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“Unpolished jade can never become a tool”

This document is a brief introduction to exploratory and inferential geo-
statistical analysis. At the same time, it introduces the R environment
for statistical computing and visualisation [15, 24] and several R pack-
ages, notably sp [21] for spatial data structures and gstat [22] for con-
ventional geostatistics.

The exercise assumes no prior knowledge of either geostatistics nor the
R environment. R is an open-source environment for data manipula-
tion, statistical analysis, and visualization. There are versions for MS-
Windows, Mac OS/X, and various flavours of Unix. It is most convenient
to run R within an integrated development environment (IDE); in this
exercise we will use RStudio1 as explained in §1.

The exercise is organized as a set of discussions, tasks, R code to com-
plete the tasks, self-study questions (with answers) to test your under-
standing, and a few challenges. §19 is a small test of how well the
material has been mastered.

After completing the exercise, you will have seen just a very small part
of the R environment, and the simplest concepts of (geo)statistics. There
are many resources for going futher, see §17, which you should consult
before undertaking your own geostatistical analyses.

Note: The source for this document is a text file that includes ordinary
LATEX source and “chunks” of R source code, using the Noweb2 syntax. The
formatted R source code, R text output, and R graphs in this document
were automatically generated and incorporated into a LATEX source file by
running the Noweb source document through R, using the knitr package
[29]. The LATEX source was then compiled by LATEX into the PDF you are
reading.

1 Installing R and RStudio

If you do not have R and RStudio on your computer, proceed as follows:

1. Download base R for your operating system from https://cran.
r-project.org.

2. Install it on your system.

3. Download RStudio desktop version for your operating system from
https://www.rstudio.com/products/RStudio/.

4. Install it on your system.

5. Start RStudio; you should see a screen like Figure 1.

1 http://www.rstudio.org
2 http://www.cs.tufts.edu/~nr/noweb/
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Figure 1: RStudio screen after installation

1.1 Installing contributed packages

In this exercise we will use several of the thousands of contributed R
packages, in addition to the standard packages supplied with a fresh
installation of R.

To get new packages, use the “Install” toolbar button of the “Packages”
tab in RStudio, and ask that packages sp3 and gstat4 be installed; see
Figure 2.

This only needs to be done once for each additional (group of) pack-
age(s), and then the package(s) are on your system available for use.

In general you also check the “Install dependencies” box; this will first
install any packages on which the selected packages depend, and then
the selected packages.

The first time you install new packages, you will be asked to specify a
“mirror”, i.e., one of the many servers around the world from which R
and packages can be downloaded. They should all have the same pack-
ages; so pick one close to you for faster access.

Note: You can also use the install.packages function at the console
prompt – do not do this if you’ve already installed the packages using
the interactive dialogue (above). To install sp and gstat and their de-
pendencies, use this command, with the packages you want to load as
a vector of character strings, using the c “catenate” (Latin for “make a
chain”) function:

install.packages(c("sp", "gstat"), dependencies=TRUE)

3 “classes and methods for spatial data: points, lines, polygons and grids”
4 “Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation”
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Figure 2: Installing Packages with RStudio

2 First interaction with R

The simplest way to interact with the R environment is by typing com-
mands at the “R console” command line; this is the “Console” window in
the RStudio IDE. R shows that it is waiting for your command by showing
a > character as a prompt for you to enter a command for R to execute.

The simplest use of R is as a calculator. You type an expression and R
computes the result.

Task 1 : Compute the number of radians in one circular degree. •

In this document, input and output are shown as follows:
2*pi/360

[1] 0.01745329

This means: when R prompts for input:

1. You type an expression, in this case 2*pi/360, and press the “En-
ter” key.
Do not type the > prompt; this is from the R system, telling you it
is ready for input.

2. R then shows the result in the console. In this case it is a one-
element vector (shown by the [1]), with the value 0.017453.

Note that pi is a constant value known to R.

Note: If you type a command that is not complete, the R console will
prompt you for more input with a + “continuation” prompt. If you made
a mistake input, just press the Esc key and start over.

3



Figure 3: Creating a new R script in RStudio

Challenge: At the R command line, write and execute an expression to
compute the number of seconds in a standard, 365-day, year. How many
are there?

2.1 Using a script

Although you can use R from the console, it is much better to write your
R code in an R script. This is a text file, conventionally saved with file
extension .R, with a list of R commands.

Task 2 : Create a new R script, with the File | New File | R Script
menu item, or the icon at the top left of the toolbar; see Figure 3. •

Task 3 : Enter the R code from the previous § in the script, and execute
these commands in the console by selecting them and pressing the Run
button in the toolbar, or by pressing Command + Return (Windows) or
Command + Return (Mac). The code will be executed, and the results will
be shown in the Console. See Figure 4. •

Task 4 : Save the R script, with the File | Save menu item or the
small disk icon in the toolbar of the script window. •

The default file extension, which you should not change, is .R.

For the remainder of the tutorial, write your R code in a script (you can
use several, to break up the work, if you wish), and execute the code as
shown above.
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Figure 4: Executing commands from an R script in RStudio

2.2 Loading packages

R is a modular system: there is a base package and some standard
packages that are always loaded when R is started. In addition, there
are several thousand contributed packages to perform specific tasks.
We installed two of these (sp and gstat) with their dependcies in §1,
above. In this exercise we will use the gstat package for geostatistical
modelling, prediction and simulation, contributed by Pebesma [20] and
the sp package for representing spatial data in R [2].

Task 5 : Load the sp and gstat packages into the workspace. •

You can load these in RStudio by checking the small “check box” next to
the package name in the “Packages” tab; see Figure 5.

You only need to load packages one time in each session, although it will
not cause any problems if you load them more than once.

You can also load packages from the R console with the library func-
tion:
library(sp)
library(gstat)

The require function is almost identical to library.

You can see the loaded packages with the search “search path” function:
search()

[1] ".GlobalEnv" "package:gstat" "package:knitr"
[4] "package:rpart.plot" "package:rpart" "package:sp"
[7] "ESSR" "package:stats" "package:graphics"
[10] "package:grDevices" "package:utils" "package:datasets"
[13] "package:methods" "Autoloads" "package:base"
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Figure 5: Loading installed Packages with RStudio

3 Loading and examining the Meuse dataset

Most R packages include sample datasets that illustrate the functionality
of the package. For this exercise we will use the Meuse soil pollution
data set distributed with the sp package. This dataset is described in
Appendix §A; for now it is sufficient to know that the dataset consists
of topsoil samples which were analyzed for their concentration of toxic
heavy metals, along with the sample location.

The data function displays the built-in datasets available with currently-
loaded packages:
data()

Data sets in package `datasets':

AirPassengers Monthly Airline Passenger Numbers 1949-1960
BJsales Sales Data with Leading Indicator
BJsales.lead (BJsales) Sales Data with Leading Indicator
BOD Biochemical Oxygen Demand
CO2 Carbon Dioxide Uptake in Grass Plants
ChickWeight Weight versus age of chicks on different diets
...

The datasets in one package can be shown with the optional package
argument:
data(package="sp")

Data sets in package `sp':

Rlogo Rlogo jpeg image
gt (Rlogo) Rlogo jpeg image
meuse Meuse river data set
meuse.area River Meuse outline
meuse.grid Prediction Grid for Meuse Data Set
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meuse.grid_ll Prediction Grid for Meuse Data Set, geographical coordinates
meuse.riv River Meuse outline

Challenge: Display the datasets available in the gstat package.

Note: R also provides functions for loading data from external sources,
e.g., read.table to read delimited text files and and read.csv to read
comma-separated values (CSV) text files. In this exercise we will not show
to how to load your own datasets; see the R Data Import/Export Manual
[25].

Task 6 : Load the meuse dataset into the workspace. •

The data function also loads a named dataset. We show the contents of
the workspace before and after with the ls “list objects” function:
ls()

character(0)

data("meuse")
ls()

[1] "meuse"

Q1 : What objects were in the workspace before and after loading the
meuse dataset? Jump to A1 •

Task 7 : Examine the structure of the Meuse dataset. •

The str “structure” function shows the structure of an R object:
str(meuse)

'data.frame': 155 obs. of 14 variables:
$ x : num 181072 181025 181165 181298 181307 ...
$ y : num 333611 333558 333537 333484 333330 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ copper : num 85 81 68 81 48 61 31 29 37 24 ...
$ lead : num 299 277 199 116 117 137 132 150 133 80 ...
$ zinc : num 1022 1141 640 257 269 ...
$ elev : num 7.91 6.98 7.8 7.66 7.48 ...
$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...
$ dist.m : num 50 30 150 270 380 470 240 120 240 420 ...

This is the typical R data frame structure: a matrix with named columns
which are database fields (“variables”), and rows which are database
records.

Note that the matrix is display rotated: the vertical list of data fields is
actually the columns of the underlying matrix, and the horizontal lists of
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values are per-row values. We can see this by displaying the data frame
as a matrix, using the as.matrix “convert to matrix” function:
dim(meuse)

[1] 155 14

dim(as.matrix(meuse))

[1] 155 14

str(as.matrix(meuse))

chr [1:155, 1:14] "181072" "181025" "181165" "181298" "181307" ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:155] "1" "2" "3" "4" ...
..$ : chr [1:14] "x" "y" "cadmium" "copper" ...

head(as.matrix(meuse))

x y cadmium copper lead zinc elev dist
1 "181072" "333611" "11.7" " 85" "299" "1022" " 7.909" "0.00135803"
2 "181025" "333558" " 8.6" " 81" "277" "1141" " 6.983" "0.01222430"
3 "181165" "333537" " 6.5" " 68" "199" " 640" " 7.800" "0.10302900"
4 "181298" "333484" " 2.6" " 81" "116" " 257" " 7.655" "0.19009400"
5 "181307" "333330" " 2.8" " 48" "117" " 269" " 7.480" "0.27709000"
6 "181390" "333260" " 3.0" " 61" "137" " 281" " 7.791" "0.36406700"
om ffreq soil lime landuse dist.m

1 "13.6" "1" "1" "1" "Ah" " 50"
2 "14.0" "1" "1" "1" "Ah" " 30"
3 "13.0" "1" "1" "1" "Ah" " 150"
4 " 8.0" "1" "2" "0" "Ga" " 270"
5 " 8.7" "1" "2" "0" "Ah" " 380"
6 " 7.8" "1" "2" "0" "Ga" " 470"

The dim “dimensions” function shows the matrix dimensions; the head
function shows the first few lines of large objects.

The $ symbol separates the dataframe name from the field name.

Q2 : How many observations (cases) and fields (variables) are there?
Jump to A2 •

Notice that some variables are continuous (e.g., the metal concentra-
tions) and some are classified (e.g., the flood frequency ffreq); these
are called R factors.

All R functions and built-in datasets have help text in the R environment.In-program help

Task 8 : View the in-program help information for the Meuse dataset.
•

The ? “help” function displays help on a function, method or built-in
dataset.
help(meuse)

On some systems this will display in a browser window; in RStudio it will
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display in the “Help” tab of the bottom-right window pane.

Q3 : Which fields show that this is spatial data, i.e., data where each
observation has a known georeference? Jump to A3 •

Q4 : What are the units of measure of the metals? Jump to A4 •

Figure 6 is a Google Earth view of the Meuse observation points, with
their Zn concentrations5. The village of Stein is on a high terrace; the
study area is the flood plain and active terrace. The Meuse river borders
the study area on the S and W; the water body to the E is a canal.

Another way to examine any R object is with the summary method. This
shows summary information appropriate to the type of R object.

Task 9 : Display the summary of the Meuse dataframe. •
summary(meuse)

x y cadmium copper
Min. :178605 Min. :329714 Min. : 0.200 Min. : 14.00
1st Qu.:179371 1st Qu.:330762 1st Qu.: 0.800 1st Qu.: 23.00
Median :179991 Median :331633 Median : 2.100 Median : 31.00
Mean :180005 Mean :331635 Mean : 3.246 Mean : 40.32
3rd Qu.:180630 3rd Qu.:332463 3rd Qu.: 3.850 3rd Qu.: 49.50
Max. :181390 Max. :333611 Max. :18.100 Max. :128.00

lead zinc elev dist
Min. : 37.0 Min. : 113.0 Min. : 5.180 Min. :0.00000
1st Qu.: 72.5 1st Qu.: 198.0 1st Qu.: 7.546 1st Qu.:0.07569
Median :123.0 Median : 326.0 Median : 8.180 Median :0.21184
Mean :153.4 Mean : 469.7 Mean : 8.165 Mean :0.24002
3rd Qu.:207.0 3rd Qu.: 674.5 3rd Qu.: 8.955 3rd Qu.:0.36407
Max. :654.0 Max. :1839.0 Max. :10.520 Max. :0.88039

om ffreq soil lime landuse dist.m
Min. : 1.000 1:84 1:97 0:111 W :50 Min. : 10.0
1st Qu.: 5.300 2:48 2:46 1: 44 Ah :39 1st Qu.: 80.0
Median : 6.900 3:23 3:12 Am :22 Median : 270.0
Mean : 7.478 Fw :10 Mean : 290.3
3rd Qu.: 9.000 Ab : 8 3rd Qu.: 450.0
Max. :17.000 (Other):25 Max. :1000.0
NA's :2 NA's : 1

Q5 : What are the minimum, median and maximum concentrations of
copper in the topsoil? Jump to A5 •

4 * Taking a break and re-starting

At any point during the exercise you can to take a break, close R and
re-start another time. This section explains how to take a break while

5 source: Hengl [14]
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Figure 6: Meuse sample points, with zinc concentrations, shown in Google Earth
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saving your work, and then restart where you left off. If you want to
continue on now, just jump to §5.

You can exit R with the q “quit” function, or you can use the normal
way to leave a program, e.g., RStudio File | Close Projet or File |
Quit RStudio.
q()

You will be asked if you wish to save the workspace; if you do so the
save.image function is called with filename .Rdata (i.e., only an exten-
sion, no file name). This will save all your workspace objects in this file
in the current directory.

Note: By default Windows and Mac OS/X do not show file extensions,
and so the .Rdata file is not visible in the file manager.

When you are ready to continue:

Task 10 : Start R, and load your saved workspace. •

If you answered “yes” to the query “Save workspace?” when you took a
break, and you start R in the same working directory, the workspace in
.RData will be restored, also if you re-start RStudio in the same direc-
tory.

Any R scripts that were shown in the Scripts window should also be
automatically re-loaded; if not, re-load with the File | Open File...
or File | Open Recent menu items.

However, R does not automatically reload add-in packages, so you have
to again load sp and gstat:
library(sp)
library(gstat)

5 Non-spatial univariate EDA and transformation

Before considering the spatial aspects of the data using gstat, we briefly
look at the data as non-spatial dataset, i.e., considering feature (or, at-
tribute) space.

Task 11 : Display the actual data values for zinc (Zn) content, both in
sample and sort order. •

To reference a field in a dataframe, use the $ field separator to name thethe $ field sepa-
rator field within the dataframe, using the notation dataframe$fieldname.

To sort a vector (here, the set of Zn concentrations) use the sort func-
tion:
meuse$zinc

[1] 1022 1141 640 257 269 281 346 406 347 183 189 251 1096
[14] 504 326 1032 606 711 735 1052 673 402 343 218 200 194
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[27] 207 180 240 180 208 198 250 192 213 321 569 833 906
[40] 1454 298 167 176 258 746 746 464 365 282 375 222 812
[53] 1548 1839 1528 933 432 550 1571 1190 907 761 659 643 801
[66] 784 1060 119 778 703 676 793 685 593 549 680 539 560
[79] 1136 1383 1161 1672 765 279 241 317 545 505 420 332 400
[92] 553 577 155 224 180 226 186 198 187 199 157 203 143
[105] 136 117 113 130 192 240 221 140 128 166 191 232 203
[118] 722 210 198 139 253 703 832 262 142 119 152 415 474
[131] 126 210 220 133 141 158 129 206 451 296 189 154 169
[144] 403 471 612 601 783 258 214 166 496 342 162 375

sort(meuse$zinc)

[1] 113 117 119 119 126 128 129 130 133 136 139 140 141
[14] 142 143 152 154 155 157 158 162 166 166 167 169 176
[27] 180 180 180 183 186 187 189 189 191 192 192 194 198
[40] 198 198 199 200 203 203 206 207 208 210 210 213 214
[53] 218 220 221 222 224 226 232 240 240 241 250 251 253
[66] 257 258 258 262 269 279 281 282 296 298 317 321 326
[79] 332 342 343 346 347 365 375 375 400 402 403 406 415
[92] 420 432 451 464 471 474 496 504 505 539 545 549 550
[105] 553 560 569 577 593 601 606 612 640 643 659 673 676
[118] 680 685 703 703 711 722 735 746 746 761 765 778 783
[131] 784 793 801 812 832 833 906 907 933 1022 1032 1052 1060
[144] 1096 1136 1141 1161 1190 1383 1454 1528 1548 1571 1672 1839

Task 12 : Display a histogram and a five-number summary of the Zn
content. Show the individual values of Zn with a “rug” plot under the
histogram. •

These are obtained with the hist function, the summary method, and the
rug function, respectively:
hist(meuse$zinc, breaks=16)
rug(meuse$zinc)
summary(meuse$zinc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
113.0 198.0 326.0 469.7 674.5 1839.0

Histogram of meuse$zinc

meuse$zinc
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Note in the hist “histogram” graphics function the use of the optional
breaks argument to (approximately) specify the number of histogram
bins.

Q6 : Describe the distribution of this variable. Is it symmetric or
skewed? Does it appear to come from one population? Do there ap-
pear to be any unusual values (“outliers”)? Jump to A6
•

Q7 : What are the minimum, first quartile, median, third quartile, and
maximum Zn concentrations in the sample set? Jump to A7 •

Q8 : Compare the mean and median. What does this imply about the
distribution of the variable? Jump to A8 •

5.1 Transformation

It’s clear that the distribution this variable is far from symmetrical. A
common transform for a highly-skewed distribution is the logarithm.
The transformed variable is easier to visualise and is better behaved in
various types of models.

Task 13 : Log-transform the variable zinc and save it as a new field in
the data frame.

Then, repeat repeat the summary, histogram, and related questions.

Use base-10 logarithms, as they are easy to understand in the original
units (e.g. if log10Zn= 3, then Zn = 103 = 1000). . •
meuse$logZn <- log10(meuse$zinc)
hist(meuse$logZn, breaks=16)
rug(meuse$logZn)
summary(meuse$logZn)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.053 2.297 2.513 2.556 2.829 3.265
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Histogram of meuse$logZn
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Note the use of the <- "assignment" operator. This computes the expres-assignment
sion on its right-hand side (here, log10(meuse$zinc)) and then places
it in the object on its left-hand side (here, meuse$logZn). This object is
the field named logZn in the meuse data frame; it doesn’t exist yet, so R
creates it, and puts the results of the expression in it.

This example illustrates another key feature of R: many operations are
vectorized. This means that they apply to all elements of a vector invectorized oper-

ations parallel. In this example the field meuse$zinc is a 155-element vector;
so the log10 function is applied to each element, resulting in a 155-
element transformed vector. We can see this by looking at the first few,
using the head function to show the “head” of a vector:
head(meuse$zinc)

[1] 1022 1141 640 257 269 281

head(meuse$logZn)

[1] 3.009451 3.057286 2.806180 2.409933 2.429752 2.448706

Q9 : Does the transformation make the variable more symmetric? Does
it remove presumed outliers? Is there now evidence for more than one
population? Jump to A9 •

All four metals have similar-shaped distributions, so they should all be
transformed for further analysis. In this exercise we will also work with
the copper (Cu) concentration.

Task 14 : Log-transform the Cu concentration and attach it as a new
field to the data frame. •
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meuse$logCu <- log10(meuse$copper)
str(meuse)

'data.frame': 155 obs. of 16 variables:
$ x : num 181072 181025 181165 181298 181307 ...
$ y : num 333611 333558 333537 333484 333330 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ copper : num 85 81 68 81 48 61 31 29 37 24 ...
$ lead : num 299 277 199 116 117 137 132 150 133 80 ...
$ zinc : num 1022 1141 640 257 269 ...
$ elev : num 7.91 6.98 7.8 7.66 7.48 ...
$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...
$ dist.m : num 50 30 150 270 380 470 240 120 240 420 ...
$ logZn : num 3.01 3.06 2.81 2.41 2.43 ...
$ logCu : num 1.93 1.91 1.83 1.91 1.68 ...

Notice the new field logCu in the data frame.

Challenge: Display a histogram of the point elevations above local river
base level6. Display the numeric summary. Discuss the form of the
distribution. Are there any unusual or extreme values?

6 Non-spatial bivariate EDA

We continue the analysis of feature (attribute) space by considering the
relation between two variables.

Task 15 : Show a scatterplot of the relation between log-transformed
Zn and Cu. •

The generic plot method produces a scatterplot if its argument is of the
form var.y ~ var.x, the ~ (“tilde”) formula operator symbolizing thethe ~ formula

operator dependence of the left-hand side on the right-hand side. This is a simple
example of a model formula.
plot(meuse$logZn ~ meuse$logCu)

6 See ?meuse for a description of the attributes
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This graph looks like a 2D “map” . . . in fact it is, considering the range
of the two variables as the “coordinates”. In mathematical terms it is a
“space”, from whence the term feature (or, attribute; or variable) space.

Q10 : Do the two variables appear to be related in feature space? De-
scribe the relation. Are there any observations that do not fit the general
pattern? What could be the reason(s)? Jump to A10 •

Task 16 : Find the observations that do not fit the general pattern of
the Cu vs. Zn relation. •

We can clearly see in the scatterplot the four observations that do not fit
the pattern. But, which are these? Where are they located? What are their
other attributes that might help explain the unusal Cu vs. Zn relation?

Recall, the dataframe is a matrix, and if we can find the rows (observa-
tions) in the matrix of these unusual observations, we can use matrix
notation to display their records. To find the rows, we need to build up
a vector of their row numbers, also called array indices. R makes these
easy with logical operations.

The which function uses a logical condition and evaluates which of
these is TRUE or FALSE. It returns the indices within the vector of thelogical opera-

tors TRUE items. We can then use these indices to examine the corresponding
rows in the dataframe.

We can see from the graph that the unusual points have Zn less than
about 2.6 log10(mg) kg-1 but Cu greater than 1.6 log10(mg) kg-1. First
look at two simple conditions:
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which(meuse$logZn < 2.6)

[1] 4 5 6 7 9 10 11 12 15 23 24 25 26 27 28 29
[17] 30 31 32 33 34 35 36 41 42 43 44 48 49 50 51 68
[33] 84 85 86 90 94 95 96 97 98 99 100 101 102 103 104 105
[49] 106 107 108 109 110 111 112 113 114 115 116 117 119 120 121 122
[65] 125 126 127 128 131 132 133 134 135 136 137 138 140 141 142 143
[81] 149 150 151 153 154 155

which(meuse$logCu > 1.6)

[1] 1 2 3 4 5 6 13 16 17 18 19 20 21 37 38 39
[17] 40 45 46 52 53 54 55 56 59 60 61 62 63 64 65 66
[33] 67 69 70 71 72 73 75 76 79 80 81 82 83 88 118 124
[49] 135 148

These are indices in the dataframe of records (observations) that satisfy
the two conditions independently.

