
(np + 1) possibilities for the exponent for each prime p making

(n2 + 1)(n3 + 1)(n5 + 1) . . .

in total. Hence if we write τ(n) for the number of divisors of n, then

τ(n) =
∏

p prime
pnp∥n

τ(pnp).

Functions like this, in which we can break up the value of the function at n, via the
factorization of n, into the value of the function at the maximum prime powers that divide
n, are called multiplicative functions.

Exercise 3.1.5. Reprove Corollary 1.4 using the Fundamental Theorem of Arithmetic.

Exercise 3.1.6. Prove that if (a, b) = 1 then (ab,m) = (a,m)(b,m).

Exercise 3.1.7. Use the description of the divisors of a given integer to prove the following: Suppose

that we are given positive integers m =
∏

p pmp and n =
∏

p pnp . Then

(i) gcd(m,n) =
∏

p pmin{mp,np} and (ii) lcm[m,n] =
∏

p pmax{mp,np}.

Here lcm[m,n] denotes the least common multiple of m and n, that is the smallest positive
integer which is divisible by both m and n.

Exercise 3.1.8. Prove that d divides gcd(a, b) if and only if d divides both a and b.

Prove that lcm(a, b) divides m if and only if a and b both divide m.

Exercise 3.1.9. Deduce that mn = gcd(m,n) · lcm(m,n) for all pairs of natural numbers m and n.

Exercise 3.1.10. Prove that lcm[ma,mb] = m · lcm[a, b] for any positive integer m.

Exercise 3.1.11. Prove that gcd(a, b, c) · lcm(a, b, c) = abc if and only if a, b and c are pairwise coprime.

Exercise 3.1.12. Prove that for any integers a, b,m, n there exists an integer c such that a
m

+ b
n
= c

L

where L = lcm[m,n]. Show that lcm[m,n] is the smallest positive integer with this property. For this

reason we often call lcm[m,n] the lowest common denominator of the fractions 1/m and 1/n.

One can obtain the gcd and lcm for any number of integers by similar means:

Example: If A = 504 = 23 · 32 · 7, B = 2880 = 26 · 32 · 5 and C = 864 = 25 · 33, then the
greatest common divisor is 23 ·32 = 72 and the least common multiple is 26 ·33 ·5·7 = 60480.
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This method for finding the gcd of two integers appears to be much simpler than that
discussed previously, using the Euclidean algorithm. However in order to make this method
work one needs to be able to factor the integers involved, which puts severe limitations
on the size of numbers for which the method will easily work. On the other hand, the
Euclidean algorithm is very efficient for finding the gcd of two given integers without
needing to know anything else about those numbers.

Exercise 3.1.13. Reprove exercise 1.2.4, that if (a, b) = g then (a/g, b/g) = 1, using the factorizations

of a, b and g.

Exercise 3.1.14. Prove that if each of a, b, c, . . . is coprime with m then so is abc . . .

Exercise 3.1.15. Prove that if a, b, c, . . . are pairwise coprime and they each divide m, then abc . . .

divides m.

Exercise 3.1.16. Deduce that if m ≡ n (mod a) and m ≡ n (mod b) and m ≡ n (mod c), . . . , where

a, b, c, . . . are coprime with one another, then m ≡ n (mod abc) . . .

Exercise 3.1.17. Prove that each of a, b, c, . . . divides m if and only if lcm[a, b, c, . . . ] divides m. What

is the analogous strengthening of the result in exercise 3.1.16?

Gauss’s proof of Euclid’s Lemma. Since ab is divisible by both a and c, and since (a, c) = 1,
therefore ab is divisible by ac by exercise 3.1.15. Therefore ab/ac = b/c is an integer, and
so c divides b.

Using the representation of an integer in terms of its prime power factors can be useful
when considering powers:

Exercise 3.1.18. Prove that n divides the exponent of all of the prime power factors of A, if and only if

A is the nth power of an integer.

Exercise 3.1.19. Prove that if a, b, c, . . . are pairwise coprime, positive integers and their product is an

nth power then they are each an nth power.

Exercise 3.1.20. Prove that if ab is a square then a = ±gA2 and b = ±gB2 where g = gcd(a, b). (Hint:

Use exercise 3.1.13.)

Exercise 3.1.21. Let p be an odd prime. Suppose that x, y and z are integers for which xp + yp = zp.

Show that there exist an integer r such that z − y = rp, prp or pp−1rp. (Hint: Factor zp − yp =

(z − y)(zp−1 + zp−2y + . . .+ zyp−2 + yp−1) and find the possible gcds of the two factors.) Rule out the

possibility that z − y = prp. (This last part is not easy – you may wish to use Lemma 7.12.)

3.2. Irrationality. Are there irrational numbers? How about
√
2?

Proposition 3.3. There does not exist a rational number a/b for which
√
2 = a/b. That

is,
√
2 is irrational.

Proof. We may assume, as in any fraction, that (a, b) = 1 so that a and b are minimal,

and that b ≥ 1 (and so a ≥ 1). Now if
√
2 = a/b then a = b

√
2 and so a2 = 2b2.
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Write the factorizations

a =
∏
p

pap , b =
∏
p

pbp so that
∏
p

p2ap = 2
∏
p

p2bp ,

and therefore 2a2 = 1 + 2b2 which is impossible mod 2.

More generally we have

Proposition 3.4. If d is an integer for which
√
d is rational, then

√
d is an integer.

Therefore if integer d is not the square of an integer than
√
d is irrational.

Proof. We may write
√
d = a/b where a and b are coprime positive integers, and a2 = db2.

Write a =
∏

p p
ap , b =

∏
p p

bp , d =
∏

p p
dp where each ap, bp, dp ≥ 0, so that 2ap = 2bp+dp

for each prime p, as a2 = db2. Therefore if bp > 0 or dp > 0 then ap = bp + dp/2 > 0, and
so bp = 0 as (a, b) = 1; but then dp = 2ap. Therefore b = 1 and d = a2.

3.3. Dividing in congruences. We are now ready to return to the topic of dividing
both sides of a congruence through by a given divisor.

Lemma 3.5. If d divides both a and b and a ≡ b (mod m) where g = gcd(d,m) then

a/d ≡ b/d (mod m/g).

Proof. We may write a = dA and b = dB for some integers A and B, so that dA ≡ dB
(mod m). Hencem divides d(A−B) and therefore m

g divides d
g (A−B). Now gcd(mg ,

d
g ) = 1

by Corollary 1.4, and so m
g divides A−B by Euclid’s Lemma.

Corollary 3.6. If (a,m) = 1 then u ≡ v (mod m) if and only if au ≡ av (mod m).

Proof. First use the third part Lemma 2.2 to verify that if u ≡ v (mod m) then au ≡ av
(mod m). Then let {a, b} = {au, av} and d = a in Lemma 3.5, so that g = (a,m) = 1, to
verify that if au ≡ av (mod m) then u ≡ v (mod m).

Corollary 3.6 implies that if (a,m) = 1 then

a.0, a.1, . . . , a.(m− 1)

is a complete set of residues (mod m), since there are m of them and no two of them are
congruent. In particular one of these is congruent to 1 (mod m); and so we deduce:

Corollary 3.7. If (a,m) = 1 then there exists an integer r such that ar ≡ 1 (mod m).
We call r the inverse of a (mod m). We often denote this by 1/a (mod m).

Third Proof of Theorem 1.3. For any given integers A,M let A = ag,M = mg where
g = gcd(A,M) so that (a,m) = 1. Then, by Corollary 3.7, there exists an integer r such
that ar ≡ 1 (mod m), and so there exists an integer s such that ar − 1 = ms; that is
ar −ms = 1. Hence Ar −Ms = g(ar −ms) = g = gcd(A,M).

This also goes in the other direction:
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Second proof of Corollary 3.7. By Theorem 1.3 there exist integers u and v such that
au+mv = 1 and so

au ≡ au+mv = 1 (mod m).

Exercise 3.3.1. Prove that if (a,m) = 1 and b is an integer then

a.0 + b, a.1 + b, . . . , a(m− 1) + b

is a complete set of residues (mod m).

Exercise 3.3.2. Deduce that, whenever (a,m) = 1, for all given integers b and c, there is a unique value

of x (mod m) for which ax+ b ≡ c (mod m).

Exercise 3.3.3. Prove that if {r1, . . . rk} is a reduced set of residues mod m, and (a,m) = 1 then

{ar1, . . . ark} is also a reduced set of residues mod m

3.4. Linear equations in two unknowns. Given integers a, b, c can we find all solutions
in integers m,n to

am+ bn = c ?

Theorem 3.8. Let a, b, c be given integers. There are solutions in integers m,n to am+
bn = c if and only if gcd(a, b) divides c. If there are solutions then one solution, call it
r, s, can be found using the Euclidean algorithm. All other integer solutions are given by

m = r + ℓ
b

(a, b)
, n = s− ℓ

a

(a, b)
where ℓ is an integer.

Proof 1. If there are solutions m,n then gcd(a, b) divides am+ bn = c by exercise 1.1.1c.
Hence there are no solutions when gcd(a, b) does not divide c. On the other hand, we have
seen that there exists integers u, v such that au + bv = (a, b) and so if c = k(a, b) then
a(ku) + b(kv) = c.

Given one solution r, s to ar+ bs = c we can find all other solutions by noting that if
am+ bn = c = ar + bs then

a(m− r) = b(s− n).

Hence b/(a, b) divides m− r by Corollary 3.2, so we can write m = r + ℓb/(a, b) for some
integer ℓ, and then n = s− ℓa/(a, b).

Note that the real solutions to ax+ by = c are given by x = r+kb, y = s−ka, k ∈ R.
The integer solutions come when k = ℓ/(a, b) where ℓ ∈ Z.

An equation involving a congruence is said to be solved when integer values can be
found for the variables so that the congruence is satisfied. For example 6x + 5 ≡ 13
(mod 11) has the unique solution x ≡ 5 (mod 11), that is all integers of the form 11k+5.

Proof 2. For a given integer m there exists an integer n such that am + bn = c if and
only if am ≡ c (mod b). In that case c ≡ am ≡ 0 (mod (a, b)) as (a, b)|b. If so write
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a = (a, b)A, b = (a, b)B, c = (a, b)C and then we are looking for solutions to Am ≡ C
(mod B) where (A,B) = 1. If q ≡ 1/A (mod B) then this is equivalent to

m ≡ qAm ≡ qC (mod B).

That is the set of solutions m is a residue class mod B = b/(a, b) and the result follows.

There is another way to interpret our Theorem:

The Local-Global Principal for Linear Equations. Let a, b, c be given integers. There
are solutions in integers m,n to am+ bn = c if and only if for all positive integers r there
exist residue classes u, v (mod r) such that au+ bv ≡ c (mod r).

Proof. If am + bn = c then am + bn ≡ c (mod r) for all r ≥ 1. On the other hand if
au + bv ≡ c (mod b) and m is any integer ≡ u (mod b/(a, b)) then am ≡ au + bv ≡ c
(mod b), as a · b/(a, b) = b ·a/(a, b) ≡ 0 (mod b), and so there exists an integer n such that
am+ bn = c.

Remark. Note that it suffices to take only the modulus r = b in this result.

The Frobenius postage stamp problem: If we only have postage stamps worth a cents and b cents
where (a, b) = 1, what amounts can we make up? That is, what is the set

P(a, b) := {am+ bn : m,n ∈ Z, m, n ≥ 0} ?

(Note that in P(a, b) we only allow non-negative coefficients for a and b in our linear combinations,

whereas in I(a, b) there is no such restriction.) Suppose that r is an integer with 0 ≤ r ≤ b − 1. If
N = am + bn ∈ P(a, b) with N ≡ ar (mod ab) then am ≡ N ≡ ar (mod n) so that m ≡ r (mod b) and
hence m = r+ bk for some integer k ≥ 0. Therefore N = am+ bn = ar+ b(n+ak), and so the elements of

P(a, b) in the arithmetic progression ar (mod b) are all those elements of the arithmetic progression that
are ≥ ar. Hence a(b− 1)− b = ab− a− b is the largest integer that is not in P(a, b).

Exercise 3.4.1. Show that if 1 ≤ M,N ≤ ab with (M,ab) = 1 and M +N = ab then exactly one of M
and N is in P(a, b). (Hint: Given a representation of M , find one of N .)

Determining, in general, the largest integer that does not belong P(a, b, c), is an open problem.

3.5. Congruences to several moduli. What are the integers that satisfy given con-
gruences to two different moduli?

Lemma 3.9. Suppose that a,A, b, B are integers. There exists an integer x satisfying
x ≡ a (mod A) and x ≡ b (mod B) if and only if b ≡ a (mod gcd(A,B)). If so, this holds
for all those x belonging to a unique residue class (mod lcm[A,B]).

Proof. Integers x satisfying x ≡ a (mod A) can be written as x = Ay + a for an arbitrary
integer y, and then Ay + a = x ≡ b (mod B) has solutions if and only gcd(A,B) divides
b − a by Theorem 3.8 (as in the second proof). Moreover Theorem 3.8 gives us that y is
any element of a particular residue class mod B/(A,B), and so x = Ay+ a is any element
of a particular residue class modulo AB/(A,B) = [A,B].

The generalization of this last result is most elegant when we restrict to moduli that
are pairwise coprime.



GAUSS’S NUMBER THEORY 17

The Chinese Remainder Theorem. Suppose that m1,m2, . . . ,mk are a set of pairwise
coprime positive integers. For any set of residue classes a1 (mod m1), a2 (mod m2), . . . , ak
(mod mk), there exists a unique residue class x (mod m), where m = m1m2 . . .mk, such
that x ≡ aj (mod mj) for each j.

Proof. We can map x (mod m) to the vector (x (mod m1), x (mod m2), . . . , x (mod mk)).
There are m1m2 . . .mk different such vectors and each different x mod m maps to a differ-
ent one, for if x ≡ y (mod mj) for each j then x ≡ y (mod m) by exercise 3.1.16. Hence
there is a suitable 1-to-1 correspondence between residue classes modm and vectors, which
implies the result.

This is known as the Chinese Remainder Theorem because of the ancient Chinese practice (as dis-

cussed in Sun Tzu’s 4th century Classic Calculations) of counting the number of soldiers in a platoon by

having them line up in three columns and seeing how many are left over, then in five columns and seeing

how many are left over, and finally in seven columns and seeing how many are left over, etc. For instance,

if there are a hundred soldiers then one has 1,0 and 2 soldiers left over respectively; and the next smallest

number of soldiers you would have to have for this to be true is 205 ... Presumably an experienced com-

mander can eyeball the difference between 100 soldiers and 205! Primary school children in China learn a

song that celebrates this contribution.

In order to make the Chinese Remainder Theorem practical we need an algorithm for
determining x, given a1, a2, . . . , ak. This can be done be constructing a formula for x:
Since (m/mj ,mj) = 1 there exists an integer bj such that bj · m

mj
≡ 1 (mod mj) for each

j, by Corollary 3.7. Then

(3.5) x ≡ a1b1·
m

m1
+a2b2·

m

m2
+ . . .+ akbk·

m

mk
(mod m).

We can verify that this works, since mj divides m/mi for each i ̸= j, and therefore
x ≡ aj · bj m

mj
≡ aj · 1 ≡ aj (mod mj) for each j. Note that the bj can all be determined

using the Euclidean algorithm, so x can be determined rapidly in practice.

In Gauss’s 1801 book he gives an example involving what was then a practical question, but one that
is long forgotten today. Before pocket watches and cheap printing, people were perhaps more aware of solar

cycles and the moon’s phases then what year it actually was. Moreover from Roman times to Gauss’s
childhood, taxes were difficult to collect since travel was difficult and expensive, and so were not paid
annually but rather on a multiyear cycle. Gauss explained how to use the Chinese Remainder Theorem to

deduce the year in the Julian calendar from this information: The three pieces of information given were

• The indiction, which is ≡ year + 3 (mod 15), was used from 312 to 1806 to specify the position of
the year in a 15 year taxation cycle.

• The golden number, which is ≡ year + 1 (mod 19), since the moon’s phases and the days of the
year repeat themselves every 19 years.4

• The solar cycle, which is ≡ year+9 (mod 28), since the days of the week and the dates of the year
repeat in cycles of 28 years in the Julian calender.5

4Meton of Athens (5th century BC) observed that 19 (solar) years is less than two hours out from

being a whole number of lunar months.
5Since there are seven days in a week, and leap years occur every four years.
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Taking m1 = 15, m2 = 19, m3 = 28, we observe that

b1 ≡
1

19 · 28
≡

1

4 · (−2)
≡ −2 (mod 15) and b1·

m

m1
= −2 · 19 · 28 = −1064;

b2 ≡
1

15 · 28
≡

1

(−4) · 9
≡
1

2
≡ 10 (mod 19) and b2·

m

m2
= 10 · 15 · 28 = 4200;

b3 ≡
1

15 · 19
=

1

(14 + 1) · 19
≡

1

14 + 19
≡
1

5
≡ −11 (mod 28) and b3·

m

m3
= −3135.

Therefore if the indiction is a, the golden number is b, and the solar cycle is c then the year is

≡ −1064a+ 4200b− 3135c (mod 7980).

Exercise 3.5.1. Use this method to give a general formula for x (mod 1001) if x ≡ a (mod 7), x ≡ b

(mod 11) and x ≡ c (mod 13).

Exercise 3.5.2. Suppose that p1 < p2 < . . . < pk are primes, and that f(x) ∈ Z[x]. Prove that there

exist integers a1, . . . ak such that f(ai) ≡ 0 (mod pi) for 1 ≤ i ≤ k, if and only if there exists an integer a

such that f(a) ≡ 0 (mod p1p2 . . . pk).

There is more discussion of the Chinese Remainder Theorem in section B2.
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4. Multiplicative functions

A function f is multiplicative if f(mn) = f(m)f(n) for all pairwise coprime positive
integers m,n; and totally multiplicative if f(mn) = f(m)f(n) for all m,n ≥ 1. We already
saw the example τ(n), which counts the number of divisors of n, which is multiplicative
but not totally multiplicative, since τ(pa) = a + 1. One key observation is that being
multiplicative allows one to evaluate f(n) in terms of the f(pe) for the prime powers pe

dividing n.

Exercise 4.1.1. Show that if f is multiplicative, and n =
∏

p prime p
np then

f(n) =
∏

p prime

f(pnp ).

Deduce that if f is totally multiplicative then f(n) =
∏

p f(p)np .

We will focus in this section on two further examples of multiplicative functions of
great interest.

4.1. Euler’s ϕ-function. It is natural that we wish to know the value of

ϕ(n) := #{m : 1 ≤ m ≤ n and (m,n) = 1}
for any n ≥ 1. We have already seen that there are always ϕ(m) elements in a reduced
system of residues. Evidently ϕ(1) = 1.

Lemma 4.1. ϕ(n) is a multiplicative function.

Proof. Suppose that n = mr where (m, r) = 1. By the Chinese Remainder Theorem
there is natural bijection between the integers a (mod n) with (a, n) = 1, and the pairs of
integers (b (mod m), c (mod r)) with (b,m) = (c, r) = 1. Therefore ϕ(n) = ϕ(m)ϕ(r).

Hence to evaluate ϕ(n) for all n we simply need to evaluate it on the prime powers,
which is straightforward: If n = p is prime then ϕ(p) is simply the number of integers
1, 2, . . . , p−1; that is ϕ(p) = p−1. If n = pa is a prime power then we count every integer
1 ≤ m ≤ pa except those that are a multiple of p, that is except for p, 2p, 3p, . . . , (pa−1)p.
Therefore

ϕ(pa) = pa − pa−1 = pa−1(p− 1) = pa
(
1− 1

p

)
.

Hence we deduce

Theorem 4.2. If n =
∏

p prime p
np then

ϕ(n) =
∏

p prime
p|n

(pnp − pnp−1) =
∏

p prime
p|n

pnp

(
1− 1

p

)
= n

∏
p prime

p|n

(
1− 1

p

)
.

Example: ϕ(60) = 60 ·
(
1− 1

2

) (
1− 1

3

) (
1− 1

5

)
= 16, the numbers being

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53 and 59.

Exercise 4.1.2. Show that there are [x/d] natural numbers ≤ x that are divisible by d.

We give an alternative proof of Theorem 4.2, based on the inclusion-exclusion principle, in
section F1.

If one looks at values of ϕ(n) one makes a surprising observation:
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Proposition 4.3. We have
∑

d|n ϕ(d) = n.

Example: For n = 30, we have ϕ(1)+ϕ(2)+ϕ(3)+ϕ(5)+ϕ(6)+ϕ(10)+ϕ(15)+ϕ(30) =
1 + 1 + 2 + 4 + 2 + 4 + 8 + 8 = 30

Proof. For any integer m one knows that (m,n) is a divisor n, and so d = n/(m,n) is
an integer for which (m,n) = n/d. The n integers m in the range 1 ≤ m ≤ n can be
counted by summing up the number of integers 1 ≤ m ≤ n for which (m,n) = n/d, for
each divisor d of n. Writing m = an/d, this equals the number of integers 1 ≤ a ≤ d for
which (a, d) = 1, which is ϕ(d) by definition. The result follows.

Exercise 4.1.3. Prove that
∏

d|n d = nτ(n)/2.

Exercise 4.1.4. The function ϕ(m) is fundamental in number theory. Looking at its values, Carmichael

came up with the conjecture that for all integers m there exists an integer n ̸= m such that ϕ(n) = ϕ(m).

By considering n = 2m and n = 3m show that Carmichael’s conjecture is true if m is odd or if m is not

divisible by 3. Can you find other classes of m for which it is true? Carmichael’s conjecture is still an

open problem but it is known that if it is false then the smallest counterexample is > 1010
10
?

4.2. Perfect numbers. 6 is a perfect number, the sum of its smaller divisors, since

6 = 1 + 2 + 3.

“Six is a number perfect in itself, and not because God created all things in six
days; rather, the converse is true. God created all things in six days because the
number is perfect...” — from The City of God by Saint Augustine (354-430).

The next perfect number is 28 = 1+ 2+ 4+ 7+ 14 which is the number of days in a lunar
month. However the next, 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248, appears to
have little cosmic relevance, though we will be interested in trying to classify them all. To
create an equation we will add the number to both sides to obtain that n is perfect if and
only if

2n = σ(n), where σ(n) :=
∑
d|n

d.

Exercise 4.2.1. Show that n is perfect if and only if
∑

d|n
1
d
= 2.

Exercise 4.2.2. Prove that if (a, b) = 1 then each divisor of ab can be written as ℓm where ℓ|a and m|b.

By this last exercise we see that if (a, b) = 1 then

σ(ab) =
∑
d|ab

d =
∑

ℓ|a, m|b

ℓm =
∑
ℓ|a

ℓ ·
∑
m|b

m = σ(a)σ(b),

proving that σ is a multiplicative function. Now

σ(pk) = 1 + p+ p2 + . . .+ pk =
pk+1 − 1

p− 1
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by definition, and so if n =
∏

i p
ki
i then

σ(n) =
∏
i

pki+1
i − 1

pi − 1
.

Proposition 4.4. (Euclid) If 2p − 1 is a prime number then 2p−1(2p − 1) is a perfect
number.

Note that the cases p = 2, 3, 5 give the three examples above (and then 7 and 13).

Proof. Since σ is multiplicative we have, for n = 2p−1(2p − 1),

σ(n) = σ(2p−1) · σ(2p − 1) =
2p − 1

2− 1
·(1 + (2p − 1)) = (2p − 1) · 2p = 2n.

After extensive searching one finds that these appear to be the only perfect numbers.
Euler succeeded in proving that these are the only even perfect numbers, and we believe
that there are no odd perfect numbers.

Theorem 4.5. (Euler) If n is an even perfect number then there exists a prime number
of the form 2p − 1 such that n = 2p−1(2p − 1).

Proof. Write n = 2k−1m where m is odd and k ≥ 2, so that

2km = σ(n) = σ(2k−1)σ(m) = (2k − 1)σ(m).

Now (2k − 1, 2k) = 1 and so 2k − 1 divides m. Writing m = (2k − 1)M we find that
σ(m) = 2kM = m+M . That is σ(m), which is the sum of all of the divisors of m, equals
the sum of just two of its divisors, implying that those are the only two divisors of m. But
the only integers with just two divisors are the primes, so that m is a prime and M = 1
and the result follows.

We will discuss numbers of the form 2m − 1 in more detail in the next chapter. In
exercise 5.1.4 we will show that if 2p − 1 is prime then p must itself be prime.

It is widely believed that the only perfect numbers were those identified by Euclid;
that is that there are no odd perfect numbers. It has been proved that if there is an odd
perfect number then it is > 10300.

Exercise 4.2.3. Prove that if p is odd and k is odd then σ(pk) is even. Deduce that if n is an odd perfect

then n = pm2 where p is a prime ≡ 1 (mod 4).
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5. The Distribution of Prime Numbers

Once one begins to determine which integers are primes, one quickly finds that there
are many of them, though as we go further and further, they seem to be a smaller and
smaller proportion of the positive integers. It is also tempting to look for patterns amongst
the primes: Can we find a formula that describes all of the primes? Or at least some of
them? Are there actually infinitely many? And, if so, can we quickly determine how many
there are up to a given point? Or at least give a good estimate? Once one has spent long
enough determining primes, one cannot help but ask whether it is possible to recognize
prime numbers quickly and easily? These questions motivate different parts of this section
and of section 10.

5.1. Proofs that there are infinitely many primes. The first known proof appears
in Euclid’s Elements, Book 9 Proposition 20:

Theorem 5.1. There are infinitely many primes.

Proof 1. Suppose that there are only finitely many primes, which we will denote by 2 =
p1 < p2 = 3 < . . . < pk. What are the prime factors of p1p2 . . . pk+1? Since this number is
> 1 it must have a prime factor by the Fundamental Theorem of Arithmetic, and this must
be pj for some j, 1 ≤ j ≤ k, since all primes are contained amongst p1, p2, . . . , pk. But
then pj divides both p1p2 . . . pk and p1p2 . . . pk + 1, and hence pj divides their difference,
1, by exercise 1.1.1c, which is impossible.

Exercise 5.1.1. (Proof # 2) Suppose that there are only finitely many primes, the largest of which is n.

Show that this is impossible by considering the prime factors of n!− 1.

Exercise 5.1.2. Prove that there are infinitely many composite numbers.

Our first proof that there are infinitely many primes proceeds by showing that it is
impossible that there are finitely many. It is mildly disturbing that we do not show how
to find primes in proving that that there are infinitely many primes, nor give an algorithm
for how to find infinitely many. We correct this deficiency by defining the sequence

a1 = 2, a2 = 3 and then an = a1a2 . . . an−1 + 1 for each n ≥ 2.

For each n ≥ 1 let pn be some prime divisor of an. We claim that the pn are all distinct
so we have an infinite sequence of distinct primes. We know that these primes are distinct
else if pm = pn with m < n then pm divides (am, an) = (am, 1) = 1 by exercise 2.1.2, since
an ≡ 1 (mod am) by our construction, which is impossible.

Fermat conjectured that the integers Fn = 22
n

+1 are primes for all n ≥ 0. His claim
starts off correct: 3, 5, 17, 257, 65537 are all prime, but is false for F5 = 641 × 6700417,
as Euler famously noted. It is an open question as to whether there are infinitely many
primes of the form Fn.

6 Nonetheless we can prove that if pn is some prime divisor of Fn for

6There are no Fermat primes, 22
n
+ 1, known other than for n ≤ 4, and we know that the Fermat

numbers, 22
n
+ 1, are composite for 5 ≤ n ≤ 30 and many other n besides. It is always a significant

moment when a Fermat number is factored for the first time. It could be that all Fn, n > 4 are composite,

or they might all be prime for some sufficiently large n. Currently, we have no way of knowing what is the
truth.
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each n ≥ 0 then p0, p1, . . . is an infinite sequence of distinct primes, in this case because
Fn = F1F2 . . . Fn−1 +2 for each n ≥ 1, and so (Fm, Fn) = (Fm, 2) = 1 for all m < n, since
Fn ≡ 2 (mod Fm). (This proof appeared in a letter from Goldbach to Euler in July 1730.)

Exercise 5.1.3. Suppose that p1 = 2 < p2 = 3 < . . . is the sequence of prime numbers. Use the fact

that every Fermat number has a distinct prime divisor to prove that pn ≤ 22
n
+ 1. What can one deduce

about the number of primes up to x?

The Mersenne numbers take the form Mn = 2n − 1.

Exercise 5.1.4. Prove that if n is composite then Mn is composite, by showing that Ma divides Mab.

Show that if m is not a power of 2 then 2m + 1 is composite by showing that if 2a + 1 divides 2ab + 1

whenever b is odd.

Hence if Mn is prime then n = p is prime. It is conjectured that there are infinitely
many Mersenne primes Mp = 2p−1.7 We saw in section 4.2 that the Mersenne primes are
in 1-to-1 correspondance with the even perfect numbers.

Also if 2m+1 is prime then m equals 0 or a power of 2, say 2n, and therefore we have
a Fermat number Fn = 22

n

+ 1.

Furstenberg’s extraordinary proof that there are infinitely many primes, using point set
topology. Define a topology on the set of integers Z in which a set S is open if it is empty
or if for every a ∈ S there is an arithmetic progression Za,q := {a+ nq : n ∈ Z} which is a
subset of S. Evidently each Za,q is open, and it is also closed since

Za,q = Z \
∪

b: 0≤b≤q−1, b ̸=a

Zb,q.

If there are only finitely many primes p then A = ∪pZ0,p is also closed, and so Z \
A = {−1, 1} is open, but this is obviously false since A does not contain any arithmetic
progression Z1,q. Hence there are infinitely many primes.

Remark: This is Euclid’s proof in heavy disguise: In effect Furstenberg’s proof states that
the integer 1 + ℓp1p2 . . . pk is evidently not in any of the arithmetic progressions Z0,pi so
cannot be divisible by any prime, contradiction. More simply, a proof that lies somewhere
between those of Euclid and Furstenberg:

Proof # 6. Suppose that there are only finitely many primes, namely p1, p2, . . . , pk. Let
m = p1p2 · · · pk be their product. If r is an integer with (r,m) = 1 then r cannot divisible
by any primes (since they all divide m), and so must equal −1 or 1. Therefore ϕ(m) =
#{1 ≤ r ≤ m : (r,m) = 1} = 1, but this is easily seen to contradict our formula in
Theorem 4.2

5.2. The Sieve of Eratosthenes. The sieve of Eratosthenes yields an efficient method
to find all of the primes up to x. We begin by writing down every integer up to x and
then deleting every composite even number, that is one deletes every second integer up to

7It is known that 2p − 1 is prime for p = 2, 3, 5, 7, 13, 17, 19, . . . , 43112609, a total of 46 values as of

late 2008. There is a long history of the search for Mersenne primes, from the first serious computers to
the first great distributed computing project, GIMPS (The Great Internet Mersenne Prime Search).
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x after 2. The first undeleted integer > 2, is 3; one then deletes every composite integer
divisible by 3, that is every third integer up to x after 3. The next undeleted integer is 5
and one deletes every fifth integer subsequently. One keeps on going like this, finding the
next undeleted integer, call it p, which must be prime, and then delete every pth integer
beyond p and up to x. We stop once p >

√
x and then the undeleted integers are the primes

≤ x. There are about x log log x steps in this algorithm, so it is remarkably efficient.

Exercise 5.2.1. Use this method to find all of the primes up to 100

The number of integers left after one removes the multiples of 2 is roughly 1
2 ·x. After

one removes the multiples of 3, one expects that there are about 2
3 · 1

2 ·x integers left. In
general removing the multiples of p removes, we expect, about 1/p of the integers, and so
leaves a proportion 1− 1

p . Therefore we expect that the number of primes up to x, which

equals the number of integers left, up to x, by the sieve of Eratosthenes, is about

x
∏

p≤
√
x

p prime

(
1− 1

p

)
.

The product
∏

p≤y(1−
1
p ) is well approximated by c/log y, where c ≈ 0.5614594836,8 so one

might guess from these sieve methods that the number of primes up to x is approximately

(5.2) 2c
x

log x
.

5.3. Primes in certain arithmetic progressions. How are the primes split between
the arithmetic progressions modulo 3? Or 4? Or modulo any given integer m? Evidently
every integer in the arithmetic progression 0 (mod 3) (that is integers of the form 3k) is
divisible by 3, so the only prime in that arithmetic progression is 3 itself. There are no
such divisibility restrictions for the arithmetic progressions 1 (mod 3) and 2 (mod 3) and
if we calculate the primes up to 100 we find

Primes ≡ 1 (mod 3) : 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, . . .
Primes ≡ 2 (mod 3) : 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, . . .

There seem to be lots of primes in either arithmetic progression, and they seem to be
roughly equally split between the two. Let’s see what we can prove. First let’s deal, in
general, with the analogy to the case 0 (mod 3). This includes not only 0 (mod m) but
also cases like 2 (mod 4):

Exercise 5.3.1. Prove that any integer ≡ a (mod m) is divisible by (a,m). Deduce that if (a,m) > 1

then there cannot be more than one prime ≡ a (mod m). Give examples of arithmetic progressions which

contain exactly one prime, and examples which contain none.

Thus all but finitely many primes are distributed among the ϕ(m) arithmetic progres-
sions a (mod m) with (a,m) = 1. How are they distributed? If the m = 3 case is anything
to go by it appears that there are infinitely many in each such arithmetic progression and
maybe even roughly equal numbers.

8This is a fact that is beyond of this book.
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We will prove that there are infinitely many primes in each of the two feasible residue
classes mod 3 (see Theorems 5.2 and 7.17). Proving that there are roughly equally many
in each progression is rather more difficult.

Exercise 5.3.2. Use exercise 3.1.3 to show that if n ≡ −1 (mod 3) then there exists a prime factor p of

n which is ≡ −1 (mod 3).

Theorem 5.2. There are infinitely many primes ≡ −1 (mod 3).

Proof. If there are only finitely many, say p1, p2, . . . , pk, then N = 3p1p2 . . . pk − 1 must
have a prime factor q ≡ −1 (mod 3), by exercise 5.3.2. However q divides both N and
N +1 (since it must be one of the primes pi), and hence q divides their difference 1, which
is impossible.

Exercise 5.3.3. Prove that there are infinitely many primes ≡ −1 (mod 4).

Exercise 5.3.4. Prove that there are infinitely many primes ≡ 5 (mod 6). (Hint: Consider splitting

arithmetic progressions mod 3 into several arithmetic progressions mod 6.)

Exercise 5.3.5. Prove that at least two of the arithmetic progressions mod 8 contain infinitely many

primes (one might use exercise 3.1.4 in this proof).

In an exercise in section B4 one can generalize this considerably, using basically the
same ideas.

The 1837 Dirichlet showed that whenever (a, q) = 1 there are infinitely many primes
≡ a (mod q). We discuss this deep result in section E4. In fact we know that the primes
are roughly equally distributed amongst these arithmetic progressions. In other words, half
the primes are ≡ 1 (mod 3) and half are ≡ −1 (mod 3). Roughly 1% of the primes are
≡ 69 (mod 101) and indeed in each arithmetic progression a mod 101 with 1 ≤ a ≤ 100.

5.4. How many primes are there up to x? When people started to develop large
tables of primes, perhaps looking for a pattern, they discovered no patterns, but did find
that the proportion of integers that are prime is gradually diminishing. In 1808 Legendre
suggested that there are roughly x

log x primes up to x, and even the more precise assertion

that there exists a constant B such that π(x), the number of primes up to x, is well
approximated by x/(log x − B) for large enough x. A few years earlier, aged 15 or 16,
Gauss had already made a much better guess, based on studying tables of primes:

“In 1792 or 1793 ... I turned my attention to the decreasing frequency of primes
... counting the primes in intervals of length 1000. I soon recognized that behind
all of the fluctuations, this frequency is on average inversely proportional to the
logarithm...” — from a letter to Encke by K.F. Gauss (Christmas Eve 1849).

His observation may be best phrased as

About 1 in log x of the integers near x are prime.

This suggests that a good approximation to the number of primes up to x is
∑x

n=2
1

log n .

Now 1
log t is does not vary much for t between n and n + 1, and so Gauss deduced that
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π(x) should be well approximated by

(5.4.1)

∫ x

2

dt

log t
.

We denote this quantity by Li(x) and call it the logarithmic integral. Here is a comparison
of Gauss’s prediction with the actual count of primes up to various values of x:

x π(x) = #{primes ≤ x} Overcount: Li(x)− π(x)

103 168 10
104 1229 17
105 9592 38
106 78498 130
107 664579 339
108 5761455 754
109 50847534 1701
1010 455052511 3104
1011 4118054813 11588
1012 37607912018 38263
1013 346065536839 108971
1014 3204941750802 314890
1015 29844570422669 1052619
1016 279238341033925 3214632
1017 2623557157654233 7956589
1018 24739954287740860 21949555
1019 234057667276344607 99877775
1020 2220819602560918840 222744644
1021 21127269486018731928 597394254
1022 201467286689315906290 1932355208
1023 1925320391606818006727 7236148412

Table 1. Primes up to various x, and the overcount in Gauss’s prediction.

We see that Gauss’s prediction is amazingly accurate. It does seem to always be an
overcount, and since the width of the last column is about half that of the central one it
appears that the difference is no bigger than

√
x, perhaps multiplied by a constant. The

data certainly suggests that π(x)/Li(x) → 1 as x→ ∞.

Exercise 5.4.1. Integrate (5.4.1) by parts to prove that Li(x) = x
log x

− 2
log 2

+
∫ x
2

dt
(log t)2

. By bounding

1/log t by a constant in the range 2 ≤ t ≤
√
x, and by 1/log

√
x for larger t, show that there exists a

constant κN such that
∫ x
2

dt
(log t)2

< κ2
x

(log x)2
for all x ≥ 2. Deduce that

Li(x)
/ x

log x
→ 1 as x → ∞.

Exercise 5.4.2. What is the best choice of B in Legendre’s assertion stated above.

Combining the result of exercise 5.4.1 with Gauss’s prediction (5.4.1) gives that
π(x)/( x

log x ) → 1 as x → ∞. The notation of limits is rather cumbersome notation –
it is easier to write

(5.4.2) π(x) ∼ x

log x
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as x → ∞, “π(x) is asymptotic to x/log x”. (In general, A(x) ∼ B(x) is equivalent to
limx→∞A(x)/B(x) = 1.) This is different by a multiplicative constant from (5.2), our
guesstimate based on the sieve of Eratosthenes. The data here makes it clear that the
constant 1 given here, rather than 2c, is correct.

The asymptotic (5.4.2) is called The Prime Number Theorem and its proof had to wait
until the end of the nineteenth century, requiring various remarkable developments. The
proof was a high point of nineteenth century mathematics and there is still no straight-
forward proof. There are reasons for this: Surprisingly the prime number theorem is
equivalent to a statement about zeros of an analytic continuation, and although a proof
can be given that hides this fact, it is still lurking somewhere just beneath the surface,
perhaps inevitably so. A proof of the prime number theorem is beyond the scope of this
book.

In section E1 we will prove Chebyshev’s 1850 result that there exist constant c2 >
c1 > 0 such that

c1
x

log x
≤ π(x) ≤ c2

x

log x

for all x ≥ 100.

Exercise 5.4.3. Let p1 = 2 < p2 = 3 < . . . be the sequence of primes. Prove that the prime number
theorem is equivalent to the asymptotic

pn ∼ n log n as n → ∞.

Exercise 5.4.4. Assuming the prime number theorem, show that for all ϵ > 0 there are primes between x

and x+ϵx is x is sufficiently large. Deduce that R≥0 is the set of limit points of the set {p/q : p, q primes}.

The average gap between consecutive primes up to x is

1

N − 1

N−1∑
n=1

(pn+1 − pn) =
pN − p2
N − 1

∼ x

x/log x
= log x

where pN is the largest prime ≤ x, as the sum is telescoping and N = π(x) ∼ x
log x by the

prime number theorem, and pN ∼ x by exercise 5.4.3. One might ask whether there are
gaps that are much smaller and whether there are gaps that are much larger?

One can easily prove that there are arbitrarily long gaps between consecutive primes,
since if 2 ≤ j ≤ m then j divides m! + j, and so

m! + 2, m! + 3, . . . ,m! +m

are all composite. Hence if p is the largest prime ≤ m! + 1 and if q is the next largest
prime so that q ≥ m! +m + 1, then q − p ≥ m. One can extend this argument to prove
that

lim sup
n→∞

pn+1 − pn
log pn

= ∞.

What about small gaps between primes?
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Exercise 5.4.5. Prove that 2 and 3 are the only two primes that differ by 1.

There are many pairs of primes that differ by two, namely 3 and 5, 5 and 7, 11 and 13,
17 and 19, etc., seemingly infinitely many, and this twin prime conjecture remains an open
problem. It is also open as to whether there are infinitely many pairs of primes that differ
by no more than 100, and until recently, that differ by no more than 1/4 of the average.
However in 2009, Goldston, Pintz and Yildirim showed that

lim inf
n→∞

pn+1 − pn
log pn

= 0.

Other famous open problems include:

– There are infinitely many pairs of primes p, 2p+ 1 (Sophie Germain primes),
– There are infinitely many primes of the form n2 + 1,
– There are infinitely many primes of the form 2p − 1.
– Goldbach’s conjecture that every even number ≥ 4 is the sum of two primes. This

has been verified for all even numbers ≤ 1018.

5.5. Formulas for primes. Are there formulas that only yield prime values? For exam-
ple can we give a polynomial f(x) of degree ≥ 1 such that f(n) is prime for every integer
n? The example 6n + 5 has values 5, 11, 17, 23, 29 which are all prime, before getting to
35 = 5 × 7. Continuing on gives primes 41, 47, 53, 59 till we hit 65 = 5 × 13, another
multiple of 5. One observes that every fifth term of the arithmetic progression is divisible
by 5, since 6(5k) + 5 = 5(6k+1). More generally qn+ a is a multiple of a whenever n is a
multiple of a, since q(ak)+a = a(qk+1), and so is composite whenever |a| > 1 and k ≥ 1.
When a = 0 we see that qn is composite for all n > 1 provided q > 1. When a = ±1 we
need to proceed a little differently. For example the progression 6m − 1 is the same, we
observe, as 6n+5 (by taking m = n+1), and we have already dealt with this example. In
general, when n = (q−1)k+1 we have qn−1 = (q−1)(qk+1), and when n = (q+1)k+1
we have qn+ 1 = (q + 1)(qk + 1). We develop this argument to work for all polynomials,
but will need the following result (which is proved in section A3):

The Fundamental Theorem of Algebra. If f(x) ∈ C[x] has degree d ≥ 1 then f(x)
has no more than d distinct roots in C.

Proposition 5.3. If f(x) ∈ Z[x] has degree d ≥ 1 then there are infinitely many integers
n such that |f(n)| is composite.

Proof. There are at most d roots of each of the polynomials f(x), f(x) − 1, f(x) + 1 by
the Fundamental Theorem of Algebra. Select an integer m which is not the root of any
of these polynomials so that |f(m)| > 1. Now kf(m) +m ≡ m (mod |f(m)|) and so, by
Corollary 2.3, we have

f(kf(m) +m) ≡ f(m) ≡ 0 (mod |f(m)|).

There are a most 3d values of k for which kf(m)+m is a root of one of f(x)−|f(m)|, f(x)
or f(x) + |f(m)|, by the Fundamental Theorem of Algebra. For any other k we have that
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|f(kf(m)+m)| > |f(m)|, and so |f(kf(m)+m)| factors into |f(m)| and a complementary
factor, and is therefore composite.

So we see that there is no polynomial that only takes primes values.

Exercise 5.5.1. Show that if f(x, y) ∈ Z[x, y] has degree d ≥ 1 then there are infinitely many pairs of

integers m,n such that |f(m,n)| is composite.

We saw that nine of the first ten values of the polynomial 6n + 5 are primes. Even
better is the polynomial n2 + n + 41, discovered by Euler in 1772, which is prime for
n = 0, 1, 2, . . . , 39, and the square of a prime for n = 40. However, as in the proof of
Proposition 5.3, we know that it is composite whenever n is a positive multiple of 41. See
section 12.3 for more on such prime rich polynomials.

Earlier we discussed Fermat numbers 22
n

+1 which Fermat had believed to all be prime.
He was wrong, but perhaps there are other formulas, more exotic than mere polynomials,
which yield only primes? One intriguing possibility stems from the fact that

22 − 1, 22
2−1 − 1, 22

22−1−1 − 1 and 22
22

2−1−1−1 − 1

are all prime. Could every term in this sequence be prime? No one knows and the next
example is so large that one will not be able to determine whether or not it is prime in the
foreseeable future. (Draw lessons on the power of computation from this example!)

Actually with a little imagination it is not so difficult to develop formulae that easily
yield all of the primes. For example if p1 = 2 < p2 = 3 < . . . is the sequence of primes
then define

α =
∑
m≥1

pm
10m2 = .2003000050000007000000011 . . .

One can read off the primes from the decimal expansion of α, the mth prime coming from
the few digits to the right of m2th digit; or, more formally,

pm = [10m
2

α]− 102m−1[10(m−1)2α].

Is α truly interesting? If one could easily describe α (other than by the definition that we
gave) then it might provide an easy way to determine the primes. But with its artificial
definition it does not seem like it can be used in any practical way. There are other such
constructions (see, e.g., exercise 7.3.3).

In a rather different vein, Matijasevič, while working on Hilbert’s tenth problem,
discovered that there exist polynomials f in many variables, such that the set of positive
values taken by f when each variable is set to be an integer, is precisely the set of primes.9

One can find many different polynomials for the primes; we will give one with 26 variables
of degree 21. (One can cut the degree to as low as 5 at the cost of having an enormous

9One can also construct such polynomials so as to yield the set of Fibonacci numbers, or the set

of Fermat primes, or the set of Mersenne primes, or the set of even perfect numbers, and indeed any
Diophantine set (and see section 6 for more on “Diophantine”).
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number of variables. No one knows the minimum possible degree, nor the minimum possible
number of variables): Our polynomial is k + 2 times

1− (n+ l + v − y)2 − (2n+ p+ q + z − e)2 − (wz + h+ j − q)2 − (ai+ k + 1− l − i)2

− ((gk + 2g + k + 1)(h+ j) + h− z)2 − (z + pl(a− p) + t(2ap− p2 − 1)− pm)2

− (p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m)2 − ((a2 − 1)l2 + 1−m2)2

− (q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x)2 − ((a2 − 1)y2 + 1− x2)2

− (16(k + 1)3(k + 2)(n+ 1)2 + 1− f2)2 − (e3(e+ 2)(a+ 1)2 + 1− o2)2

− (16r2y4(a2 − 1) + 1− u2)2 − (((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2)2.