Now we combine them with the & “and” logical operator. Notice the
parentheses around each simple logical condition.
which((meuse$logZn < 2.6) & (meuse$logCu > 1.6))

[1] 4 5 6 135

With these indices we can display the dataframe records for these points:
their coördinates and the values of their other attributes. But first we can
save the indices into the workspace, rather than just display them in the
console output as in the previous command. We choose to name the
workspace variable ix, short for “index”; of course you could use any
new name.
ix <- which((meuse$logZn < 2.6) & (meuse$logCu > 1.6))

Now we can use this vector as the row index into the dataframe, consid-
ered as a matrix:
meuse[ix, ]

x y cadmium copper lead zinc elev dist om ffreq
4 181298 333484 2.6 81 116 257 7.655 0.190094 8.0 1
5 181307 333330 2.8 48 117 269 7.480 0.277090 8.7 1
6 181390 333260 3.0 61 137 281 7.791 0.364067 7.8 1
140 179917 331325 0.8 46 42 141 9.970 0.445580 4.5 3

soil lime landuse dist.m logZn logCu
4 2 0 Ga 270 2.409933 1.908485
5 2 0 Ah 380 2.429752 1.681241
6 2 0 Ga 470 2.448706 1.785330
140 2 0 Am 540 2.149219 1.662758

This example illustrates how R can access a dataframe as a matrix. The
notation meuse[ix, ] means: object meuse, the rows named in the ix
workspace variable, and all columns (the blank after the ,). This is stan-
dard matrix notation. Note that the rows of the matrix are the observa-
tions, and the columns are the fields.

Note: The numbers shown to the left of each row are the observation
names, given by the row.names function, they are not necessarily the
matrix row numbers of the observations in the data frame, i.e., the indices
that are used to access a given row using the [] selection operator. The
creator of the data set can use any character string as a row name, in the
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same way that any character string can be used as a column name.

A data.frame object, e.g., the meuse data frame, has column names,
which you can see with the colnames function, and may have row names,
which you can see with the row.names function.

In this dataset the row names are observation ID numbers, as strings.
Some field observations were excluded, so rows were omitted, thus there
are gaps in the row name sequence, but of course not in the row numering
for a matrix.

Here you can see that the row names are character strings, i.e., ID’s, not
matrix row numbers:

print(row.names(meuse))

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
[11] "11" "12" "13" "14" "15" "16" "17" "18" "19" "20"
[21] "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"
[31] "31" "32" "33" "34" "35" "37" "38" "39" "40" "41"
[41] "42" "43" "44" "45" "46" "47" "48" "49" "50" "51"
[51] "52" "53" "54" "55" "56" "57" "58" "59" "60" "61"
[61] "62" "63" "64" "65" "66" "67" "69" "75" "76" "79"
[71] "80" "81" "82" "83" "84" "85" "86" "87" "88" "89"
[81] "90" "123" "160" "163" "70" "71" "91" "92" "93" "94"
[91] "95" "96" "97" "98" "99" "100" "101" "102" "103" "104"
[101] "105" "106" "108" "109" "110" "111" "112" "113" "114" "115"
[111] "116" "117" "118" "119" "120" "121" "122" "124" "125" "126"
[121] "127" "128" "129" "130" "131" "132" "133" "134" "135" "136"
[131] "161" "162" "137" "138" "140" "141" "142" "143" "144" "145"
[141] "146" "147" "148" "149" "150" "151" "152" "153" "154" "155"
[151] "156" "157" "158" "159" "164"

Challenge: Plot the elevation of each observation point against its dis-
tance from the river in meters. What relation do you expect? Do you see
this relation? Is it consistent? Are there any unusual points that do not
fit the overall pattern? If so, identify them.

7 Model-based feature-space modelling

A common non-spatial (feature-space) approach to prediction is to model
one variables’ distribution (the dependent or response variable) by one
or more other variables (the independent or predictor variables). This is
sometimes called “regression modelling” in the general sense. All vari-
ables in regression modelling can be either continuous or categorical.

There are two general modelling approaches [3]: model-based and data-
driven. As Breiman [3] explains:

“There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are
generated by a given stochastic data model. The other uses
algorithmic models and treats the data mechanism as un-
known.”

The two approaches are thorougly investigated and compared in the text
of Hastie et al. [13] and the simplified version of that text by James et al.
[17].
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In this section we deal with model-based approache, specifically lin-
ear models (§7.2 and §7.3). In §9, below, we deal with data-driven ap-
proaches.

For the linear models, we have to introduce some theory.

7.1 Theory of linear models

A linear model is one in which a response variable y , also called the pre-
dictand or independent variable, is modelled as being linearly depen-
dent on one or more predictors X, also called independent variables,
with some residual ε due to non-exact fit. The coefficients of the rela-
tion, i.e., the slopes of the linear relation, are a vector β, with one element
per predictor, including one for the overall mean.

y = βX + ε (1)

This can be written in expanded form, showing all p predictors, as:

y = β0 + β1x1 + β2x2 . . .+ βpxp + ε (2)

A linear relation means that one unit of change in a predictor xj , no
matter what its value, brings the same amount of change βj in the pre-
dictand y . It is the values of these coefficients in the vector β that we
need to find.

Considering just one observation:

yi = βXi + εi (3)

where each observation i of n total observations is a pair (Xi, yi), i.e.,
the value of the independent and dependent variables at observation i.
Note that the same β applies to all observations.

The residuals εi are defined as (yi − ŷi), i.e., actual observed valued
vs. the value predicted by the linear model. The value predicted by the
linear model is called the fitted value, because it results from the model
fit to the entire set of calibration points. For the OLS fit to be valid, the
residuals εi must be identically and independently distributed (IID):

• no relation between the magnitude of the residual and that of the
predictor (homoscedascity);

• no systematic relation between fitted values and residuals;

• no serial correlation between residuals (e.g., small residuals sys-
tematically followed by other small residuals) in the sequence of
predictors.

• no dependence between pairs of residuals; in particular this means
spatial independence: pairs of residuals at close spatial separation
are no more likely to be similar to each other than pairs of resid-
uals at far spatial separation. If this is not true mixed predictors,
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combining feature and geographic space, must be used; see later in
this exercise §13.

The first three assumptions can be examined after the regression pa-
rameters are estimated, using regression diagnostics, see §7.2.2, below.
The fourth assumption can be examined with the residual variogram,
see §13.2, below.

In the simplest case of univariate linear regression Xi is a two-element
vector (1, xi), which results in a line with intercept:

yi = β0 + β1xi + εi (4)

7.1.1 * Ordinary Least Squares (OLS) solution of the linear model

In this optional section we explain how to find optimal values of the
linear model coefficients. This is implemented in the lm function of R,
which we will use in the following sections.

In the general linear model, with any number of predictors, there is a
n × p design matrix of predictor values usually written as X, with one
row per observation (data point), i.e., n rows, and one column per pre-
dictor, i.e., p columns. In the single-predictor with intercept case, it is a
n× 2 matrix with two columns: (1) a column of 1 representing the inter-
cept, and (2) a column of predictor values xi. The predictand (response
variable) is a n×1 column vector y, one row per observation. The coeffi-
cient vector β is a p × 1 column vector, i.e., one row per predictor (here,
2). This multiplies the design matrix to produce the response:7

y = Xβ+ ε (5)

where ε is a n× 1 column vector of residuals, also called errors, i.e., the
lack of fit. We know the values in the predictor matrix X and the response
vector y from our observations, so the task is to find the optimum values
of the coefficients vector β.

To solve this we need an optimization criterion. The obvious criterion is
to minimize the total error (lack of fit) as some function of ε = y−Xβ; the
goodness-of-fit is then measured by the size of this error. A common way
to measure the total error is by the sum of vector norms; in the simplest
case the Euclidean distance from the expected value, which we take to be
0 in order to have an unbiased estimate. If we decide that both positive
and negative residuals are equally important, and that larger errors are
more serious than smaller, the vector norm is expressed as the sum of
squared errors, which in matrix algebra can be written as:

S = (y− Xβ)T (y− Xβ) (6)

which expands to:

S = yTy− βTXTy− yTXβ+ βTXTXβ
S = yTy− 2βTXTy+ βTXTXβ (7)

7 The dimensions of the matrix multiplication are n× 1 = (n× p)(p × 1)
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Note: yTXβ is a 1×1 matrix, i.e., a scalar8, so it is equivalent to its trans-
pose: yTXβ = [yTXβ]T = βTXTy. So we can collected the two identical
1× 1 matrices (scalars) into one term.

This is minimized by finding the partial derivative with respect the the
unknown coefficients β, setting this equal to 0, and solving:

∂
∂βT

S = −2XTy+ 2XTXβ

0 = −XTy+ XTXβ
(XTX)β = XTy

(XTX)−1(XTX)β = (XTX)−1XTy

β̂OLS = (XTX)−1XTy (8)

which is the usual OLS solution.

7.2 Continuous response, continuous predictor

Looking at the scatterplots of §6, a natural question is whether one metal
concentration can be predicted from another. This could be useful if one
metal is measured and another must be estimated.

Task 17 : Model the log10Zn concentration as a linear function of the
log10Cu concentration. •

This is also a linear model, using the lm function, specifying log10Zn as
the dependent variable (left-hand side of the model formula) and log10Cu
as the independent variable (right-hand side), again using the ~ (“tilde”)
formula operator symbolizing the dependence of the left-hand side on
the right-hand side.
m.lzn.lcu <- lm(logZn ~ logCu, data=meuse)

The <- assignment operator saved the results of the modelling by the
lm function as workspace object, which we name m.lzn.lcu. Note that
we wrote the functional dependence as logZn ~ logCu, i.e., just the
field names, without the data frame name, by using the optional data
argument to name the dataframe where the lm function should look for
those names.

Task 18 : List the workspace to see this model object; compare the
types of the two object. •

The class function shows the type of object:
ls()

[1] "ix" "m.lzn.lcu" "meuse"

class(meuse)

8 The dimensions of the matrix multiplication are (1×n)(n× p)(p × 1)
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[1] "data.frame"

class(m.lzn.lcu)

[1] "lm"

This shows that R can store different kinds of objects in the workspace.
Each object has a class, so that methods can be used appropriately.

7.2.1 Model summary

Task 19 : Display the model summary. •

The summary method applied to a linear model object displays a useful
summary of the model results:
summary(m.lzn.lcu)

Call:
lm(formula = logZn ~ logCu, data = meuse)

Residuals:
Min 1Q Median 3Q Max

-0.60973 -0.07904 -0.00027 0.08739 0.37686

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.58820 0.07913 7.434 7e-12 ***
logCu 1.27403 0.05071 25.122 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1389 on 153 degrees of freedom
Multiple R-squared: 0.8049,Adjusted R-squared: 0.8036
F-statistic: 631.1 on 1 and 153 DF, p-value: < 2.2e-16

The summary shows:

1. the model formula that we specified;

2. a summary of the residuals, the values after subtracting the model
fit, i.e., actual - fitted by the model;

3. The two coefficients of the linear model:

• (Intercept): the predicted value of the response (log10Zn) if

the predictor (log10Cu) were zero; this is β̂0.

• logCu: the slope of the regresssion line: the amount the re-
sponse changes, on average, for each unit change in the pre-
dictor, here log10Cu; this is β̂1

4. the standard errors of the coefficients and the probability that re-
jecting the null hypothesis of 0 would be an error;

5. the residual standard error, an estimate of σ , the standard devia-
tion of the normally-distributed residuals, i.e., how closely does the
model fit the known values;
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6. the adjusted R-squared; this gives the proportion of the variance
of the response variable explained by the model.

Q11 : How much of the variability in the log10Zn content of these top-
soils can be explained if we know the log10Cu contents at the same loca-
tions? Jump to A11
•

There are two model coefficients: (1) the intercept, which is the value of
the response variable (here, log10Zn) at the zero value of the predictor
(here, log10Cu, i.e., when Cu = 1 mg kg-1), and (2) the slope, which is the
change in the response per unit change in the predictor. These each have
a standard error, i.e., one standard deviation of uncertainty.

Q12 : If log10Cu increases by one unit (i.e., increases ten-fold; recall this
is a log10 transformation), how much does log10Zn increase? What is the
standard error of that coefficient? Jump to A12 •

7.2.2 Model diagnostics

Linear modelling is a complicated topic, covered in many texts, e.g., [8,
11]. A fundamental requirement for the ordinary least squares (OLS)
fit such as computed by the lm function is that the residuals must be
independent and identically normally-distributed; if this assumption
is not met various adjustments must be made or other methods used.

Note: A thorough discussion of regression residuals, and various diag-
nostic techniques using them, is given by Cook & Weisberg [7] and is also
covered in the regression texts listed in the previous paragraph.

Task 20 : Examine a histogram of the model residuals. •

The residuals function extracts the residuals from a model object, and
of course the hist function display the histogram of a vector in the base
graphics system:
hist(residuals(m.lzn.lcu))
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Histogram of residuals(m.lzn.lcu)

residuals(m.lzn.lcu)
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Q13 : Do the residuals appear to be normally-distributed? Jump to
A13 •

A linear model must satisfy several assumptions [7, 11], among which
are:

1. no relation between predicted values and residuals;

2. normal distribution of residuals;

3. homoscedascity, i.e,. variance of residuals does not depend on the
fitted value.

In addition, any high-influence observations (“high leverage”) should not
unduly influence the fit.

We can view these graphically, with the plot method, which special-
izes to the plot.lm function if it is called on objects of class lm. This
function produces six different plots; the most useful are 1 “Residuals
vs. fitted values”, 2 “Normal Q-Q”, and 5 “Residuals vs. leverage”; see
?plot.lm for more options.

Task 21 : Display a plot of (1) residuals-vs-fitted values, (2) quantile-
quantile plot of the residuals compared to a normal distribution, (3)
residuals vs. leverage. •

Note that the which argument of the plot.lm function selects which of
the six possible diagnostic plots to display. These are 1 for residuals-
vs-fitted values, 2 for the quantile-quantile plot, and 5 for residuals vs.
leverage9. The mfrow “multiple frames, draw row-wise” argument to
the par “graphics parameters” function specifies the layout of multiple
graphs; here we want one row and three columns, i.e., a 1x3 array of

9 see ?plot.lm
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graphs. After producing this graph, we re-set the graphics device to only
produce one plot, i.e., a 1x1 array.

par(mfrow=c(1,3))
plot(m.lzn.lcu, which=c(1,2,5))
par(mfrow=c(1,1))
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Residuals vs Leverage

4

140

6

1. The “Residuals vs. fitted values” plot shows the residual (actual
value - fitted value) for all the known points. That is, using the
regression equation just computed, and using the known values of
the predictor variables at each point, we can estimate the response
variable at that point. We then can compare it with the known value
at that point. The mean residual is by definition 0 for ordinary
least squares regression (OLS), as used here. There should be no
pattern of residuals vs. fitted values, i.e., no systematic over- or
under-prediction at a given range.

2. The “Normal Q-Q” plot shows the quantiles of the standardized
residuals (i.e., mean = 0, then ± a number of standard deviations)
on the y-axis, vs. the quantiles of a normal distribution with the
same mean and standard deviation. If the residuals are normally-
distributed (an assumption of the OLS fit) the points, representing
observations, should all fall on the 1:1 line and become sparser
(thinner) at the extremes.

3. The “Residuals vs. leverage” plot shows the “leverage” hi of each
observation10, against its standardized residual rSi11. The leverage
of an observation measures how much the influence the observa-
tion has on the fits, i.e., how much the fits would change should
that observation be removed from the dataset. There should not
be any high-leverage points with large standardized residuals. This
would indicate that the point has high influence on the fits, but

10 hi = Hii, i.e., the diagonal of the “hat” matrix H = X(X′X)−1X′
11 The residual ri = yi − ŷi is standardized by dividing by an estimate of its standard

deviation, σ̂
√

1− hi, where σ̂ is the estimate of the standard deviation of the residu-
als. That is, the greater the leverage hi, the smaller the variance of the corresponding
ri, so the greater the adjustment by standardization
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itself is not well-fit; this could be because the point is from a differ-
ent population or is otherwise unusual, and is distorting the overall
relation. This situation is revealed by the “Cook’s distance”.

This plot also shows contours for the Cook’s distance, which is a
measure of the difference between the vector β of regression coef-
ficients computed with all observations, and the vector β(−1) of re-
gression coefficients computed without a single observation i.12 A
large value of Cook’s distance shows that observation i has a large
influence on the regression coefficients, i.e., if it were omitted, the
coefficients would be substantially different. A rule of thumb is
that observations with a Cook’s distance Di > 0.5 is cause for con-
cern and Di > 1 indicates that observation i has an undue effect on
the regression coefficients.

Q14 : Is there any pattern with respect to the fitted values (see the first
diagnostic plot)? Jump to A14 •

Task 22 : Identify the observations that do not fit the overall pattern
and display their data and model residuals. •

The which function identifies observations in a data frame which meet
some logical condition, here that the absolute residual (determined with
functions abs and residuals) is larger than some threshold:
(which.ix <- which(abs(residuals(m.lzn.lcu)) > 0.3))

4 5 6 129 140
4 5 6 123 135

# the records in the data frame that correspond to large absolute residuals
meuse[which.ix,]

x y cadmium copper lead zinc elev dist om ffreq
4 181298 333484 2.6 81 116 257 7.655 0.1900940 8.0 1
5 181307 333330 2.8 48 117 269 7.480 0.2770900 8.7 1
6 181390 333260 3.0 61 137 281 7.791 0.3640670 7.8 1
129 179849 332142 1.2 30 244 703 8.540 0.0921353 8.3 2
140 179917 331325 0.8 46 42 141 9.970 0.4455800 4.5 3

soil lime landuse dist.m logZn logCu
4 2 0 Ga 270 2.409933 1.908485
5 2 0 Ah 380 2.429752 1.681241
6 2 0 Ga 470 2.448706 1.785330
129 1 0 Fw 70 2.846955 1.477121
140 2 0 Am 540 2.149219 1.662758

# these large absolute residuals
residuals(m.lzn.lcu)[which.ix]

4 5 6 129 140
-0.6097276 -0.3003938 -0.4140514 0.3768635 -0.5573786

12Di = ri
trace(H)

hi
1−hi , where ri is the ith residual, hi is the ith diagonal element of

the “hat” matrix H = X(X′X)−1X′, and its trace is just the number of predictors
(including the intercept) p. Thus observations with poor fits (large residuals) and
large influence (“hat” value) have the largest Cook’s distances.
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# the largest one
which.max(abs(residuals(m.lzn.lcu))[which.ix])

4
1

Note: The last expression results in a 4; this is the position in the five-
element vector residuals(m.lzn.lcu)[which.ix] of the maximum pos-
itive value. The 129 above it is its label; this is the observation ID from
the data frame; the linear model recorded this and associated it with the
appropriate residual.

Q15 : At which observation point is log10Zn most seriously under-
predicted by the model? Does this point have a high value of Zn, i.e.,
could it be polluted? Jump to A15 •

Q16 : Looking at the “Normal Q-Q” plot, do the residuals appear to be
normally distributed? Jump to A16 •

Q17 : Looking at the “Residuals vs. leverage” plot, do the high-leverage
residuals have a high Cook’s distance? Jump to A17 •

Task 23 : Repeat the scatterplot of the relation between log-transformed
Zn and Cu, adding the OLS regression line. •

The abline function adds a straight line to a scatterplot; if its argument
is a linear model object, the line is the best-fit line from the model. To
show the true relation between the two, we use the optional asp argu-
ment. To enhance understanding, we use the optional col argument to
colour the points according to their flood frequency class; we also spec-
ify a printing character with the optional pch argument. We also use the
legend function to add a legend showing the flood frequency classes
(see ?meuse for explanation of the classes).

Note: You can see the list of printing characters at the help for the
points base graphics function, and the list of basic colours with the
palette function:

palette()

[1] "black" "red" "green3" "blue" "cyan" "magenta"
[7] "yellow" "gray"

plot(meuse$logZn ~ meuse$logCu, asp=1, col=meuse$ffreq, pch=20,
xlab="log10(Cu ppm)", ylab="log10(Zn ppm)")

abline(m.lzn.lcu)
legend("topleft", legend=c("2 years","10 years", "50 years"),

pch=20, col=1:3)
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Q18 : What do you conclude about the use of a simple linear regression
to predict log10Zn content of these topsoils from their log10Cu content?

Jump to A18 •

Challenge: Repeat this analysis but using distance in meters from the
river as the continuous predictor of topsoil log10Zn content. What is
the hypothesis for this model? Does your analysis give support to this
hypothesis? Are there any particularly poorly-modelled observations?
Do they have a large influence on the model coefficient?

7.3 Continuous response, categorical predictor

The linear model can also be applied to categorical, also called classi-
fied, predictors. The model formulation is the same, but the design ma-
trix now contains information on the class of each observation, rather
than on a continuous value. This is done with so-called “dummy” vari-
ables or more sophisticated ways to show the contrasts between classes.

We suspect that the flooding frequency class affects the metal concentra-
tion; this would be evidence that the metals are brought from upstream
industry.

Task 24 : Model the concentration of log10Zn from the flooding fre-
quency. •

First, find out how many observations are in each class, using the table
function:
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table(meuse$ffreq)

1 2 3
84 48 23

Second, display a grouped boxplot of log10Zn in each class using the
boxplot function:
boxplot(meuse$logZn ~ meuse$ffreq, xlab="Flood frequency class",

ylab="log10-Zn ppm",
main="Metal concentration per flood frequency class",
boxwex=0.5, col="lightblue")

1 2 3

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

Metal concentration per flood frequency class

Flood frequency class

lo
g1

0−
Z

n 
pp

m

This example shows how optional function arguments (here, to the
boxplot function) can be used to enhance a plot. We specify labels,
a title, and the relative width of the boxes.

Note: The notch argument can be set to TRUE to show the approximate
confidence interval of the median (the heavy horizontal line in the box-
plot).

Q19 : Describe the relation between the different flood frequencies and
the metal concentration. Jump to A19 •

Third, build a linear model, using the lm function; note the use of the
~ formula operator to indicate functional dependence of the left-hand
side (here, logZn) on the right-hand side (here, ffreq):
m.lzn.ff <- lm(logZn ~ ffreq, data=meuse)

Task 25 : View the model summary. •
summary(m.lzn.ff)

Call:
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lm(formula = logZn ~ ffreq, data = meuse)

Residuals:
Min 1Q Median 3Q Max

-0.62419 -0.22330 -0.01762 0.20171 0.56484

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.69974 0.02976 90.727 < 2e-16 ***
ffreq2 -0.33187 0.04935 -6.725 3.34e-10 ***
ffreq3 -0.27501 0.06418 -4.285 3.23e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2727 on 152 degrees of freedom
Multiple R-squared: 0.2531,Adjusted R-squared: 0.2433
F-statistic: 25.75 on 2 and 152 DF, p-value: 2.338e-10

Here we see the same summary as for the continuous predictor model
(§7.2) except that the coefficients are handled somewhat differently. In
a model with categorical predictors the (Intercept) coefficient is the
predicted mean value for the first class in the list, here Flood Frequency
Class 1, and then the others which are the differences in predicted mean
value for the other classes compared to the first;

Q20 : How much of the total variation in metal concentration is ex-
plained by the flooding frequency? Jump to A20
•

Q21 : What is the modelled mean log concentration of the metal in each
class? Jump to A21 •

Clearly, this prediction is not so good. So, we turn to spatial analysis
(below, §10), and later to mixed predictors (§13).