Stare at this for a while and try to figure out how it works: The key is to determine when
the displayed polynomial takes positive values; note that it is equal to 1 minus a sum of
squares. Understanding much beyond this seems difficult, and it seems that the only way
to appreciate this polynomial is to understand its derivation – see [JSW]. In the current
state of knowledge it seems that this absolutely extraordinary and beautiful polynomial is
entirely useless in helping us better understand the distribution of primes!
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6. Diophantine problems

Diophantus lived in Alexandria in the third century A.D. His thirteen volume Arith-
metica dealt with solutions to equations in integers and rationals (though only parts of
six of the volumes have survived). Diophantus’s work was largely forgotten in Western
Europe during the Dark Ages, as ancient Greek became much less studied; but interest
in Arithmetica was revived by Bachet’s 1621 translation into Latin.10 In his honour, a
Diophantine equation is a polynomial equation for which we are searching for integer or
rational solutions.

6.1. The Pythagorean equation. We wish to find all solutions in integers x, y, z to

x2 + y2 = z2.

We may assume that x, y, z are all positive and so z > x, y. Given any solution we may
divide through by any common factor of x, y and z to obtain a solution where (x, y, z) = 1.

Exercise 6.1.1. Prove that if (x, y, z) = 1 and x2 + y2 = z2 then x, y and z are pairwise coprime.

Now x and y cannot both be odd else z2 = x2 + y2 ≡ 1 + 1 ≡ 2 (mod 8), which is
impossible. Interchanging x and y if necessary we may assume that x is even and y and z
are odd. Now

(z − y)(z + y) = z2 − y2 = x2.

We prove that (z − y, z + y) = 2: Since y and z are both odd, we know that 2 divides
(z−y, z+y). Moreover (z−y, z+y) divides (z+y)−(z−y) = 2y and (z+y)+(z−y) = 2z,
and hence (2y, 2z) = 2(y, z) = 2. Therefore, by exercise 3.1.20, there exist integers r, s
such that

z − y = 2s2 and z + y = 2r2,

so that

x = 2rs, y = r2 − s2, and z = r2 + s2.

To ensure these are pairwise coprime we need (r, s) = 1 and r+ s odd. If we now add back
in any common factors we get the general solution

(6.1) x = 2grs, y = g(r2 − s2), and z = g(r2 + s2).

There is also a nice geometric proof of this parametrization:

Exercise 6.1.2. Prove that the integer solutions to x2 + y2 = z2 with z ̸= 0 and (x, y, z) = 1 are in

1-to-1 correspondence with the rational solutions u, v to u2 + v2 = 1.

Where else does a line going though (1, 0) intersect the circle x2 + y2 = 1? Unless the
line is vertical it will hit the unit circle in exactly one other point, which we will denote
(u, v). Note that u < 1. If the line has slope t then t = v/(u− 1) is rational if u and v are.

10Translations of ancient Greek texts into Latin helped inspire the Renaissance.
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In the other direction, the line through (1, 0) of slope t is y = t(x − 1) which intersects
x2+y2 = 1 where 1−x2 = y2 = t2(x−1)2 so that either x = 1 or 1+x = t2(1−x). Hence

u =
t2 − 1

t2 + 1
and v =

−2t

t2 + 1

are both rational if t is. We have therefore proved that u, v ∈ Q if and only if t ∈ Q. Writing

t = −r/s where (r, s) = 1 we have u = r2−s2

r2+s2 and v = 2rs
r2+s2 , the same parametrization to

the Pythagorean equation as in (6.1) when we clear out denominators.

In around 1637, Pierre de Fermat was studying the proof of (6.1) in his copy of Bachet’s
translation of Diophantus’s Arithmetica. In the margin he wrote:

“I have discovered a truly marvelous proof that it is impossible to separate a
cube into two cubes, or a fourth power into two fourth powers, or in general,
any power higher than the second into two like powers. This margin is too
narrow to contain it.” — by P. de Fermat (1637), in his copy of Arithmetica.

In other words, Fermat claimed that for every integer n ≥ 3 there do not exist positive
integers x, y, z for which

xn + yn = zn.

Fermat did not subsequently mention this problem or his truly marvelous proof elsewhere,
and the proof has not, to date, been re-discovered, despite many efforts.

6.2. No solutions to a Diophantine equation through prime divisibility. One can
sometimes show that a Diophantine equation has no non-trivial solutions by considering
the divisibility of the variables by various primes. For example we will give such a proof
that

√
2 is irrational.

Proof of Proposition 3.3 by 2-divisibility: Let us recall that if
√
2 is rational then we can

write it as a/b so that a2 = 2b2. Let us suppose that (b, a) give the smallest non-zero
solutions to y2 = 2x2 in non-zero integers. Now 2 divides 2b2 = a2 so that 2|a. Writing
a = 2A, thus b2 = 2A2, and so 2|b. Writing b = 2B we obtain a solution A2 = 2B2 where
A and B are half the size of a and b, contradicting minimality.

Exercise 6.2.1. Show that there are no non-zero integer solutions to x3 + 3y3 + 9z3 = 0.

6.3. No solutions through geometric descent. We will give yet another proof of
both Propositions 3.3 and 3.4 on irrationality, this time using geometric descent.

Proof of Proposition 3.3 by geometric descent: Again we may assume that
√
2 = a/b with a

and b positive integers, where a is minimal. Hence a2 = 2b2 which gives rise to the smallest
right-angle, isosceles triangle, OPQ with integer side lengths OP = OQ = b, PQ = a
and angles ˆPOQ = 90o, ˆPQO = ˆQPO = 45o. Now mark a point R which is b units
along PQ from Q and then drop a perpendicular to meet OP at the point S. Now
ˆRPS = ˆQPO = 45o, and so ˆRSP = 180o − 90o − 45o = 45o by considering the angles

in the triangle RSP , and therefore this is a smaller isosceles, right-angled triangle. This
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implies that RS = PR = a − b. Now two sides and an angle are the same in OQS and
RQS so these triangles are congruent; in particular OS = SR = a − b and therefore
PS = OP − OS = b − (a − b) = 2b − a. Hence RSP is a smaller isosceles, right-angled
triangle than OPQ with integer side lengths, giving a contradiction.

This same proof can be written: As a2 = 2b2, so a > b > a/2. Now

(2b− a)2 = a2 − 4ab+ 2b2 + 2b2 = a2 − 4ab+ 2b2 + a2 = 2(a− b)2.

However 0 < 2b− a < a contradicting the minimality of a.

Proof of Proposition 3.4 by geometric descent: Suppose that a is the smallest integer for
which

√
d = a/b with a and b positive integers. Let r be the smallest integer ≥ db/a, so

that db
a +1 > r ≥db

a , and therefore a > ra− db ≥ 0. Then

(ra− db)2 = da2 − 2rdab+ d2b2 + (r2 − d)a2

= da2 − 2rdab+ d2b2 + (r2 − d)db2 = d(rb− a)2

However 0 ≤ ra − db < a contradicting the minimality of a, unless ra − db = 0. In this
case r2 = d · db2/a2 = d.

6.4. Fermat’s “infinite descent”.

Theorem 6.1. There are no solutions in non-zero integers x, y, z to

x4 + y4 = z2.

Proof. Let x, y, z give the solution in positive integers with z minimal.. We may assume
that gcd(x, y) = 1 else we can divide out the common factor. Here we have

(x2)2 + (y2)2 = z2 with gcd(x2, y2) = 1,

and so, by (6.1), there exist integers r, s with (r, s) = 1 and r + s odd such that

x2 = 2rs, y2 = r2 − s2, and z = r2 + s2.

Now s2 + y2 = r2 with y odd and (r, s) = 1 and so, by (6.1), there exist integers a, b with
(a, b) = 1 and a+ b odd such that

s = 2ab, y = a2 − b2, and r = a2 + b2,

and so
x2 = 2rs = 4ab(a2 + b2).

Now a, b and a2+ b2 are pairwise coprime integers whose product is a square so they must
each be squares by exercise 3.1.19, say a = u2, b = v2 and a2 + b2 = w2 for some positive
integers u, v, w. Therefore

u4 + v4 = a2 + b2 = w2

yields another solution to the original equation with

w ≤ w2 = a2 + b2 = r < r2 + s2 = z,

contradicting the minimality of z.
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6.5. Fermat’s Last Theorem.

Corollary 6.2. There are no solutions in non-zero integers x, y, z to

x4 + y4 = z4.

Exercise 6.5.1. Prove this! (Hint: Use Theorem 6.1.)

Proposition 6.3. If Fermat’s Last Theorem is false then there exists an odd prime p and
pairwise coprime non-zero integers x, y, z such that

xp + yp + zp = 0.

Hence, to prove Fermat’s Last Theorem, one can restrict attention to odd prime exponents.

Proof. Suppose that xn + yn = zn with x, y, z > 0 and n ≥ 3. If two of x, y have a
common factor then it must divide the third and so we can divide out the common factor.
Hence we may assume that x, y, z are pairwise coprime positive integers. Now any integer
n ≥ 3 has a factor m which is either = 4 or is an odd prime. Hence, if n = dm then
(xd)m + (yd)m = (zd)m, so we get a solution to Fermat’s Last Theorem with exponent m.
We can rule out m = 4 by Corollary 6.2. If m = p is prime and we are given a solution to
ap + bp = cp then ap + bp + (−c)p = 0 as desired.

There is a great history of Fermat’s Last Theorem, some of which we will discuss in
the additional sections. For a very long time Fermat’s Last Theorem was the best known
and most sought after open question in number theory. It inspired the development of
much great mathematics, in many different directions. For example ideal theory, as we
will see in section C1.

In 1994 Andrew Wiles announced that he had finally proved Fermat’s Last Theorem,
from an idea of Frey and Serre involving modular forms, a subject far removed from the
original. The proof is extraordinarily deep, involving some of the most profound themes
in arithmetic geometry. If the whole proof were written in the leisurely style of, say, this
book, it would probably take a couple of thousand pages. This could not be the proof
that Fermat believed that he had – could Fermat have been correct? Could there be a
short, elementary, marvelous proof still waiting to be found? Such a proof came to Lisbeth
Salander in The girl who played with fire just as she went into the final tense moments
of that novel — can truth follow fiction, as it so often does, or will this always remain a
mystery?
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7. Power Residues

7.1. Generating the multiplicative group of residues.

Lemma 7.1. For any integer a, with (a,m) = 1, there exists an integer k, 1 ≤ k ≤ ϕ(m)
for which ak ≡ 1 (mod m).

Proof. Each term of the sequence 1, a, a2, a3, . . . is coprime with m by exercise 3.1.14. But
then each is congruent to some element from any given reduced set of residues mod m
(which has size ϕ(m)). Therefore, by the pigeonhole principle, there exist i and j with
0 ≤ i < j ≤ ϕ(m) for which ai ≡ aj (mod m). Finish off the proof:

Exercise 7.1.1. Deduce that ak ≡ 1 (mod m) where 1 ≤ k = j − i ≤ ϕ(m). (Hint: Let b be the inverse

of a (mod m) so that biai ≡ 1 (mod m).)

Another proof of Corollary 3.7. If r = ak−1 then ar = ak ≡ 1 (mod m).

Examples. Consider the geometric progression 2, 4, 8, . . . . The first term ≡ 1 (mod 13)
is 212 = 4096. The first term ≡ 1 (mod 23) is 211 = 2048. Similarly 56 = 15625 ≡ 1
(mod 7) but 55 ≡ 1 (mod 11). Hence we see that in some cases the power needed is as big
as ϕ(p) = p− 1, but not always.

If ak ≡ 1 (mod m), then ak+j ≡ aj (mod m) for all j ≥ 0, and so the geometric
progression, modulo m, has period k. Thus if u ≡ v (mod k) then au ≡ av (mod m).
Therefore one can easily determine the residues of powers (mod m). For example, to
compute 31000 (mod 13), first note that 33 ≡ 1 (mod 13). Now 1000 ≡ 1 (mod 3), and so
31000 ≡ 31 = 3 (mod 13).

If (a,m) = 1 then let ordm(a), the order of a (mod m), denote the smallest positive
integer k for which ak ≡ 1 (mod m).

Exercise 7.1.2. Prove that aj ≡ ai (mod m) if and only if j ≡ i (mod ordm(a)).

Exercise 7.1.3. Deduce that 1, a, a2, . . . , aordm(a)−1 are distinct (mod m); and, for any j, that aj ≡ ai

(mod m), where i is the least non-negative residue of j (mod ordm(a)).

Lemma 7.2. n is an integer for which an ≡ 1 (mod m) if and only if ordm(a) divides n.

Proof # 1. This follows immediately from exercise 7.1.2.

Proof # 2. There exist integers q and r such that n = q · ordm(a) + r where 0 ≤ r ≤
ordm(a) − 1. Hence ar = an/(aordm(a))q ≡ 1/1q ≡ 1 (mod m). Therefore r = 0 by the
minimality of ordm(a), and so ordm(a) divides n as claimed.

In the other direction we have an = (aordm(a))n/ordm(a) ≡ 1 (mod m).

Theorem 7.3. If p is a prime and p does not divide a then ordp(a) divides p− 1.

Proof. Let A = {1, a, a2, . . . , aordp(a)−1 (mod p)}. For any non-zero b (mod p) define the
set bA = {ba (mod p) : a ∈ A}. In the next paragraph we will prove that for any two
non-zero elements b, b′ (mod p), either bA = b′A or bA∩ b′A = ∅, so that the bA partition
the non-zero elements mod p. In other words, the residues 1, . . . , p − 1 (mod p) may
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be partitioned into disjoint cosets bA, of A, each of which has size |A|; and therefore
|A| = ordp(a) divides p− 1.

Now if bA ∩ b′A ̸= ∅ then there exist 0 ≤ i, j ≤ ordp(a) − 1 such that bai ≡ b′aj

(mod p). Therefore b′ ≡ bak (mod p) where k is the least non-negative residue of i − j
(mod ordp(a)). Hence

b′aℓ ≡
{
bak+ℓ (mod p) if 0 ≤ ℓ ≤ ordp(a)− 1− k

bak+ℓ−ordp(a) (mod p) if ordp(a)− k ≤ ℓ ≤ ordp(a)− 1

We deduce that bA = b′A,

The beauty of this proof, from Gauss’s Disquisitiones Arithmeticae, is that it works
in any finite group, as we will see in section B4.

Fermat’s “Little” Theorem. If p is a prime and a is an integer that is not divisible by
p then

p divides ap−1 − 1.

Proof. If d = ordp(a) then d divides p− 1 by Theorem 7.3. Therefore

ap−1 = (ad)
p−1
d ≡ 1

p−1
d = 1 (mod p).

Exercise 7.1.4. Show that p|ap−1 − 1 whenever p̸ |a if and only if p divides ap − a for every integer a.

Euler’s 1741 Proof: We shall show that ap − a is divisible by p for every integer a ≥ 0
that is not divisible by p, then we divide through by a to deduce the above result. We
proceed by induction on a: For a = 1 we have 1p−1 − 1 = 0, and so the result is trivial.
Otherwise

(a+ 1)p − ap − 1 =

p−1∑
i=1

(
p

i

)
ai ≡ 0 (mod p),

as p divides the numerator but not the denominator of
(
p
i

)
for each i, 1 ≤ i ≤ p−1, so that

(a+ 1)p − (a+ 1) ≡ (ap + 1)− (a+ 1) ≡ ap − a ≡ 0 (mod p)

by the induction hypothesis.

Combinatorial proof. The numerator of the multinomial coefficient
(

p
a,b,c,...

)
is divisible by

p, by not the denominator, unless all but one of a, b, c, . . . equals 0 and the other p, in
which case the multinomial coefficient equals 1. Therefore

(a+ b+ c+ . . . )p ≡ ap + bp + cp + . . . (mod p).

Taking a = b = c = . . . = 1 gives kp ≡ k (mod p) for all k.
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Another proof of Theorem 7.3. The last two proofs of Fermat’s Little Theorem do not use
Theorem 7.3, so we have proved that ap−1 ≡ 1 (mod p) independent of Theorem 7.3. But
then Theorem 7.3 follows from Fermat’s Little Theorem and Lemma 7.2.

“Sets of reduced residues” proof. In exercise 3.3.3 we saw that {a · 1, a · 2, . . . , a · (p− 1)}
form a reduced set of residues. The residues of these integers mod p, are therefore the
same as the residues of {1, 2, . . . , p − 1} although in a different order. However since the
two sets are the same mod p, the product of the elements of each set are equal mod p, and
so

(a · 1)(a · 2) . . . (a · (p− 1)) ≡ 1 · 2 · · · (p− 1) (mod p).

Therefore
ap−1 · (p− 1)! ≡ (p− 1)! (mod p)

and, as (p, (p−1)!) = 1, we can divide the (p−1)! out from both sides to obtain the desired

ap−1 ≡ 1 (mod p).

Exercise 7.1.5. The argument in this last proof works for any symmetric function of the elements of
two given sets of reduced residues. Use this to show that for any integer k ≥ 1 and any a which is not
divisible by p we have

Either ak ≡ 1 (mod p), or 1k + 2k + . . .+ (p− 1)k ≡ 0 (mod p).

Deduce that 1k + 2k + . . .+ (p− 1)k ≡ 0 or p− 1 (mod p).

Let us return to the problem of determining large powers in modular arithmetic, for
example 21000001 (mod 31). Now 230 ≡ 1 (mod 31) by Fermat’s Little Theorem, and so,
as 1000001 ≡ 11 (mod 30), we obtain 21000001 ≡ 211 (mod 31) and it remains to do the
final calculation. On the other hand, it is not hard to show that ord31(2) = 5, so that
25 ≡ 1 (mod 31) and, as 1000001 ≡ 1 (mod 5) we obtain 21000001 ≡ 21 ≡ 2 (mod 31). We
see that using the order makes this calculation significantly easier.

It is worth stating the converse to Fermat’s Little Theorem:

Corollary 7.4. If (a, n) = 1 and an−1 ̸≡ 1 (mod n) then n is composite.

For example (2, 15) = 1 and 24 = 16 ≡ 1 (mod 15) so that 214 ≡ 22 ≡ 4 (mod 15).
Hence 15 is a composite number. The surprise here is that we have proved that 15 is
composite without having to factor 15. Indeed whenever the Corollary is applicable we
will not have to factor n to show that it is composite. This is important because we do
not know a fast way to factor an arbitrary integer n, but one can compute rapidly with
this Corollary. We will discuss such compositeness tests in section 7.6.

Theorem 7.3 generalizes easily to: For any m > 1 if (a,m) = 1 then ordm(a) divides
ϕ(m) by the analogous proof; and hence we can deduce, in the same manner as the first
proof above:

Euler’s Theorem. For any m > 1 if (a,m) = 1 then aϕ(m) ≡ 1 (mod m).

And this generalizes even further, to any finite group, as we will discuss section B4.

Exercise 7.1.6. Determine the last two decimal digits of 38643.
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7.2. Special primes and orders. We now look at prime divisors of the Mersenne and
Fermat numbers using our results on orders.

Exercise 7.2.1. Show that if p is prime, and q is a prime dividing 2p − 1, then ordq(2) = p.

Hence if q divides 2p − 1 then p divides q − 1 by Theorem 7.3.

Proof # 7 that there are infinitely many primes. If p is the largest prime, and q is a prime
factor of 2p − 1, then we have just seen that p divides q − 1 so that p ≤ q − 1 < q which
contradicts the hypothesis that p is the largest prime.

Exercise 7.2.2. Show that if prime p divides Fn = 22
n
+ 1 then ordp(2) = 2n+1. Deduce that p ≡ 1

(mod 2n+1).

Theorem 7.5. Fix k ≥ 2. There are infinitely many primes ≡ 1 (mod 2k).

Proof. Let pn be a prime factor of Fn = 22
n

+ 1. We saw that these are all distinct in
section 5.1. By exercise 7.2.2 we see that pn ≡ 1 (mod 2k) for all n ≥ k − 1.

7.3. Further observations. We begin with another Theorem due to Lagrange which is
proved in section A3.

Lagrange’s Theorem. Let f(x) be a polynomial mod p of degree d ≥ 1 (that is, p does
not divide the coefficient of xd in f). There are no more than d distinct roots m (mod p)
of f(m) ≡ 0 (mod p).

Corollary 7.6. If p is an odd prime then there are exactly two square roots of 1 (mod p),
namely 1 and −1.

Proof # 1. As 12 = (−1)2 = 1, both 1 and −1 are roots of x2 − 1, not only over C, but
also mod m for any m. Now 1 and −1 are distinct mod m if m > 2. Moreover there are no
more than two roots of x2− 1 ≡ 0 (mod p) when m = p is prime, by Lagrange’s Theorem.
Combining these two facts gives the result.

There can be more than two square roots of 1 if the modulus is composite. For
example 1, 3, 5 and 7 are all roots of x2 ≡ 1 (mod 8); 1, 4,−4 and −1 are all roots of
x2 ≡ 1 (mod 15); and ±1,±29,±34,±41 are all square roots of 1 (mod 105).

Proof # 2. If x2 ≡ 1 (mod p) then p|(x2−1) = (x−1)(x+1) and so p divides either x−1
or x+ 1 by Theorem 3.1. Hence x ≡ 1 or −1 (mod p).

Fermat’s Little Theorem tells us that 1, 2, 3, . . . , p − 1 are p − 1 distinct roots of
xp−1 − 1 (mod p), and are therefore all the roots, by Lagrange’s Theorem. Therefore the
polynomials xp−1 − 1 and (x − 1)(x − 2) . . . (x − (p − 1)) mod p are the same up to a
multiplicative constant. But since they are both monic,11 they must be identical; that is

(7.1) xp−1 − 1 ≡ (x− 1)(x− 2) . . . (x− (p− 1)) (mod p),

or
xp − x ≡ x(x− 1)(x− 2) . . . (x− (p− 1)) (mod p).

11A polynomial
∑d

i=0 cix
i with leading coefficient cd ̸= 0 is monic if cd = 1.
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Wilson’s Theorem. For any prime p we have (p− 1)! ≡ −1 (mod p).

Proof. Take x = 0 in (7.1), and note that (−1)p−1 ≡ 1 (mod p), even for p = 2.

Gauss’s proof of Wilson’s theorem. Let S be the set of pairs (a, b) for which 1 ≤ a < b < p
and ab ≡ 1 (mod p); that is, every residue is paired up with its inverse unless it equals
its inverse. Now if a ≡ a−1 (mod p) then a2 ≡ 1 (mod p), in which case a ≡ 1 or p − 1
(mod p) by Corollary 7.6. Therefore

1 · 2 · · · (p− 1) = 1 · (p− 1) ·
∏

(a,b)∈S

ab ≡ 1 · (−1) ·
∏

(a,b)∈S

1 ≡ −1 (mod p).

Example: For p = 13 we have

12! = 12(2× 7)(3× 9)(4× 10)(5× 8)(6× 11) ≡ −1 · 1 · 1 · 1 · 1 · 1 ≡ −1 (mod 13)

Exercise 7.3.1. Show that n ≥ 2 is prime if and only if n divides (n − 1)! + 1. (Hint: Show that if a|n
then (n− 1)! + 1 ≡ 1 (mod a), and so deduce the result for composite n.)

Exercise 7.3.2. Show that if n > 2 is composite then n divides (n− 1)!.

Combining Wilson’s Theorem with the last exercise we have an indirect primality test
for integers n > 2: Compute (n− 1)! (mod n). If it is ≡ −1 (mod n) then n is prime; if it
is ≡ 0 (mod n) then n is composite. Note however that in determining (n−1)! we need to
do n−2 multiplications, so that this primality test takes far more steps than trial division!

Exercise 7.3.3. Show that the number of primes up to N equals, exactly,

∑
2≤n≤N

n

n− 1
·
{
(n− 1)!

n

}
−

2

3
.

Compare this with the formulae at the end of section 5.

Exercise 7.3.4. Use the idea in the proof of Wilson’s Theorem to show that∏
1≤a≤n
(a,n)=1

a ≡
∏

1≤b≤n

b2≡1 (mod n)

b (mod n).

Exercise 7.3.5. Determine the product of the square roots of 1 (mod n). One idea to begin is to multiply

the square root b with another square root n− b. One can also try to pair the square roots in some other

way.

7.4. The number of elements of a given order. In Theorem 7.3 we saw that the
order modulo p of any integer a (which is coprime to p) divides p− 1.

Example: For p = 19 we have
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Order (mod 19) a (mod 19)

1 1
2 18
3 7, 11
6 8, 12
9 4, 5, 6, 9, 16, 17
18 2, 3, 10, 13, 14, 15

Theorem 7.7. If m divides p−1 then there are exactly ϕ(m) elements a (mod p) of order
m. If m does not divide p− 1 then there are no elements (mod p) of order m.

A primitive root a mod p is an element of order p− 1, so that {1, a, a2, . . . , ap−2} is a
reduced set of residues mod p. For example, 2, 3, 10, 13, 14, 15 are the primitive roots mod
19. We can verify that the powers of 3 mod 19 are the reduced set of residues:

1, 3, 9, 27 ≡ 8, 5,−4, 7, 2, 6,−1,−3,−9,−8,−5, 4,−7,−2,−6, 1, . . . (mod 19)

Taking d = p− 1 in Theorem 7.7 we obtain.

Corollary 7.8. For every prime p there exists a primitive root mod p. In fact there are
ϕ(p− 1) distinct primitive roots mod p.

Proof of Theorem 7.7. By induction on m dividing p− 1. The only element of order 1 is 1
(mod p). Therefore we assume that m > 1 and ψ(d) := #{1 ≤ a ≤ p − 1 : ordp(a) = d}
equals ϕ(d) for all d < m that divide p− 1.

We saw in (7.1) that

xp−1 − 1 = (xm − 1)(xp−1−m + xp−1−2m + . . .+ x2m + xm + 1)

factors into distinct linear factors mod p, and so xm−1 does also. By Lemma 7.2 we know
that the set of roots of xm − 1 (mod p) is precisely the union of the sets of elements of
order d, over each d dividing m. Therefore the number of roots of xm − 1 (mod p) is

m =
∑
d|m

ψ(d) = ψ(m) +
∑
d|m
d<m

ψ(d) = ψ(m) +
∑
d|m
d<m

ϕ(d) = ψ(m) +m− ϕ(m)

by the induction hypothesis and Proposition 4.3. The result follows.

Although there are many primitive roots mod p it is not obvious how to always find
one rapidly. However in special cases this is not difficult:

Exercise 7.4.1. Show that if p = 2q + 1 where p and q are primes with p ≡ 3 (mod 8) then 2 is a

primitive root mod p.

It is believed that 2 is a primitive root mod p for infinitely many primes p though this
remains an open question. In fact it is conjectured that every prime q is a primitive root
mod p for infinitely many primes p, and it is known that this is true for all, but at most
two, primes.
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Corollary 7.9. For every prime p we have

1k + 2k + . . .+ (p− 1)k ≡
{

0 if p− 1 ̸ |k
−1 if p− 1|k

(mod p).

Proof. Let a be a primitive root in exercise 7.1.5 so that ak ̸≡ 1 (mod p) when p− 1̸ |k. If
p− 1 divides k then each jk ≡ 1 (mod p) and the result follows.

Exercise 7.4.2. Write each reduced residue mod p as a power of the primitive root a, and use this to

evaluate 1k + 2k + . . .+ (p− 1)k (mod p) directly, so as to give another proof of Corollary 7.9.

7.5. Primitive roots, indices and orders. If a is a primitive root (mod p) then the
least residues of the powers 1, a, a2, a3, . . . , ap−2 (mod p) are distinct and so must equal
1, 2, . . . , p−1. Thus any number, not divisible by p, is congruent to some power of a. This
property is extremely useful for it allows us to treat multiplication as addition of exponents
in the same way that the introduction of logarithms simplifies usual multiplication.

So if b ≡ ae (mod p) where a is a primitive root mod p, then e is the index or discrete
logarithm of b in base a, denoted indp(b). Note that its value is only determined mod p−1.
It is a challenging open problem to determine the discrete logarithm of a given residue in
a given base in a short amount of time.

Exercise 7.5.1. Show that indp(a±b) ≡ indp(a)±indp(b) (mod p−1). Deduce that indp(an) ≡ n indp(a)

(mod p− 1).

Exercise 7.5.2. Show that indp(1) = 0 and indp(−1) = (p− 1)/2, irrespective of the base used.

Exercise 7.5.3. Show that if m divides p−1 then a is mth power mod p if and only if m divides indp(a).

We also give an important practical way to recognize primitive roots mod p:

Corollary 7.10. Suppose that p is a prime that does not divide integer a. Then a is not
a primitive root (mod p) if and only if there exists a prime q dividing p− 1, such that

a(p−1)/q ≡ 1 (mod p).

Proof. By definition a is not a primitive root (mod p) if and only if m := ordp(a) < p−1.
If so then let q be a prime factor of (p− 1)/m, so that m divides (p− 1)/q, and therefore
a(p−1)/q ≡ 1 (mod p) by Lemma 7.2. On the other hand if a(p−1)/q ≡ 1 (mod p) then m
divides (p− 1)/q by Lemma 7.2; in particular, m ≤ (p− 1)/q < p− 1.

Define Carmichael’s λ-function λ(m) to be the maximal order of an element a mod
m for which (a,m) = 1. In fact λ(pe) = ϕ(pe) for all odd prime powers pe as well as for
pe = 2 or 4, and λ(2e) = 2e−2 for all e ≥ 3.

A primitive root mod m, is a residue g (mod m) whose powers generate all of the
ϕ(m) reduced residues mod m.

Exercise 7.5.4. Use Euler’s Theorem and Lemma 7.2 to prove that λ(m) divides ϕ(m). Prove also that

there is a primitive root mod m if and only if λ(m) = ϕ(m).
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Proposition 7.11. λ(m) = lcm[λ(pe) : pe∥m].

Proof. Let r and s be coprime integers. Suppose that a has order λ(r) mod r, and b has
order λ(s) mod s. Select n ≡ a (mod r) and ≡ b (mod s) by the Chinese Remainder
Theorem. If k is the order of n (mod rs) then ak ≡ nk ≡ 1 (mod r) so that λ(r)|k, and
bk ≡ nk ≡ 1 (mod s) so that λ(s)|k, and therefore L|k where L := lcm[λ(r), λ(s)]. On
the other hand for any m with (m, rs) = 1 we have mL = (mλ(r))L/λ(r) ≡ 1 (mod r) and
similarly mL = (mλ(s))L/λ(s) ≡ 1 (mod s), so that mL ≡ 1 (mod rs). Hence we have
proved that if (r, s) = 1 then λ(rs) = L = lcm[λ(r), λ(s)]. The result follows by induction
on the number of distinct prime factors of m.

Exercise 7.5.5. Prove that if pq|m, where p < q are odd primes, then λ(m) < ϕ(m). (Hint: Consider

the power of 2 dividing λ(m).)

Exercise 7.5.6. Prove that if 4p|m, where p is an odd prime, then λ(m) < ϕ(m).

Exercise 7.5.7. Deduce that if m has a primitive root then m is a prime power or twice a prime power.

Lemma 7.12. Let p be an odd prime. If a = b + pkm where k ≥ 1 and p̸ |bm then
ap = bp + pk+1M for some integer M that is not divisible by p

Proof. Using the binomial theorem we have

ap = (b+pkm)p = bp+pbp−1pkm+p
p− 1

2
(pkm)2+. . . ≡ bp+pk+1bp−1m (mod pk+2),

and the result follows.

Theorem 7.13. There is a primitive root mod m if and only if m = 2, or 4, or pk or 2pk

where p is an odd prime.

Proof. Let g be a primitive root mod p so that ordp(g) = p− 1. Hence gp−1 = 1 + pℓ for
some integer ℓ. If p̸ |ℓ then let a = g, else let a = g + p and then

ap−1 = (g+p)p−1 = gp−1+(p−1)gp−2p+

(
p− 1

2

)
gp−3p2+ . . . ≡ 1−pgp−2 (mod p2).

Either way ap−1 = 1 + pm0 where p ̸ |m0. We now apply Lemma 7.12 and, by induction
on k ≥ 0, deduce that

ap
k−1(p−1) = 1 + pkmk where p̸ |mk.

Now let m be the order of a mod pk. Since am ≡ 1 (mod pk) therefore gm ≡ am ≡ 1
(mod p) and so p− 1 divides m by Lemma 7.2. We also have that m divides pk−1(p− 1)
by Lemma 7.2 and Euler’s Theorem, so that m = pj(p − 1), for some j, 0 ≤ j ≤ k − 1.

However ap
k−2(p−1) = 1 + pk−1mk−1 ̸≡ 1 (mod pk) and so j = k − 1; that is a has order

pk−1(p− 1) mod pk and so is a primitive root mod pk.

Exercise 7.5.7. Complete the proof of the Theorem.
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7.6. Testing for composites, pseudoprimes and Carmichael numbers. In the
converse to Fermat’s Little Theorem, Corollary 7.4, we saw that if integer n does not
divide an−1 − 1 for some integer a coprime to n, then n is composite. For example, taking
a = 2 we calculate that

21000 ≡ 562 (mod 1001),

so we know that 1001 is composite. We might ask whether this always works. In other
words,

Is it true that if n is composite then n does not divide 2n − 2?
For, if so, we have a very nice way to distinguish primes from composites. Unfortunately
the answer is “no” since, for example,

2340 ≡ 1 (mod 341),

but 341 = 11× 31. We call 341 a base-2 pseudoprime. Note though that

3340 ≡ 56 (mod 341),

and so the converse to Fermat’s Little Theorem, with a = 3, implies that 341 is composite.
So then we might ask whether there is always some value of a that helps us prove that

a given composite n is indeed composite, via the converse to Fermat’s Little Theorem. In
other words, we are asking whether or not there are any Carmichael numbers, composite
numbers n for which an−1 ≡ 1 (mod n) for all integers a coprime to n; one can think of
these as composite numbers that “masquerade” as primes.

Exercise 7.6.1. Show that if λ(n) divides n− 1 then n is a Carmichael number.

There are indeed Carmichael numbers, the smallest of which is 561 = 3 · 11 · 17,
and this can be proved to be a Carmichael number since λ(561) = [2, 10, 16] = 80 which
divides 560. The next few Carmichael numbers are 1105 = 5 · 13 · 17, then 1729 =
7 · 13 · 19, etc. Carmichael numbers are a nuisance, masquerading as primes like this,
though computationally they only appear rarely. Unfortunately it was recently proved
that there are infinitely many of them, and that when we go out far enough they are not
so rare as it first appears. Here is an elegant way to recognize Carmichael numbers:

Lemma 7.14. n is a Carmichael number if and only if n is squarefree, and p− 1 divides
n− 1 for every prime p dividing n.

Proof. Suppose that n is a Carmichael number. If prime p divides n then an−1 ≡ 1
(mod p) for all integers a coprime to n. If a is a primitive root mod p then p−1 = ordp(a)
divides n − 1 by Lemma 7.2. If p2|n then let a be a primitive root mod p2, so that
p(p− 1) = ordp2(a) divides n− 1. However this implies that p divides n− 1, as well as n,
and hence their difference, 1, which is impossible. Therefore n must be squarefree.

In the other direction if (a, n) = 1 and prime p divides n, then ordp(a)|p − 1 by
Theorem 7.3 which divides n − 1, and so an−1 ≡ 1 (mod p) by Lemma 7.2. Therefore
an−1 ≡ 1 (mod n) by the Chinese Remainder Theorem.

Exercise 7.6.2. Show that composite n is a Carmichael number if and only if n divides an − a for all

integers a.
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Exercise 7.6.3. Show that if p is prime then the Mersenne number 2p − 1 is either a prime or a base-2

pseudoprime.

7.7. Divisibility tests, again. In section 2.2 we found simple tests for the divisibility
of integers by 7, 9, 11 and 13, promising to return to this theme later. The key to these
earlier tests was that 10 ≡ 1 (mod 9) and 103 ≡ −1 (mod 7 · 11 · 13); that is ord9(10) = 1
and ord7(10) = ord11(10) = ord13(10) = 6. For all primes p ̸= 2 or 5 we know that
k := ordp(10) is an integer dividing p− 1. Hence

n =
d∑

j=0

nj10
j ≡

∑
m≥0

k−1∑
i=0

nkm+i10
i (mod p),

since if j = km + i then 10j ≡ 10i (mod p). In the displayed equation we have cut up
integer n, written in decimal, into blocks of digits of length k and add these blocks together,
which is clearly an efficient way to test for divisibility. The length of these blocks, k, is
always ≤ p− 1 no matter what the size of n.

If k = 2ℓ is even we can do a little better (as we did with p = 7, 11 and 13), namely
that

n =

d∑
j=0

nj10
j ≡

∑
m≥0

(
ℓ−1∑
i=0

nkm+i10
i −

ℓ−1∑
i=0

nkm+ℓ+i10
i

)
(mod p),

thus breaking n up into blocks of length ℓ = k/2.

7.8. The decimal expansion of fractions. The fraction 1
3= .3333 . . . is given by a

recurring digit 3, so we write it as .3. More interesting to us are the set of fractions

1

7
= .142857,

2

7
= .285714,

3

7
= .428571,

4

7
= .571428,

5

7
= .714285,

6

7
= .857142.

Notice that the decimal expansions of the six fractions a
7 , 1 ≤ a ≤ 6, are each periodic of

period length 6, and each contain the same six digits in the same order but starting at a
different place. Starting with the period for 1/7 we find that we go through the fractions
a/7 with a = 1, 3, 2, 6, 4, 5 when we rotate the period one step at a time. Do you recognize
this sequence of numbers? These are the least positive residues of 100, 101, 102, 103, 104, 105

(mod 7). To prove this, note that

106

7
= 142857.142857, so that

106 − 1

7
=

106

7
− 1

7
= 142857.

That is 106 ≡ 1 (mod 7) and the period 142857 is the quotient. What happens when we
multiply 1/7 through by 10k? For example, if k = 4 then

104

7
= 1428.571428 = 1428+

4

7
;

The part after the decimal point is always { 10k

7 } which equals ℓ
7 where ℓ is the least positive

residue of 10k (mod 7). We can now prove two results.
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Proposition 7.15. Suppose that p is an odd prime, p ̸= 5. If 1 ≤ a ≤ p − 1 then the
decimal expansion of the period for a/p is periodic with period of length ordp(10).

Proof. If a/p = .m where m has length n, then 10na/p = m.m, so that (10n − 1)a/p = m.
That is p|a(10n − 1) and so p|(10n − 1) which implies that ordp(10)|n. On the other hand
if 10n ≡ 1 (mod p) then (10n − 1)a/p = m for some integer m. Dividing through by 10n,
then 102n, then 103n, etc. and adding, we obtain that a/p = .m.

Theorem 7.16. Suppose that p is an odd prime for which 10 is a primitive root. If m is
the periodic part of 1/p, and if a is the least residue of 10k (mod p), then a/p has periodic
part mk, which is given by taking m, removing the leading k digits and concatenating them
on to the end.

Exercise 7.8.1. Prove this!

7.9. Primes in arithmetic progressions, revisited. We can use the ideas in this
section to prove that there are infinitely many primes in certain arithmetic progressions 1
(mod m).

Theorem 7.17. There are infinitely many primes ≡ 1 (mod 3).

Proof. Suppose that there are finitely many primes ≡ 1 (mod 3), say p1, p2, . . . , pk. Let
a = 3p1p2 · · · pk, and q be a prime dividing a2+a+1. Now q ̸= 3 as a2+a+1 ≡ 1 (mod 3).
Moreover q divides a3−1 = (a−1)(a2+a+1), but not a−1 (else 0 ≡ a2+a+1 ≡ 1+1+1 ≡ 3
(mod q) but q ̸= 3). Therefore ordq(a) = 3 and so q ≡ 1 (mod 3) by Theorem 7.3. Hence
q = pj for some j, so that q divides a and thus (a2 + a + 1) − a(a + 1) = 1, which is
impossible.

Exercise 7.9.1. Generalize this argument to primes that are 1 (mod 4), 1 (mod 5), 1 (mod 6), etc.

Can you prove that there are infinitely many primes ≡ 1 (mod m) for arbitrary m?

In order to generalize this argument to primes ≡ 1 (mod m), we need to replace
the polynomial a2 + a + 1 by one that recognizes when a has order m. Evidently this
must be a divisor of the polynomial am − 1, indeed am − 1 divided through by all of the
factors corresponding to orders which are proper divisors of m. So define the cyclotomic
polynomials ϕn(t) ∈ Z[t], inductively, by the requirement

tm − 1 =
∏
d|m

ϕd(t) for all m ≥ 1,

with each ϕd(t) monic. Therefore

ϕ1(t) = t−1, ϕ2(t) = t+1, ϕ3(t) = t2+t+1, ϕ4(t) = t2+1, ϕ5(t) = t4+t3+t2+t+1, . . .

Exercise 7.9.2. Prove that ϕm(t) has degree ϕ(m). (Hint: Use the definition together with Proposition

4.3.)

We will discuss cyclotomic polynomials in detail at the end of section A3.
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8. Quadratic residues

We are interested in understanding the squares modm; that is the residues a (mod m)
for which there exists b (mod m) with b2 ≡ a (mod m). By the Chinese Remainder
Theorem we know that a is a square mod m if and only if a is a square modulo every
prime power factor of m, so it suffices to study only the case where m is a prime power.
We begin by considering only m = p an odd prime.

8.1. Squares mod p. We define those non-zero residues a (mod p) congruent to a square
modulo p to be “quadratic residues (mod p)”. All other numbers are “quadratic non-
residues”. If there is no ambiguity we simply say “residues” and “non-residues”. Note
that 0 is always a square mod p (as 02 ≡ 0 (mod p)). Examples:

Modulus Quadratic residues

5 1, 4
7 1, 2, 4

11 1, 3, 4, 5, 9
13 1, 3, 4, 9, 10, 12
17 1, 2, 4, 8, 9, 13, 15, 16

In each case we see that there are p−1
2 quadratic residues mod p. One sees immediately

that (p − b)2 ≡ b2 (mod p) so the distinct quadratic non-residues are 12, 22, . . . ,
(
p−1
2

)2
(mod p).

Lemma 8.1. The distinct quadratic residues mod p are given by 12, 22, . . . ,
(
p−1
2

)2
(mod p).

Proof. If r2 ≡ s2 (mod p) where 1 ≤ s < r ≤ p − 1 then p | r2 − s2 = (r − s)(r + s) and
so p | r − s or p | r + s. Now −p < r − s < p and so if p|r − s then r = s. Moreover

0 < r + s < 2p and so if p|r + s then r + s = p. Hence the residues of 12, 22, . . . ,
(
p−1
2

)2
(mod p) are distinct, and if s = p− r then s2 ≡ (−r)2 ≡ r2 (mod p).

Exercise 8.1.1. One can write each non-zero residue mod p as a power of a primitive root. Prove that

the quadratic residues are precisely those residues that have even index, and the quadratic non-residues

are those that have odd index.

Exercise 8.1.2. Are primitive roots ever quadratic residues?

Exercise 8.1.3. Prove that for everym (mod p) there exist a and bmod p such that a2+b2 ≡ m (mod p).

(Hint: Consider the sizes of the set of residues a2 (mod p) and the set of residues m − b2 (mod p), as a

and b vary.) Deduce that there are three squares, not all divisible by p, whose sum is divisible by p.

Define the Legendre symbol as follows:

(
a

p

)
=


0 if a ≡ 0 (mod p)

1 if a is a quadratic residue (mod p),

−1 if a is a quadratic non-residue (mod p).
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Exercise 8.1.4. Prove that if a ≡ b (mod p) then
(

a
p

)
=

(
b
p

)
.

Exercise 8.1.5. Prove that
∑p−1

a=0

(
a
p

)
= 0.

Corollary 8.2. There are exactly 1 +
(

a
p

)
residues classes b (mod p) for which b2 ≡ a

(mod p).

Proof. This is immediate if a is a quadratic non-residue. For a = 0 if b2 ≡ 0 (mod p)
then b ≡ 0 (mod p) so there is just one solution. If a is a quadratic residue then, by
definition, there exists b such that b2 ≡ a (mod p), and then there are the two solutions
(p − b)2 ≡ b2 ≡ a (mod p) and no others, by the proof in Lemma 8.1 (or by Lagrange’s
Theorem).

Theorem 8.3.
(

ab
p

)
=
(

a
p

)(
b
p

)
for any integers a, b. That is:

i) The product of two quadratic residues (mod p) is a quadratic residue;
ii) The product of a quadratic residue and a non-residue, is itself a non-residue.
iiI) The product of two quadratic non-residues (mod p) is a quadratic residue;

Proof. (i) If a ≡ A2 and b ≡ B2 then ab ≡ (AB)2 (mod p).

Therefore if (a/p) = 1 then {ab : (b/p) = 1} is a set of p−1
2 distinct quadratic residues

mod p, and therefore all of the quadratic residues by lemma 8.1.

(ii) But then none of the elements of the set {ac : (c/p) = −1} can be quadratic residues,
and hence they are all quadratic non-residues.

(iii) In (ii) we saw that if (c/p) = −1 then the elements of the set {ca : (a/p) = 1} are
all quadratic non-residues, and hence give all p−1

2 distinct quadratic non-residues mod p.
Therefore all of the elements cd with (d/p) = −1 must be quadratic residues mod p.

Exercise 8.1.6. Prove Theorem 8.3 by considering the parity of indp(a) and indp(b).

Exercise 8.1.7. What is the value of
(

a/b
p

)
? (Hint: Compare this to

(
ab
p

)
).