Challenge: Repeat this analysis but with soil type as the categorical
predictor of log10Zn.

Challenge: The soil type may well be related to the amount of flooding
and the type of sediment brought by the river. Use the table function
to examine the cross-classification table of these two categorical predic-
tors. Are they independent? Check this with the chisq.test χ2 test
function.

7.4 * Multivariate linear models

In this optional section we show how to model a continuous variable
from several predictors, i.e., a multivariate model.

We saw in the previous sections that flooding frequency (§7.3) and Cu
concentration (§7.2) both can help in predicting Zn concentration; can a
combination do better?
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7.4.1 Additive linear model

The simplest way to consider two or more predictive variables is the
additive model, which assumes that the variables act linearly and inde-additive

model pendently.

Task 26 : Build an additive model of the concentration of log10Zn from
the flooding frequency and log10Cu. •

We specify the two predictors on the right-hand side of the model for-
mula, separated by the + formula operator, which is a symbolic way to
specify an additive model.
m.lzn.ff.lcu <- lm(logZn ~ ffreq + logCu, data=meuse)
summary(m.lzn.ff.lcu)

Call:
lm(formula = logZn ~ ffreq + logCu, data = meuse)

Residuals:
Min 1Q Median 3Q Max

-0.60925 -0.07893 0.00043 0.08951 0.38770

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.59605 0.10260 5.809 3.59e-08 ***
ffreq2 -0.01224 0.02958 -0.414 0.679
ffreq3 0.01806 0.03575 0.505 0.614
logCu 1.26966 0.06124 20.733 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1395 on 151 degrees of freedom
Multiple R-squared: 0.8058,Adjusted R-squared: 0.802
F-statistic: 208.9 on 3 and 151 DF, p-value: < 2.2e-16

Q22 : How much of the variance is explained? How does this compare
with the two single-factor models? Jump to A22 •

We prefer a simpler (“parsimonious”) model if possible, because it’s eas-
ier to interpret and requires less input data. So we want to know if the in-
crease in variance explained with the mixed model is significantly better
than that explained by the best single model. To answer this, we com-
pare the two models with a hierarchical analysis of variance (ANOVA)
using the anova function:
anova(m.lzn.ff.lcu, m.lzn.lcu)

Analysis of Variance Table

Model 1: logZn ~ ffreq + logCu
Model 2: logZn ~ logCu
Res.Df RSS Df Sum of Sq F Pr(>F)

1 151 2.9390
2 153 2.9534 -2 -0.014361 0.3689 0.6921

Q23 : How many degrees of freedom are lost by adding flooding fre-
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quency to the model using only Cu concentration? What is the decrease
is residual sum of squares? If we reject the null hypothesis of no im-
provement, what is the probability that we are making a Type I error, i.e.,
falsely rejecting the null hypothesis? Jump to A23 •

Clearly the additive model is no improvement; i.e., knowing flooding fre-
quency does not add to our ability to model Zn, if we have the Cu con-
centration.

7.4.2 Interaction linear model

The additive model implies that the slope of the log10Zn vs. log10Cu is
the same in all three flooding frequency zones; this may not be the case.
To investigate this, an interaction model is needed. This is still linearinteraction

model but also allows a cross-term, in this case different slopes of log10Zn vs.
log10Cu in each of the the three flooding frequency zones.

Task 27 : Build an interaction model of the concentration of log10Zn
from the flooding frequency and log10Cu. Summarize the model and
compare it to the single-factor model with ANOVA. •

We specify the two predictors on the right-hand side of the model for-
mula, separated by the * formula operator, which is a symbolic way to
specify an interaction model.
m.lzn.ff.lcu.i <- lm(logZn ~ ffreq * logCu, data=meuse)
summary(m.lzn.ff.lcu.i)

Call:
lm(formula = logZn ~ ffreq * logCu, data = meuse)

Residuals:
Min 1Q Median 3Q Max

-0.59244 -0.07008 0.00991 0.08418 0.35131

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.706791 0.111244 6.354 2.42e-09 ***
ffreq2 -0.833507 0.271659 -3.068 0.00256 **
ffreq3 -0.008742 0.328816 -0.027 0.97883
logCu 1.202828 0.066538 18.077 < 2e-16 ***
ffreq2:logCu 0.572494 0.187992 3.045 0.00275 **
ffreq3:logCu 0.007974 0.226076 0.035 0.97191
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1362 on 149 degrees of freedom
Multiple R-squared: 0.8173,Adjusted R-squared: 0.8112
F-statistic: 133.3 on 5 and 149 DF, p-value: < 2.2e-16

anova(m.lzn.ff.lcu.i, m.lzn.lcu)

Analysis of Variance Table

Model 1: logZn ~ ffreq * logCu
Model 2: logZn ~ logCu
Res.Df RSS Df Sum of Sq F Pr(>F)

1 149 2.7654
2 153 2.9534 -4 -0.18798 2.532 0.04278 *
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q24 : How much of the variance is explained by this model? Would we
have a significant risk of committing a Type I error if we use this model
rather than one of the simpler ones? Jump to A24 •

We can visualize the difference between the interaction and single-factor
model by constructing a scatterplot of the two metals, along with the
single slope and slopes for each flooding frequency class, separately.
with(meuse, plot(logZn ~ logCu, col=ffreq, pch = 20,

xlab = "log10(Cu)", ylab = "log10(Zn)"))
legend("topleft", legend=levels(meuse$ffreq), pch=20,

col=1:3)
title(main = "Relation between log10(Zn) and log10(Cu)")
title(sub =

"Interaction: solid lines; per class; single: dashed line")
abline(lm(logZn ~ logCu, data = meuse),col = "purple",

lty=3, lwd=2.5)
abline(lm(logZn ~ logCu, data = meuse,

subset=(meuse$ffreq==1)),col = 1)
abline(lm(logZn ~ logCu, data = meuse,

subset=(meuse$ffreq==2)),col = 2)
abline(lm(logZn ~ logCu, data = meuse,

subset=(meuse$ffreq==3)),col = 3)
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Q25 : In which flooding frequency class is the relation between log10Zn
and log10Cu different from the overall relation? Jump to A25 •

We return to this theme in §13.4, when we use a multivariate model as
part of kriging with external drift.
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8 Spatially-explicit R objects

In much of the remainder of this exercise we will work with spatially-
explicit objects. To work with such objects, we will use the sp “spatial
classes and methods” R package. This is an example of a package that
provides special-purpose R classes for objects, and methods that use
the provided class structures.

We installed this package in §1.1, above, so it is available to be loaded
into the workspace. Recall, in that section we showed how to load pack-
ages into the workspace with the library function. If you have already
loaded them, you can skip this step, but it does no harm to do it again.
library(sp)
library(gstat)

All objects in R have a class, reported by the class function. For scalarsR classes
and simple vectors this is just the mode of the data types, reported
by the mode function, e.g., numeric, logical or list. More compli-
cated structures have their own classes, which control how functions
and methods work on them. Examples are matrix, data.frame, and
factor.

Here are some examples:
class(1); class("A"); class(TRUE)

[1] "numeric"
[1] "character"
[1] "logical"

class(list(1, "A", TRUE))

[1] "list"

class(as.matrix(1:9, nrow=3))

[1] "matrix"

class(meuse)

[1] "data.frame"

class(meuse$ffreq)

[1] "factor"

These are all defined in base R; now we will use classes defined in the
additional package sp.

Task 28 : Convert the meuse data frame to a spatially-explicit object.
•

The coordinates are now just fields in the dataframe; we should give
them special status – they are not attributes in the same sense as the
soil properties or covariables. The sp “spatial objects” package provides
classes for spatially-explicit data; we just need to tell it which fields rep-
resent the coordinates. The class function shows the class name of an
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object.
class(meuse)

[1] "data.frame"

coordinates(meuse) <- c("x","y")
class(meuse)

[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"

Note the use of the c “catenate” (meaning “make a chain”) function to
create a vector of the two names, here "x" and "y"; the coordinates
method expects such a vector, to know which fields represent the coor-
dinates.

The class has changed, from data.frame to SpatialPointsDataFrame.

Task 29 : Display the structure of the spatially-explicit object. •
str(meuse)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 155 obs. of 14 variables:
.. ..$ cadmium: num [1:155] 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
.. ..$ copper : num [1:155] 85 81 68 81 48 61 31 29 37 24 ...
.. ..$ lead : num [1:155] 299 277 199 116 117 137 132 150 133 80 ...
.. ..$ zinc : num [1:155] 1022 1141 640 257 269 ...
.. ..$ elev : num [1:155] 7.91 6.98 7.8 7.66 7.48 ...
.. ..$ dist : num [1:155] 0.00136 0.01222 0.10303 0.19009 0.27709 ...
.. ..$ om : num [1:155] 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
.. ..$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
.. ..$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
.. ..$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
.. ..$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...
.. ..$ dist.m : num [1:155] 50 30 150 270 380 470 240 120 240 420 ...
.. ..$ logZn : num [1:155] 3.01 3.06 2.81 2.41 2.43 ...
.. ..$ logCu : num [1:155] 1.93 1.91 1.83 1.91 1.68 ...
..@ coords.nrs : int [1:2] 1 2
..@ coords : num [1:155, 1:2] 181072 181025 181165 181298 181307 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:155] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:2] "x" "y"
..@ bbox : num [1:2, 1:2] 178605 329714 181390 333611
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "x" "y"
.. .. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
.. .. ..@ projargs: chr NA

The notation @ in the structure refers to sets of object properties, called
slots.

Q26 : Which slots in the object refer to the spatial structure and which
to the attributes? Jump to A26 •

Note: The @proj4string slot has no projection information, so we don’t
know what the coördinates represent. That information can be added,
but for now we just consider them as meters on an arbitrary grid. In
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fact, these coördinates are in the Dutch national triangulation (“Rijks-
driehoek”, or RDH) system13.

Task 30 : Display a map of the sample locations, along with the line of
the Meuse river. •

We use the data function to load another built-in dataset, meuse.riv,
which is a matrix of point-pairs outlining both banks of the river:
plot(meuse, asp=1, pch=1)
data(meuse.riv)
lines(meuse.riv)
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Note the use of the optional pch argument to specify the plotting char-
acter14. The asp optional argument specifies the plot aspect, i.e., ratio
of the two scales. Since this is a map, the two scales are equal, so we
specify asp=1.

Q27 : How are the points distributed over the study area? For exam-
ple, are they evenly-spaced (gridded)? Random? Denser in some areas?

Jump to A27 •

We take this opportunity to also make the prediction grid meuse.grid a
spatial object. This will be used in §9, §11.2, and §13, below.

Task 31 : Load the 40 m x 40 m interpolation grid covering the study
area and convert it to a spatial object. •
13 See the EPSG database http://www.epsg-registry.org/, EPSG code 28992
14 You can see all the possible symbols with ?pch
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As before, the data function loads a built-in dataset, and the coordinates
method assigns coordinates. The gridded method specifies that the
data is on a regular grid; this allows more efficient storage and compu-
tation than for isolated points.
data(meuse.grid)
class(meuse.grid)

[1] "data.frame"

coordinates(meuse.grid) <-c ("x","y")
gridded(meuse.grid) <- TRUE; fullgrid <- TRUE
class(meuse.grid)

[1] "SpatialPixelsDataFrame"
attr(,"package")
[1] "sp"

9 Data-driven feature-space modelling

Data-driven approaches to reach conclusions from data [3] do not as-
sume any model structure and attempt to parameterize it from the data,
as in model-based approaches as explained in §7, above. Instead, these
approaches search for structures in the data. In this section we explain
two approaches: classification and regression trees (regression: §9.1,
classification: §9.2) and random forests (§9.3).

Hastie et al. [13, §9.2] give a thorough explanation of a tree-based regres-
sion method known as CART (“Classification and Regression Trees”) [4],
which we illustrate here with functions from the rpart “Recursive Parti-
tioning” package. A simplified explanation of the same material is given
in James et al. [17, §8.1]. A wide variety of R packages are available for
data-driven approaches; these are listed and commented at the CRAN
Task View: Machine Learning & Statistical Learning15

9.1 Regression trees

In this section we investigate regression methods for continuous predic-
tands that make no assumptions about linearity in their relation with
predictors. These methods partition the feature space of predictors into
a set of “boxes” in multidimensional feature space, defined by threshold
values of each predictor. These “boxes” then each have a simple predic-
tion model, in the simplest case just a constant, i.e., a predicted value of
the response variable for all combinations of predictor variables in that
feature-space “box”.

The advantages of this approach are: (1) no assumption that the func-
tional form is the same throughout the range of the predictors, and (2)
over-fitting can be avoided by specifying large enough boxes; their opti-
mum size can be calculated by cost-complexity pruning. This is a high-
variance, low-bias method.

15 https://cran.r-project.org/web/views/MachineLearning.html
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We are here replacing a regression, i.e., predicting a continuous variable,
such as log10Zn, from categorical and/or continuous predictors, such as
flooding frequency and distance from the river.16 The procedure is as
follows:

1. We first specify a statistical model, as for the linear model, but with
no interactions. That is, we just specify the response variable and
the possible predictors.

2. We specify a calibration dataset, as for the linear model.

3. The rpart function of the rpart package then looks for one pre-
dictor variable that “best” splits the data into two groups. Intu-
itively, “best” refers to the maximum reduction in sum of within-
group sums of squares in the response variable, compared to its
overall sum of squares with no split; this is the same measure
as used in Analysis of Variance (ANOVA); symbolically the reduc-
tion is SST − (SSL + SSR), where L,R represent the “left” and “right”
branches of the tree.

4. Following the split, this process is applied separately to both sub-
groups; this continues recursively until the subgroups either reach
a minimum size (specified by us) or until no improvement can be
made; that is the sum of the within-groups sum of squares can not
be further reduced.

5. This model is then pruned, i.e., some branches are combined, by
cross-validation, to avoid over-fitting.

Task 32 : Build a regression tree to model log10Zn from the flooding
frequency, normalized distance to river, and relative elevation. •

Q28 : What theory of the origin of the Zn is this model testing? Jump
to A28 •

We first load the library, and a supplementary library for nice plots:
library(rpart)
library(rpart.plot)

We now build the model. The rpart function has several control options;
in particular we specify the minimum number of observations which can
be considered for a split (using the minsplit argument), and the mini-
mum value of a complexity parameter (using the cp argument); this cor-
responds to the improvement in R2 with each split. A small complexity
parameter (close to 0) grows a larger tree, which may be over-fitting. For
illustration, we set these to allow maximum splitting: split even if only
two cases, using the minsplit optional argument. Also specify a small

16 The “classification” trees explained in §9.2 follow a similar logic, but are used to
predict a categorical (classified) outcome.
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complexity parameter with the cp optional argument: keep splitting un-
til there is less than 0.3% improvement in (unadjusted) R2.

The model formulation is the same as for linear modelling: specify the
predictand (dependent variable) on the left side of the ~ formula oper-
ator and the predictors on the right side, separated by the + formula
operator. Note there is no interaction possible in tree models; the pre-
dictors are considered separately when determining which to use for a
split.
m.lzn.rp <- rpart(logZn ~ ffreq + dist + elev,

data=meuse,
minsplit=2,
cp=0.003)

Task 33 : Examine the resulting tree and how it was built. •

We first print the model result:
print(m.lzn.rp)

n= 155

node), split, n, deviance, yval

* denotes terminal node

1) root 155 1.513633e+01 2.556160
2) dist>=0.160161 89 3.680112e+00 2.360022
4) elev>=6.943 82 1.880255e+00 2.319222

8) elev>=9.028 31 4.108683e-01 2.227815
16) dist>=0.5896225 7 7.830826e-03 2.106901 *
17) dist< 0.5896225 24 2.708457e-01 2.263082
34) elev>=9.5415 11 9.304235e-02 2.191158 *
35) elev< 9.5415 13 7.275213e-02 2.323940 *

9) elev< 9.028 51 1.052935e+00 2.374783
18) dist>=0.2471685 40 7.144941e-01 2.348192
36) ffreq=2 13 1.489729e-01 2.298678
72) dist< 0.3287205 6 2.046678e-02 2.232898 *
73) dist>=0.3287205 7 8.029203e-02 2.355060
146) dist>=0.350464 6 9.114778e-03 2.313893 *
147) dist< 0.350464 1 0.000000e+00 2.602060 *

37) ffreq=1,3 27 5.183037e-01 2.372032
74) dist>=0.287949 20 3.677913e-01 2.350104
148) elev< 7.7155 1 0.000000e+00 2.075547 *
149) elev>=7.7155 19 2.884420e-01 2.364555
298) dist< 0.4211215 12 4.965605e-02 2.326868 *
299) dist>=0.4211215 7 1.925236e-01 2.429162
598) elev< 8.154 1 0.000000e+00 2.220108 *
599) elev>=8.154 6 1.415363e-01 2.464004
1198) dist>=0.426563 4 5.110716e-02 2.381562 *
1199) dist< 0.426563 2 8.869630e-03 2.628887 *

75) dist< 0.287949 7 1.134198e-01 2.434683
150) dist< 0.2825155 6 5.071462e-02 2.396044 *
151) dist>=0.2825155 1 0.000000e+00 2.666518 *

19) dist< 0.2471685 11 2.073078e-01 2.471478
38) elev< 7.82 4 5.803321e-02 2.387391
76) elev>=7.75 1 0.000000e+00 2.187521 *
77) elev< 7.75 3 4.769157e-03 2.454014 *

39) elev>=7.82 7 1.048300e-01 2.519529
78) elev>=8.681 2 3.583297e-02 2.379365 *
79) elev< 8.681 5 1.398883e-02 2.575594 *

5) elev< 6.943 7 6.435650e-02 2.837964 *
3) dist< 0.160161 66 3.415388e+00 2.820649

6) dist>=0.0703509 32 1.198374e+00 2.673985
12) elev>=7.81 19 6.626694e-01 2.593058
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24) elev< 8.48 8 3.329208e-01 2.488569
48) ffreq=2,3 7 1.642503e-01 2.433687
96) dist< 0.135693 6 9.742288e-02 2.393798
192) dist>=0.07302095 5 4.374072e-02 2.351497 *
193) dist< 0.07302095 1 0.000000e+00 2.605305 *
97) dist>=0.135693 1 0.000000e+00 2.673021 *

49) ffreq=1 1 0.000000e+00 2.872739 *
25) elev>=8.48 11 1.788816e-01 2.669050
50) elev>=8.7415 5 5.003672e-02 2.572624 *
51) elev< 8.7415 6 4.361309e-02 2.749405 *

13) elev< 7.81 13 2.294029e-01 2.792263
26) dist>=0.130247 5 7.751971e-02 2.688173 *
27) dist< 0.130247 8 6.385069e-02 2.857320 *

7) dist< 0.0703509 34 8.808450e-01 2.958686
14) ffreq=2,3 5 6.668477e-02 2.743572
28) dist< 0.04291265 2 5.176234e-03 2.624905 *
29) dist>=0.04291265 3 1.456883e-02 2.822684 *

15) ffreq=1 29 5.428997e-01 2.995774
30) dist>=0.0088282 14 2.988164e-01 2.956055
60) elev>=7.0415 9 1.706471e-01 2.912502
120) dist< 0.0400747 5 8.711746e-03 2.833014 *
121) dist>=0.0400747 4 9.085509e-02 3.011861
242) elev>=7.592 2 4.290153e-03 2.874330 *
243) elev< 7.592 2 1.090607e-02 3.149392 *

61) elev< 7.0415 5 8.036658e-02 3.034452
122) elev< 5.99 2 5.676054e-05 2.888989 *
123) elev>=5.99 3 9.777667e-03 3.131428 *

31) dist< 0.0088282 15 2.013835e-01 3.032845
62) elev< 7.721 10 6.895802e-02 2.993519 *
63) elev>=7.721 5 8.602990e-02 3.111497
126) elev>=8.02 1 0.000000e+00 2.909556 *
127) elev< 8.02 4 3.505491e-02 3.161982 *

Task 34 : Plot the regression tree, using the rpart.plot function of
the rpart.plot package. •

The rpart.plot function has several options to control the display; we
choose to show the values of the response variable at the interior nodes
as well as at the leaves, and to show the number of observations in each
split and leaf. The information is the same as given with a printout of
the model object, but easier to visualize.
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rpart.plot(m.lzn.rp, digits=3, type=4, extra=1)
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Q29 : How many terminal nodes, i.e., prediction groups, does this tree
have? How many internal nodes, i.e., splits? Jump to A29 •

We can find this by examining the fitted object; this is described in the
help for ?rpart.object. The frame field contains information on the
tree. This includes the var field:

“a factor giving the names of the variables used in the split
at each node (leaf nodes are denoted by the level ’<leaf>’), n,
the number of observations reaching the node, . . . yval, the
fitted value of the response at the node, and splits, a two

41



column matrix of left and right split labels for each node.

So we want to count the number of leaves and internal nodes, using the
== “logical equals” and != “logical not equals” binary operators:
sum(m.lzn.rp$frame$var == '<leaf>')

[1] 36

sum(m.lzn.rp$frame$var !="<leaf>")

[1] 35

The rpart function summarizes the relative importance of each predic-
tor, roughly speaking, how often it was used in the model and how much
it contributed to the reduction in sum of squares. This information is
stored in the variable.importance field of the fitted model.

Task 35 : Display the relative variable importance, as a percentage of
the total. •
x <- m.lzn.rp$variable.importance
data.frame(variableImportance = 100 * x / sum(x))

variableImportance
dist 54.83121
elev 35.03698
ffreq 10.13181

Q30 : Which variables are most important? Jump to A30 •

We now examine the reduction in fitting and cross-validation error with
the printcp “print the complexity parameter” function.

Task 36 : Print and plot the error rate vs. the complexity parameter and
tree size. •
printcp(m.lzn.rp)

Regression tree:
rpart(formula = logZn ~ ffreq + dist + elev, data = meuse, minsplit = 2,

cp = 0.003)

Variables actually used in tree construction:
[1] dist elev ffreq

Root node error: 15.136/155 = 0.097654

n= 155

CP nsplit rel error xerror xstd
1 0.5312272 0 1.000000 1.01530 0.081433
2 0.1146579 1 0.468773 0.59750 0.067806
3 0.0882756 2 0.354115 0.51049 0.069148
4 0.0275134 3 0.265839 0.37948 0.051512
5 0.0202362 4 0.238326 0.36848 0.048500
6 0.0179212 5 0.218090 0.35487 0.048033
7 0.0105553 6 0.200168 0.33005 0.041066
8 0.0087334 8 0.179058 0.28421 0.030945
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9 0.0086635 9 0.170324 0.27971 0.030667
10 0.0069403 10 0.161661 0.28069 0.029894
11 0.0058160 11 0.154721 0.28390 0.031588
12 0.0056309 12 0.148905 0.28886 0.032089
13 0.0044150 13 0.143274 0.34286 0.043769
14 0.0040667 14 0.138859 0.37026 0.046005
15 0.0038071 19 0.118525 0.36015 0.045369
16 0.0035466 28 0.083869 0.36529 0.046248
17 0.0033631 29 0.080323 0.36836 0.046079
18 0.0032165 32 0.070233 0.37617 0.046370
19 0.0031011 34 0.063800 0.38229 0.046600
20 0.0030000 35 0.060699 0.39110 0.046472

plotcp(m.lzn.rp)
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Note: Your results will likely be different. This is because the cross-
validation makes a random split of the full dataset into a number of
subsets for model building and evaluation. Each run gives a different
random split.