We deduce from the theorem that
(

.
p

)
is a multiplicative function. Therefore if we

have a factorization of a into prime factors as a = qe11 q
e2
2 . . . qekk then

(
a

p

)
=

k∏
i=1

ei odd

(
qi
p

)
.

This implies that, in order to determine
(

a
p

)
for all integers a, it is only really necessary

to know the values of
(

−1
p

)
, and

(
q
p

)
for all primes q.

8.2. Squares mod m. We show how to recognize squares modulo prime powers, in terms
of the squares mod p:
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Proposition 8.4. Suppose that r is not divisible by prime p. If r is a square mod pk then
r is a square mod pk+1 whenever k ≥ 1, except perhaps in the cases pk = 2 or 4.

Proof. Let x be an integer, coprime with p, such that x2 ≡ r (mod pk), so that there exists
an integer n for which x2 = r + npk. Therefore

(x− jpk)2 = x2 − 2jxpk + x2p2k ≡ r + (n− 2jx)pk (mod pk+1);

and this is ≡ r (mod pk+1) for j ≡ n/2x (mod p) when p is odd. If p = 2 then

(x− n2k−1)2 = x2 − nx2k + x222k−2 ≡ r (mod 2k+1),

provided k ≥ 3.

Exercise 8.2.1. Deduce that integer r is a quadratic residue mod pk if and only if r is a quadratic residue

mod p, when p is odd, and if and only if r ≡ 1 (mod gcd(2k, 8)) where p = 2.

Notice that this implies that exactly half of the reduced residue classes mod pk are
quadratic residues, when p is odd, and exactly one quarter when p = 2 and k ≥ 3.

Using the Chinese Remainder Theorem we deduce from exercise 8.2.1 that if (a,m) = 1

then a is a square mod m if and only if
(

a
p

)
= 1 for every odd prime p dividing m, and

a ≡ 1 (mod gcd(m, 8)).

8.3. The Jacobi symbol. It is useful to extend the definition of the Legendre symbol
as follows: If m is odd, with m =

∏
p p

ep then

( a
m

)
=
∏
p

(
a

p

)ep

.

Observe that if a is a square mod m then (a/p) = 1 for all p|m and so (a/m) = 1.
However the converse is not always true: The squares mod 15 that are prime to 15 are
(±1)2 ≡ (±4)2 ≡ 1 (mod 15) and (±2)2 ≡ (±7)2 ≡ 4 (mod 15). Therefore 2 is not a
square mod 15 but(

2

3

)
=

(
2

5

)
= −1 so that

(
2

15

)
=

(
2

3

)(
2

5

)
= 1.

Exercise 8.3.1. Prove that
(

ab
m

)
=

(
a
m

) (
b
m

)
.

Exercise 8.3.2. Prove that
(

a
m

)
=

(
b
m

)
whenever a ≡ b (mod m).

Exercise 8.3.3. For how many residues a mod m do we have (a/m) = 1?
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8.4. The quadratic character of a residue. We have seen that p− 1th power of any
reduced residue mod p is congruent to 1 (mod p) but are there perhaps other patterns
amongst the lower powers?

a a2 a3 a4

1 1 1 1
2 -1 -2 1
-2 -1 2 1
-1 1 -1 1

a a2 a3 a4 a5 a6

1 1 1 1 1 1
2 -3 1 2 -3 1
3 2 -1 -3 -2 1
-3 2 1 -3 2 1
-2 -3 -1 2 3 1
-1 1 -1 1 -1 1

The powers of a mod 5. The powers of a mod 7.

As expected the p−1st column is all 1s, but one also observes that the middle column,
a2 (mod 5) and a3 (mod 7), is all −1s and 1s. This column represents the least residues

of numbers of the form a
p−1
2 (mod p). Euler showed that, not only is this always −1 or 1,

but that it determines the value of the Legendre symbol:

Euler’s criterion.
(

a
p

)
≡ a

p−1
2 (mod p), for all primes p and integers a.

Proof 1. If
(

a
p

)
= 1 then there exists b such that b2 ≡ a (mod p) so that a

p−1
2 ≡ bp−1 ≡ 1

(mod p), by Fermat’s Little Theorem.

If
(

a
p

)
= −1 then we proceed as in the proof of Wilson’s Theorem by defining

S = {(r, s) : 1 ≤ r < s ≤ p− 1, rs ≡ 1 (mod p)}.

Each integer m, 1 ≤ m ≤ p − 1, appears in exactly one such pair, for it is paired with
the least positive residue of a/m (mod p), and no residue is paired with itself else m2 ≡ a
(mod p) which is impossible as a is a quadratic non-residue mod p. Hence

(p− 1)! =
∏

(r,s)∈S

rs ≡ a|S| = a
p−1
2 (mod p),

and the result follows from Wilson’s Theorem.

Exercise 8.4.1. Evaluate (p− 1)! (mod p) as in the second part of this proof, when (a/p) = 1?

Proof 2:
(

a
p

)
= 1 if and only if a is a quadratic residue. We know that there are

p−1
2 quadratic residues (mod p) and that these are all roots of x

p−1
2 − 1 (mod p) (since

if a ≡ b2 (mod p) then a
p−1
2 ≡ bp−1 ≡ 1 (mod p)). However all of the reduced residues

are roots of xp−1 − 1 = (x
p−1
2 − 1)(x

p−1
2 + 1) by Fermat’s Theorem. Thus the quadratic

non-residues are the roots of x
p−1
2 + 1 (mod p), and the result follows.

Example:
(

3
13

)
= 1 since 36 = 272 ≡ 12 ≡ 1 (mod 13), but

(
2
13

)
= −1 since 26 = 64 = −1

(mod 13).
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Exercise 8.4.2. Explain how one can determine
(

a
p

)
by knowing the least residue of a

p−1
2 (mod p).

Exercise 8.4.3. Prove Euler’s criterion by considering the parity of indp(a).

One of the beautiful consequences of Euler’s criterion is that one can test whether a is
a square mod p without determining the square root of a (mod p) (which may be difficult).
Taking a high power of a mod p is not difficult using the method of section A5. However
when p ≡ 3 (mod 4) it is easy to find the square root of a (mod p):

Exercise 8.4.4. Let p be a prime ≡ 3 (mod 4). Show that if
(

a
p

)
= 1 and x ≡ a

p+1
4 (mod p) then

x2 ≡ a (mod p). Can one adapt this method when p ≡ 1 (mod 4)?

Although half of the residues mod p are quadratic non-residues we do not know how
to find one quickly (and thus we do not know how to find primitive roots quickly either)

Exercise 8.4.5. If a is coprime to p, consider the permutation σ of the reduced residues given by the

map n → an (mod p). Show that
(

a
p

)
= (−1)T (σ), where T (σ) is the number of transpositions in σ.

(Hint: You might use the proof of Theorem 7.3.)

Given an integer m it is easy to determine all of the quadratic residues (mod m), by
simply computing a2 (mod m) for each (a,m) = 1. However finding all primes p for which
m is a quadratic residue (mod p) is considerably more difficult. We start examining this
question now.

8.5. The residue −1.

Theorem 8.5. −1 is a quadratic residue (mod p) if and only if p = 2 or p ≡ 1 (mod 4).

Proof. By Euler’s criterion, and exercise 8.4.2.

Proof 2. In exercise 7.5.2 we saw that −1 ≡ g(p−1)/2 (mod p) for any primitive root g mod
p. Now if −1 ≡ (gk)2 (mod p) for some integer k then p−1

2 ≡ 2k (mod p− 1), and there

exists such an integer k if and only if p−1
2 is even.

Proof 3. (Euler) If a is a quadratic residue then so is 1/a (mod p). Thus we may “pair
up” the quadratic residues (mod p), except those for which a ≡ 1/a (mod p). The only
solutions of a ≡ 1/a (mod p) (that is a2 ≡ 1 (mod p)) are a ≡ 1 and −1 (mod p). There-
fore

p− 1

2
= #{a (mod p) : a is a quadratic residue (mod p)}

≡ #{a ∈ {1,−1} : a is a quadratic residue (mod p)} (mod 2)

=

 2 if
(

−1
p

)
= 1;

1 if
(

−1
p

)
= −1

(mod 2)

and the result follows.

Proof 4. The first part of the last proof also show us that the product of the quadratic

residues mod p is congruent to −(−1/p). On the other hand the roots of x
p−1
2 −1 (mod p)
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are precisely the quadratic residues mod p, and so, taking x = 0, we see that (−1)
p−1
2 times

the product of the quadratic residues mod p is congruent to −1. Hence (−1/p) ≡ (−1)
p−1
2

(mod p).

Proof 5. The number of quadratic non-residues (mod p) is p−1
2 , and so, by Wilson’s

Theorem, we have (
−1

p

)
=

(
(p− 1)!

p

)
=

∏
a (mod p)

(
a

p

)
≡ (−1)

p−1
2 .

Theorem 8.5 implies that if p ≡ 1 (mod 4) then
(

−r
p

)
=
(

r
p

)
; and if p ≡ −1 (mod 4) then(

−r
p

)
= −

(
r
p

)
.

Corollary 8.6. If n is odd then(
−1

n

)
=

{
1 if n ≡ 1 (mod 4);

−1 if n ≡ −1 (mod 4).

Exercise 8.5.1. Prove this.

8.6. The law of quadratic reciprocity. We have already seen that if p is an odd prime
then (

−1

p

)
=

{
1 if p ≡ 1 (mod 4);

−1 if p ≡ −1 (mod 4).

In the next section we will show that(
2

p

)
=

{
1 if p ≡ 1 or − 1 (mod 8);

−1 if p ≡ 3 or − 3 (mod 8).

To be able to evaluate Legendre symbols we will also need the law of quadratic reciprocity.
This states that if p and q are distinct odd primes then(

p

q

)(
q

p

)
=

{ −1 if p ≡ q ≡ −1 (mod 4)

1 otherwise.

These rules, taken together, allow us to rapidly evaluate any Legendre symbol, as follows:
Suppose that we wish to evaluate (m/p). First we reduce m mod p, so that (m/p) = (n/p)
where n ≡ m (mod p) and |n| < p. Next we factor n and, by the multiplicativity of the
Legendre symbol, as discussed at the end of section 8.1, we can evaluate (n/p) in terms
of (−1/p), (2/p) and the (q/p) for those primes q dividing n. We can easily determine the
values of (−1/p) and (2/p) from determining p (mod 8), and then we need to evaluate
each (q/p) where q ≤ |n| < p. We do this by the law of quadratic reciprocity so that
(q/p) = ±(p/q) depending only on the values of p and q mod 4. We repeat the procedure
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on each (p/q). Clearly this process will quickly finish as the numbers involved are always
getting smaller.

This is an efficient procedure provided that one is capable of factoring the numbers n
that arise. Although this may be the case for small examples, it is not practical for large
examples. We can by-pass this difficulty by using the Jacobi symbol. The three rules above
hold just as well provided p and q are any two odd coprime integers. Hence to evaluate
(m/p) we find n ≡ m (mod p) with |n| < p as above, and then write n = qN , where
q = ± a power of 2, and N is an odd positive integer, so that N ≤ |n| < p. Therefore
(m/p) = (n/p) which may be evaluated in terms of (−1/p), (2/p) and the (N/p). This
last equals ±(p/N) depending only on p and N mod 4, and then we repeat the procedure
with (p/N). This process only involves dividing out powers of 2 and a possible minus sign,
so goes fast and avoids serious factoring; in fact it is guaranteed to go at least as fast as
the Euclidean algorithm since it involves very similar steps. Let us work through some
examples. (

111

71

)
=

(
−1

71

)(
31

71

)
as 111 ≡ −31 (mod 71)

= (−1) · (−1) ·
(
71

31

)
as 71 ≡ 31 ≡ −1 (mod 4)

=

(
9

31

)
= 1 as 71 ≡ 9 (mod 31).

Next we give an alternate evaluation, without explaining each step:(
111

71

)
=

(
40

71

)
=

(
2

71

)3(
5

71

)
= 13 · 1 ·

(
71

5

)
=

(
1

5

)
= 1.

These examples all work with only the Legendre symbol; but here is one where we use the
Jacobi symbol: (

106

71

)
=

(
35

71

)
= −

(
71

35

)
= −

(
1

35

)
= −1.

In the next few subsections we will prove the results used above. Our approach will
not be the one mostly seen in textbooks today, but rather (a version of) the original proof
of Gauss.

8.7. The residues +2 and −2. By computing, one finds that the odd primes p < 100

for which
(

2
p

)
= 1 are p = 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97. These are exactly the

primes < 100 that are ≡ ±1 (mod 8). The values of p < 100 for which
(

−2
p

)
= 1 are

p = 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97. These are exactly the primes < 100 that are
≡ 1 or 3 (mod 8). These observations are established as facts in the following result.

Theorem 8.7. If n is odd then(
2

n

)
=

{
1 if n ≡ 1 or − 1 (mod 8);

−1 if n ≡ 3 or − 3 (mod 8).
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Proof. By induction on n. If n is composite with n ≡ ±1 (mod 8) then write n = ab with
1 < a, b < n. Then b ≡ a2b = an ≡ ±a (mod 8), as a2 ≡ 1 (mod 8), and so

(
2
a

)
=
(
2
b

)
by

the induction hypothesis. Hence
(
2
n

)
=
(
2
a

) (
2
b

)
= 1.

Proceeding similarly when n ≡ ±3 (mod 8) we find that
(
2
a

)
= −

(
2
b

)
by the induction

hypothesis, and so
(
2
n

)
=
(
2
a

) (
2
b

)
= −1.

We may therefore assume that n = p is prime. For p ≡ 1 (mod 4) we have an element
r such that r2 ≡ −1 (mod p) by Theorem 8.5. We now show that 2 is a square mod p if
and only if r is a square mod p For if a2 ≡ 2 (mod p) then

((1 + r)/a)2 = (1 + r2 + 2r)/a2 ≡ 2r/2 ≡ r (mod p);

and if b2 ≡ r then

((1 + r)/b)2 = (1 + r2 + 2r)/b2 ≡ 2r/r ≡ 2 (mod p).

Now r is a square mod p if and only if there is an element of order 8 mod p, and this holds
if and only 8|p− 1 by Theorem 7.7. The result thus follows when p ≡ 1 or 5 (mod 8).

We now exhibit an argument that we will later use to prove the full law of quadratic

reciprocity. If the result is false for p ≡ ±3 (mod 8) then
(

2
p

)
= 1. Select a2 ≡ 2

(mod p) with a odd and minimal, so that 1 ≤ a ≤ p− 1.12 Write a2 − 2 = pr. Evidently
pr ≡ a2 − 2 ≡ −1 (mod 8) and so r ≡ ±3 (mod 8). But then a2 ≡ 2 (mod r) and so(
2
r

)
= 1 with r = a2−2

p < p, which contradicts the induction hypothesis.

If the result is false for p ≡ 5 or 7 (mod 8) then
(

−2
p

)
= 1. Select a2 ≡ −2 (mod p)

with aminimal and odd, so that 1 ≤ a ≤ p−1. Write a2+2 = pr. Evidently pr ≡ a2+2 ≡ 3
(mod 8) and so r ≡ 5 or 7 (mod 8). But then a2 ≡ 2 (mod r) and so

(
2
r

)
= 1 with

r = a2+2
p < p, which contradicts the induction hypothesis.

Combining these cases gives the result for all odd primes p.

There is a well-known proof of Theorem 8.7 when n = p that can be deduced from
Euler’s criterion. We discuss this in section C8.

Corollary 8.8. If n is odd then

(
−2

n

)
=

{
1 if n ≡ 1 or 3 (mod 8);

−1 if n ≡ 5 or 7 (mod 8).

Exercise 8.7.1. Deduce this from Corollary 8.6 and Theorem 8.7.

12If b is the smallest positive integer for which b2 ≡ 2 (mod p), so that 1 ≤ b ≤ p− 1, then let a = b
if b is odd, and a = p− b if b is even.
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8.8. Small residues and non-residues. 1 is always a quadratic residue mod p, as are
4, 9, 16, . . . If 2 and 3 are quadratic non-residues then 2 · 3 = 6 is a quadratic residue, by
Theorem 8.3(iii). Hence one is always guaranteed lots of small quadratic residues. How
about quadratic non-residues? Since half the residues are quadratic non-residues one might
expect to find lots of them, but a priori one is only guaranteed to find one ≤p+1

2 . Can
one do better? This is an important question in number theory, and one where the best
results known are surprisingly weak (see section F3 for more discussion).

One amusing problem is to find strings of consecutive quadratic residues. Developing
the discussion in the last paragraph prove the following:

Exercise 8.8.1. Prove that for every prime p ≥ 7 there exists an integer n = np ≤ 9 for which one has(
n
p

)
=

(
n+1
p

)
= 1. Can you extend this result to three consecutive quadratic residues?

More complicated is to ask whether, for a given integer m, one can find small primes
p and q for which (

m

p

)
= 1 and

(
m

q

)
= −1.

We shall study here just the second of the two problems (more on the first in section F3):

Theorem 8.9. If p is a prime ≡ 1 (mod 4) there exists a prime q < p such that
(

p
q

)
= −1.

Actually we will get much better bounds on q than this.

Part I. If p ≡ 5 (mod 8) then there exists a prime q < 2(
√
2p− 1) with

(
p
q

)
= −1.

Proof. Choose integer a as large as possible so that 2a2 < p; in particular we may choose
a > (p/2)1/2 − 1. Now p − 2a2 ≡ 3 or 5 (mod 8) and so has a prime divisor q ≡ 3 or

5 (mod 8). But then, by Theorem 8.7, we have
(

2
q

)
= −1 and so

(
p
q

)
=
(

2a2

q

)
= −1.

Finally

q ≤ p− 2a2 < 2(
√
2p− 1).

The next case involves a remarkable proof given by Gauss:

Part II. If p ≡ 1 (mod 8) then there exists an odd prime q < 2
√
p+ 1 with

(
p
q

)
= −1.

Proof. Let m = [
√
p] and consider the product (p − 12)(p − 22) . . . (p − m2), under the

assumption that
(

p
q

)
= 1 for all q ≤ 2m+ 1. Now since

(
p
q

)
= 1 there exists a such that

p ≡ a2 (mod q); in fact there exists aq such that p ≡ a2q (mod qn) for any given integer
n ≥ 1 (by the discussion in section 8.2). Since this is true for each q ≤ 2m+ 1, and since
(2m+1)! is divisible only by powers of primes q ≤ 2m+1, we use the Chinese Remainder
Theorem to construct an integer A for which p ≡ A2 (mod (2m+ 1)!). Thus

(p− 12)(p− 22) . . . (p−m2) ≡ (A2 − 12)(A2 − 22) . . . (A2 −m2)

≡ (A+m)!

(A−m− 1)!
· 1
A

(mod (2m+ 1)!).
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Now (p, (2m+ 1)!) = 1 and so (A, (2m+ 1)!) = 1; moreover

(
A+m
2m+ 1

)
is an integer,

and so

(A+m)!

(A−m− 1)!
· 1
A

=
1

A
· (2m+ 1)!

(
A+m

2m+ 1

)
≡ 0 (mod (2m+ 1)!).

Therefore (2m+ 1)! divides (p− 12)(p− 22) . . . (p−m2). However p < (m+ 1)2 and so

(2m+ 1)! ≤ (p− 12)(p− 22) . . . (p−m2)

< ((m+ 1)2 − 12)((m+ 1)2 − 22) . . . ((m+ 1)2 −m2) =
(2m+ 1)!

m+ 1

giving a contradiction.

8.9. Proof of the law of quadratic reciprocity. Gauss gave four proofs of the law of
quadratic reciprocity, and there are now literally hundreds of proofs. None of the proofs
are easy. For an elementary textbook like this one wishes to avoid any deeper ideas, which
considerably cuts down the number of choices. The one that has been long preferred stems
from an idea of Eisenstein and is discussed in section C8. It ends up with an elegant lattice
point counting argument though the intermediate steps are difficult to follow and motivate.
Gauss’s very first proof was long and complicated yet elementary and the motivation is
quite clear. Subsequent authors [Savitt] have shortened Gauss’s proof and we present a
version of that proof here. We will prove that for any odd integersm and n with (m,n) = 1
we have (m

n

)( n
m

)
=

{ −1 if m ≡ n ≡ −1 (mod 4)

1 otherwise

where we define
(

m
−n

)
=
(
m
n

)
. Note that we can write the right side as (−1)

m−1
2 ·n−1

2 .

We prove this by induction on max{|m|, |n|}. It is already proved if one of m and n
equals 1 or −1. If m = ab is composite with 1 < a, b < m then(m

n

)( n
m

)
=
(a
n

)(n
a

)
·
(
b

n

)(n
b

)
= (−1)

a−1
2 ·n−1

2 · (−1)
b−1
2 ·n−1

2 ,

and the result follows since:

Exercise 8.9.1. Prove that a−1
2

+ b−1
2

≡ ab−1
2

(mod 2) for any odd integers a, b.

A similar proof works if n is composite. We can assume that m and n are positive for if
m < 0 then we can write m = −b with b > 0 and follow the above argument through with
a = −1. Therefore we are left with the case that m = p < n = q are primes, that is we
wish to prove that (

p

q

)(
q

p

)
=

{ −1 if p ≡ q ≡ −1 (mod 4)

1 otherwise.

The proof is modeled on that of the last two cases in the proof of Theorem 8.7. There are
two cases here:
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• When
(

p
q

)
= 1 or

(
−p
q

)
= 1, let ℓ = p or −p, respectively, so that

(
ℓ
q

)
= 1. Then

there exists an even integer e, 1 ≤ e ≤ q−1 such that e2 ≡ ℓ (mod q), and therefore there
exists an integer s with

e2 = ℓ+ qs.

Now |s| =
∣∣∣ e2−ℓ

q

∣∣∣ < (q−1)2+q
q < q, so the reciprocity law works for the pair ℓ, s by the

induction hypothesis. Observing that e2 ≡ ℓ (mod s) and e2 ≡ qs (mod ℓ) we deduce
that

(
ℓ
s

)
=
(
qs
ℓ

)
= 1 assuming p = |ℓ| does not divide s. We therefore deduce:(
ℓ

q

)(q
ℓ

)
= 1 ·

(q
ℓ

)
·
(qs
ℓ

)
·
(
ℓ

s

)
=
(s
ℓ

)
·
(
ℓ

s

)
= (−1)

ℓ−1
2 · s−1

2

Now ℓ+ qs = e2 ≡ 0 (mod 4), and the result follows as q ≡ s (mod 4) if ℓ ≡ −1 (mod 4).

If p|s we write s = ℓS, e = ℓE to obtain ℓE2 = 1 + qS, and so
(
ℓ
S

)
=
(

−qS
ℓ

)
= 1.

Therefore (
ℓ

q

)(q
ℓ

)
=
(q
ℓ

)
·
(
−qS
ℓ

)
·
(
ℓ

S

)
=

(
−S
ℓ

)
·
(

ℓ

−S

)
= (−1)

ℓ−1
2 ·S+1

2

and the result follows since S ≡ −q (mod 4).

• When
(

p
q

)
=
(

−p
q

)
= −1, we have

(
−1
q

)
= −1 so that q ≡ 1 (mod 4). Therefore

there exists a prime ℓ < q such that
(
q
ℓ

)
= −1 by Theorem 8.9. Moreover

(
ℓ
q

)
= −1 else,

since we have already proved the reciprocity law when
(

ℓ
q

)
= 1, this would imply that(

q
ℓ

)
= 1 as q ≡ 1 (mod 4).

Therefore
(

pℓ
q

)
= 1 and so there exists an even integer e, 1 ≤ e ≤ q − 1 such that

e2 ≡ pℓ (mod q), and therefore there exists an integer s with

e2 = pℓ+ qs.

Note that |s| =
∣∣∣ e2−pℓ

q

∣∣∣ ≤ ∣∣∣max{(q−1)2,pℓ}
q

∣∣∣ < q, so the reciprocity law works for any two of

ℓ, p, s by the induction hypothesis.
We proceed much as above but now there are four possibilities for d = (pℓ, qs) = (pℓ, s),

which we handle all at once: Since d is squarefree and d|pℓ+ qs = e2, hence d|e. We write
e = dE, pℓ = dL and s = dS so that dE2 = L+ qS. But then(

−LqS
d

)
=

(
dqS

L

)
=

(
dL

q

)
=

(
dL

S

)
= 1.

Multiplying these all together and re-organizing, and using that pℓ = dL, we obtain(
−L
d

)(
d

−L

)
·
(
q

pℓ

)(
pℓ

q

)
·
(
S

pℓ

)(
pℓ

S

)
= 1.
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Now
(
q
ℓ

) (
ℓ
q

)
= 1 by the choice of ℓ, and using the induction hypothesis for the pairs

(−L, d), (p, S), (ℓ, S) we obtain(
p

q

)(
q

p

)
=

(
−L
d

)(
d

−L

)
·
(
S

p

)( p
S

)
·
(
S

ℓ

)(
ℓ

S

)
= (−1)

L+1
2 · d−1

2 + p−1
2 ·S−1

2 + ℓ−1
2 ·S−1

2 .

Now S ≡ −qL ≡ −L (mod 4) and dpℓ = d2L ≡ L (mod 4), so the above exponent is

≡ L+1
2 · dpℓ−1

2 ≡ L+1
2 · L−1

2 ≡ 0 (mod 2), and the result follows.

Another proof for (2/n). By induction on n. The result is easily proved for n = 1. For
odd n > 1 we have, using the law of quadratic reciprocity,(

2

n

)
=

(
−1

n

)(
n− 2

n

)
=

(
−1

n

)(
n

n− 2

)
=

(
−1

n

)(
2

n− 2

)
,

as one of n and n− 2 is ≡ 1 (mod 4).

Exercise 8.9.2. Complete the proof, which proceeds via an analysis of the four cases mod 8.
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9. Quadratic equations

9.1. Sums of two squares. What primes are the sum of two squares? If we start
computing we find that

2 = 12+12, 5 = 12+22, 13 = 22+32, 17 = 12+42, 29 = 52+22, 37 = 12+62, 41 = 52+42, . . .

so we might guess that the answer is 2 and any prime ≡ 1 (mod 4).

Proposition 9.1. If p is an odd prime that is the sum of two squares then p ≡ 1 (mod 4).

Proof. If p = a2 + b2 then p̸ |a, else p|b and so p2|a2 + b2 = p which is impossible, and
similarly p ̸ |b. Now a2 ≡ −b2 (mod p) so that

1 =

(
a

p

)2

=

(
−1

p

)(
b

p

)2

=

(
−1

p

)
,

and therefore p ≡ 1 (mod 4).

The other direction is more complicated

Theorem 9.2. Any prime p ≡ 1 (mod 4) can be written as the sum of two squares.

Proof. Since p ≡ 1 (mod 4) we know that there exists an integer b such that b2 ≡ −1
(mod p). Consider now the set of integers

{i+ jb : 0 ≤ i, j ≤ [
√
p]}

The number of pairs i, j used in the construction of this set is ([
√
p] + 1)2 > p, and so by

the pigeonhole principle, two must be congruent mod p; say that

i+ jb ≡ I + Jb (mod p)

where 0 ≤ i, j, I, J ≤ [
√
p] and {i, j} ≠ {I, J}. Let r = i− I and s = J − j so that

r ≡ bs (mod p)

where |r|, |s| ≤ [
√
p] <

√
p, and r and s are not both 0. Now

r2 + s2 ≡ (bs)2 + s2 = s2(b2 + 1) ≡ 0 (mod p)

and 0 < r2 + s2 <
√
p2 +

√
p2 = 2p. The only multiple of p between 0 and 2p is p, and

therefore r2 + s2 = p.

Exercise 9.1.1. Suppose that b (mod p) is given, and that R ≥ 1 and S are positive numbers such that

RS = p. Prove that there exist integers r, s with |r| ≤ R, 0 < s ≤ S such that b ≡ r/s (mod p).

What integers can be written as the sum of two squares? Note the identity

(9.1) (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.
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Exercise 9.1.2. Use this to show that the product of two or more integers that are the sum of two

squares is itself the sum of two squares.

We see that (9.1) is a useful identity, yet we simply gave it without indicating how
one might find such an identity. Let i be a complex number for which i2 = −1. Then we
have x2 + y2 = (x+ iy)(x− iy), a factorization in the set {a+ bi : a, b ∈ Z}. Therefore

(a2 + b2)(c2 + d2) = (a+ bi)(a− bi)(c+ di)(c− di) = (a+ bi)(c+ di)(a− bi)(c− di)

= ((ac− bd) + (ad+ bc)i)((ac− bd)− (ad+ bc)i)

= (ac− bd)2 + (ad+ bc)2,

and so we get (9.1). A different re-arrangement leads to a different identity:

(9.2) (a2 + b2)(c2 + d2) = (a+ bi)(c− di)(a− bi)(c+ di) = (ac+ bd)2 + (ad− bc)2.

Exercise 9.1.3. Prove that if prime p = a2 + b2 is coprime with c2 + d2 then ac−bd
ad+bc

≡a
b

(mod p) in

(9.1); and ac+bd
ad−bc

≡ − a
b
≡ b

a
(mod p) in (9.2).

In Theorem 9.2 we saw that every prime p ≡ 1 (mod 4) can be written as the sum of
two squares. A few examples indicate that perhaps there is a unique such representation,
up to signs and changing the order of the squares. This will now be proved:

Exercise 9.1.4. Suppose that p is a prime ≡ 1 (mod 4) with p = a2 + b2 = c2 + d2 where a, b, c, d > 0.

(i) Prove that (a, b) = (c, d) = 1.

(ii) Prove that a/b ≡ c/d or −c/d (mod p).
(iii) Assuming that a/b ≡ c/d (mod p) in (ii), use (9.2) to deduce that p|(ac+ bd).
(iv) Use (iii) and (9.2) to deduce that ad = bc, and then (i) to deduce that a = c and b = d.
(v) Work through the case where a/b ≡ −c/d (mod p) using (9.1).

Exercise 9.1.4 tells us that any prime p ≡ 1 (mod 4) can be written as the sum of two
squares in a unique way, thus 5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42 and there are no
other representations. For a composite number like 65 we can use the formulae (9.1) and
(9.2) to obtain that 65 = 12 + 82 = 72 + 42, and indeed any composite that is the product
of two distinct primes ≡ 1 (mod 4) can be written as the sum of two squares in exactly
two ways, for examples 85 = 72 + 62 = 92 + 22 and 221 = 13 · 17 = 142 + 52 = 112 + 102.
We will discuss the number of representations further in section F5.

Theorem 9.3. Positive integer n can be written as the sum of two squares of integers if
and only if for every prime p ≡ 3 (mod 4) which divides n, the exact power of p dividing
n is even.

Proof. Suppose that n = a2+ b2 where (a, b) = 1. This implies that (b, n) = 1 else if prime
q|(b, n) then q|(n − b2) = a2 and so q|a implying that q|(a, b). Therefore if odd prime p
divides n then let c be the inverse of b (mod n) so that (ca)2 = c2(n− b2) ≡ −(bc)2 ≡ −1
(mod p). Hence (−1/p) = 1 and so p ≡ 1 (mod 4).

Now suppose that N = A2 +B2 where g = (A,B), and suppose that p is a prime ≡ 3
(mod 4) which divides N . Writing A = ga,B = gb and n = N/g2, we have n = a2 + b2
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with (a, b) = 1 so that p̸ |n by the previous paragraph. Hence p|g, and so the power of p
dividing N is even, as claimed.

In the other direction, write n = mg2 where m is squarefree. By hypothesis m has
no prime factors ≡ 3 (mod 4). Now by Theorem 9.2 we know that every prime factor of
m can be written as the sum of two squares. Hence m can be written as the sum of two
squares by exercise 9.1.2, and so n can be, multiplying each square through by g2.

Exercise 9.1.5. Deduce that positive integer n can be written as the sum of two squares of rationals if

and only if n can be written as the sum of two squares of integers.

In section 6.1 we saw how to find all solutions to x2 + y2 = 1 in rationals x, y. How
about all rational solutions to x2 + y2 = n? It is not difficult to do this in the case that
n = p prime, and this argument can be generalized to arbitrary n:

Proposition 9.4. Suppose that prime p can be written as a2 + b2. Then all solutions in
rationals x, y to x2 + y2 = p are given by the parametrization:

(9.3) x =
2ars+ b(s2 − r2)

r2 + s2
, y =

2brs+ a(r2 − s2)

r2 + s2
,

or the same with b replaced by −b.

Proof sketch. Let x, y be rationals for which x2+y2 = p. Let z be the smallest integer such
thatX = xz, Y = yz are both integers, so thatX2+Y 2 = pz2. Now (X,Y )2|X2+Y 2 = pz2

so that (X,Y )|z. Therefore Z = z/(X,Y ) is an integer with X/(X,Y ) = xZ, Y/(X,Y ) =
yZ both integers implying, by the minimality of z that Z = z and so (X,Y ) = 1.

Now X2 + Y 2 ≡ 0 (mod p), and so (X/Y )2 ≡ −1 (mod p) as (X,Y ) = 1. But then
X/Y ≡ ±a/b (mod p), say ‘+’, so that p|(bX − aY ). Now

p2z2 = (a2 + b2)(X2 + Y 2) = (aX + bY )2 + (aY − bX)2

and so p|(aX + bY ). Hence z2 = ((aX + bY )/p)2 + ((aY − bX)/p)2, and so by (6.1) there
exist integers g, r, s such that

aX + bY = 2pgrs, aY − bX = pg(r2 − s2), z = g(r2 + s2).

The result follows.

9.2. The values of x2 + dy2. How about x2 + 2y2? We have the identity

(a2 + 2b2)(c2 + 2d2) = (ac+ 2bd)2 + 2(ad− bc)2,

analogous to (9.1), so can focus on what primes are represented. Now if odd prime p =
x2 + 2y2 then (−2/p) = 1. On the other hand if (−2/p) = 1 then select b (mod p) such
that b2 ≡ −2 (mod p). We take R = 21/4

√
p, S = 2−1/4√p in exercise 9.1.1, so that p

divides r2 + 2s2, which is ≤ 23/2p < 3p. Hence r2 + 2s2 = p or 2p. In the latter case
2|2p− 2s2 = r2 so that 2|r. Writing r = 2R we have s2 + 2R2 = p. Hence we have proved
that p can be written as m2 + 2n2 if and only if p = 2 or p ≡ 1 or 3 (mod 8).
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Exercise 9.2.1. What integers can be written as x2 + 2y2?

Exercise 9.2.2. Fix integer d ≥ 1. Give an identity showing that the product of two integers of the form

a2 + db2 is also of this form.

Exercise 9.2.3. Try to determine what primes are of the form a2 + 3b2, and a2 + 5b2, a2 + 6b2, etc.

9.3. Solutions to quadratic equations. It is easy to see that there do not exist non-
zero integers a, b, c such that a2 + 5b2 = 3c2. For if we take the smallest non-zero solution
then we have

a2 ≡ 3c2 (mod 5)

and since (3/5) = −1 this implies that a ≡ c ≡ 0 (mod 5) and so b ≡ 0 (mod 5). Therefore
a/5, b/5, c/5 gives a smaller solution to x2 + 5y2 = 3z2, contradicting minimality.

Another proof stems from looking at the equation mod 4 since then a2 + b2 + c2 ≡ 0
(mod 4), and thus 2|a, b, c as 0 and 1 are the only squares mod 4, and so a/2, b/2, c/2 gives
a smaller solution, contradicting minimality.

In general there are an even number of proofs modulo powers of different primes that
a given quadratic equation has no solutions if there are none. These are not difficult to
identify. On the other hand, what is remarkable, is that if there are no such “mod pk

obstructions”, then there are non-zero integer solutions:

The Local-Global Principal for Quadratic Equations. Let a, b, c be given integers.
There are solutions in integers ℓ,m, n to aℓ2 + bm2 + cn2 = 0 if and only if there are
real numbers λ, µ, ν for which aλ2 + bµ2 + cν2 = 0, and for all positive integers r there
exist residue classes u, v, w (mod r), not all ≡ 0 (mod r), such that au2 + bv2 + cw2 ≡ 0
(mod r).

Notice the similarity with the Local-Global Principal for Linear Equations given in
section 3.4. Just as there, we can restrict our attention to just one modulus r. We may
also restrict the set of a, b, c without loss of generality:

Exercise 9.3.1. Show that we may assume a, b, c are squarefree, without loss of generality. (Hint: Suppose

that a = Ap2 for some prime p and establish a 1-to-1 correspondence with the solutions for A, b, c.)

Exercise 9.3.2. Show that we may also assume that a, b, c are pairwise coprime.

The Local-Global Principal for Quadratic Equations. (Legendre, 1785) Suppose
that squarefree non-zero integers a, b, c are pairwise coprime. Then the equation

aℓ2 + bm2 + cn2 = 0

has solutions in integers, other than ℓ = m = n = 0 if and only if −bc is a square mod a,
−ac is a square mod b, and −ab is a square mod c, and a, b and c do not all have the same
sign.

We can restate again the criterion asking only for solutions to aℓ2 + bm2 + cn2 ≡ 0
(mod abc) with (ℓmn, abc) = 1.
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Proof =⇒ . If a, b, c all have the same sign, then so do aℓ2, bm2, cn2 and then the only
solution is ℓ = m = n = 0. Otherwise, suppose that we have the minimal non-zero solution.

We show that (m, a) = 1: If not p|(m, a)|aℓ2 + bm2 = −cn2 and so p|n as (a, c) = 1.
Moreover p2|bm2+ cn2 = −aℓ2 and so p|ℓ as a is squarefree. But then ℓ/p,m/p, n/p yields
a smaller solution, contradicting minimality.

Now bm2 ≡ −cn2 (mod a) and as (m, a) = 1 there exists r such that rm ≡ 1 (mod a).
Therefore −bc ≡ −bc(rm)2 = cr2 · (−bm2) ≡ cr2 · cn2 = (crn)2 (mod a).

An analogous argument works mod b and mod c.

Proof ⇐=. Interchanging a, b, c, and multiplying through by −1, as necessary, we can
assume that a, b > 0 > c.

Suppose that α, β, γ are integers such that

α2 ≡ −bc (mod a), β2 ≡ −ac (mod b), γ2 ≡ −ab (mod c).

Construct, using the Chinese Remainder Theorem integers u, v, w for which

u ≡
{
γ (mod c)

c (mod b)
, v ≡

{
α (mod a)

a (mod c)
, w ≡

{
β (mod b)

b (mod a)
.

Exercise 9.3.3. Working mod a, b, c separately and then using the Chinese Remainder Theorem, verify
that

au2 + bv2 + cw2 ≡ 0 (mod abc);

And show that if x, y, z are integers for which aux+ bvy + cwz ≡ 0 (mod abc) then

ax2 + by2 + cz2 ≡ 0 (mod abc).

Now consider the set of integers

{aui+ bvj + cwk : 0 ≤ i ≤
√
|bc|, 0 ≤ j ≤

√
|ac|, 0 ≤ k ≤

√
|ab|}.

The number of i values is 1+ [
√
|bc|] >

√
|bc|; and similarly the number of j and k values,

so that the number of elements of the set is >
√

|bc| ·
√

|ac| ·
√

|ab| = |abc|. Hence two
different elements of the set are congruent mod abc, say aui+bvj+cwk ≡ auI+bvJ+cwK
(mod abc). Then x = i−I, y = j−J, z = k−K are not all zero, and aux+bvy+cwz ≡ 0
(mod abc). By the previous exercise we deduce that ax2 + by2 + cz2 ≡ 0 (mod abc). Now

|x| ≤
√
|bc|, |y| ≤

√
|ac|, |z| ≤

√
|ab| and so

−abc = 0 + 0− abc ≤ ax2 + by2 + cz2 ≤ abc+ abc+ 0 = 2abc.

Since |bc|, |ac|, |ab| are squarefree integers by hypothesis, if we get equality in either in-
equality here then a = b = 1, but this case is settled by Theorem 9.3. Hence we may
assume that

ax2 + by2 + cz2 ≡ 0 (mod abc), and − abc < ax2 + by2 + cz2 < 2abc,
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so that ax2 + by2 + cz2 = 0 as desired or ax2 + by2 + cz2 = abc. The first case gives us
the theorem with excellent bounds on the solutions. In the second we make an unintuitive
transformation to note that

a(xz + by)2 + b(yz − ax)2 + c(z2 − ab)2 = (z2 − ab)(ax2 + by2 + cz2 − abc) = 0

In 1950, Holzer showed that if there are solutions then the smallest non-zero solution
satisfies

|aℓ2|, |bm2|, |cn2| ≤ |abc|.

In 1957, Selmer showed that the Local-Global Principal does not necessarily hold for
cubic equations since 3x3 + 4y3 + 5z3 = 0 has solutions in the reals, and mod r for all
r ≥ 1, yet has no integer solutions.
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10. Square Roots and Factoring

10.1. Square roots mod p. How difficult is it to find square roots mod n? The first
question to ask is how many square roots does a square have mod n?

Lemma 10.1. If n is a squarefree odd integer with k prime factors, and A is a square mod
n with (A,n) = 1, then there are exactly 2k residues mod n whose square is ≡ A (mod n).

Proof. Suppose that b2 ≡ A (mod n) where n = p1p2 . . . pk, and each pi is odd and distinct.
If x2 ≡ A (mod n) then n|(x2− b2) = (x− b)(x+ b) so that p divides x− b or x+ b for each
p|n. Now p cannot divide both else p divides (x+ b)− (x+ b) = 2b and so 4A ≡ (2b)2 ≡ 0
(mod p), which contradicts that fact that (p, 2A)|(n, 2A) = 1. So let

d = (n, x− b), and therefore n/d = (n, x+ b).

Then x ≡ bd (mod n) where bd is that unique residue class mod n for which

bd ≡
{

b (mod d)

−b (mod n/d).

Note that the bd are well-defined by the Chinese Remainder Theorem, are distinct, and
that x2 ≡ b2d ≡ b2 ≡ A (mod n) for each d.

Now suppose that one has a fast algorithm for finding square roots mod n; that is,
given a square A mod n the algorithm finds a square root, say b (mod n). We claim that
one can then rapidly find a non-trivial factor of n: Take a random number x (mod n) and
let A ≡ x2 (mod n). Apply the algorithm to obtain b (mod n) such that b2 ≡ A (mod n).
By the proof of the Lemma we know that x ≡ bd (mod n) for some d|n; and since x was
chosen at random, each d is possible with probability 1/2k. Note that d = (n, x − b) and
n/d = (n, x+b) so we have a non-trivial factorization of n provided d ̸= 1, n. This happens
with probability 1− 2/2k ≥ 1/2 for n composite. If one is unlucky, that is, if d = 1 or n.
then we repeat the process. choosing our new value of x independently of the first round.

On the other hand if we can find a non-trivial factor d of n and we already have a
square root b of A, then it is easy to find another square-root bd, and this is ̸≡ ±b (mod n).

Hence we have shown that finding square roots mod n, and factoring n are, more-or-
less, equally difficult.

10.2. Cryptosystems. Cryptography has been around for as long as the need to commu-
nicate secrets at a distance. Julius Caesar, on campaign, communicated military messages
by creating cyphertext by replacing each letter with that letter which is three further on
in the alphabet. Thus A becomes D, B becomes E, etc. For example,

THISISV ERY INTERESTING becomes WKLV LV Y HUBLQWHUHVWLQJ.

(Notice that Y became B, since we wrap around to the beginning of the alphabet. It
is essentially the map x → x + 3 (mod 26).) At first sight an enemy might regard
WKLV . . .WLQJ as gibberish even if the message was intercepted. It is easy enough
to decrypt the cyphertext, simply by going back three places in the alphabet for each
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letter, to reconstruct the original message. The enemy could easily do this if (s)he guessed
that the key is to rotate the letters by three places in the alphabet, or even if they guessed
that one rotates letters, since there would only be 26 possibilities to try. So in classical
cryptography it is essential to keep the key secret and probably even the general technique
by which the key was created.13

One can generalize to arbitrary substitution cyphers where one replaces the alphabet
by some permutation of the alphabet. There are 26! permutations of our alphabet, which
is around 4 × 1026 possibilities, enough one might think to be safe. And it would be if
the enemy went through each possibility, one at a time. However the clever cryptographer
will look for patterns in the cyphertext. In the above short message we see that L appears
four times amongst the 21 letters, and H,V,W three times each, so it is likely that these
letters each represent one of A,E, I, S, T . By looking for multiword combinations (like the
cyphertext for THE) one can quickly break any cyphertext of around one hundred letters.

To combat this, armies in the First World War used longer cryptographic keys, rather
than of length 1. That is they would take a word like ABILITY and since A is letter 1 in
the alphabet, B is letter 2, and ILITY are letters 9,12,9,20,25, respectively, they would
rotate on through the alphabet by 1, 2, 9, 12, 9,−6,−1 letters to encrypt the first seven
letters, and then repeat this process on the next seven. This can again be “broken” by
statistical analysis, though the longer the key length the harder. Of course using a long
key on a battlefield would be difficult, so one needed to compromise between security and
practicality. A one-time pad, where one uses such a long key that one never repeats a
pattern, is unbreakable by statistical analysis. This might have been used by spies during
the cold war, and was perhaps based on the letters in an easily obtained book, so that the
spy would not have to possess any obviously incriminating evidence.

During the Second World War the Germans came up with an extraordinary substi-
tution cypher that involved changing several settings on a specially built typewriter (an
Enigma machine). The number of possibilities were so large that the Germans remained
confident that it could not be broken, and even changed the settings every day so as to
ensure that it would be extremely difficult. The Poles managed to obtain an early Enigma
machine and send it to London during their short part in the war and so, since they had a
good idea how these machines worked, a great amount of effort was put in by the UK and
US to be able to break German codes quickly enough to be useful. Early successes led to
the Germans becoming more cautious, and led to horrific decisions having to be made by
the Allied leaders to safeguard this most precious secret.14

The Allied cryptographers would cut down the number of possibilities (for the settings

13Steganography, hiding secrets in plain view, is another method for communicating secrets at a

distance. In 499 BC, Histiaeus shaved the head of his most trusted slave, tattooed a message on his bald
head, and then sent the slave to Aristagoras, once the slave’s hair had grown back. Aristagoras then
shaved the slave’s head again to recover the secret message telling him to revolt against the Persians. In
more recent times, cold war spies reportedly used “microdots” to transmit information, and Al-Qaeda

supposedly notifies its terrorist cells via messages hidden in images on certain webpages.
14The ability to crack the Enigma code might have allowed leaders to save lives, but had they done

so too often, making it obvious that they had broken the code, then the Germans were liable to have
moved on to a different cryptographic method, which the Allied codebreakers might have been unable to

crack. Hence the leadership was forced to use its knowledge sparingly so that it would be available in the
militarily most advantageous situations.
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on the Enigma machine) to a few million, and then their challenge became to build a
machine to try out many possibilities very rapidly. Up until then one would have to
change, by hand, external settings on the machine to try each possibility; it became a
goal to create a machine where one could change what it was doing internally, by what
became known as a program, and this stimulated in part the creation of the first modern
computers.