The xerror field in the summary shows the cross-validation error; that
is, applying the model to the original data split K-fold, each time exclud-
ing some observations. If the model is over-fitted, the cross-validation
error increases; note that the fitting error, given in the error field, al-
ways decreases. By default, the split is 10-fold; this can be modified by
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the control argument to the rpart function.17

Q31 : Does this model appear to be overfit? Why or why not? What
appears to be the optimum number of splits, avoiding over-fitting? Jump
to A31 •

A regression tree can be pruned back to any level of complexity. The aim
is to build as complex a tree as possible without over-fitting, i.e., to have
the most leaves possible, so the most different predictions.

Task 37 : Find the minimum cross-validation error and the correspond-
ing complexity parameter. •

This information is in the cptable list item inside the m.lzn.rp model
object returned by the rpart function; this is of class rpart, which we
can see with the class function.18

head(cp.table <- m.lzn.rp[["cptable"]],8)

CP nsplit rel error xerror xstd
1 0.531227213 0 1.0000000 1.0153031 0.08143327
2 0.114657940 1 0.4687728 0.5974995 0.06780629
3 0.088275626 2 0.3541148 0.5104947 0.06914828
4 0.027513386 3 0.2658392 0.3794751 0.05151195
5 0.020236188 4 0.2383258 0.3684761 0.04849968
6 0.017921153 5 0.2180896 0.3548721 0.04803334
7 0.010555316 6 0.2001685 0.3300455 0.04106605
8 0.008733409 8 0.1790579 0.2842105 0.03094472

(cp.ix <- which.min(cp.table[,"xerror"]))

9
9

print(cp.table[cp.ix,])

CP nsplit rel error xerror xstd
0.008663472 9.000000000 0.170324454 0.279711661 0.030667344

cp.min <- cp.table[cp.ix,"CP"]

Q32 : What is the minimum cross-validation error? At how many splits?
What is the corresponding complexity parameter? Jump to A32 •

The minimum cross-validation error is at 0.0087; this is one possibility
for the complexity parameter for pruning. Another possibility is the first
value of the complexity parameter at which the error is one standard
deviation above the minimum; this is shown as a dashed line in the plot.
(cp.min.plus.sd <- cp.table[cp.ix,"xerror"] + cp.table[cp.ix,"xstd"])

[1] 0.310379

cp.ix.sd <- min(which(cp.table[,"xerror"] < cp.min.plus.sd))

17 See the help for rpart.control.
18 ?rpart
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print(cp.table[cp.ix.sd,])

CP nsplit rel error xerror xstd
0.008733409 8.000000000 0.179057863 0.284210485 0.030944722

cp.min.sd <- cp.table[cp.ix.sd,"CP"]

This results in a simpler tree. Another possibility is to find by inspection
where a large increase in cross-validation error first occurs; this would
result in a more complex tree.

Task 38 : Prune the tree back to complexity level identified by the
minimum (not minimum plus sandard deviation). •

We do this with the prune function, specifying the cp “complexity pa-
rameter” argument.
(m.lzn.rpp <- prune(m.lzn.rp, cp=cp.min))

n= 155

node), split, n, deviance, yval

* denotes terminal node

1) root 155 15.136330000 2.556160
2) dist>=0.160161 89 3.680112000 2.360022
4) elev>=6.943 82 1.880255000 2.319222
8) elev>=9.028 31 0.410868300 2.227815
16) dist>=0.5896225 7 0.007830826 2.106901 *
17) dist< 0.5896225 24 0.270845700 2.263082 *

9) elev< 9.028 51 1.052935000 2.374783 *
5) elev< 6.943 7 0.064356500 2.837964 *

3) dist< 0.160161 66 3.415388000 2.820649
6) dist>=0.0703509 32 1.198374000 2.673985
12) elev>=7.81 19 0.662669400 2.593058

24) elev< 8.48 8 0.332920800 2.488569
48) ffreq=2,3 7 0.164250300 2.433687 *
49) ffreq=1 1 0.000000000 2.872739 *

25) elev>=8.48 11 0.178881600 2.669050 *
13) elev< 7.81 13 0.229402900 2.792263 *
7) dist< 0.0703509 34 0.880845000 2.958686
14) ffreq=2,3 5 0.066684770 2.743572 *
15) ffreq=1 29 0.542899700 2.995774 *

Task 39 : Plot the pruned regression tree. •
rpart.plot(m.lzn.rpp, digits=3, type=4, extra=1)
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Q33 : How many terminal nodes, i.e., prediction groups, does the
pruned tree have? How many internal nodes, i.e., splits? How do these
compare with the original (unpruned) tree? Jump to A33 •

Q34 : Which predictor(s) was(were) used to build the pruned tree? What
does this imply about the other(s)? Jump to A34 •

Q35 : Interpret the structure of the tree in terms of geography. Jump
to A35 •

A fitted model can be used for prediction. There is a major difference
with the linear model: the tree model only predicts the exact values at
its leaves, whereas the linear model applies its formula to any predictor
value and thus predicts any number of values. Here we do not have other
points to predict, so we will just predict back at the known points; these
are more properly called fitted values.

Task 40 : Use the pruned regression tree to predict at the calibration
points, and plot the actual vs. fitted values. •

We do this with the predict method applied to a rpart object; this au-
tomatically calls function predict.rpart. The points to predict and
the values of the predictor variables at those points are supplied in
a dataframe as argument newdata. In this case we already have the
dataframe, i.e., the meuse object. We count the number of predicted val-
ues with the unique function; there is only one value per “box” in the
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feature space defined by the predictor variables.
p.rpp <- predict(m.lzn.rpp, newdata=meuse)
length(unique(p.rpp))

[1] 10

summary(r.rpp <- meuse$logZn - p.rpp)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.318047 -0.091812 -0.007809 0.000000 0.072248 0.320698

sqrt(sum(r.rpp^2)/length(r.rpp))

[1] 0.1289683

plot(meuse$logZn ~ p.rpp, asp=1, pch=20, xlab="fitted", ylab="actual",
xlim=c(2,3.3), ylim=c(2,3.3),
main="log10(Zn), Meuse topsoils, Regression Tree")

grid()
abline(0,1)
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9.1.1 Predicting over the study area with the regression tree model

Now that we have a predictive model, we can use it to map the study
area.

We have the meuse.grid prediction grid, which does include normalized
distance to the river, which were used to build the tree.. However, it does
not have the elevation, which was also used to build the tree. Although
this has been included in a different version of the Meuse dataset19 it’s
not in the dataset included in the sp package. So, we have to create it by
interpolation from the known points.

19 http://spatial-analyst.net/book/meusegrids
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We just need to “fill in the holes” between the observed points.

Task 41 : Predict the elevation over the prediction grid by inverse
distance squared interpolation. •

The idw function is a special case of the krige function. Instead of a
variogram model it need the inverse distance power to be specified by
the idp argument. We also specify the maximum number of neighbours
to consider, with the nmax argument; in practice this doesn’t make much
difference since far-away points would receive much lower weights.
tmp <- idw(elev ~ 1, locations=meuse,

nmax=16, idp=2, newdata=meuse.grid)

[inverse distance weighted interpolation]

meuse.grid$elev <- tmp$var1.pred; rm(tmp)
pts.s <- list("sp.points", meuse, col="darkgreen",

pch=1, cex=2*meuse$elev/max(meuse$elev))
print(spplot(meuse.grid, zcol="elev",

col.regions=heat.colors(64),
main="Elevation (m)",
sub="Interpolated by IDW^2, 16 neighbours",
sp.layout = list(pts.s)))

summary(meuse$elev)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.180 7.546 8.180 8.165 8.955 10.520

summary(meuse.grid$elev)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.198 7.873 8.211 8.318 8.863 10.279

Elevation (m)

Interpolated by IDW^2, 16 neighbours
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Task 42 : Use the regression tree to map over the prediction grid. •
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rt.grid <- predict(m.lzn.rpp, newdata=meuse.grid)
meuse.grid$rt.pred <- rt.grid; rm(rt.grid)
spplot(meuse.grid, zcol="rt.pred",

main="Regression tree prediction, log10(Zn)")

Regression tree prediction, log10(Zn)

2.2

2.4

2.6

2.8

3.0

Q36 : Comment on the success or otherwise of this modelling approach.
Jump to A36 •

Challenge: Build a linear model to predict log10Zn from the flooding
frequency, distance to river, and relative elevation, and compare its per-
formance to the regression tree model.

Challenge: Select 90% of the observations (see the sample function) and
use these to build another regression tree. Compare it to the first one.
How much difference do you expect? Do this several times to evaluate
the sensitivity of the regression tree method to the data.

9.2 * Classification trees

A very similar method to the regression tree for continuous predictands
can be applied for categorical (classified) predictands, in which case it
is known as a classification tree. Again, see Hastie et al. [13, §9.2] or
James et al. [17, §8.1]. The same rpart “Recursive Partitioning” package
implements this.

There are several categorical variables in the Meuse dataset; one that
would be interesting to model is flooding frequency. This is determined
by historical records and time-series of air photos or satellite images,
which are often not available during flooding events due to cloud cover.
Perhaps flooding frequency class can be determined from the distance
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to river and elevation above sea level; if so a reliable map of flooding
frequency could be produced.

The rpart function can also build trees to model categorical response
variables. Instead of using reduction in residual error as a criterion (or
equivalently increase in R2) it uses the increase in classification accu-
racy. Outputs and interpretation are somewhat different from regression
trees.

Task 43 : Build a classification tree to model flooding frequency class
based on the normalized distance to river and elevation above sea level.

•

The model formula has the same form as for a continuous predictand.
Since the response variable is categorical rpart automatically uses the
"class" method instead of "anova" when determining the splits.
m.ff.rp <- rpart(ffreq ~ dist + elev,

data=meuse,
minsplit=2,

# method="class",
cp=0)

Task 44 : Show the cross-validation error rate vs. complexity parame-
ter, both in text and as a graph. Find the complexity parameter at the
minimum cross-validation error rate. •
printcp(m.ff.rp)

Classification tree:
rpart(formula = ffreq ~ dist + elev, data = meuse, minsplit = 2,

cp = 0)

Variables actually used in tree construction:
[1] dist elev

Root node error: 71/155 = 0.45806

n= 155

CP nsplit rel error xerror xstd
1 0.1267606 0 1.00000 1.00000 0.087366
2 0.0422535 2 0.74648 0.84507 0.085411
3 0.0375587 3 0.70423 0.88732 0.086127
4 0.0281690 7 0.54930 0.90141 0.086335
5 0.0140845 11 0.43662 0.84507 0.085411
6 0.0105634 18 0.33803 0.87324 0.085904
7 0.0093897 22 0.29577 0.90141 0.086335
8 0.0070423 30 0.21127 0.90141 0.086335
9 0.0000000 59 0.00000 0.95775 0.087014

plotcp(m.ff.rp)
cp.table.class <- m.ff.rp[["cptable"]]
# total variance explained is sum of the CP for all split
sum(cp.table.class[,"CP"])

[1] 0.2758216
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The root node error shown in the summary is the proportion of obser-
vations that are not in the majority class, i.e., the class that would be
predicted everywhere with a null model (no splits). This corresponds to
a relative error ≡ 1; the other errors are reductions from this.

We can compute this directly:
(n <- length(m.ff.rp$y))

[1] 155

(class.majority <- which.max(m.ff.rp$parms$prior))

1
1

(class.majority.proportion <-
m.ff.rp$parms$prior[class.majority])

1
0.5419355

(1 - (class.majority.proportion))

1
0.4580645

Q37 : Considering the complexity parameter at each level to roughly
correspond to the amount of explained variation added by the level: (1)
how much total variability is explained by the full model?; (2) at how
many splits is the cross-validation error a minimum? (3) Is there a clear
choice of complexity parameter for pruning? Jump to A37 •

Task 45 : Prune the tree. •

51



Because there is not much difference in cross-validation errors between
two and three splits, we choose three splits to see a somewhat more
complex tree.
(m.ff.rpp <- prune(m.ff.rp, cp=cp.table.class[3,"CP"]))

n= 155

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 155 71 1 (0.54193548 0.30967742 0.14838710)
2) elev< 7.558 40 2 1 (0.95000000 0.00000000 0.05000000) *
3) elev>=7.558 115 67 2 (0.40000000 0.41739130 0.18260870)
6) elev< 9.084 87 43 1 (0.50574713 0.32183908 0.17241379) *
7) elev>=9.084 28 8 2 (0.07142857 0.71428571 0.21428571)
14) elev< 9.947 23 4 2 (0.08695652 0.82608696 0.08695652) *
15) elev>=9.947 5 1 3 (0.00000000 0.20000000 0.80000000) *

printcp(m.ff.rpp)

Classification tree:
rpart(formula = ffreq ~ dist + elev, data = meuse, minsplit = 2,

cp = 0)

Variables actually used in tree construction:
[1] elev

Root node error: 71/155 = 0.45806

n= 155

CP nsplit rel error xerror xstd
1 0.126761 0 1.00000 1.00000 0.087366
2 0.042254 2 0.74648 0.84507 0.085411
3 0.037559 3 0.70423 0.88732 0.086127

The nodes and leaves of the tree now show the proportion of each class
which satisfies the condition at the node. For example, at the first split
(elev < 7.558, for the lower-elevation points, 95% of the observations
are class 1, none are class 2, and one is class 320. For the higher-elevation
points at this split, 40% are class 1, 41.7% class 1, 18.2% class 3.

Task 46 : Display the classification tree as a graph (1) showing the num-
ber of observations at each node and leaf; (2) showing the proportion of
each class in each node and leaf. •

This graph shows the majority class at each node in a different colour.
The intensity of the colour (its chroma) is greater as the node purity
increases. The left-hand graph shows the counts, the right-hand graph
the proportions.
par(mfrow=c(1,2))
rpart.plot(m.ff.rpp, type=4, extra=1)
rpart.plot(m.ff.rpp, type=4, extra=4)
par(mfrow=c(1,1))

20 We may wonder if that point’s flooding frequency was accurately recorded.
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elev < 7.6

elev < 9.1

elev < 9.9
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1
.51  .32  .17

2
.07  .71  .21

2
.09  .83  .09

3
.00  .20  .80

1
2
3

Q38 : How successful is this tree in modelling flooding frequency?
Explain why. Jump to A38 •

Challenge: Select 90% of the observations (see the sample function) and
use these to build another classification tree. Compare it to the first one.
How much difference do you expect? Do this several times to evaluate
the sensitivity of the classification tree method to the data.

9.3 Random forests for continuous predictands

In this section we discuss random forests for continuous predictands;
this is an extension of the regression trees explained in §9.1.

A problem with regression trees is that a small change in the sample set,
for example a missing or erroneous observation, can radically change the
tree.

“One major problem with trees is their high variance. Of-
ten a small change in the data can result in a very different
series of splits, making interpretation somewhat precarious.
The major reason for this instability is the hierarchical na-
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ture of the process: the effect of an error in the top split is
propagated down to all of the splits below it.” [13, p. 312]
(emphasis added)

Also, correlated predictors can appear in the tree as surrogates for each
other, depending on the details of the calibration set; this makes inter-
pretation difficult. Finally, as we have seen in the 1:1 plot of actual vs. fit-
ted values in the previous section, trees do not give smooth predictions;
rather they only predict a single value in each box. To solve these prob-
lems, a method known as “random forests” was developed; see Hastie
et al. [13, §15] (advanced) or James et al. [17, §8] (simplified). There are
a lot of details to this method, but the basic idea is straightforward:

1. Build a large number of regression trees, independently, using
different sets of observations; these are built by sampling with re-
placement from the actual observations; this is a technique known
as bagging or bootstrap aggregation.

2. Save all these trees; when predicting, use all of them and average
their predictions.

3. In addition we can summarize the whole set of trees to see how
different they are, thus how robust is the final model.

4. Also, for each tree we can use observations that were not used to
construct it for true validation, called out-of-bag validation. This
gives a good idea of the true prediction error.

The first step may seem suspicious. The underlying idea is that what we
observe is the best sample we have of reality; if we sampled again we’d
expect to get similar values. So we simulate re-sampling by sampling
from this same set, with replacement, to get a sample of the same size
but a different sample. If this idea bothers you, read Efron & Gong [9],
Shalizi [27] or Hastie et al. [13, §8.2].

In this section we compare the random forest to the single regression
tree of the previous section.

Task 47 : Build a random forest to model log10Zn from the flooding
frequency, normalized distance to river, and relative elevation. •

Random forests have been implemented with the randomForest pack-
age. The randomForest function computes the model; print applied to
an object of class randomForest displays the results.

The randomForest function has many control parameters, which you
should review21 before any serious model building, and also consult the
recommended textbooks for advice on the effect of various decisions
about the parameters. For example, the mtry argument specified the
number of predictors to try at each split. The default is 1/3 of all the

21 ?randomForest
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predictors; here we only have 3 predictors, so only 1 would be tried,
which would likely lead to many poorly-fit trees. So we increase this to 2
out of the 3 possible predictors.
library(randomForest)

randomForest 4.6-14

Type rfNews() to see new features/changes/bug fixes.

m.lzn.rf <- randomForest(logZn ~ ffreq + dist+ elev, data=meuse,
importance=T, na.action=na.omit, mtry=2)

print(m.lzn.rf)

Call:
randomForest(formula = logZn ~ ffreq + dist + elev, data = meuse, importance = T, mtry = 2, na.action = na.omit)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 0.02195649
% Var explained: 77.52

We plot the the error rates, i.e., mean square error of the predictions of
the out-of-bag observations, of the randomForest object vs. the number
of trees. Here the plot function is applied to a randomForest object.
plot(m.lzn.rf)
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Q39 : About how many trees are needed to achieve a stable error rate?
Jump to A39 •

While building the forest, if the optional importance argument is set to
TRUE, we obtain the average importance of each predictor; this is similar
to the regression tree but here the importances are averaged.
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The importance is measured as an increase in mean squared error (MSE)
as follows. For each tree, the prediction error on the out-of-bag observa-
tions is recorded – this is the success of tree. Then a predictor variable
is permuted: that is, its values are randomly assigned to observations.
The tree is again used to predict at the out-of-bag observations, and the
errors are recorded. If a variable is not used much in the tree, or at lower
levels, or with not much difference in the predictions, this increase in er-
ror will be small – the predictor is unimportant. The difference between
the errors from the original and permuted trees are averaged over all
trees and then normalized by the standard deviation of the differences,
to give an importance on a [0 . . .1] or [0 . . .100]% scale.

Task 48 : Print and display the relative variable importances, as mea-
sured by the increase in mean-squared error. •

We do this with the importance and varImpPlot functions.
importance(m.lzn.rf, type=1)

%IncMSE
ffreq 14.11724
dist 66.06125
elev 43.03069

varImpPlot(m.lzn.rf, type=1)

ffreq

elev

dist

●

●

●

20 30 40 50 60

m.lzn.rf

%IncMSE

Note that the importances are calculated independently, they do not sum
to 100%.

Q40 : Which variables are most important? Compare with the single
pruned regression tree. Jump to A40 •
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And of course we want to use our model for prediction, here at the
known points:

Task 49 : Use the random forest object to predict back at the calibration
points, and plot the actual vs. fitted values. •

We do this with the predict method applied to a randomForest object;
this automatically calls function predict.randomForest. The points
to predict and the values of the predictor variables at those points are
supplied in a dataframe with the optional argument newdata. In this
case we already have the dataframe, i.e., the meuse object.
p.rf <- predict(m.lzn.rf, newdata=meuse)
length(unique(p.rf))

[1] 155

summary(r.rpp <- meuse$logZn - p.rf)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.207864 -0.039794 -0.010732 -0.001143 0.036847 0.213674

sqrt(sum(r.rpp^2)/length(r.rpp))

[1] 0.07250622

plot(meuse$logZn ~ p.rf, asp=1, pch=20, xlab="fitted", ylab="actual",
xlim=c(2,3.3), ylim=c(2,3.3),
main="log10(Zn), Meuse topsoils, Random Forest")

grid()
abline(0,1)
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Q41 : Compare this 1:1 plot (actual vs. fitted) to that produced by the re-
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gression tree. Which would you prefer for prediction at unknown points?
Jump to A41 •

This graph is not a valid estimate of the accuracy of the random for-
est. Better is the average of the out-of-bag cross-validations. These are
predictions at a point when it is not included in the resampled set of ob-
servations used to build a tree. We can get these by using the predict
method applied to a randomForest object but with no newdata argu-
ment; in this case the method averages the out-of-bag cross-validations
calculated during the construction of the forest.

Task 50 : Display the out-of-bag cross-validation averages vs. the
known values at each observation point. Compare the evaluation statis-
tics with those from the fitted values, above. •

Again we use the predict method applied to a randomForest object;
this automatically calls function predict.randomForest. But now we
do not specify a dataframe with the newdata optional argument. In this
case predict.randomForest reports the average out-of-bag predictions
that were stored during the computation of the forest.
p.rf.oob <- predict(m.lzn.rf)
summary(r.rpp.oob <- meuse$logZn - p.rf.oob)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.434239 -0.083127 -0.025497 -0.003768 0.087897 0.367355

sqrt(sum(r.rpp.oob^2)/length(r.rpp.oob))

[1] 0.1481772

plot(meuse$logZn ~ p.rf.oob, asp=1, pch=20,
xlab="Out-of-bag cross-validation estimates",
ylab="actual", xlim=c(2,3.3), ylim=c(2,3.3),
main="log10(Zn), Meuse topsoils, Random Forest")

grid()
abline(0,1)
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Q42 : How do the evaluation statistics from the out-of-bag estimates
compare to those from the fits? Which is a more realistic measure of the
success of this modelling approach? Jump to A42 •

9.3.1 Predicting over the study area with the random forest model

Now that we have a predictive model, we can use it to map the study
area.

Task 51 : Use the random forest model to map over the prediction grid.
•

rf.grid <- predict(m.lzn.rf, newdata=meuse.grid)
meuse.grid$rf.pred <- rf.grid; rm(rf.grid)
spplot(meuse.grid, zcol="rf.pred",

main="Random forest prediction, log10(Zn)")
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Random forest prediction, log10(Zn)

2.2

2.4

2.6

2.8

3.0

Challenge: Build another random forest and compare its predictions
and variable importances to the first one. How much difference do you
expect? Was the difference as you expected? Can you explain why this is
much more stable than the regression tree?

9.4 * Random forests for categorical predictands

In this optional section we discuss random forest models for categorical
(classified) response variables; this is an extension of the classification
trees discussed in §9.2. The output is somewhat different that for con-
tinuous predictands.

Task 52 : Build a random forest model of flooding frequency class
based on normalized distance to river and elevation, using the default
number of trees. •
library(randomForest)
m.ff.rf <- randomForest(ffreq ~ dist + elev,

data=meuse,
importance=T,

# type="class",
mtry=2)

print(m.ff.rf)

Call:
randomForest(formula = ffreq ~ dist + elev, data = meuse, importance = T, mtry = 2)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 39.35%
Confusion matrix:

1 2 3 class.error
1 60 17 7 0.2857143

60



2 16 29 3 0.3958333
3 10 8 5 0.7826087

importance(m.ff.rf, type=1)

MeanDecreaseAccuracy
dist 3.345968
elev 49.853864

Task 53 : Display the out-of-bag cross-validation error rate vs. number
of trees. •
plot(m.ff.rf)
palette()

[1] "black" "red" "green3" "blue" "cyan" "magenta"
[7] "yellow" "gray"

0 100 200 300 400 500

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

m.ff.rf

trees

E
rr

or

This shows the out-of-bag cross-validation for overall (black lines) and
the three classes separately; these colours are according to the default
colour palette for base graphics, which we can examine with the palette
function.

Q43 : Which classes have the highest and lowest error rates? Comment
on their values. Jump to A43 •

Q44 : Approximately how many trees are needed for a stable error rate?
Jump to A44 •

Task 54 : Display the out-of-bag predictions of the random forest,
compared to the mapped classes in a confusion matrix. •
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The table function with two arguments produces a confusion matrix,
also called a contingency table. The conventional order is for the “true”
(observed) values to be columns (second argument) and the predicted
values to be rows (first argument).
p.rf <- predict(m.ff.rf)
table(meuse$ffreq) # observed

1 2 3
84 48 23

table(p.rf) # predicted

p.rf
1 2 3
86 54 15

(p.rf.cm <- table(p.rf, meuse$ffreq, dnn=c("Predicted","Observed")))

Observed
Predicted 1 2 3

1 60 16 10
2 17 29 8
3 7 3 5

We follow Lark [18] and use the terms:

• map unit purity for what is usually called “user’s accuracy”; this is
the proportion of a map unit correctly shown by the model;

• class representation for what is usually called “producer’s accu-
racy”; this is how well the mapper found the class when it was
actually present.

• overall purity for what is often called “overall accuracy”.

In this matrix the proportional row sums are map unit purity, i.e., how
much of the mapped class is really in that class; this is what we want
to evaluate the usefulness of a model. The map user would go to the
field expecting to find a class; how often would the class as mapped be
found in the field, and how often would other classes be found instead?
Similarly the proportional column sums are class representations, i.e.,
how much of the actual class is mapped correctly, and how much as
other classes?

The diag “matrix diagonal” function extracts the diagonal, i.e., number
of correctly-classified observations. The apply function, applied over
rows with the MARGIN argument set to 1, specifying sum as the function
to apply, sums each row, i.e., class as mapped. Their ratio gives the map
unit purity. For example, 5 of the total 15 observations predicted to be
in flood frequency class 3 were actually in that class. This gives a map
unit purity of 33.3%.
(d <-diag(p.rf.cm))

1 2 3
60 29 5

(row.sums <- apply(p.rf.cm, MARGIN=1, "sum"))
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1 2 3
86 54 15

(mu.purity <- d/row.sums)

1 2 3
0.6976744 0.5370370 0.3333333

Q45 : (1) What are the three map unit purities? (2) Which confusions
contribute most to the low purities? (3) Overall, how well does this ran-
dom forest model predict flood frequency class from elevation and dis-
tance to river? Jump to A45
•

10 Local spatial structure

We now consider the coordinates of each point; this allows us to either
look for a regional trend or a local structure.

In this study area we don’t expect a trend, as we might with e.g.. aquifer
depth in a tilted bed. So we concentrate on local structure.

10.1 Assessing spatial dependence with the empirical variogram

Task 55 : Display a postplot of the untransformed Zn values, that is,
plot the sample locations (as above) and represent the data value by the
size of the symbol. •

We use the cex optional argument to specify the symbol size; this is
computed as a proportion of the maximum.
plot(meuse, asp=1, cex=4*meuse$zinc/max(meuse$zinc), pch=1)
lines(meuse.riv)
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Q46 : Do nearby observations seem to more similar to each other than
would be expected at random? Jump to A46 •

Now we investigate the idea of local spatial dependence: “closer in ge-
ograhic space implies closer in attribute space”. This may be true or not;
and if true, the range of dependence will vary, depending on the physical
process that produced the attribute being investigated.

The fundamental concept is spatial auto-correlation: an attribute value
can be correlated to itself, with the strength of the correlation depending
on separation distance (and possibly direction).

This should be evident as a relation between separation distance and
correlation; the latter is often expressed as the semi-variance.

Each pair of observation points has a semi-variance, usually represented
as the Greek letter γ (‘gamma’), and defined as:

γ(xi,xj) =
1
2
[z(xi)− z(xj)]2 (9)

where x is a geographic point and z(x) is its attribute value.

Task 56 : Compute the number of point-pairs. •

The length function returns the length of a vector, i.e. the number of
observations of an attribute. There are (n× (n− 1))/2 pairs of these:
n <- length(meuse$logZn)
n*(n-1)/2

[1] 11935
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Q47 : How many unique pairs of points are there in this dataset? Jump
to A47 •

Task 57 : Compute the distance and semivariance between the first two
points in the data set. •

The distance can be calculated with the dist function, which finds the
Euclidean (straight-line) distances between rows of a matrix, in this case
the first two rows of the coördinates matrix, selected by the [] matrix
selection operator. The semivariance is computed as in Equation 9.
dim(coordinates(meuse))

[1] 155 2

coordinates(meuse)[1,]

x y
181072 333611

coordinates(meuse)[2,]

x y
181025 333558

(sep <- dist(coordinates(meuse)[1:2,]))

1
2 70.83784

(gamma <- 0.5 * (meuse$logZn[1] - meuse$logZn[2])^2)

[1] 0.001144082

Q48 : What is the separation and semivariance for this point-pair? Jump
to A48 •

10.1.1 * The variogram cloud

We can see the individual semivariances with the variogram cloud. Since
there are so many point-pairs, this is difficult to interpret. However, we
can show just the closest pairs of points.

Task 58 : Display a variogram cloud for point-pairs separated by less
than 72 m, for the log10Zn concentration. •

The variogram function, with the optional argument cloud set to TRUE,
computes the variogram cloud. The optional cutoff argument sets the
maximum separation for which semivariances should be computed.
(vc <- variogram(logZn ~ 1, meuse, cutoff=72, cloud=TRUE))

dist gamma dir.hor dir.ver id left right
1 70.83784 1.144082e-03 0 0 var1 2 1
2 67.00746 9.815006e-05 0 0 var1 11 10
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3 62.64982 2.504076e-02 0 0 var1 22 21
4 53.00000 2.375806e-03 0 0 var1 23 22
5 49.24429 8.749351e-05 0 0 var1 26 25
6 62.62587 5.128294e-03 0 0 var1 33 32
7 65.60488 6.655118e-04 0 0 var1 39 38
8 63.07139 2.403081e-03 0 0 var1 72 71
9 63.63961 4.318603e-03 0 0 var1 76 75
10 60.44005 4.486439e-03 0 0 var1 84 9
11 43.93177 1.326441e-02 0 0 var1 87 72
12 65.43699 8.178006e-02 0 0 var1 87 80
13 56.04463 8.764773e-03 0 0 var1 88 73
14 55.22681 6.198261e-02 0 0 var1 88 79
15 60.41523 5.680995e-03 0 0 var1 123 58
16 60.82763 5.583388e-05 0 0 var1 124 52
17 63.15853 1.344946e-01 0 0 var1 138 76
18 56.36488 2.996326e-03 0 0 var1 139 77
19 68.24222 8.550172e-03 0 0 var1 140 91

plot(vc$gamma ~ vc$dist, xlim=c(0,80), pch=20, cex=2,
ylab="semivariance, (log10(Zn)^2)", xlab="separation, m")

grid()
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Q49 : Do these close-by points in general have low semi-variance, i.e., do
they have similar values? Are there exceptions? Which pair of close-by
points has the largest semi-variance? Jump to A49 •

This gives us a chance to investigate the order “ordering permutation”
and which.max “index in vector of the maximum element” functions.22.
order(vc$gamma, decreasing=TRUE)

[1] 17 12 14 3 11 13 19 15 6 10 9 18 8 4 1 7 2 5 16

order(vc$gamma, decreasing=TRUE)[1]

[1] 17

which.max(vc$gamma)

[1] 17

22 Naturally, there is also a which.min function
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(unusual.pair <- vc[which.max(vc$gamma),])

dist gamma dir.hor dir.ver id left right
17 63.15853 0.1344946 0 0 var1 138 76

meuse[138, "logZn"]; meuse[76, "logZn"]

coordinates logZn
143 (179120, 330578) 2.313867

coordinates logZn
85 (179095, 330636) 2.832509

(gamma.76.138 <- 0.5 * (meuse@data[138, "logZn"] - meuse@data[76, "logZn"])^2)

[1] 0.1344946

10.1.2 The empirical variogram

Now, the question is, how are the semivariances related to the separa-! →
tions, on average? The theory of stationary random fields is based on
the assumption that absolute location is not important; only relative
location, i.e., the same local spatial structure is found anywhere in the
study area.

The tool for investigating this is the empirical variogram, defined as the
average semivariance within some separation range:

γ(h) = 1
2m(h)

∑
(i,j)|hij∈h

[z(xi)− z(xj)]2 (10)

Here we consider points numbered 1,2, . . . , i, . . . , j, . . . n, i.e. the list of
points, out of which we make point-pairs.

• hij is the distance (separation) between points i and j;

• h is a range of separations, similar to a histogram bin; hij ∈ h
means that this point-pair’s separation vector is within this range;

• m(h) is the number of point-pairs in the bin corresponding to sep-
aration range h;

• the notation (i, j)| reads “pairs of points indexed as i and j, such
that . . . ”.

Task 59 : Plot the experimental variogram of the log-Zn concentrations,
i.e. the average semi-variances of the point-pairs versus average distance
(also known as the “lag”), with a bin width of 90 m, to a maximum lag
distance (“cutoff”) of 1300 m23. •
23 By default, the variogram function uses a cutoff equal to 1/3 of the maximum dis-

tance across the diagonal of the bounding box (see slot @bbox), and divides this
into 15 equal separation distance classes; this rule-of-thumb may not be the best
to reveal the spatial structure. Ideally the cutoff should be about 10–15% beyond
the estimated range, and bins should be as narrow as possible before the variogram
becomes “too” erratic. I experimented with the cutoff and width arguments to the
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The variogram function computes the experimental variogram. The op-
tional cutoff argument sets the maximum separation for which semi-
variances should be computed, and the optional width argument sets
the bin width.
(v <- variogram(logZn ~ 1, meuse, cutoff=1300, width=90))

np dist gamma dir.hor dir.ver id
1 41 72.24836 0.02649954 0 0 var1
2 212 142.88031 0.03242411 0 0 var1
3 320 227.32202 0.04818895 0 0 var1
4 371 315.85549 0.06543093 0 0 var1
5 423 406.44801 0.08025949 0 0 var1
6 458 496.09401 0.09509850 0 0 var1
7 455 586.78634 0.10656591 0 0 var1
8 466 677.39566 0.10333481 0 0 var1
9 503 764.55712 0.11461332 0 0 var1
10 480 856.69422 0.12924402 0 0 var1
11 468 944.02864 0.12290106 0 0 var1
12 460 1033.62277 0.12820318 0 0 var1
13 422 1125.63214 0.13206510 0 0 var1
14 408 1212.62350 0.11591294 0 0 var1
15 173 1280.65364 0.11719960 0 0 var1

print(plot(v, plot.numbers=T))
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The plot.numbers optional argument is used to display the number of
point-pairs in each bin; this aids interpretation of the variogram, because
bins with more point-pairs are more reliable (based on a larger propor-
tion of the sample).

The formula logZn ~ 1 specifies the dependence of the left-hand side
“dependent” variable, here logZn, on the right-hand side “independent”
variable(s), here just 1. As usual, the ~ formula operator is used to sep-
arate the dependent and independent variables. The 1 here represents
the spatial mean of the dependent variable – that is, the variable logZn
is only dependent on itself! This is why we use the term spatial auto-
(“self”) correlation.

variogram command according to these criteria, and decided on these values.
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Q50 : What is the average separation and average semivariance in the
first bin? How many point-pairs are averaged for this? Jump to A50 •

Q51 : What evidence does this plot give that closer points are more
similar, i.e., what is the evidence for local spatial dependence? Jump
to A51 •

Q52 : At what separation between point-pairs is there no more spatial
dependence? (This is called the range of spatial dependence) Jump torange of spatial

dependence A52 •

Q53 : What is the semivariance at zero separation? (This is called the
nugget). Why is it not zero? Jump to A53 •

The nugget semivariance is completely unexplained. It may result fromnugget semi-
variance measurement error and from processes at a smaller scale than the sup-

port of the observation.

Q54 : What is the semivariance at the range and beyond? (This is called
the total sill) Jump to A54 •variogram sill

10.2 Building a variogram model

We summarize the spatial dependence with a variogram model. This is
a continuous function of semi-variance on separation. There are many
model forms:

Task 60 : Display the variogram model forms which can be used in
gstat. •

The show.vgms function of the gstat package displays these:
print(show.vgms())
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Selecting a model form is an art; the best way is from knowledge of the
assumed spatial process which produced this realization of the assumed
random field.

From many studies we know that a common model for soil attributes is
the spherical model. This model reaches a definite sill at some range;
that is, if point-pairs are separated by more than this distance, their co-
variance is a constant. At shorter separations the semivariance increases
almost linearly from zero separation, and then near the range there is a
“shoulder” which transitions to the sill. This is consistent with “patchy”
spatial random fields with more or less abrupt transitions; such fields are
often found to represent the spatial covariance structure of soil proper-
ties.

γ(h) =

 c ·
[

3
2
h
a −

1
2

(
h
a

)3
]

: h < a

c : h ≥ a
(11)

This has two parameters which must be fit to the empirical variogram:

• a: the range; i.e., separation at which there is no more spatial de-
pendence.
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• c: the sill; i.e., maximum semivariance.

In addition, the whole variogram is raised by a nugget variance.

Note: A second method to select a variogram model form is a visual
assessment of the empirical variogram’s shape, comparing to the various
authorized models; a third method is to compare goodness-of-fit of a
fitted model to the empirical variogram. Visual assessment is subjective
and requires considerable experience; goodness-of-fit can be used when
the process must be automated and as a data-mining technique.

A third method is by fitting various models and comparing their goodness-
of-fit, typically by the weighted sum of squared errors (discrepency be-
tween model and observed at each variogram bin) of the fitted model.
This ignores prior information about the model form.

Task 61 : Fit a spherical variogram model by eye to the experimen-
tal semivariogram and plot it; then adjust it with gstat automatic fit
(fit.variogram function). •

The vgm function specifies a variogram model. In the previous set of
questions we estimated the these parameters from looking at the empir-
ical variogram, so we supply them as the model parameters. Note that
the psill “partial sill” model parameter is the total sill (which we esti-
mated as 0.13), less the nugget variance (which we estimated as 0.01),
i.e., 0.12:
vm <- vgm(psill=0.12,model="Sph",range=850,nugget=0.01)
print(plot(v, pl=T, model=vm))
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We can see our original estimate does not fit the empirical variogram
very well; we could adjust this by eye but when a variogram has a regular
form (as this one does), the fit.variogram function will adjust it nicely:
(vmf <- fit.variogram(v, vm))

model psill range
1 Nug 0.01004123 0.0000
2 Sph 0.11525698 967.2634
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print(plot(v, pl=T, model=vmf))
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Q55 : What are the nugget, total sill, and range of this model, as ad-
justed by the automatic fit? How do these compare to our initial esti-
mates? Jump to A55
•

This is an excellent model of spatial dependence, and gives insight into
the physical process.

Challenge: Compute an empirical variogram of log10Zn with shorter or
longer range, and different bin sizes. Fit a spherical variogram model
to these empirical variograms. How much should the models differ from
each other and from the single model we built in this section? Why? How
much do the models differ? Why?

11 Mapping by Ordinary Kriging interpolation

We now use the spatial structure to “optimally” interpolate to un-sampled
points. There are many ways to interpolate; we will first investigate Or-
dinary Kriging.

11.1 Theory of Ordinary Kriging

The theory of regionalised variables leads to an “optimal” prediction
method, in the sense that the kriging variance is minimized.

Of course, there are many other local interpolators, but they all have
problems:

72



• Problems with Thiessen polygons:

1. Abrupt changes at boundaries are an artifact of the sample
spatial distribution;

2. Only uses one sample point for each prediction; inefficient use
of information.

• Problems with average-in-circle methods:

1. There is no objective way to select radius of circle or number
of points;

2. Obviously false underlying assumption.

• Problems with inverse-distance methods:

1. There is no objective way to choose the power (inverse, inverse
squared . . . );

2. There is no objective way to choose the limiting radius.

• In all cases:

1. Uneven distribution of samples: over– or under–emphasize
some areas.

2. The kriging variance must be estimated from a separate vali-
dation dataset.

These deficiencies in existing local interpolations were well-known. The
aim was to develop a linear predictor as a weighted average of the ob-
servations, with an objectively optimal method of assigning the weights.

The theory for this developed several times but current practise dates
back to Matheron (1963), formalizing the practical work of the mining
engineer D G Krige (RSA). In his honour these methods are called kriging
(now with a small “k”);

What is so special about kriging?

• Predicts at any point as the weighted average of the values at sam-
pled points

– as for inverse distance (to a power)

• Weights given to each sample point are optimal, given the spatial
covariance structure as revealed by the variogram model (in this
sense it is “best”)

– Spatial structure between known points, as well as between
known points and each prediction point, is accounted for.

– So, the prediction is only as good as the model of spatial struc-
ture.

• The kriging variance at each point is automatically generated as
part of the process of computing the weights.
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Here is the Ordinary Kriging system, in matrix form:

Aλ = b (12)

A =


γ(x1,x1) γ(x1,x2) · · · γ(x1,xN) 1
γ(x2,x1) γ(x2,x2) · · · γ(x2,xN) 1

...
... · · ·

...
...

γ(xN ,x1) γ(xN ,x2) · · · γ(xN ,xN) 1
1 1 · · · 1 0



λ =


λ1

λ2
...
λN
ψ

 b =


γ(x1,x0)
γ(x2,x0)

...
γ(xN ,x0)

1



This system shows that the semivariance γ must be known for the pre-
diction point x0 and all observation points xi, i = 1 . . . N (this is the b
vector) and also between all pairs xi,xj of known points (this is the A
matrix). This is why a variogram function is needed, to know the semi-
variance at any separation.

This is a system of N +1 equations in N +1 unknowns, so can be solved
uniquely, as long as A is positive definite; this is guaranteed by using
authorized models. This has the solution (in matrix notation):

λ = A−1b (13)

Now we can predict at the point, using the weights:

ẑ(x0) =
N∑
i=1

λiz(xi) (14)

The kriging variance at a point is given by the scalar product of the
weights (and multiplier) vector λ with the right-hand side of the kriging
system: Note that λ includes as its last element the LaGrange multiplier
ψ, which depends on covariance structure of the sample points:

σ̂2(x0) = bTλ (15)

This expression (Eqn. 15) is what is minimized by the selection of kriging
weights λ by solution of Eqn. 13.

Before going further, we must emphasize: the “optimality” of the krig-! →
ing prediction depends on a correct model of spatial variability, i.e.,
the variogram model should reflect the spatial process that gave rise to
the attribute being mapped by interpolation. Thus, the variogram mod-
elling of the previous section must be carried out correctly. There is no
objective way to do this! If there are not enough points (at least 100 to
150) with a good distribution of separations, it is not possible to model
a variogram, and kriging should not be used.
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11.2 Ordinary kriging on a regular grid

The most common use of kriging is to predict at the nodes of a regular
grid which covers an area of interest. The predictions are at the centre
points of each grid cell, on the same geostatistical support, i.e., physical
sample size, as the original observations. In this case (see §A) the sam-
ples were taken on a support of 15x15 m, so in the kriging interpolations
which follow the predictions are on the same support. This is taken as
the value throughout the grid cell, and in particular the kriging predic-
tion variance refers to the average on that support. To have the same
prediction support as observation support, we would create a grid with
the observation resolution, in this case 15x15 m.

For this sample dataset, a regular grid has been prepared, named meuse.grid;
this was converted to a spatial object in §10, above.

Note: It is possible to obtain an average value and its kriging predic-
tion variance on any block size, using the block optional argument of
the krige function. However in this case the change of support is com-
plicated by the fact that the original observations are on a block, not on a
small “point” support whose physical dimensions can be ignored in block
kriging. See Webster & Oliver [28] for the mathematics of block kriging
and change of support.

Task 62 : Predict the attribute value at all grid points using Ordinary
Kriging. •

The krige function performs many forms of kriging; by specifying that
a variable is only dependent on itself (i.e., the right-hand side of the
formula only specifies the intercept, symbolically ~1) the spatial mean is
calculated, and there is no trend: this is Ordinary Kriging

Note: The “ordinary” means (1) the variable is only modelled from itself,
with no other information such as a geographic trend or other variable;
(2) the spatial mean is not known a priori and must be estimated from
the data.

k40 <- krige(logZn ~ 1, locations=meuse, newdata=meuse.grid, model=vmf)

[using ordinary kriging]

As with the empirical variogram plot (§10) and feature-space modelling
(§7), the ~ formula operator is used to separate the dependent and inde-
pendent variables.

Note the use of the named arguments locations, newdata, and model;
these are explained in the help for this command; if you wish you can
view it with ?krige.

Task 63 : Display the structure of the kriging prediction object. •
str(k40)

Formal class 'SpatialPixelsDataFrame' [package "sp"] with 7 slots

75



..@ data :'data.frame': 3103 obs. of 2 variables:

.. ..$ var1.pred: num [1:3103] 2.83 2.88 2.83 2.78 2.94 ...

.. ..$ var1.var : num [1:3103] 0.0596 0.0471 0.0509 0.055 0.0335 ...

..@ coords.nrs : int [1:2] 1 2

..@ grid :Formal class 'GridTopology' [package "sp"] with 3 slots

.. .. ..@ cellcentre.offset: Named num [1:2] 178460 329620

.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"

.. .. ..@ cellsize : Named num [1:2] 40 40

.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"

.. .. ..@ cells.dim : Named int [1:2] 78 104

.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"

..@ grid.index : int [1:3103] 69 146 147 148 223 224 225 226 300 301 ...

..@ coords : num [1:3103, 1:2] 181180 181140 181180 181220 181100 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:3103] "1" "2" "3" "4" ...

.. .. ..$ : chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 178440 329600 181560 333760

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "x" "y"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr NA

This is also a spatial object, of class SpatialPixelsDataFrame. Note
that the @data slot has two fields: the prediction (field var1.pred) and
the prediction variance (field var1.var).

Task 64 : Display the map of predicted values, usng a blue-pink-yellow
colour ramp (smooth transition among colours showing different val-
ues). •
print(spplot(k40, "var1.pred", asp=1, col.regions=bpy.colors(64),

main="OK prediction, log-ppm Zn"))

OK prediction, log−ppm Zn

2.0

2.2

2.4

2.6

2.8

3.0

3.2

The spplot “spatial plot” method displays spatial objects.