10.3. RSA. In the theory of cryptography we always have two people, Alice and Bob,
attempting to share a secret over an open communication channel, and the evil Oscar
listening in, attempting to figure out what the message says. We will begin by describing a
private key scheme for exchanging secrets based on the ideas in our number theory course:

Suppose that prime p is given and integers d and e such that de ≡ 1 (mod p − 1).
Alice knows p and e but not d, while Bob knows p and d but not e. The numbers d and e
are kept secret by whoever knows them. Thus if Alice’s secret message is M , she encrypts
M by computing x ≡ Me (mod p). She sends the cyphertext x over the open channel.
Then Bob decrypts by raising x to the dth power mod p, since

xd ≡ (Me)d ≡Mde ≡M (mod p)

as de ≡ 1 (mod p − 1). Now if Oscar steals the values of p and e from Alice, he will be
able to determine d, since d is the inverse of e mod p− 1, and this can be determined by
the method of section 1.1.

This is the problem with most classical cryptosystems; once one knows the encryption
method it is not difficult to determine the decoding method. In 1975 Diffie and Hellman
proposed a sensational idea: Can one give a cryptographic scheme in which the encryption
method gives no help in determining a decryption method? If one could, one would then
have a public key cryptographic scheme. What they realized is that this would be exactly
what is needed in our age of electronic information, in particular allowing people to use
passwords in public places (for instance when using an ATM) without fear that any lurking
Oscar will be able to impersonate them.

In 1977 Rivest, Shamir and Adleman realized this ambition, via a minor variation
of the above private key cryptosystem: Now let p ̸= q be two large primes and n = pq.
Select integers d and e such that de ≡ 1 (mod ϕ(pq)). Alice knows pq and e but not d,
while Bob knows pq and d. Thus if Alice’s secret message is M , the cyphertext is x ≡Me

(mod pq), and Bob decrypts this by taking xd ≡ (Me)d ≡ Mde ≡ M (mod pq) as de ≡ 1
(mod ϕ(pq)) using Euler’s Theorem.

Now, if Oscar steals the values of pq and e from Alice, will he be able to determine
d, the inverse of e mod (p− 1)(q − 1)? When the modulus was the prime p, Oscar had no
difficulty in determining p − 1. Now that the modulus is pq, can Oscar easily determine
(p − 1)(q − 1)? If so, then since he already knows pq, he would be able to determine
pq+1−ϕ(pq) = p+ q and hence p and q, since they are the roots of x2− (p+ q)x+pq = 0.
In other words, if Oscar could “break” the RSA algorithm, then he could factor pq, and
vice-versa.15

15This is somewhat misleading. We have not proved that the only way to determine d is via knowing
the value of (p− 1)(q − 1); however I cannot think of another way.
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If breaking RSA is as difficult as factoring, then we believe that RSA is secure only
if we believe that it is difficult to factor... Is it? No one knows. Certainly we do not know
any very efficient ways to factor large numbers, but that does not necessarily mean that
there is no quick way to do so. So why do we put our faith (and secrets and fortunes) in
the difficulty of factoring? The reason is that many of the greatest minds in history, from
Gauss onwards, have looked for an efficient factoring algorithm and failed. Is this a good
basis to have faith in RSA? Probably not, but we have no better.16 More on this at the
end of section A5.

10.4. Certificates and the complexity classes P and NP. Algorithms are typically
designed to work on any of an arbitrarily large class of examples, and one wishes them to
work as fast as possible. If the example is input in ℓ characters, and the function calculated
is genuinely a function of all the characters of the input, then one cannot hope to compute
the answer any quicker than the length, ℓ, of the input. A polynomial time algorithm is
one in which the answer is computed in no more than cℓA steps, for some fixed c, A > 0,
no matter what the input. These are considered to be quick algorithms. There are many
simple problems that can be answered in polynomial time (the set of such problems is
denoted by P); see section A5 for more details. In modern number theory, because of the
intrinsic interest as well as because of the applications to cryptography, we are particularly
interested in the running times of factoring and primality testing algorithms.

At the 1903 meeting of the American Mathematical Society, F.N. Cole came to the
blackboard and, without saying a word, wrote down

267 − 1 = 147573952589676412927 = 193707721× 761838257287,

long-multiplying the numbers out on the right side of the equation to prove that he was
indeed correct. Afterwards he said that figuring this out had taken him “three years of
Sundays”. The moral of this tale is that although it took Cole a great deal of work and
perseverance to find these factors, it did not take him long to justify his result to a room
full of mathematicians (and, indeed, to give a proof that he was correct). Thus we see that
one can provide a short proof, even if finding that proof takes a long time.

In general one can exhibit factors of a given integer n to give a short proof that n
is composite. Such proofs, that can be checked in polynomial time, are called certificates
(The set of problems which can be checked in polynomial time is denoted by NP.) Note
that it is not necessary to exhibit factors to give a short proof that a number is composite.
Indeed, we already saw in the converse to Fermat’s Little Theorem, Corollary 7.4, that
one can exhibit an integer a coprime to n for which n does not divide an−1 − 1 to provide
a certificate that n is composite.

What about primality testing? If someone gives you an integer and asserts that it
is prime, can you quickly check that this is so? Can they give you better evidence than
their say-so that it is a prime number? Can they provide some sort of certificate that gives
you all the information you need to quickly verify that the number is indeed a prime? We
had hoped (see section 7.6) that we could use the converse of Fermat’s Little Theorem to

16It is a notoriously difficult open problem to find mathematical problems for which one can prove
that there is no efficient algorithm. No one has yet succeeded.
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establish a quick primality test, but we saw that Carmichael numbers seem to stop that
idea from reaching fruition. Here we are asking for less, for a short certificate for a proof of
primality. It is not obvious how to construct such a certificate; certainly not so obvious as
with the factoring problem. It turns out that some old remarks of Lucas from the 1870’s
can be modified for this purpose:

First note that n is prime if and only if there are precisely n − 1 integers a in the
range 1 ≤ a ≤ n − 1 which are coprime to n. Therefore if we can show the existence of
n− 1 distinct values mod n which are coprime to n, then we have a proof that n is prime.
So to prove that n is prime we could exhibit a primitive root g, along with a proof that
it is indeed a primitive root. Corollary 7.10 shows that g is not a primitive root mod n if
and only if g(n−1)/q ≡ 1 (mod n) for some prime q dividing n− 1. Thus a “certificate” to
show that n is prime would consist of g and {q prime : q divides n− 1 }, and the checker
would need to verify that gn−1 ≡ 1 (mod n) whereas g(n−1)/q ̸≡ 1 (mod n) for all primes
q dividing n − 1, something that can be quickly accomplished using fast exponentiation
(as explained in section A5).

There is a problem though: One needs certification that each such q is prime. The
solution is to iterate the above algorithm; and one can show that no more than log n odd
primes need to be certified prime in the process of proving that n is prime. Thus we have
a short certificate that n is prime.

At first one might hope that this also provides a quick way to test whether a given
integer n is prime. However there are several obstacles. The most important is that we
need to factor n− 1. When one is handed the certificate n− 1 is already factored, so that
is not an obstacle to the use of the certificate; however it is a fundamental impediment to
the rapid creation of the certificate.

10.5. Polynomial time Primality testing. Although the converse to Fermat’s Little
Theorem does not provide a polynomial time primality test, one can further develop this

idea. For example, we know that a
p−1
2 ≡ −1 or 1 (mod p) by Euler’s criterion, and hence

if a
n−1
2 ̸≡ ±1 (mod n) then n is composite. This identifies even more composite n then

Corollary 7.4 alone, but not necessarily all n. We develop this idea further in section D3
to find a criterion of this type that is satisfied by all primes but not by any composites.
However we are unable to prove that this is indeed a polynomial time primality test without
making certain assumptions that are, as yet, unproved.

There have indeed been many ideas for establishing a primality test, which is provably
polynomial time, but this was not achieved until 2002. This was of particular interest since
the proof was given by a professor, Manindra Agrawal, and two undergraduate students,
Kayal and Saxena, working together on a summer research project. Their algorithm is
based on the following elegant characterization of prime numbers.

Agrawal, Kayal and Saxena. For given integer n ≥ 2, let r be a positive integer < n,
for which n has order > (log n)2 modulo r. Then n is prime if and only if

• n is not a perfect power,
• n does not have any prime factor ≤ r,
• (x+ a)n ≡ xn + a mod (n, xr − 1) for each integer a, 1 ≤ a ≤

√
r log n.

At first sight this might seem to be a rather complicated characterization of the prime
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numbers. However this fits naturally into the historical progression of ideas in this subject,
is not so complicated (compared to some other ideas in use), and has the great advantage
that it is straightforward to develop into a fast algorithm for proving the primality of large
primes.

10.6. Factoring methods.
“The problem of distinguishing prime numbers from composite numbers, and of resolving
the latter into their prime factors is known to be one of the most important and useful in
arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to
such an extent that it would be superfluous to discuss the problem at length. Nevertheless
we must confess that all methods that have been proposed thus far are either restricted
to very special cases or are so laborious and difficult that even for numbers that do not
exceed the limits of tables constructed by estimable men, they try the patience of even
the practiced calculator. And these methods do not apply at all to larger numbers ... It
frequently happens that the trained calculator will be sufficiently rewarded by reducing
large numbers to their factors so that it will compensate for the time spent. Further, the
dignity of the science itself seems to require that every possible means be explored for the
solution of a problem so elegant and so celebrated ... It is in the nature of the problem
that any method will become more complicated as the numbers get larger. Nevertheless,
in the following methods the difficulties increase rather slowly ... The techniques that
were previously known would require intolerable labor even for the most indefatigable
calculator.” — from article 329 of Disquisitiones Arithmeticae (1801) by C. F. Gauss.

After trial division, which looks for small factors first, perhaps the first factoring
technique was given by Fermat: His goal was to write n as x2 − y2. He started with m,
the smallest integer ≥

√
n, and then looked to see if m2 −n is a square. Fermat simplified

this, by testing whether m2−n is a square modulo various small primes. If m2−n is not a
square then he tested whether (m+1)2−n is a square; if that failed, whether (m+2)2−n
is a square, or (m + 3)2 − n, . . . , etc. Since Fermat computed by hand he also noted the
trick that (m+1)2 −n = m2 −n+(2m+1), (m+2)2 −n = (m+1)2 −n+(2m+3), etc.

For example, Fermat factored n = 2027651281 so that m = 45030. Then

450302 − n = 49619 which is not a square mod 100;

450312 − n = 49619 + 90061 = 139680 which is divisible by 25, not 26;

450322 − n = 139680 + 90063 = 229743 which is divisible by 33, not 34;

450332 − n = 229743 + 90065 = 319808 which is not a square mod 3; etc

...

up until 450412 − n = 10202, so that n = 2027651281 = 450412 − 10202 = 44021× 46061.

Gauss and other authors further developed Fermat’s ideas, most importantly realizing
that if x2 ≡ y2 (mod n) with x ̸≡ ±y (mod n) and (x, n) = 1, then

gcd(n, x− y) · gcd(n, x+ y)
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gives a non-trivial factorization of n.
Several factoring algorithms work by generating a pseudo-random sequence of integers

a1, a2, ..., with each

ai ≡ b2i (mod n),

for some known integer bi, until some subsequence of the ai’s has product equal to a square,
say

y2 = ai1 · · · air ,

and set x2 = (bi1 · · · bir )2. Then x2 ≡ y2 (mod n) and there is a good chance that
gcd(n, x− y) is a non-trivial factor of n.

We want to generate the ais so that it is not so difficult to find a subsequence whose
product is a square; to do so, we need to be able to factor the ai. This is most easily done
by only keeping those ai that have all of their prime factors ≤ y. Suppose that the primes
up to y are p1, p2, . . . , pk. If ai = p

ai,1

1 p
ai,2

2 · · · pai,k

k then let vi = (ai,1, ai,2, . . . , ai,k), which
is a vector with entries in Z.
Exercise 10.6.1. Show that

∏
i∈I ai is a square if and only if

∑
i∈I vi ≡ (0, 0, . . . , 0) (mod 2).

Hence to find a non-trivial subset of the ai whose product is a square, we simply need to
find a non-trivial linear dependency mod 2 amongst the vectors vi. This is easily achieved
through the methods of linear algebra, and guaranteed to exist once r > k.

The quadratic sieve factoring algorithm selects the bi so that it is easy to find the
small prime factors of the ai, using Corollary 2.3. There are other algorithms that attempt
to select the bi so that the ai are small and therefore more likely to have small prime
factors. The best algorithm, the number field sieve, is an analogy to the quadratic sieve
algorithm, over number fields.

10.7. Cryptosystems based on discrete logarithms. Another elementary number
theory problem that appears to be difficult is the “discrete log problem”, so that it used
as the basis for various cryptographic protocols. The issue is that given a primitive root g
mod p and an integer k (preferably coprime with p− 1) one can easily determine a :≡ gk

(mod p), whereas it is not obvious, given a primitive root g mod p and a residue a, how
to find k := indp(a), the discrete log of a mod p in base g.

The Diffie-Hellman key exchange. Alice and Bob wish to create a secret number that
they both know, without meeting, so to do so, they must share information across on open
channel with Oscar listening in:

(1) They agree upon a large prime p and primitive root g.
(2) Alice picks a secret exponent a, and Bob picks a secret exponent b.
(3) Alice transmits the least positive residue of ga (mod p) to Bob, and Bob transmits

the least positive residue of gb (mod p) to Alice.
(4) The secret key is the least residue of gab (mod p). Alice computes it as gab ≡ (gb)a

(mod p), and Bob computes it as gab ≡ (ga)b (mod p).

Oscar has access to p as well as to g, ga and gb (mod p), and he wishes to determine gab

(mod p). The only obvious way to proceed, with the information that he has, is to compute
the discrete logarithms of ga or gb in base g, to recover a or b and hence determine (gb)a
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or (ga)b (mod p). Notice that, in this exchange, Bob never knows Alice’s secret exponent
a, and Alice never knows Bob’s secret exponent b.

There is a lot more that can be said, for example how to stop a “man-in-the-middle”
attack. That is Oscar can get in-between Alice and Bob on their communication channel,
and hence pretend to be Bob when dealing with Alice and send her his own gb; and similarly
pretend to be Alice when dealing with Bob and send him his own ga. It is difficult to stop,
or even to recognize, such fraudulent behaviour, but there are well-established protocols
for dealing with this, and other, difficult situations.

The El Gamal cryptosystem. This is another public key cryptosystem (like RSA), in
which one uses the secret key, gab (mod p), above:

(1) Alice wishes to transmit a message M to Bob. She creates the cyphertext x ≡
M/gab (mod p), and transmits that.

(2) Bob determines the original message M by computing xgab (mod p).

As before Oscar has access to p as well as to g, ga and gb (mod p), and the cyphertext
x. Determining M ≡ xgab (mod p) is therefore equivalent to determining gab (mod p).
Oscar finds himself back with the same mathematical problem as in the Diffie-Hellman key
exchange.

Why does one choose one cryptosystem over another? This is an important practical
question, especially given that we are unable to prove that any particular cryptosystem is
truly secure from an intelligent attack (that is, there may be polynomial time algorithms for
factoring or for solving the discrete log problem). Most people who are not directly involved
in selling a particular product, would guess that RSA is the safest, since factoring is a much
better explored problem than discrete logs. However RSA has a distinct disadvantage as
compared with the El Gamal system, which is the quantity and difficulty of the calculation
involved in implementing the algorithms: Let us compare the cryptosystems in the situation
that Alice is regularly communicating with Bob. In RSA she must raise M to the power
e each time she transmits a message, which requires around log e multiplications mod p.
Typically we choose e to be large, that is of length comparable to the length of p, otherwise
RSA will not be very secure. On the other hand, in the El Gamal cryptosystem, Alice
can compute A and B−a mod p, once and for all, so that when we she transmits her
cyphertext she simply multiplies M by B−a (mod p), one multiplication. This difference
is not important if Alice works with a large computer, but many applications today use
hand-held devices, like a cellphone or a smartcard, which have limited computing capacity,
so this time difference is sigificant.
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11. The pigeonhole principle

11.1. Rational approximations to real numbers. We are interested in how close the
integer multiples of a given real number α can get to an integer; that is, are there integers
m,n such that nα −m is small? It is obvious that if α = p/q is rational then nα = m
whenever n = kq for some integer k, so that m = kp. How about irrational α?

Dirichlet’s Theorem. Suppose that α is a given real number. For every integer N ≥ 1
there exists a positive integer n ≤ N such that

|nα−m| < 1

N
,

for some integer m.

Proof. The N +1 numbers {0 ·α}, {1 ·α}, {2 ·α}, . . . , {N ·α} all lie in the interval [0, 1).
The intervals [

0,
1

N

)
,

[
1

N
,
2

N

)
, . . . ,

[
N − 1

N
, 1

)
partition [0, 1),17 and so each of our N + 1 numbers lies in exactly one of the N intervals.
Hence some interval contains at least two of our numbers, say {iα} and {jα} with 0 ≤
i < j ≤ N , so that |{iα} − {jα}| < 1

N . Therefore, if n = j − i then 1 ≤ n ≤ N , and if
m := [jα]− [iα] ∈ Z then

nα−m = (jα− iα)− ([jα]− [iα]) = {jα} − {iα},

and the result follows.

Corollary 11.1. If α is a real irrational number then there are infinitely many pairs m,n
of coprime positive integers for which∣∣∣α− m

n

∣∣∣ < 1

n2
.

Proof. By Dirichlet’s Theorem we have that for any N > 1, there exists n ≤ N such that∣∣∣α− m

n

∣∣∣ < 1

nN
≤ 1

n2
.

Suppose that we already have the pairs (mj , nj), 1 ≤ j ≤ k and then let N be the smallest
integer ≥ 1/min1≤j≤k{|njα−mj |}. Applying Dirichlet’s Theorem we find that there exists
a pair of integers m,n for which

|nα−m| < 1

N
≤ |njα−mj | for all j,

17That is each point of [0, 1) lies in exactly one of these intervals, and the union of these intervals
exactly equals [0, 1).
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and so this gives a new such pair.

Exercise 11.1.1. How can we guarantee that min1≤j≤k{|njα−mj |} ̸= 0 so that N is well-defined?

Another Proof of Corollary 3.7. Let α = a
m and N = m − 1 in Liouville’s Theorem so

that there exists integers r ≤ m − 1 and s such that |ra/m − s| < 1/(m − 1); that is
|ra−sm| < m/(m−1) ≤ 2. Hence ra−sm = −1, 0 or 1. It cannot equal 0 else m|sm = ar
and (m, a) = 1 so that m|r which is impossible as r < m. Hence ra ≡ ±1 (mod m) and
so ±r is the inverse of a (mod m).

For irrational α one might ask how the numbers {α}, {2α}, . . . , {Nα} are distributed
in [0, 1) as N → ∞, for α irrational. In an section G3 we will show that the values are
dense and see how this ties in with the geometry of the torus, and exponential sum theory.

We saw an important use of the pigeonhole principle in number theory in the proof
of Theorem 9.2, and this idea was generalized significantly by Minkowski and others.

11.2. Pell’s equation. Perhaps the most researched equation in the early history of
number theory is the so-called Pell’s equation: Are there integer solutions x, y to

x2 − dy2 = 1?

We will show in Theorem 11.2 that the answer is “yes” for any non-square positive integer
d. In section C4 we will see that solutions can always be found using the continued fraction
for

√
d. This was evidently known to Brahmagupta in India in 628 A.D., and one can guess

that it was well understood by Archimedes, judging by his “Cattle Problem”:

The Sun god’s cattle, friend, apply thy care
to count their number, hast thou wisdom’s share.

They grazed of old on the Thrinacian floor
of Sic’ly’s island, herded into four,
colour by colour: one herd white as cream,
the next in coats glowing with ebon gleam,

brown-skinned the third, and stained with spots the last.
Each herd saw bulls in power unsurpassed,
in ratios these: count half the ebon-hued,

add one third more, then all the brown include;
thus, friend, canst thou the white bulls’ number tell.
The ebon did the brown exceed as well,
now by a fourth and fifth part of the stained.

To know the spottedall bulls that remained
reckon again the brown bulls, and unite
these with a sixth and seventh of the white.
Among the cows, the tale of silver-haired

was, when with bulls and cows of black compared,
exactly one in three plus one in four.
The black cows counted one in four once more,
plus now a fifth, of the bespeckled breed

when, bulls withal, they wandered out to feed.
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The speckled cows tallied a fifth and sixth

of all the brown-haired, males and females mixed.
Lastly, the brown cows numbered half a third
and one in seven of the silver herd.
Tell’st thou unfailingly how many head

the Sun possessed, o friend, both bulls well-fed
and cows of ev’ry colourno-one will
deny that thou hast numbers’ art and skill,
though not yet dost thou rank among the wise.

But come! also the foll’wing recognise.

Whene’er the Sun god’s white bulls joined the black,
their multitude would gather in a pack
of equal length and breadth, and squarely throng

Thrinacia’s territory broad and long.
But when the brown bulls mingled with the flecked,
in rows growing from one would they collect,
forming a perfect triangle, with ne’er

a diff’rent-coloured bull, and none to spare.
Friend, canst thou analyse this in thy mind,
and of these masses all the measures find,
go forth in glory! be assured all deem

thy wisdom in this discipline supreme!

— from an epigram written to Eratosthenes (of Cyrene)
by Archimedes (of Alexandria), 250 B.C.

The first paragraph involves only linear equations. To resolve the second, one needs to
find a non-trivial solution in integers u, v to

u2 − 609 · 7766v2 = 1.

The first solution is enormous, the smallest herd having about 7.76 × 10206544 cattle: It
wasn’t until 1965 that anyone was able to write down all 206545 decimal digits! How did
Archimedes know that the solution would be ridiculously large? We don’t know, though
presumably he did not ask this question by chance.

Theorem 11.2. Let d ≥ 2 be a given non-square integer. There exist integers x, y for
which

x2 − dy2 = 1,

with y ̸= 0. If x1, y1 are the smallest solutions in positive integers, then all other solutions
are given by the recursion xn+1 = x1xn + dy1yn and yn+1 = x1yn + y1xn for n ≥ 1.

Proof. We begin by showing that there exists a solution with y ̸= 0. By Corollary 11.1,
there exists infinitely many pairs of integers (mj , nj), j = 1, 2, . . . such that |

√
d− m

n | ≤ 1
n2 .