The bpy.colors “blue-pink-yellow colour scheme” argument to the col.regions
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function colour ramp is a function that produces a vector of colours. 24

head(bpy.colors(64))

[1] "#000033FF" "#000042FF" "#000050FF" "#00005FFF" "#00006DFF"
[6] "#00007CFF"

bpy.colors(64)[32]

[1] "#C225DAFF"

Each colour is made of four numbers, representing Red, Green, Blue and
alpha (transparency) on [0 . . .255], represented as hexidecimal charac-
ters, so FF is (16 · 16)− 1 = 255. So for example the 32nd colour, which
is used for the midpoint of the scale, is C225DAFF; its red component is
C2, which is (12 · 16)+ 2 = 194, i.e., ≈ 76% saturated (255) Red.

Q56 : Describe the kriged map with respect to its (1) smoothness, (2)
values at observed data points. Jump to A56 •

Task 65 : Display the map of kriging prediction variances. •

To emphasize that these are variances and not predictions, we specify
the cm.colors “cyan-to-magenta colour scheme” colour ramp.
print(spplot(k40, "var1.var",

col.regions=cm.colors(64),
asp=1,
main="OK prediction variance, log-ppm Zn^2"))

OK prediction variance, log−ppm Zn^2
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0.04
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0.06

0.07

0.08

0.09

Q57 : Describe the variances map. Where is the prediction variance

24 This colour ramp also displays well if printed in gray scale.
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lowest? Does this depend on the data value? Jump to A57 •

It may be helpful to visualize the predictions and their variances in re-
lation to the observations. To do this, we first specify a list of extra
items to add to spplot as so-called “panel functions”, in this case just
one: sp.points, and then add that to the spplot function call with the
sp.layout argument.

Note: Trellis graphics such as spplot, as implemented by the lattice
package, have a complicated syntax which takes some time to learn; the
thing to remember here is that we are adding a plot of the points on top
of the original plot of the predictions or their variances, shown as a grid.

For the kriging prediction, we show the post-plot: value proportional to
circle size25.
pts.s <- list("sp.points", meuse, col="white",

pch=1, cex=4*meuse$zinc/max(meuse$zinc))
print(spplot(k40, "var1.pred", asp=1, col.regions=bpy.colors(64),

main="OK prediction, log-ppm Zn",
sp.layout = list(pts.s)
))
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For the kriging prediction variance, we show only the observation loca-
tions:
pts.s <- list("sp.points", meuse, col="black", pch=20)
print(spplot(k40, zcol="var1.var",

col.regions=cm.colors(64), asp=1,
main="OK prediction variance, log-ppm Zn^2",
sp.layout = list(pts.s)
))

25 To emphasize the differences, we use the original Zn values, not the transformed
ones, to size the circles.
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OK prediction variance, log−ppm Zn^2
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Challenge: Repeat the process of §10 (local spatial dependence) and
§11 (OK) for one of the other metals (Cu, Pb, or Cd). What differences,
if any, do you expect in the fitted variogram model? Why? Do you ex-
pect a similar spatial pattern to that for Zn? Why or why not? Compare
the fitted variogram models and the OK predictions and their variances.
Comment on the similarities and differences, and try to explain the rea-
sons for these.
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12 * Non-parameteric methods: Indicator kriging

In some situations we are not interested in the actual value of some
attribute, but rather the probability that it exceeds some threshold. Soil
pollution is an excellent example: we want to find the probability that a
site exceeds a regulatory threshold. Mining is another example: we want
to find the probability that a site exceeds some economic threshold.

One way to approach this is by converting continuous variables to indica-
tors: a True/False (or, 0/1) value that “indicates” whether an observation
is below (1, True) or above (0, False) some threshold.

According to the Berlin Digital Environmental Atlas26, the critical level
for Zn is 150 mg kg-1; crops to be eaten by humans or animals should
not be grown in these conditions.

Task 66 : Convert the observations for Zn to an indicator, and add to
the data frame; summarize them. •

We use a logical expression which is either TRUE or FALSE for each el-
ement of the data vector, and assign the result of the expression, i.e., a
logical vector, to a new field in the dataframe:
meuse$zn.i <- (meuse$zinc < 150)
summary(meuse$zn.i)

Mode FALSE TRUE
logical 140 15

Q58 : How many observations are above the threshold? Jump to A58 •

Task 67 : Make an empirical indicator variogram and model it. •
vi <- variogram(zn.i ~ 1, location=meuse, cutoff=1500)
print(plot(vi, pl=T))

26 http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.
htm
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(vimf <- fit.variogram(vi, vgm(0.12, "Sph", 1300, 0)))

model psill range
1 Nug 0.01400961 0.000
2 Sph 0.13165108 1527.442

print(plot(vi, pl=T, model=vimf))
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Q59 : What is the range of the indicator? Does this match that for the
original variable? Jump to A59 •
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Q60 : What is the sill? What are its units? Jump to A60 •

Task 68 : Intepolate over the prediction grid, using indicator kriging;
display the prediction, •

Again we krige with krige and plot with spplot:
k40.i <- krige(zn.i ~ 1, loc=meuse,

newdata=meuse.grid, model=vimf)

[using ordinary kriging]

print(spplot(k40.i, zcol="var1.pred",
col.regions=heat.colors(64), asp=1,
main="Probability Zn < 150"))

Probability Zn < 150

0.0

0.2

0.4

0.6

0.8

1.0

Note the use of the heat.colors function to use a colour ramp; the
result of this function is a vector of colours, used as the values of the
col.regions optional argument of spplot.

The kriging prediction variance is difficult to interpret: what is the vari-
ance of a probability? At any rate we can see where the prediction is
more reliable.
k40.i$var1.sd <- sqrt(k40.i$var1.var)
print(spplot(k40.i, zcol="var1.sd",

col.regions=cm.colors(64), asp=1,
main="standard deviation, Probability Zn < 150"))
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standard deviation, Probability Zn < 150
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The decision-maker can use the probability map directly at any risk level.

Task 69 : Show the “safe” areas, as defined as 80% probability of being
below the critical level. •
k40.i$safe150.80pct <- ifelse((k40.i$var1.pred <= 0.8), TRUE, FALSE)
summary(k40.i$safe150.80pct)

Mode FALSE TRUE
logical 241 2862

print(spplot(k40.i, zcol="safe150.80pct", asp=1,
main="(p >= 0.8) below critical level (Zn < 150)",
colorkey=FALSE,
col.regions=c("lightgreen", "gray")))
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(p >= 0.8) below critical level (Zn < 150)

Q61 : What parts of the study area are ‘safe’ for agricultural land use?
Jump to A61 •

13 Mixed predictors

In §7 we saw that the feature-space attribute “flooding frequency” ex-
plained about 25% of the variation in log10Zn concentration. Yet, we
ignored this information when predicting by Ordinary Kriging (§11.2). In
this section we examine a method to combine the two.

13.1 Feature-space prediction

In §7 we modelled metal concentration by a categorical variable, flood-
frequency class. We can use this model to make a map by reclassifica-
tion, i.e., each pixel is in one of the three flood-frequency classes, and we
predict at that pixel by the mean value of metal concentration from the
linear model.

To do this, we must know the value of the co-variable (here, flooding
frequency class) at each prediction point; fortunately this is provided in
the prediction grid (although its reliability is not known; still it can be
used for illustration).
summary(meuse.grid$ffreq)

1 2 3
779 1335 989

print(spplot(meuse.grid, zcol="ffreq",
col.regions=topo.colors(3),
main="Flooding frequency"))
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Flooding frequency

1

2

3

Here we use yet another colour ramp, using three colours from the
topo.colors function.

Task 70 : Predict the metal concentration by flood-frequency class. •

The krige method with the model argument set to NULL predicts without
a model of spatial dependence, i.e., just from the feature-space model
(here, metal predicted by flood-frequency class). The krige method com-
putes the OLS regression exactly as does the lm function, and then uses
that regression to fill the interpolation grid.
k.ffreq <- krige(logZn ~ ffreq, locations=meuse,

newdata=meuse.grid, model=NULL)

[ordinary or weighted least squares prediction]

print(spplot(k.ffreq, zcol="var1.pred",
col.regions=bpy.colors(64),
main="prediction by flood frequency, log-ppm Zn"))
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prediction by flood frequency, log−ppm Zn
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And like any linear model, this also has a prediction variance. As in
§11.2 for Ordinary Kriging, we emphasize that this is not the prediction,
by displaying the map of the prediction variance with a different colour
ramp, here cm.colors:
print(spplot(k.ffreq, zcol="var1.var",

col.regions=cm.colors(64),
main="prediction variance, log-ppm Zn^2"))

prediction variance, log−ppm Zn^2

0.0755

0.0760

0.0765

0.0770

0.0775

Q62 : Explain the spatial pattern of this prediction and its variance.
Jump to A62 •

13.2 The residual variogram

If some of the variation is explained by an attribute, it makes sense to
remove that variation before looking for local spatial structure. A vari-
ogram where this has been done is called a residual variogram, and is
specified by the functional dependence as in a linear model.
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Task 71 : Compute and display the empirical residual variogram of
log10Zn, after accounting for flooding frequency. •
(vr <- variogram(logZn ~ ffreq, location=meuse,

cutoff=1300, width=90))

np dist gamma dir.hor dir.ver id
1 41 72.24836 0.01794898 0 0 var1
2 212 142.88031 0.02199982 0 0 var1
3 320 227.32202 0.03561628 0 0 var1
4 371 315.85549 0.04936334 0 0 var1
5 423 406.44801 0.06015197 0 0 var1
6 458 496.09401 0.06761754 0 0 var1
7 455 586.78634 0.07817727 0 0 var1
8 466 677.39566 0.06988742 0 0 var1
9 503 764.55712 0.07690598 0 0 var1
10 480 856.69422 0.08063470 0 0 var1
11 468 944.02864 0.07184257 0 0 var1
12 460 1033.62277 0.08067768 0 0 var1
13 422 1125.63214 0.08567598 0 0 var1
14 408 1212.62350 0.08020714 0 0 var1
15 173 1280.65364 0.07429483 0 0 var1

print(plot(vr, plot.numbers=T,
main="Residuals, flood frequency co-variable"))

Residuals, flood frequency co−variable
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Q63 : How does this empirical variogram compare to the original (non-
residual) empirical variogram? Jump to A63
•

Clearly, accounting for the flood frequency has lowered the total variabil-
ity (as expected from the results of the linear modelling), but it has also
reduced the range of spatial dependence. Some of the apparent range
in the original variogram was due to the spatial extent of the flooding
classes; this has now been removed.

Task 72 : Model this variogram, first by eye and then with an auto-
matic fit. Compare the model (partial sill, nugget, range) to the original
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variogram. •
(vrmf <- fit.variogram(vr, vgm(psill=0.08, model="Sph", range=700, nugget=0.01)))

model psill range
1 Nug 0.004094478 0.0000
2 Sph 0.074061157 752.1118

print(vmf)

model psill range
1 Nug 0.01004123 0.0000
2 Sph 0.11525698 967.2634

There is no need to save the result of the vgm function in the workspace;
the model object is immediately used as the second argument to the
fit.variogram function.
print(plot(vr, plot.numbers=T, model=vrmf,

main="Residuals, flood frequency co-variable"))

Residuals, flood frequency co−variable
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Q64 : How does this variogram model compare to the original (non-
residual) variogram model? Jump to A64
•

The residual variogram clearly has a substantially lowered sill and re-
duced range. Also, the nugget variance has been halved; this is because
several near-neighbour point pairs with different metal concentrations
are in different flood frequency classes, so the first histogram bin has
a lower value, which pulls down the fit – although in theory the nugget
should not change.

13.3 Prediction by Kriging with External Drift (KED)

The mixed predictor where some of the variation is from one or more
attributes and some from local structure is often called Kriging with
External Drift (KED), the “drift” being the value of the covariable. It
is also sometimes called Universal Kriging (UK), although that term is
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reserved by many authors for prediction of a geographic trend plus local
structure. They are mathematically equivalent.

Task 73 : Predict the attribute value at all grid points using KED on
flood frequency. •

Now the prediction. We use the same feature-space dependence for-
mula logZn ~ffreq as we used for the residual variogram. That is, the
formula which was used to examine the spatial dependence must also be
used for spatial prediction.

In KED, the formula for kriging must match that for the residual vari-! →
ogram.
kr40 <- krige(logZn ~ ffreq, locations=meuse,

newdata=meuse.grid, model=vrmf)

[using universal kriging]

The krige method now reports [using universal kriging]; in the
OK example it reports [using ordinary kriging]. The term univer-
sal kriging is used here; we prefer to call it KED.

Task 74 : Display the map of predicted values. •
print(spplot(kr40, "var1.pred", asp=1,

col.regions=bpy.colors(64),
main="KED-ffreq prediction, log-ppm Zn"))

KED−ffreq prediction, log−ppm Zn
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Q65 : How does this KED map compare to the OK map? Where is the
effect of flood frequency class reflected in the prediction? Jump to A65
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•

13.3.1 Displaying several maps on the same scale

To get a better idea of the differences in the predictions, we’d like to
show the two maps side-by-side.

The spplot method returns a plotting object, which can be saved in
the workspace rather than displayed immediately. The plot method of
Lattice graphics can display several of these saved objects, using the
split arguments.

However, there is one important detail before we can do this – the scales
of the two plots must be the same, for correct visual comparison. So,
we detemine the overall maximum range and then use this for both the
plots. The max and min functions find the extremes; we round these up
and down to the next decimal. The seq function builds a list of break-
points for the colour ramp.
(zmax <- max(k40$var1.pred,kr40$var1.pred))

[1] 3.237332

(zmin <- min(k40$var1.pred,kr40$var1.pred))

[1] 1.956578

(zmax <- round(zmax, 1) + 0.1)

[1] 3.3

(zmin <- round(zmin, 1) - 0.1)

[1] 1.9

(ramp <- seq(from=zmin, to=zmax, by=.1))

[1] 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3

p1 <- spplot(k40, "var1.pred", asp=1, main="OK prediction",
at=ramp, col.regions=bpy.colors(64))

p2 <- spplot(kr40, "var1.pred", asp=1, main="KED-ffreq prediction",
at=ramp, col.regions=bpy.colors(64))

Now the two plots can be created, saved, and displayed in a grid:
plot(p1, split=c(1,1,2,1), more=T)
plot(p2, split=c(2,1,2,1), more=F)
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OK prediction
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13.3.2 KED Prediction variances

Task 75 : Display the map of the KED prediction variances. •
print(spplot(kr40, "var1.var", asp=1,

col.regions=cm.colors(64),
main="KED prediction variance, log-ppm Zn^2"))

KED prediction variance, log−ppm Zn^2
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Task 76 : Compare these prediction variances to those for OK, both
numerically and graphically. •
summary(kr40$var1.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.008075 0.016284 0.020450 0.023638 0.028071 0.068615

summary(k40$var1.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
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0.01662 0.02596 0.03050 0.03471 0.03943 0.09231

We repeat the technique of standardizing the two scales; but here at the
third decimal place:
zmax <- round(max(k40$var1.var,kr40$var1.var), 3) + 0.001
zmin <- round(min(k40$var1.var,kr40$var1.var), 3) - 0.001
(ramp <- seq(from=zmin, to=zmax, by=.005))

[1] 0.007 0.012 0.017 0.022 0.027 0.032 0.037 0.042 0.047 0.052 0.057
[12] 0.062 0.067 0.072 0.077 0.082 0.087 0.092

p1 <- spplot(k40, "var1.var",
col.regions=cm.colors(64),
asp=1, at=ramp,
main="OK prediction variance, log-ppm Zn")

p2 <- spplot(kr40, "var1.var",
col.regions=cm.colors(64),
asp=1, at=ramp,
main="KED-ffreq prediction variance, log-ppm Zn")

plot(p1, split=c(1,1,2,1), more=T)
plot(p2, split=c(2,1,2,1), more=F)

OK prediction variance, log−ppm Zn

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

KED−ffreq prediction variance, log−ppm Zn

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Clearly, KED has smoothed out the prediction variance, because within
one flood-frequency class the prediction variance of the linear model
part of KED is the same everywhere27. This helps especially at locations
far from observation points.

13.4 A mutivariate mixed predictor

The feature-space model used for KED can include multiple predictors.
However, recall that all covariables must be known across the grid, and
of course also known at the observation points.

Task 77 : Determine which covariables are available for prediction. •

The names function lists the variable names in a data frame; the intersect
function shows the intersection of two sets. Here, the two sets are the

27 Of course, the prediction variance of the residual part, i.e., not accounted for by the
linear model, does vary according to the observation points’ relative locations.
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list of names of the observation dataframe and the grid dataframe.
names(meuse.grid)

[1] "part.a" "part.b" "dist" "soil" "ffreq" "elev"
[7] "rt.pred" "rf.pred"

intersect(names(meuse), names(meuse.grid))

[1] "elev" "dist" "ffreq" "soil"

Q66 : What covariables are available? Jump to A66 •

We’ve already used ffreq. Looking at the documentation for the Meuse
dataframe (§A or help(meuse)), we see that field dist is the normalized
distance to the main channel. This seems promising for further refining
the flood frequency: it may be that closer to the channel receives a heav-
ier sediment load.

Task 78 : Display the normalized distance to river. •
print(spplot(meuse.grid, zcol="dist",

main="Normalized distance to river",
col.regions=topo.colors(64)))
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In §7 we saw how to model the dependence of metal concentration on
flood frequency, now we extend to a more complicated model. But first
we start with a single continuous predictor.

Task 79 : Display a feature-space scatterplot of metal concentration vs.
distance from river. •
plot(logZn ~ dist, data=meuse@data, col=meuse$ffreq)
legend(x=0.7, y=3.2, legend=c("1","2","3"), pch=1, col=1:3)
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Q67 : Does there appear to be a linear relation between distance and
metal concentration? How strong does it appear to be? Jump to A67 •

Task 80 : Model the dependence of metal concentration on distance to
river •

Distance to river is a continuous variable; however the linear modelling
and prediction follows the same procedure as in §13.1 for the classified
predictor (flood frequency class).
m.lzn.dist <- lm(logZn ~ dist, data=meuse)
summary(m.lzn.dist)

Call:
lm(formula = logZn ~ dist, data = meuse)

Residuals:
Min 1Q Median 3Q Max

-0.4889 -0.1583 -0.0007 0.1387 0.7286

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.83759 0.02680 105.87 <2e-16 ***
dist -1.17256 0.08631 -13.59 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2118 on 153 degrees of freedom
Multiple R-squared: 0.5468,Adjusted R-squared: 0.5438
F-statistic: 184.6 on 1 and 153 DF, p-value: < 2.2e-16

Q68 : Which of the single-predictors models (flood-frequency class,
distance to river) has the lowest residual sum-of-squares and highest
adjusted R2 (i.e., explains more of the variance)? Jump to A68 •
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Task 81 : Predict the metal concentration over the study area, from the
distance to river. •

As in §13.1 we use the krige method with the model argument set to
NULL to predict from the linear model fit by ordinary least squares:
k.dist <- krige(logZn ~ dist, locations=meuse,

newdata=meuse.grid, model=NULL)

[ordinary or weighted least squares prediction]

p1 <- spplot(k.dist, zcol="var1.pred", col.regions=bpy.colors(64),
main="prediction, log-ppm Zn")

p2 <- spplot(k.dist, zcol="var1.var",
col.regions=cm.colors(64),
main="prediction variance, log-ppm Zn^2")

Note: The following code uses a feature of the lattice graphics pack-
age to ensure that the legends of the two maps are the same width. We
do this by setting the layout.widths lattice graphics option with the
lattice.options function.

require(lattice)

Loading required package: lattice

tmp <- lattice.options()
lattice.options(layout.widths =

list(key.right = list(x = 3, units = "cm", data = NULL)))
print(p1, split=c(1,1,2,1), more=T)
print(p2, split=c(2,1,2,1), more=F)
lattice.options(tmp)
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Q69 : Explain the spatial pattern of this prediction and its variance.
Jump to A69 •

Task 82 : Model the dependence of metal concentration on distance to
river combined with flood frequency, both as an additive effect and as
an interaction. Compare the models, also to the previously-fit models of
metal conconcentration based on flood frequency alone and distance to
river alone. •
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In the model formula for the lm function, two (or more) predictors are
specified as additive effects with the + statistical formula operator; in-
teractive effects with the * operator. When a set of linear models share
some factors in a hierarchy, they can be compared by analysis of vari-
ance, using the anova function.

Recall, we computed the dependence of metal concentration on flood
frequency as model m.lzn.ff, in §7; that model should still be in the
workspace.
m.lzn.ff.dist <- lm(logZn ~ ffreq + dist, data=meuse)
m.lzn.ff.dist.i <- lm(logZn ~ ffreq * dist, data=meuse)
anova(m.lzn.ff.dist.i, m.lzn.ff.dist, m.lzn.dist, m.lzn.ff)

Analysis of Variance Table

Model 1: logZn ~ ffreq * dist
Model 2: logZn ~ ffreq + dist
Model 3: logZn ~ dist
Model 4: logZn ~ ffreq
Res.Df RSS Df Sum of Sq F Pr(>F)

1 149 5.3452
2 151 5.7919 -2 -0.4467 6.2261 0.00253 **
3 153 6.8605 -2 -1.0686 14.8945 1.268e-06 ***
4 152 11.3057 1 -4.4452
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table shows the degrees of freedom (lower as more predic-
tors are added to the model), the residual sum-of-squares (how much
of the variance is not explained by the model), and the probability that
the reduction in sum-of-squares from a more complex model is due to
chance.

Q70 : Do the two-predictor models give significantly lower residual
sum-of-squares? Jump to A70 •

Q71 : Does the interaction model give significantly lower residual sum-
of-squares than the additive model? Jump to A71
•

Another way to compare models is with an information criterion such
as the AIC (Akaike’s Information Criterion). The lower AIC indicates the
lower entropy, i.e., a better model. The AIC function (surprise!) com-
putes this:

Task 83 : Compare the AIC of the four models. •
AIC(m.lzn.dist, m.lzn.ff, m.lzn.ff.dist, m.lzn.ff.dist.i)

df AIC
m.lzn.dist 3 -37.36411
m.lzn.ff 4 42.06207
m.lzn.ff.dist 5 -59.60963
m.lzn.ff.dist.i 7 -68.05030
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Q72 : Which model has the lowest AIC? Based on this and the ANOVA,
which model gives the best feature-space prediction of metal concentra-
tion? What does this imply about the process? Jump to A72
•

Task 84 : Display the model summary for the best model. •
summary(m.lzn.ff.dist.i)

Call:
lm(formula = logZn ~ ffreq * dist, data = meuse)

Residuals:
Min 1Q Median 3Q Max

-0.40992 -0.13492 -0.00252 0.10804 0.72421

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.93981 0.03048 96.435 < 2e-16 ***
ffreq2 -0.33285 0.05729 -5.810 3.64e-08 ***
ffreq3 -0.24230 0.08486 -2.855 0.004913 **
dist -1.34236 0.12531 -10.712 < 2e-16 ***
ffreq2:dist 0.61585 0.17471 3.525 0.000563 ***
ffreq3:dist 0.35963 0.27724 1.297 0.196571
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1894 on 149 degrees of freedom
Multiple R-squared: 0.6469,Adjusted R-squared: 0.635
F-statistic: 54.59 on 5 and 149 DF, p-value: < 2.2e-16

Q73 : How much of the variability in metal concentration is explained
by this model? Jump to A73 •

13.4.1 Linear model diagnostics

Recall that a linear model assumes the form:

zi = β0 +
k∑
j=1

βixij + εi (16)

with k+ 1 linear coefficients, where xij is the data value of variable j at
observation i. A major assumption is that the residuals εi are indepen-
dently and identically distributed, i.e., pure noise. If this assumption is
violated, the linear model is not justified.

As explained in §7.2.2 linear model must satisfy several assumptions
[7, 11], among which are:

1. no relation between predicted values and residuals (i.e., errors are
independent);
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2. normal distribution of residuals;

3. homoscedascity, i.e,. variance of residuals does not depend on the
fitted value.

In addition, any high-influence observations (“high leverage”) should not
unduly influence the fit.

Task 85 : Display the model diagnostics for the interaction model. •

par(mfrow=c(1,3))
plot(m.lzn.ff.dist.i, which=c(1,2,5))
par(mfrow=c(1,1))
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Q74 : Looking at the “Residuals vs. fitted values” plot, do the residuals
appear to be independent of the fitted values? Does the variance of the
residuals appear to be the same throughout the range of fitted values?

Jump to A74 •

Q75 : Looking at the “Normal Q-Q” plot, do the residuals appear to be
normally distributed? Jump to A75 •

Q76 : Looking at the “Residuals vs. leverage” plot, do the high-leverage
residuals have a high Cook’s distance (a measure of how much the ob-
servation influences the model)? Jump to A76
•

There are three poorly-modelled points, labelled 51, 157, and especially
76, that are highlighted on all three graphs; these should be investigated
to see if they are part of the population or the result of some unusual
process.

Note: Recall from §7.2.2: the numbers shown are the observation names,
given by the row.names function. They are not necessarily the matrix row
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numbers of the observations in the data frame, i.e., the indices that are
used to access a given row using the [] selection operator.

To find the matrix indices we use the which function with a logical con-
dition that is TRUE for this given row names.
(ix <- which(row.names(meuse@data) == "76"))

[1] 69

meuse@data[ix,]

cadmium copper lead zinc elev dist om ffreq soil lime landuse
76 3.4 55 325 778 6.32 0.575877 6.9 1 1 0 Bw

dist.m logZn logCu zn.i
76 750 2.89098 1.740363 FALSE

So, in the case of matrix row 69 the data frame row name is 76.

Task 86 : Plot the suspicious regression residuals in geographic space.
•

We use the row function to extract the rows of the data frame, and the
%in% set operator to determine whether each row matches the list of
suspicious points. We then plot the points by their coordinates, using
the coordinates method to extract these from the spatial object, and
the ifelse function to distinguish these from the remaining points.

We also define a colour ramp to represent the flooding classes, from
frequent (red = “danger”) to rarely (green = “safe”) and use this to select
the colour of each point.
# which row numbers correspond to the observations witH large residuals?
(bad.pt <- which(row.names(meuse@data) %in% c("76","51","157")))

[1] 50 69 152

# where are they?
coordinates(meuse)[bad.pt,]

x y
51 180199 331591
76 179852 330801
157 179085 330292

# make a logical vector of all rows, whether they have large residuals
# or not
is.row.bad <- (row(meuse@data)[,1] %in% bad.pt)

colours.ffreq = c("red","orange","green")
plot(coordinates(meuse), asp=1,

col=colours.ffreq[meuse$ffreq],
# select print character, large residual or not?
# 20 = filled circle; 1 = open circle
pch=ifelse(is.row.bad, 20, 1),
# symbol size proportional to Zn concentration
cex=4*meuse$zinc/max(meuse$zinc),
main="Suspicious regression residuals (solid circles)",
sub="Symbol size proportional to Zn concentration")

grid()
legend(178000, 333000, pch=1, col=colours.ffreq,

legend=c("Frequent", "Occasional", "Rare"))
text(coordinates(meuse)[bad.pt,],

c("76","51","157"), pos=4)
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It’s unclear from the figure why observations 51 and 157 are poorly-
modelled; they seem to match nearby points both in their flood fre-
quency class, distance from river, and Zn concentration. However, obser-
vation 76 (the highest residual) is clearly anomalous: listed as frequently-
flooded although far from the river, and with a much higher Zn con-
centration than any point in its neighbourhood, even within the same
flooding class. This point should be checked for (1) recording error; (2)
a different process.

Overall the model is satisfactory, so we continue with the mixed feature
space – geographic space model, after removing the temporary variables
from the workspace:
rm(bad.pt, bad.row)

Warning in rm(bad.pt, bad.row): object ’bad.row’ not found

13.4.2 Spatial structure of the the residuals

Now that we’ve identified a good model (substantially better than the
single-predictor model with just flooding frequency), we continue with
the local structure of the residuals.

Task 87 : Compute and model the residual variogram from this feature-
space model. Compare the models with the single-predictor residual
variogram model. and the no-predictor variogram model. •
(vr2 <- variogram(logZn ~ ffreq*dist, location=meuse, cutoff=1300, width=90))
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np dist gamma dir.hor dir.ver id
1 41 72.24836 0.01282962 0 0 var1
2 212 142.88031 0.01721119 0 0 var1
3 320 227.32202 0.02468288 0 0 var1
4 371 315.85549 0.02766886 0 0 var1
5 423 406.44801 0.03253304 0 0 var1
6 458 496.09401 0.03089852 0 0 var1
7 455 586.78634 0.03425093 0 0 var1
8 466 677.39566 0.03731832 0 0 var1
9 503 764.55712 0.03874194 0 0 var1
10 480 856.69422 0.04108453 0 0 var1
11 468 944.02864 0.03737466 0 0 var1
12 460 1033.62277 0.04046701 0 0 var1
13 422 1125.63214 0.03813938 0 0 var1
14 408 1212.62350 0.03770635 0 0 var1
15 173 1280.65364 0.03442058 0 0 var1

print(plot(vr2, plot.numbers=T, main="Residuals, ffreq*dist"))
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(vrm2f <- fit.variogram(vr2, vgm(psill=0.04, model="Sph", range=700, nugget=0.01)))

model psill range
1 Nug 0.008492801 0.0000
2 Sph 0.028964991 664.7822

vrmf

model psill range
1 Nug 0.004094478 0.0000
2 Sph 0.074061157 752.1118

vmf

model psill range
1 Nug 0.01004123 0.0000
2 Sph 0.11525698 967.2634

print(plot(vr2, plot.numbers=T, model=vrm2f, main="Residuals, ffreq*dist"))
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Q77 : What happens to the values of the ranges and partial (structural)
sills as the model includes more predictors? Jump to A77 •

13.4.3 KED prediction

Task 88 : Predict by KED using the best feature-space model as covari-
ables. •
kr240 <- krige(logZn ~ ffreq*dist, locations=meuse, newdata=meuse.grid, model=vrm2f)

[using universal kriging]

Again, the krige method must use the same model formula as the em-! →
pirical variogram computed by the variogram function.

Task 89 : Display the map of predicted values. •
print(spplot(kr240, "var1.pred", asp=1,

col.regions=bpy.colors(64),
main="KED-ffreq*dist prediction, log-ppm Zn"))
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Q78 : How does this KED map compare to the OK map, and the single-
predictor (flood frequency) KED map?

Where is the effect of flood frequency class and distance to river reflected
in the prediction? Jump to A78 •

Task 90 : Display the three predictions side-by-side. •

We repeat the technique of standardizing the ranges of several plots and
displaying them in a grid, but now with three plots.
zmax <- round(max(k40$var1.pred,

kr40$var1.pred,
kr240$var1.pred), 1) + 0.1

zmin <- round(min(k40$var1.pred,
kr40$var1.pred,
kr240$var1.pred), 1) - 0.1

ramp <- seq(from=zmin, to=zmax, by=.1)
p1 <- spplot(k40, "var1.pred", asp=1, col.regions=bpy.colors(64),

main="OK prediction, log-ppm Zn", at=ramp)
p2 <- spplot(kr40, "var1.pred", asp=1, col.regions=bpy.colors(64),

main="KED-ffreq prediction, log-ppm Zn", at=ramp)
p3 <- spplot(kr240, "var1.pred", asp=1, col.regions=bpy.colors(64),

main="KED-ffreq*dist prediction, log-ppm Zn", at=ramp)
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plot(p1, split=c(1,1,3,1), more=T)
plot(p2, split=c(2,1,3,1), more=T)
plot(p3, split=c(3,1,3,1), more=F)
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13.4.4 KED prediction variances

Task 91 : Compare these prediction variances to those for OK, both
numerically and graphically. •
summary(kr240$var1.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01213 0.01602 0.01817 0.02050 0.02309 0.05985

summary(kr40$var1.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.008075 0.016284 0.020450 0.023638 0.028071 0.068615

summary(k40$var1.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01662 0.02596 0.03050 0.03471 0.03943 0.09231

zmax <- round(max(k40$var1.var,
kr40$var1.var,
kr240$var1.var), 3) + 0.001

zmin <- round(min(k40$var1.var,
kr40$var1.var,
kr240$var1.var), 3) - 0.001

(ramp <- seq(from=zmin, to=zmax, by=.005))

[1] 0.007 0.012 0.017 0.022 0.027 0.032 0.037 0.042 0.047 0.052 0.057
[12] 0.062 0.067 0.072 0.077 0.082 0.087 0.092

p1 <- spplot(k40, "var1.var",
col.regions=cm.colors(64),
asp=1, at=ramp,
main="OK pred.var., log-ppm^2 Zn")

p2 <- spplot(kr40, "var1.var",
col.regions=cm.colors(64),
asp=1, at=ramp,
main="KED-ffreq pred.var, log-ppm^2 Zn")

p3 <- spplot(kr240, "var1.var",
col.regions=cm.colors(64),
asp=1, at=ramp,
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main="KED-ffreq*dist pred.var, log-ppm^2 Zn")

plot(p1, split=c(1,1,3,1), more=T)
plot(p2, split=c(2,1,3,1), more=T)
plot(p3, split=c(3,1,3,1), more=F)
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Q79 : What is the effect of adding the distance to river as a predictor on
the spatial pattern of the prediction variances? Jump to A79 •

Challenge: Repeat the process this section for one of the other met-
als (Cu, Pb, or Cd). What differences, if any, do you expect in the linear
models and in the fitted residual variogram model? Why? Do you ex-
pect a similar spatial pattern to that for Zn? Why or why not? Compare
the fitted variogram models and the KED predictions and their variances.
Comment on the similarities and differences, and try to explain the rea-
sons for these.

14 * Generalized Least Squares

The mixed prediction by Kriging with External Drift (KED) of §13.3, al-
though convenient, is not mathematically-correct. This is because the
linear model residuals are based on the Ordinary Least Squares (OLS) so-
lution of the linear (feature-space) model, but we’ve seen in §13.2 that
these residuals are spatially-correlated. Thus the linear model parame-
ters are not optimal, and so neither is the mixed predictor.

To solve the problem of spatially-correlated OLS residuals, we turn to
generalized least squares (GLS), which solves both the feature-space and
residual spatial correlation in one step.

14.1 * GLS – theory

The key difference between OLS and GLS is that in the linear model fit
by OLS, the residuals ε are assumed to be independently and identically
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distributed with the same variance σ2:

y = Xβ+ ε, ε ∼N (0, σ2I) (17)

Whereas, now the residuals are themselves considered to be a random
variable η that has a covariance structure:

y = Xβ+ η, η ∼N (0,V) (18)

where V is a positive-definite variance-covariance matrix of the model
residuals. The covariances in this matrix (off-diagonals) are typically
based on the distance between observations, using some model of spa-
tial correlation.

Lark & Cullis [19, Appendix] point out that the error vectors can now
not be assumed to be spherically distributed in feature space around the
0 expected value, but rather that error vectors in some directions are
longer than in others. So, the measure of distance (the vector norm) is
now a so-called “generalized” distance28, taking into account the covari-
ance between error vectors:

S = (y− Xβ)TV−1(y− Xβ) (19)

The OLS equivalent is simpler:

S = (y− Xβ)T (y− Xβ) (20)

Comparing these equations, we see that the GLS formulation of Equation
19 includes the variance-covariance matrix of the residuals V = σ2C ,
where σ2 is the variance of the residuals and C is the correlation ma-
trix. This reduces to the OLS formulation of Equation 20 if there is no
covariance, i.e., V = I.

Expanding Equation 19, taking the partial derivative with respect to the
parameters, setting equal to zero and solving we obtain:

∂
∂β
S = −2XTV−1y+ 2XTV−1Xβ

0 = −XTV−1y+ XTV−1Xβ
β̂GLS = (XTV−1X)−1XTV−1y (21)

This reduces to the OLS estimate β̂OLS if there is no covariance, i.e., V = I.

In the case of spatial correlation, we ensure positive-definiteness (i.e., al-
ways a real-valued solution) by using an authorized covariance function
C and assuming that the entries are completely determined by the vector
distance between points xi − xj :

Ci,j = C(xi − xj) (22)

28 This is closely related to the Mahalanobis distance

106



In this formulation C has a three-parameter vector θ, as does the corre-
sponding variogram model: the range a, the total sill σ2, and the pro-
portion of total sill due to pure error, not spatial correlation s29.

In modelling terminology, the coefficients β are called fixed effects, be-
cause their effect on the response variable is fixed once the parameters
are known. By contrast the covariance parameters η are called randomfixed vs.

random effects effects, because their effect on the response variable is stochastic, de-
pending on a random variable with these parameters.

Models with the form of Equation 18 are called mixed models: some ef-
fects are fixed (here, the relation between the predictand log10Zn and themixed models
predictors distance to river and flood frequency) and others are random
(here, the error variances) but follow a known structure; these models
have many applications and are extensively discussed in Pinheiro & Bates
[23]. Here the random effect η represents both the spatial structure of
the residuals from the fixed-effects model, and the unexplainable (short-
range) noise. This latter corresponds to the noise σ2 of the linear model
of Equation 17.

To solve Equation 21 we first need to compute V, i.e., estimate the vari-
ance parameters θ = [σ2, s, a], use these to compute C with equation
22 and from this V, after which we can use equation 21 to estimate the
fixed effects β. But θ is estimated from the residuals of the fixed-effects
regression, which has not yet been computed. How can this “chicken-
and-egg”30 computation be solved?

The answer is to use residual (sometimes called “restricted”) maximum
likelihood (REML) to maximize the likelihood of the random effects θREML
independently of the fixed effects β.

Lark & Cullis [19, Eq. 12] show that the likelihood of the parameters in
Equation 17 can be expanded to include the spatial dependence implicit
in the variance-covariance matrix V, rather than a single residual vari-
ance σ2. The log-likelihood is then:

`(β, θ|y) = c − 1
2

log |V| − 1
2
(y− Xβ)TV−1(y− Xβ) (23)

where c is a constant (and so does not vary with the parameters) and V
is built from the variance parameters θ and the distances between the
observations. By assuming second-order stationarity31, the structure
can be summarized by the covariance parameters θ = [σ2, s, a], i.e., the
total sill, nugget proportion, and range.

However, maximizing this likelihood for the random-effects covariance
parameters θ also requires maximizing in terms of the fixed-effects re-
gression parameters β, which in this context are called nuisance parame-

29 In variogram terms, this is the nugget variance c0 as a proportion of the total sill
(c0 + c1).

30 from the question “which came first, the chicken or the egg?”
31 that is, the covariance structure is the same over the entire field, and only depends

on the distance between pairs of points
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ters since at this point we don’t care about their values; we will compute
them after determining the covariance structure.

Both the covariance and the nuisance parameters β must be estimated,
it seems at the same time (“chicken and egg” problem) but in fact the
technique of REML can be used to first estimate θ without having to
know the nuisance parameters. Then we can use these to compute C
with equation 22 and from this V, after which we can use equation 21 to
estimate the fixed effects β.

The maximum likelihood estimate of θ is thus called “restricted”, be-
cause it only estimates the covariance parameters (random effects). Con-
ceptually, REML estimation of the covariance parameters θ is ML estima-
tion of both these and the nuisance parameters β, with the later inte-
grated out [23, §2.2.5]:

`(θ|y) =
∫
`(β, θ|y) dβ (24)

Pinheiro & Bates [23, §2.2.5] show how this is achieved, given a likelihood
function, by a change of variable to a statistic sufficient for β.

14.2 GLS – practice

The computations are performed with the gls function of the nlme ‘Non-
linear mixed effects models’ package [1].

Task 92 : Set up and solve a GLS model, using the covariance structure
estimated from the variogram of the OLS residuals from the best mixed
linear model of §13.4. •

The linear model formulation is the same as for lm. However:Setting up a GLS
model

• It has an additional argument correlation, which specifies the
correlation structure.

• This is built with various correlation models; we use corSpher for
spherical spatial correlation, which is what we fit for the OLS resid-
uals in §13.4.2.

– The form names the spatial dimensions, here 2D with the two
coördinates x and y.

– The value argument to initialize the search for the correlation
structure parameters; this a list of the initial values of the
range and the proportional nugget, i.e., the proportion of the
total sill represented by the nugget.

These initial parameter are:
vrm2f[2,"range"]

[1] 664.7822

(prop.nugget <- vrm2f[1,"psill"]/sum(vrm2f[,"psill"]))
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[1] 0.2267299

Note: For a list of the predefined model forms see ?corClasses. Users
can also define their own corStruct classes.

Unfortunately nlme does not understand sp structures, so the coörd-
inates x and y must be brought back into a dataframe for use in the
form argument; the as.data.frame method changes the class..
library(nlme)
m.gls <- gls(model=logZn ~ ffreq * dist,

data=as.data.frame(meuse),
correlation=corSpher(

form=~x + y,
nugget=TRUE,
value=c(vrm2f[2,"range"], prop.nugget),
))

The gls function is not guaranteed to find a valid correlation structure.
First, there may be no spatial correlation of the residuals. Second, we
may have specified an inappropriate model form. Third, if the starting
values are not close to good fits, the optimization method may not find
the correct fit. Therefore it is crucial to check the results of the model
fitting to see if they are reasonable.

Task 93 : Display the model summary. •
summary(m.gls)

Generalized least squares fit by REML
Model: logZn ~ ffreq * dist
Data: as.data.frame(meuse)

AIC BIC logLik
-112.3879 -85.35235 65.19394

Correlation Structure: Spherical spatial correlation
Formula: ~x + y
Parameter estimate(s):

range nugget
1163.141208 0.109821

Coefficients:
Value Std.Error t-value p-value

(Intercept) 2.9805919 0.08740310 34.10167 0.0000
ffreq2 -0.2575186 0.04446084 -5.79203 0.0000
ffreq3 -0.2525222 0.10315548 -2.44798 0.0155
dist -1.0373138 0.21693848 -4.78160 0.0000
ffreq2:dist 0.0175028 0.15400959 0.11365 0.9097
ffreq3:dist -0.0130419 0.29324057 -0.04447 0.9646

Correlation:
(Intr) ffreq2 ffreq3 dist ffrq2:

ffreq2 -0.118
ffreq3 -0.291 0.221
dist -0.480 0.187 0.240
ffreq2:dist 0.109 -0.743 -0.240 -0.354
ffreq3:dist 0.249 -0.222 -0.880 -0.308 0.427

Standardized residuals:
Min Q1 Med Q3 Max

-2.0317652 -0.8598677 -0.1926644 0.3522743 2.0018849

Residual standard error: 0.2536374
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Degrees of freedom: 155 total; 149 residual

This shows the fitted coefficients and their standard errors, as in the
summary for lm. It also shows the residuals, their standard error, and
the correlation parameters.

Task 94 : Compare the GLS estimated coefficients with the OLS esti-
mates: •
coef(m.gls); coef(m.lzn.ff.dist.i)

(Intercept) ffreq2 ffreq3 dist ffreq2:dist
2.98059194 -0.25751856 -0.25252222 -1.03731381 0.01750280
ffreq3:dist
-0.01304186
(Intercept) ffreq2 ffreq3 dist ffreq2:dist
2.9398053 -0.3328491 -0.2422956 -1.3423623 0.6158492

ffreq3:dist
0.3596295

# percent change
round(100*(coefficients(m.gls)

- coefficients(m.lzn.ff.dist.i))/
coefficients(m.lzn.ff.dist.i),2)

(Intercept) ffreq2 ffreq3 dist ffreq2:dist
1.39 -22.63 4.22 -22.72 -97.16

ffreq3:dist
-103.63

Q80 : Are the coefficients different when fit by OLS and GLS? In this
model, which change the most? Jump to A80 •

Task 95 : Display the confidence intervals for the coefficients. •

The intervals function of the nlme package gives approximate confi-
dence intervals of the GLS fit.
intervals(m.gls, level=0.95)$coef

lower est. upper
(Intercept) 2.8078823 2.98059194 3.15330162
ffreq2 -0.3453738 -0.25751856 -0.16966336
ffreq3 -0.4563588 -0.25252222 -0.04868565
dist -1.4659871 -1.03731381 -0.60864052
ffreq2:dist -0.2868222 0.01750280 0.32182777
ffreq3:dist -0.5924891 -0.01304186 0.56640537
attr(,"label")
[1] "Coefficients:"

These seem quite wide, indicating that the model is perhaps not suffi-
ciently specified to capture all the reasons for variation in log10Zn over
this area.

Task 96 : Display the correlation structure fit by gls. Compare with
the correlation structure estimated from the OLS residuals. •
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intervals(m.gls, level=0.95)$corStruct

lower est. upper
range 1.002576e+03 1163.141208 1350.5994612
nugget 2.929026e-02 0.109821 0.3352867
attr(,"label")
[1] "Correlation structure:"

prop.nugget; vrm2f[2,"range"]

[1] 0.2267299
[1] 664.7822

The confidence interval of the range parameter is not too wide; however
the proportional nugget confidence limit ranges from near 0 to over 1/3
of the total sill.

Q81 : Does the effective range of the exponential model fit by GLS match
that fit from the exponential model fit to the OLS-derived empirical vari-
ogram? Jump to A81
•

Task 97 : Plot the actual vs. model fits on a 1:1 scatterplot. •
plot(meuse$logZn ~ predict(m.gls),

col=meuse$ffreq, pch=20, asp=1,
xlab="Fitted by GLS",
ylab="Actual",
main="log10(Zn), ppm")

legend("topleft", levels(meuse$ffreq), pch=20, col=1:4)
grid()
abline(0,1)
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The fit clusters well around the 1:1 line (good accuracy) but is diffuse
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(low precision). However, the model under-predicts the highest values (>
3) and over-predicts the lowest values (< 2.2).