Therefore

|m2 − dn2| = n2
∣∣∣√d− m

n

∣∣∣ · ∣∣∣√d+ m

n

∣∣∣ ≤ ∣∣∣√d+ m

n

∣∣∣ ≤ 2
√
d+

∣∣∣√d− m

n

∣∣∣ ≤ 2
√
d+ 1.

Since there are only finitely many possibilities for m2 − dn2 there must be some integer r,
with |r| ≤ 2

√
d + 1 such that there are infinitely many pairs of positive integers m,n for

which m2 − dn2 = r.
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Since there are only r2 pairs of residue classes (m mod r, n mod r) there must be
some pair of residue classes a, b such that there are infinitely many pairs of integers m,n
for which m2 − dn2 = r with m ≡ a (mod r) and n ≡ b (mod r). Let m1, n1 be the
smallest such pair, and m,n any other such pair, so that m2

1 − dn2
1 = m2 − dn2 = r with

m1 ≡ m (mod r) and n1 ≡ n (mod r). This implies that r|(m1n− n1m) and

(m1m− dn1n)
2 − d(m1n− n1m)2 = (m2

1 − dn21)(m
2 − dn2) = r2,

so that r2|(r2 + d(m1n− n1m)2) = (m1m− dn1n)
2 and thus r|(m1m− dn1n). Therefore

x = |m1m− dn1n|/r and y = |m1n− n1m|/r are integers for which x2 − dy2 = 1.

Exercise 11.2.1. Show that y ̸= 0 using the fact that (m,n) = 1 for each such pair m,n.

Let x1, y1 be the solution in positive integers with x1 +
√
dy1 minimal. Note that this

is ≥ 1 +
√
d > 1. We claim that all other such solutions take the form (x1 +

√
dy1)

n.

If not let x, y be the counterexample with x +
√
dy smallest, and X = x1x − dy1y and

Y = x1y − y1x. Then X
2 − dY 2 = (x21 − dy21)(x

2 − dy2) = 1, and

X +
√
dY = (x1 −

√
dy1)(x+

√
dy) =

x+
√
dy

x1 +
√
dy1

< x+
√
dy.

Since x, y was the smallest counterexample, hence X +
√
dY = (x1 +

√
dy1)

n for some

integer n ≥ 1, and therefore x+
√
dy = (x1 +

√
dy1)(X +

√
dY ) = (x1 +

√
dy1)

n+1

Exercise 11.2.2. This proof is not quite complete since we have not yet shown that X and Y are both

positive. Remedy this problem. (Proving that X > 0 is not difficult, from the fact that x2 = dy2+1 > dy2.

One might prove that Y > 0 by establishing that x1/y1 −
√
d > x/y −

√
d.)

One of the fascinating things about Pell’s equation is the size of the smallest solution,
as we saw in the example given by Archimedes. We will indicate in section E4, that the

smallest solution is ≤ ec
√
d for some constant c > 0. However what is surprising is that

usually the smallest solution is really this large. This is not something that has been
proved; indeed understanding the distribution of sizes of the smallest solutions to Pell’s
equation is an outstanding open question in number theory.

Another issue is whether there is a solution to u2 − dv2 = −1. Notice, for example,
that 22 − 5 · 12 = −1. Evidently if there is a solution then −1 is a square mod d, so that d
has no prime factors ≡ −1 (mod 4). Moreover d is not divisible by 4 else u2 ≡ −1 (mod 4)
which is impossible. We saw that x2 − dy2 = 1 has solutions for every non-square d > 1,
and one might have guessed that there would be some simple criteria to decide whether
there are solutions to u2 − dv2 = −1, but there does not appear to be. Even the question
of whether there are solutions for “many” d has only recently been resolved by Fouvry and
Kluners.

11.3. Transcendental numbers. In section 3.2 we showed that
√
d is irrational if d is

an integer that is not the square of an integer. We can also show that there exist irrational
numbers simply by how well they can be approximated by rationals:
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Proposition 11.3. Suppose that α is a given real number. If for every integer q ≥ 1 there
exist integers m,n such that

0 < |nα−m| <1

q
,

then α is irrational.

Proof. If α is rational then α = p/q for some coprime integers p, q with q ≥ 1. For any
integers m,n we then have nα−m = (np−mq)/q. Now, the value of np−mq is an integer
≡ np (mod q). Hence |np−mq| = 0 or is an integer ≥ 1, and therefore |nα−m| = 0 or is
≥ 1/q.

There are several other methods to prove that numbers are irrational, but more chal-
lenging is to prove that a number is transcendental; that is, that it is not the root of a
polynomial with integer coefficients (such a root is called an algebraic number).

Liouville’s Theorem. Suppose that α is the root of an irreducible polynomial f(x) ∈ Z[x]
of degree ≥ 2. There exists a constant cα > 0 such that for any rational p/q with (p, q) = 1
and q ≥ 1 we have ∣∣∣∣α− p

q

∣∣∣∣ ≥ cα
qd

.

Proof. Since I := [α− 1, α + 1] is a closed interval, there exists a bound B ≥ 1 such that
|f ′(t)| ≤ B for all t ∈ I. Let cα = 1/B. If p/q ̸∈ I then |α − p/q| ≥ 1 ≥ cα ≥ cα/q

d as
desired. Henceforth we may assume that p/q ∈ I.

If f(x) =
∑d

i=0 fix
i then qdf(p/q) =

∑d
i=0 fip

iqd−i ∈ Z. Now f(p/q) ̸= 0 since f is
irreducible of degree ≥ 2 and so |qdf(p/q)| ≥ 1.

The mean value theorem tells us that there exists t lying between α and p/q, and
hence in I, such that

f ′(t) =
f(α)− f(p/q)

α− p/q
.

Therefore ∣∣∣∣α− p

q

∣∣∣∣ =
|qdf(p/q)|
qd|f ′(t)|

≥ 1

Bqd
=
cα
qd

.

One usually first proves that there exist transcendental numbers by simply showing
that the set of real numbers is uncountable, and the set of algebraic numbers is countable,
so that the vast majority of real numbers are transcendental. However it is unsatisfy-
ing that this method yields that most real numbers are transcendental, without actually
constructing any! As a consequence of Liouville’s Theorem it is not difficult to construct
transcendental numbers, for example

α =
1

10
+

1

102!
+

1

103!
+ . . .

since if p/q with q = 10(n−1)! is the sum of the first n− 1 terms then 0 < α− p/q < 2/qn,
and α cannot be an algebraic number by Liouville’s Theorem.

Liouville’s Theorem has been improved to its, more-or-less, final form:
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Roth’s Theorem. (1955) Suppose that α is a real algebraic number. For any fixed ϵ > 0
there exists a constant cα,ϵ > 0 such that for any rational p/q with (p, q) = 1 and q ≥ 1 we
have ∣∣∣∣α− p

q

∣∣∣∣ ≥ cα,ϵ
q2+ϵ

.

Evidently this cannot be improved much since, by Corollary 11.1, we know that if α

is real, irrational then there are infinitely many p, q with
∣∣∣α− p

q

∣∣∣ ≤ 1
q2 . In section C2 we

will show that all p/q for which
∣∣∣α− p

q

∣∣∣ ≤ 1
2q2 can be easily identified from the continued

fraction of α. Moreover we will see that if α is a quadratic, real irrational then there exists

a constant cα > 0 such that
∣∣∣α− p

q

∣∣∣ ≥ cα
q2 for all p/q. The most amusing example is

where α = 1+
√
5

2 and the best approximations are given by Fn+1/Fn where Fn is the nth
Fibonacci numbers (see section A1 for details). One can show that∣∣∣∣∣1 +

√
5

2
− Fn+1

Fn

∣∣∣∣∣ = 1

5F 2
n

+
cn
F 4
n

,

where |cn| < 1.
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12. Binary quadratic forms

12.1. Representation of integers by binary quadratic forms. We have already
seen that the integers that can be represented by the binary linear form ax+ by are those
integers divisible by gcd(a, b).

Exercise 12.1.1. Show that if N can be represented by ax+ by then there exist coprime integers m and

n such that am+ bn = N .

Now we let a, b, c be given integers, and ask what integers can be represented by the
binary quadratic form ax2+bxy+cy2? That is, for what integers N do there exist coprime
integers m,n such that

(12.1) N = am2 + bmn+ cn2 ?

We may reduce to the case that gcd(a, b, c) = 1 by dividing though by gcd(a, b, c). One
idea is to complete the square to obtain

4aN = (2am+ bn)2 − dn2

where the discriminant d := b2−4ac. Hence d ≡ 0 or 1 (mod 4). When d < 0 the right side
of the last displayed equation can only take positive values, which makes our discussion
easier than when d > 0. For this reason we will restrict ourselves to the case d < 0 here,
and revisit the case d > 0 in section C4. In section 9 we already worked with a few basic
examples, and we will now see how this theory develops.

Exercise 12.1.2. Show that if d < 0 then am2 + bmn+ cn2 has the same sign as a, no matter what the

choices of integers m and n.

We replace a, b, c by−a,−b,−c if necessary, to ensure that the value of am2+bmn+cn2

is always ≥ 0, and so we call this a positive definite binary quadratic form.

Exercise 12.1.3. Show that if ax2 + bxy + cy2 is positive definite then a, c > 0.

The key idea stems from the observation that x2 + y2 represents the same integers as
X2+2XY +2Y 2. This is easy to see for ifN = m2+n2 thenN = (m−n)2+2(m−n)n+2n2,
and similarly if N = u2 + 2uv + 2v2 then N = (u + v)2 + v2. The reason is that the
substitution (

x
y

)
=M

(
X
Y

)
where M =

(
1 1
0 1

)
transforms x2 + y2 into X2 + 2XY + 2Y 2, and the transformation is invertible, since
detM = 1. Much more generally define

SL(2,Z) =
{(

α β
γ δ

)
: α, β, γ, δ ∈ Z and αδ − βγ = 1

}
.

Exercise 12.1.4. Prove that the binary quadratic form ax2 + bxy + cy2 represents the same integers as

the binary quadratic form AX2 + BXY + CY 2 whenever

(
x
y

)
= M

(
X

Y

)
with M ∈ SL(2,Z). We say
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that these two quadratic forms are equivalent. This yields an equivalence relation and splits the binary

quadratic forms into equivalence classes.

Exercise 12.1.5. Show that two equivalent binary quadratic forms represent each integer in the same

number of different ways.

We can write ax2+ bxy+ cy2 = (x y )

(
a b/2
b/2 c

)(
x
y

)
and note that the discrim-

inant is −4 times the determinant of

(
a b/2
b/2 c

)
. We deduce that

AX2 +BXY + CY 2 = (X Y )MT

(
a b/2
b/2 c

)
M

(
X
Y

)
,

and so A = aα2 + bαγ + cγ2 and C = aβ2 + bβδ + cδ2 as

(12.2)

(
A B/2
B/2 C

)
=MT

(
a b/2
b/2 c

)
M.

Exercise 12.1.6. Use (12.2) to show that two equivalent binary quadratic forms have the same discrim-

inant.

12.2. Equivalence classes of binary quadratic forms. Now 29X2+82XY +58Y 2 is
equivalent to x2+y2 so when we are considering representations, it is surely easier to work
with the latter form rather than the former. Gauss observed that every equivalence class
of binary quadratic forms (with d < 0) contains a unique reduced representative, where
the quadratic form ax2 + bxy + cy2 with discriminant d < 0 is reduced if

−a < b ≤ a ≤ c, and b ≥ 0 whenever a = c.

For a reduced binary quadratic form, |d| = 4ac− (|b|)2 ≥ 4a · a− a2 = 3a2 and hence

a ≤
√
|d|/3.

Therefore for a given d < 0 there are only finitely many a, and so b (as |b| ≤ a), but then
c = (b2−d)/4a is determined, and so there are only finitely many reduced binary quadratic
forms of discriminant d. Hence h(d), the class number, which is the number of equivalence
classes of binary quadratic forms of discriminant d, is finite when d < 0. In fact h(d) ≥ 1
since we always have the principal form (for both positive and negative discriminants),{

x2 − (d/4)y2 when d ≡ 0 (mod 4),

x2 + xy+ (1−d)
4 y2 when d ≡ 1 (mod 4).

Exercise 12.2.1. Show that there are no other binary quadratic forms x2+bxy+cy2, up to equivalence.
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Theorem 12.1. Every positive definite binary quadratic form is properly equivalent to a
reduced form.

Proof. We will define a sequence of properly equivalent forms; the algorithm terminates
when we reach one that is reduced. Given a form (a, b, c):18

i) If c < a the transformation

(
x
y

)
=

(
0 −1
1 0

)(
x′

y′

)
, yields the form (c,−b, a)

which is properly equivalent to (a, b, c).

ii) If b > a or b ≤ −a then select b′ to be the least residue, in absolute value, of b
(mod 2a), so that −a < b′ ≤ a, say b′ = b− 2ka. Hence the transformation matrix will be(
x
y

)
=

(
1 −k
0 1

)(
x′

y′

)
. The resulting form (a, b′, c′) is properly equivalent to (a, b, c).

iii) If c = a and −a < b < 0 then we use the transformation

(
x
y

)
=

(
0 −1
1 0

)(
x′

y′

)
yielding the form (a,−b, a).

If the resulting form is not reduced then repeat the algorithm. If none of these
hypotheses holds then one can easily verify that the form is reduced. To prove that the
algorithm terminates in finitely many steps we follow the leading coefficient a: a starts
as a positive integer. Each transformation of type (i) reduces the size of a. It stays the
same after transformations of type (ii) or (iii), but after a type (iii) transformation the
algorithm terminates, and after a type (ii) transformation we either have another type (i)
transformation, or else the algorithm stops after at most one more transformation. Hence
the algorithm finishes in no more than 2a+ 1 steps.

Example: Applying the reduction algorithm to the form (76, 217, 155) of discriminant
−31, one finds the sequence of forms (76, 65, 14), (14,−65, 76), (14,−9, 2), (2, 9, 14), (2, 1, 4),
the sought after reduced form. Similarly the form (11, 49, 55) of discriminant −19, gives
the sequence of forms (11, 5, 1), (1,−5, 11), (1, 1, 5).

The very precise condition in the definition of “reduced” were so chosen because every
positive definite binary quadratic form is properly equivalent to a unique reduced form,
which the enthusiastic reader will now prove:

Exercise 12.2.2. (i) Show that the least values taken by the reduced form am2 + bmn + cn2 with
(m,n) = 1, are a ≤ c ≤ a − |b| + c, each represented twice (the last four times if b = 0). (Hint: One

might use the inequality am2 + bmn + cn2 ≥ am2 − |b|max{m,n}2 + cn2, to show that if the value is
am2 + bmn+ cn2 ≤ a− |b|+ c then |m|, |n| ≤ 1.)

(ii) Use this, and exercise 12.1.5, to show that if two different reduced forms are equivalent then they
must be ax2 + bxy + cy2 and ax2 − bxy + cy2, and thus a < c since these are both reduced.

(iii) Suppose that M ∈ SL(2,Z) transforms one into the other. Given that we know all the represen-
tations of a and c by ax2 + bxy + cy2, use (12.2) to deduce that M = ±I.

(iv) Deduce that b = −b so that b = 0. Therefore no two reduced forms can be equivalent.

Together with Theorem 12.1 this implies that every positive definite binary quadratic form is properly

equivalent to a unique reduced form.

18Which we write for convenience in place of ax2 + bxy + cy2.
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What restrictions are there on the values that can be taken by a binary quadratic
form?

Proposition 12.2. Suppose d = b2 − 4ac with (a, b, c) = 1, and p is a prime. (i) If
p = am2+bmn+cn2 for some integers m,n then d is a square mod 4p. (ii) If d is a square
mod 4p then there exists a binary quadratic form of discriminant d that represents p.

Proof. (i) Note that (m,n)2|am2 + bmn+ cn2 = p so that (m,n) = 1.
Now d = b2 − 4ac ≡ b2 (mod 4), and even mod 4p if p|ac. If p|d then d is a square

mod p and the result then follows unless p = 2. But if 2|d = b2 − 4ac then b is even;
therefore d = b2 − 4ac ≡ 0 or 4 (mod 8) and hence is a square mod 8.

If p = 2̸ |acd then b is odd, and so am2 + bmn+ cn2 ≡ m2 +mn+ n2 ̸≡ 0 (mod 2) as
(m,n) = 1.

So suppose that p ̸ |2ad and p = am2+ bmn+ cn2. Therefore 4ap = (2am+ bn)2−dn2

and so dn2 is a square mod 4p. Now p̸ |n else p|4ap + dn2 = (2am + bn)2 so that p|2am
which is impossible as p ̸ |2a and (m,n) = 1. We deduce that d is a square mod p.

(ii) If d ≡ b2 (mod 4p) then d = b2 − 4pc for some integer c, and so px2 + bxy + cy2

is a quadratic form of discriminant d which represents p = p · 12 + b · 1 · 0 + c · 02.

12.3. Class number one.

Corollary 12.3. Suppose that h(d) = 1. Then p is represented by the form of discriminant
d if and only if d is a square mod 4p.

Proof. This follows immediately from Proposition 12.2, since there is just one equivalence
class of quadratic forms of discriminant d, and forms in the same equivalence class represent
the same integers by exercise 12.1.4.

The proof that the number of reduced forms is finite can also by turned into an
algorithm to find all the reduced binary quadratic forms of a given negative discriminant.

Example: If d = −163 then |b| ≤ a ≤
√
163/3 < 8. But b is odd so |b| = 1, 3, 5

or 7. Therefore ac = (b2 + 163)/4 = 41, 43, 47 or 53, a prime, with a < c and hence
a = 1. However all such forms are equivalent to the principal form, by exercise 12.2.1, and
therefore h(−163) = 1. This implies, by Corollary 12.3, that if (−163/p) = 1 then p can
be represented by the binary quadratic form x2 + xy + 41y2.

Exercise 12.3.1. Determine h(d) for −20 ≤ d ≤ −1 as well as for d = −43 and −67.

Typically one restricts attention to fundamental discriminants, which means that if
q2|d then q = 2 and d ≡ 8 or 12 (mod 16). It turns out that the only fundamental d < 0
with h(d) = 1 are d = −3,−4,−7,−8,−11,−19,−43,−67,−163. Therefore, as in the
example above, if p̸ |d then

p is represented by x2 + y2 if and only if (−1/p) = 1,
p is represented by x2 + 2y2 if and only if (−2/p) = 1,
p is represented by x2 + xy + y2 if and only if (−3/p) = 1,
p is represented by x2 + xy + 2y2 if and only if (−7/p) = 1,
p is represented by x2 + xy + 3y2 if and only if (−11/p) = 1,
p is represented by x2 + xy + 5y2 if and only if (−19/p) = 1,
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p is represented by x2 + xy + 11y2 if and only if (−43/p) = 1,
p is represented by x2 + xy + 17y2 if and only if (−67/p) = 1,
p is represented by x2 + xy + 41y2 if and only if (−163/p) = 1.

Euler noticed that the polynomial x2+x+41 is prime for x = 0, 1, 2, . . . , 39, and similarly
the other polynomials above. Rabinowiscz proved that this is an “if and only if” condition;
that is

Rabinowiscz’s criterion. We have h(1− 4A) = 1 for A ≥ 2 if and only if x2 + x+A is
prime for x = 0, 1, 2, . . . , A− 2.

Note that (A− 1)2 + (A− 1) +A = A2. We will prove Rabinowiscz’s criterion below
The proof that the above list gives all of the d < 0 with h(d) = 1 has an interesting history. By 1934

it was known that there is no more than one further such d, but that putative d could not be ruled out

by the method. In 1952, Kurt Heegner, a German school teacher proposed an extraordinary proof that

there are no further d; at the time his paper was ignored since it was based on a result from an old book

(of Weber) whose proof was known to be incomplete. In 1966 Alan Baker gave a very different proof that

was acknowledged to be correct. However, soon afterwards Stark realized that the proofs in Weber are

easily corrected, so that Heegner’s work had been fundamentally correct. Heegner was subsequently given

credit for solving this famous problem, but sadly only after he had died. Heegner’s paper contains a most

extraordinary construction, widely regarded to be one of the most creative and influential in the history

of number theory, that we will discuss again in section H2 on elliptic curves.

What about when the class number is not one? In the first example, h(−20) = 2, the
two reduced forms are x2+5y2 and 2x2+2xy+3y2. By Proposition 12.2(i), p is represented
by at least one of these two forms if and only if (−5/p) = 0 or 1, that is, if p ≡ 1, 3, 7 or
9 (mod 20) or p = 2 or 5. So can we tell which of these primes are represented by which
of the two forms? Note that if p = x2 + 5y2 then (p/5) = 0 or 1 and so p = 5 or p ≡ ±1
(mod 5), and thus p ≡ 1 or 9 (mod 20). If p = 2x2 + 2xy + 3y2 then 2p = (2x+ y)2 + 5y2

and so p = 2 or (2p/5) = 1, that is (p/5) = −1, and hence p ≡ 3 or 7 (mod 20). Hence we
have proved

p is represented by x2 + 5y2 if and only if p = 5, or p ≡ 1 or 9 (mod 20);
p is represented by 2x2 + 2xy + 3y2 if and only if p = 2, or p ≡ 3 or 7 (mod 20).

That is, we can distinguish which primes can be represented by which binary quadratic
form of discriminant −20 through congruence conditions, despite the fact that the class
number is not one. However we cannot always distinguish which primes are represented
by which binary quadratic form of discriminant d. It is understood how to recognize those
discriminants for which this is the case, indeed these idoneal numbers were recognized by
Euler. He found 65 of them, and no more are known – it is an open conjecture as to
whether Euler’s list is complete. It is known that there can be at most one further idoneal
number.

Proof of Rabinowiscz’s criterion. We begin by showing that f(n) := n2 + n + A is prime
for n = 0, 1, 2, . . . , A − 2, if and only if d = 1 − 4A is not a square mod 4p for all
primes p < A. For if n2 + n + A is composite, let p be its smallest prime factor so that
p ≤ f(n)1/2 < f(A − 1)1/2 = A. Then (2n + 1)2 − d = 4(n2 + n + A) ≡ 0 (mod 4p) so
that d is a square mod 4p. On the other hand if d is a square mod 4p where p is a prime
≤ A − 1, select n to be the smallest integer ≥ 0 such that d ≡ (2n + 1)2 mod 4p. Then
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0 ≤ n ≤ p − 1 ≤ A − 2, and p divides n2 + n + A with p < A = f(0) < f(n) so that
n2 + n+A is composite.

Now we show that h(d) = 1 if and only if d = 1 − 4A is not a square mod 4p for all
primes p < A. If h(d) > 1 then there exists a reduced binary quadratic ax2 + bxy + cy2

of discriminant d with 1 < a ≤
√

|d|/3. If p is a prime factor of a then p ≤ a < A and
d = b2 − 4ac is a square mod 4p. On the other hand if d is a square mod 4p, and h(d) = 1
then p is represented by x2+xy+Ay2 by Proposition 12.2(ii). However the smallest values
represented by this form are 1 and A, by exercise 12.2.2(i), and this gives a contradiction
since 1 < p < A. Hence h(d) > 1.