Task 98 : Compute the difference between the GLS and OLS residuals,
add them to the spatial points, and display as a bubble plot. •
meuse$diff.gls.ols.resid <- residuals(m.gls) - residuals(m.lzn.ff.dist.i)
summary(meuse$diff.gls.ols.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.22811 -0.09874 -0.05558 -0.05949 -0.02137 0.14210

bubble(meuse, zcol="diff.gls.ols.resid", pch=1,
main="GLS residual - OLS residual")

GLS residual − OLS residual
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0.142

Q82 : Describe the geographic pattern of the discrepencies between the
GLS and OLS residuals. Explain the pattern in terms of how GLS solves
for spatial correlation of residuals. Jump to A82 •

14.3 GLS prediction

Task 99 : Predict over the Meuse grid with the OLS and GLS models;
display them side-by-side, along with their differences. •
meuse.grid$ols.pred <- predict(m.lzn.ff.dist.i, newdata=meuse.grid)
meuse.grid$gls.pred <- predict(m.gls, newdata=meuse.grid)
summary(meuse.grid$ols.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.722 2.282 2.436 2.446 2.580 2.940

summary(meuse.grid$gls.pred)
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Min. 1st Qu. Median Mean 3rd Qu. Max.
1.685 2.283 2.483 2.481 2.674 2.981

meuse.grid$diff.ols.gls.pred <- meuse.grid$ols.pred - meuse.grid$gls.pred
summary(meuse.grid$diff.ols.gls.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.2562961 -0.0699342 -0.0348473 -0.0357450 0.0002291 0.1420990

The GLS predictions are on average a bit larger.
zmax <- round(max(meuse.grid$ols.pred,

meuse.grid$gls.pred), 1) + 0.1
zmin <- round(min(meuse.grid$ols.pred,

meuse.grid$gls.pred), 1) - 0.1
ramp <- seq(from=zmin, to=zmax, by=.1)
p1 <- spplot(meuse.grid, zcol="ols.pred", asp=1,

col.regions=bpy.colors(64),
main="OLS prediction, log10-ppm Zn", at=ramp)

p2 <- spplot(meuse.grid, zcol="gls.pred", asp=1,
col.regions=bpy.colors(64),
main="GLS prediction, log10-ppm Zn", at=ramp)

p3 <- spplot(meuse.grid, zcol="diff.ols.gls.pred", asp=1,
col.regions=topo.colors(64),
main="Difference OLS-GLS, log10-ppm Zn")

plot(p1, split=c(1,1,3,1), more=T)
plot(p2, split=c(2,1,3,1), more=T)
plot(p3, split=c(3,1,3,1), more=F)
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Q83 : Where are the largest discrepencies between the predictions?
Jump to A83 •

14.4 GLS-RK

Now that we have a better fit to the linear model, we can krige the resid-
uals to obtain a final regression kriging prediction. Note that we have a
variogram structure as fit by gls, but we need to convert it into a form
used by krige.

Task 100 : Build a variogram model in gstat format from the correla-
tion structure fit by gls. •
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The correlation structure has a range and proportional nugget, but no
total sill; this is the variance of the residuals of the GLS model.
meuse$gls.resid <- residuals(m.gls)
(p.nugget <- intervals(m.gls)$corStruct["nugget","est."])

[1] 0.109821

(t.sill <- var(meuse$gls.resid))

[1] 0.03899568

(nugget <- t.sill * p.nugget)

[1] 0.004282543

(vmf.r.gls <- vgm(psill=t.sill-nugget,
model="Sph",
range=intervals(m.gls)$corStruct["range","est."],
nugget=nugget))

model psill range
1 Nug 0.004282543 0.000
2 Sph 0.034713133 1163.141

vrm2f # compare with residual variogram from OLS

model psill range
1 Nug 0.008492801 0.0000
2 Sph 0.028964991 664.7822

Task 101 : Display the empirical variogram of the GLS residuals, with
the variogram model derived from the correlation structure fit by gls.
Also show the empirical variogram and fitted variogram model from the
OLS residuals. •
v.r.gls <- variogram(gls.resid ~ 1, loc=meuse, cutoff=1500, width=90)
# panel function to also show variogram and fitted model from OLS residuals
mypanel <- function(x, y, ...) {

vgm.panel.xyplot(x, y, plot.numbers=TRUE, ...)
panel.pointPairs(vr2$dist, vr2$gamma, col="red")
panel.lines(variogramLine(vrm2f, maxdist=1500), lty=2, col='red')
}

plot(v.r.gls, pl=T, model=vmf.r.gls,
main="Variogram model fitted to GLS residuals",
panel = mypanel)
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Variogram model fitted to GLS residuals
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Q84 : Describe the differences between the variogram fits. Jump to
A84 •

Task 102 : Krige the GLS residuals onto the prediction grid, add them
to the GLS predictions, and display the resulting RK map, along with the
KED map and their difference. •

Note that we use Ordinary Kriging, not Simple Kriging, because we can
not assume the mean residual from a GLS model is zero; in fact, we know
it is biased.
k.gls.r <- krige(gls.resid ~ 1, loc=meuse,

newdata=meuse.grid, model=vmf.r.gls)

[using ordinary kriging]

summary(k.gls.r)

Object of class SpatialPixelsDataFrame
Coordinates:

min max
x 178440 181560
y 329600 333760
Is projected: NA
proj4string : [NA]
Number of points: 3103
Grid attributes:
cellcentre.offset cellsize cells.dim

x 178460 40 78
y 329620 40 104
Data attributes:

var1.pred var1.var
Min. :-0.42626 Min. :0.006397
1st Qu.:-0.19085 1st Qu.:0.008765
Median :-0.04808 Median :0.009904
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Mean :-0.04812 Mean :0.010982
3rd Qu.: 0.09199 3rd Qu.:0.012181
Max. : 0.30647 Max. :0.025632

k.gls.r$rk.gls.pred <-
meuse.grid$gls.pred + k.gls.r$var1.pred

k.gls.r$diff.rk.gls.ked <-
k.gls.r$rk.gls.pred - kr240$var1.pred

summary(k.gls.r$diff.rk.gls.ked)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.266e-01 -1.208e-02 -2.224e-05 4.115e-03 1.412e-02 1.570e-01

zmax <- round(max(k.gls.r$rk.gls.pred,
kr240$var1.pred), 1) + 0.1

zmin <- round(min(k.gls.r$rk.gls.pred,
kr240$var1.pred), 1) - 0.1

ramp <- seq(from=zmin, to=zmax, by=.1)
p1 <- spplot(k.gls.r, zcol="rk.gls.pred", asp=1,

col.regions=bpy.colors(64),
main="RK/GLS prediction, log10-ppm Zn", at=ramp)

p2 <- spplot(kr240, "var1.pred", asp=1,
col.regions=bpy.colors(64),
main="KED prediction, log-ppm Zn", at=ramp)

p3 <- spplot(k.gls.r, zcol="diff.rk.gls.ked", asp=1,
col.regions=topo.colors(64),
main="Difference RK/GLS - KED, log10-ppm Zn")

plot(p1, split=c(1,1,3,1), more=T)
plot(p2, split=c(2,1,3,1), more=T)
plot(p3, split=c(3,1,3,1), more=F)
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Q85 : How large are the differences betwen the RK/GLS and KED pre-
dictions? Jump to A85
•

15 Model evaluation

We’ve produced some nice-looking maps; but the question remains, how
good are they? This is the issue of model evaluation, often called model
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validation.32 One aspect of model evaluation is to assess its predictive
power: how well is it expected to perform when predicting at unmea-
sured points in the target population? We have made these predictions
over the Meuse grid; how accurate (close to the true value) and precise
(uncertain) are they?

One measure is the kriging prediction variance at each prediction point
and their summary statistics; see §11.2 (OK) and §13.3.2 (KED). This is
internal to the kriging procedure, and depends on the correctness of the
model of spatial dependence, i.e., the variogram model.

A model-free approach to assessing predictive power is comparing the
predictions at points that were not used to build the model, e.g., to select
the variogram model form and fit it, and not used as data points to make
the predictions, e.g., by kriging. Thus many studies have both:

1. a calibration data set, used to build the model and predict;

2. a so-called validation (evaluation, independent) set, where the model
predicts, without using their known values.

Then the model predictions ŷi are compared with the actual values yi,
and summarized by descriptive and inferred population statistics. Brus
et al. [6] give an extensive discussion of sampling for map validation, and
point out that the resulting validation statistics are only correct for the
entire target population if the validation points are a probability (ran-
dom) sample. In our study we have an obvious non-probability sample,
which is no problem for a model-based mapping approach (e.g., kriging),
where the randomness comes from the model, not the data.

15.1 Independent evaluation set

In some studies there is one sampling campaign, and then the whole
dataset is randomly split into calibration and evaluation (“validation”)
sets. But we used all the observations to build our model and predict; we
do not have an independent evaluation set. If we split it, re-fit the model
with only the calibration set, and predict at the evaluation points (left
out of the calibration set), we would have some measure of predictive
accuracy but (1) probably a poorly-fit model, because of the small num-
ber of points overall; (2) not a good measure of the population predictive
accuracy.

So we turn to another “external” (more or less) approach, cross-validation.

15.2 Cross-validation

One of the characteristics of kriging is that the same dataset can be used
to model and predict, and to evaluate the predictions. This is called
cross-validation. The idea is to predict at known points, using all the

32 The author prefers the term “evaluation” because it is never possible call a model
“valid”, only “acceptable” according to certain criteria.
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other data and the variogram model, and compare the predictions to
reality:

1. Build a variogram model from the known points;

2. For each known point:

(a) Remove it from the dataset;

(b) Use the model to predict at this point from the others;

(c) Compute the residual, i.e. difference between known and pre-
dicted.

3. Summarize the residuals.

This is called leave-one-out cross-validation (LOOCV).

Note: Strictly speaking, we should re-fit the variogram model without
each point in turn; in practice this makes almost no difference to fitted
model, because only a very small proportion of the point-pairs would not
be used to fit the variogram model. So we use the single fitted variogram
model from all the points for the entire cross-validation.

Note: LOOCV can be used for any local interpolator, such as nearest-
neighbour or inverse distance. This provides an objective measure by
which to compare interpolators.

Task 103 : Perform LOOCV for the OK and KED predictions. •

The krige.cv method performs this.
kcv.ok <- krige.cv(logZn ~ 1, locations=meuse, model=vmf)
kcv.rk <- krige.cv(logZn ~ ffreq, locations=meuse, model=vrmf)
kcv.rk2 <- krige.cv(logZn ~ ffreq*dist, locations=meuse, model=vrm2f)

Note the use of the appropriate model formula and variogram model for
the two types of kriging: the original variogram model (vmf) for OK and
the residual variogram model (vrmf and vrm2f) for KED.

Task 104 : Summarize the results of the OK cross-validation. •
summary(kcv.ok)

Object of class SpatialPointsDataFrame
Coordinates:

min max
x 178605 181390
y 329714 333611
Is projected: NA
proj4string : [NA]
Number of points: 155
Data attributes:

var1.pred var1.var observed
Min. :2.105 Min. :0.02207 Min. :2.053
1st Qu.:2.331 1st Qu.:0.02947 1st Qu.:2.297
Median :2.550 Median :0.03316 Median :2.513
Mean :2.556 Mean :0.03511 Mean :2.556
3rd Qu.:2.748 3rd Qu.:0.03785 3rd Qu.:2.829
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Max. :3.154 Max. :0.10233 Max. :3.265
residual zscore fold

Min. :-0.428470 Min. :-2.313324 Min. : 1.0
1st Qu.:-0.096429 1st Qu.:-0.501074 1st Qu.: 39.5
Median :-0.004522 Median :-0.024152 Median : 78.0
Mean :-0.000147 Mean :-0.000147 Mean : 78.0
3rd Qu.: 0.085278 3rd Qu.: 0.454976 3rd Qu.:116.5
Max. : 0.641388 Max. : 3.220399 Max. :155.0

The spatial points dataframe returned by krige.cv has fields for the
prediction (field var1.pred), the observation (field observed), and their
difference (field residual). A positive residual is an under-prediction
(predicted less than observed).

Task 105 : Compare the results of the OK and KED cross-validations. •

The appropriate measure is the residuals, i.e., how close to the truth?
summary(kcv.ok$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.428470 -0.096429 -0.004522 -0.000147 0.085278 0.641388

summary(kcv.rk$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.5612413 -0.0834453 -0.0136492 0.0009374 0.0898676 0.4768294

summary(kcv.rk2$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.561260 -0.084644 0.001424 0.001413 0.078414 0.590621

Q86 : Is any prediction biased? (Compare the mean to zero). Which has
the narrower overall and inter-quartile range? Jump to A86 •

An overall measure is the root of the mean squared error, RMSE:
sqrt(sum(kcv.ok$residual^2)/length(kcv.ok$residual))

[1] 0.1725589

sqrt(sum(kcv.rk$residual^2)/length(kcv.rk$residual))

[1] 0.1410225

sqrt(sum(kcv.rk2$residual^2)/length(kcv.rk$residual))

[1] 0.1448551

Q87 : Which prediction is, on average, more precise? Jump to A87 •

Adding the co-variable (flooding frequency) improved the precision some-
what; the more complex model with flooding frequency and distance in
fact decreased the precision a bit.

Another evaluation criterion in a spatial prediction is the spatial distri-
bution of the cross-validation residuals. The sp package provides a nice
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bubble function which produces a so-called bubble plot: the symbol
size is proportional to the absolute value, and the sign is shown by a
colour.

Task 106 : Display bubble plots of the OK and KED (flood frequency
and distance interaction) cross-validations. •

Again we harmonize the legend scales:
(zmax <- round(max(kcv.ok$residual,kcv.rk$residual,

kcv.rk2$residual),2) + 0.01)

[1] 0.65

(zmin <- round(min(kcv.ok$residual,
kcv.rk$residual,kcv.rk2$residual),2) - 0.01)

[1] -0.57

ramp <- quantile(c(kcv.ok$residual,
kcv.rk$residual,kcv.rk2$residual),

probs=seq(0, 1, by=0.1))
p1 <- bubble(kcv.ok, zcol="residual",

main="OK X-validation residuals",
key.entries=ramp, pch=1)

p2 <- bubble(kcv.rk, zcol="residual",
main="KED ffreq X-validation residuals",
key.entries=ramp, pch=1)

p3 <- bubble(kcv.rk2, zcol="residual",
main="KED ffreq*dist X-validation residuals",
key.entries=ramp, pch=1)

And again print three maps side-by-side:

plot(p1, split=c(1,1,3,1), more=T)
plot(p2, split=c(2,1,3,1), more=T)
plot(p3, split=c(3,1,3,1), more=F)
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KED ffreq X−validation residuals
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KED ffreq*dist X−validation residuals

●●●●
●

●
●●

●

●●
●

●
●

●
●

●
●

●
●●●●

●

●
●●

●●
●

●
●●

●
●●

●
●●●

●
●●

●

●

●
●
●
●

●●

●●●●●
●●

●
●
●

●

●
●

●
●

●●●
●

●●

● ●

●●
●

●
●
●

●

●

●

●

●
●

●
●

●

● ●●
●

●
●

●
●●●

● ●●
●

●

●
●

●
●

●
●●

●
●
●●

●
●

●

●

●
●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

● ●
●

●●
●●● ●

●
●●●

●

●

●
●
●
●

●

●

●

●

●
●
●

−0.561
−0.188
−0.107
−0.068
−0.035
−0.006
0.029
0.068
0.113
0.179
0.641

Q88 : Is there any pattern to the positive and negative residuals? Is
there a difference between the OK and KED patterns? Jump to A88 •

It’s always good practice to remove temporary variables:
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rm(zmax, zmin, ramp, p1, p2, p3)

Challenge: Repeat the cross-validation exercise for the other heavy
metal (Cu, Pb, Cd) that you used for the challenges at the end of §11
and §13. Are your results similar to those for log10Zn?

16 * Generalized Additive Models

Generalized Additive Models (GAM) are similar to multiple linear regres-
sion, except that each term in the linear sum of predictors need not be
the predictor variable itself, but can be an empirical smooth function of
it. So instead of the linear model of k predictors:

y = β0 +
∑
k
βkxk (25)

we allow functions fk of these:

y = β0 +
∑
k
fk(xk) (26)

The advantage is that non-linear relations in nature can be fit; the disad-
vantage is that there is no single equation to describe the relation, it is
just an empirical fit.

Note: Further, the GAM should never be extrapolated (there is no data to
support it), whereas a polynomial can, with caution, be extrapolated, on
the theory that the data used to fit the model extends outside the range.
This is of course very dangerous for higher-order polynomials, which are
a main competitor to GAM.

Hastie et al. [13, §9.1] give a thorough explanation of GAM; a simplified
explanation of the same material is given in James et al. [17, §7.7]. In
a geostatistical setting, we can choose the coördinates as the predictors
(as in a trend surface) but fit these with smooth functions, rather than
polynomials. We can also fit any other predictor this way.

To illustrate this with the Meuse dataset, we’ll fit a model of Zn concen-
tration in the soil based on two predictors: distance to river and ele-
vation. However, we do not assume linear, linearizable or higher-order
polynomial relations with either of these; rather we assume they vary
smoothly but not according to any single equation.

Q89 : What theory of the origin of the Zn is this model testing? Jump
to A89 •

Notice that we are not using metric coördinates in space (here, the Dutch
grid system), rather, we are using the distance from river as a “coörd-
inate” to express the spatial relation. In the meuse dataset distance is
available as distance in meters or as a normalized distance; we choose
the latter because it is available in the interpolation grid, see below. Since

121



there is no statistical model, there is no issue with spatial dependence
of residuals.

GAM can be fitted in R with the mgcv “Mixed GAM Computation Vehicle”
package.

Task 107 : Load the mgcv package into the workspace. •
library(mgcv)

This is mgcv 1.8-27. For overview type ’help("mgcv-package")’.

Task 108 : Display a scatterplot of the two predictors against the
log10Zn, with an empirical smoother provided by the ggplot2 graphics
package. •

The qplot “quick plot” function is the ggplot2 equivalent of base graph-
ics flexible plot function.

Note: The gridExtra package provides a grid.arrange function to
arrange saved ggplot2 or lattice graphics objects on a page.

library(ggplot2)

Attaching package: ’ggplot2’

The following object is masked from ’package:randomForest’:

margin

p1 <- qplot(x=dist, y=logZn, data=meuse@data, geom=c("point", "smooth")) # , method="loess"
p2 <- qplot(x=elev, y=logZn, data=meuse@data, geom=c("point", "smooth")) # , method="loess"
require(gridExtra)

Loading required package: gridExtra

Attaching package: ’gridExtra’

The following object is masked from ’package:randomForest’:

combine

grid.arrange(p1, p2, ncol=2)

‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’
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Q90 : Do these relations look linear? Do they look as if they could be
well-fit with some transformation such as inverse, quadratic, logarith-
mic? Jump to A90
•

Task 109 : Build two GAM, one with each of these two predictors (so,
not yet additive), using the default smoothing function. Examine the
model summaries. •

The empirical smooth function is specificed with the s “smooth” func-
tion provided by the mgcv package. The degree of smoothness is esti-
mated as part of fitting, by using regression splines penalized for the
number of knots (i.e., effective degrees of freedom). The best choice is
selected by cross-validation.
library(mgcv)
m.g.dist <- gam(logZn ~ s(dist), data=meuse)
summary(m.g.dist)

Family: gaussian
Link function: identity

Formula:
logZn ~ s(dist)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.55616 0.01479 172.8 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(dist) 3.561 4.423 65.91 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.655 Deviance explained = 66.3%
GCV = 0.034927 Scale est. = 0.033899 n = 155
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summary(residuals(m.g.dist))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.495862 -0.113870 -0.007694 0.000000 0.090849 0.613842

m.g.elev <- gam(logZn ~ s(elev), data=meuse)
summary(m.g.elev)

Family: gaussian
Link function: identity

Formula:
logZn ~ s(elev)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.55616 0.01866 137 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(elev) 3.798 4.76 26.98 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.451 Deviance explained = 46.5%
GCV = 0.055675 Scale est. = 0.053951 n = 155

summary(residuals(m.g.elev))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.59112 -0.14982 -0.01936 0.00000 0.13746 0.66824

The model summary gives the adjusted R2, i.e., proportion of variance
explained, and a closely-related statistic, the deviance explained.

Q91 : Do both predictors provide useful information about the metal
concentration? Which of the two predictors is better? Jump to A91 •

Task 110 : Repeat the scatterplots, but showing the fitted functions. •

The plot.gam function plots the smoother, relative to the mean of the
response variable:
par(mfrow=c(1,2))
plot.gam(m.g.dist, residuals=T, pch=20)
abline(h=0, lty=2)
plot.gam(m.g.elev, residuals=T, pch=20)
abline(h=0, lty=2)
par(mfrow=c(1,1))
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Q92 : Describe the fitted relations. Do these fit the hypothesis of the
origin of the metals? Jump to A92 •

Challenge: Build linear models, maybe with some transformation of
the predictors, and compare their success to the single-predictor GAM.
Examine the regression residuals to see if a linear model is justified.

We suspect thay there may be an interaction between the predictors:
higher areas tend to be further from the river, although there are some
high points near the river (on the dikes), so that the two predictors are
not simply additive in their effects.

Task 111 : Display a scatterplot of elevation against distance from the
river. •
qplot(x=dist, y=elev, data=meuse@data, geom=c("point", "smooth", "rug"))

‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’

cor(meuse$elev, meuse$dist, method='pearson')

[1] 0.5301023

cor(meuse$elev, meuse$dist, method='spearman')

[1] 0.5463665
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Q93 : How are elevation and distance related? Is it a strong relation?
Jump to A93 •

Task 112 : Build an additive GAM with the two predictors distance and
elevation. Also build an additive GAM with the two predictors and an
interaction term. Compare their model summaries and residuals. •

The additive model just uses the +, as in a linear model. To specify the
interaction, we don’t use *, which is for a linear interaction. Instead the
ti “tensor product interaction between smoothers” function is used; this
is the multi-dimension extension of the one-dimensional s “smoother”
function.
m.g.dist.elev <- gam(logZn ~ s(dist) + s(elev), data=meuse)
m.g.dist.elev.i <- gam(logZn ~ s(dist) + s(elev) + ti(dist,elev), data=meuse)
summary(m.g.dist.elev)

Family: gaussian
Link function: identity

Formula:
logZn ~ s(dist) + s(elev)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.55616 0.01207 211.7 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(dist) 3.915 4.839 41.68 < 2e-16 ***
s(elev) 6.141 7.310 10.66 2.17e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.77 Deviance explained = 78.5%
GCV = 0.024327 Scale est. = 0.022592 n = 155

summary(m.g.dist.elev.i)

Family: gaussian
Link function: identity

Formula:
logZn ~ s(dist) + s(elev) + ti(dist, elev)
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Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.55586 0.01598 159.9 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(dist) 3.768 4.685 36.866 < 2e-16 ***
s(elev) 4.298 5.469 15.117 1.15e-12 ***
ti(dist,elev) 4.716 5.201 3.123 0.0106 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.785 Deviance explained = 80.3%
GCV = 0.023195 Scale est. = 0.021133 n = 155

summary(residuals(m.g.dist.elev))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.41600 -0.08573 -0.01559 0.00000 0.09119 0.37517

summary(residuals(m.g.dist.elev.i))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.41519 -0.07618 -0.01417 0.00000 0.08543 0.34944

Q94 : Are these models better than either of the two single-predictor
models? Is the interaction model better than the additive model? (Hint:
look at the approximate significance of the interaction term.) Jump to
A94 •

Task 113 : Plot the fitted smooth functions. •

The pages optional argument to the plot.gam function specifies the
number of pages over which to spread the output; to see all graphs at
once we specify a single page.

First the additive model:
plot.gam(m.g.dist.elev, pages=1)
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Then the interaction model:
plot.gam(m.g.dist.elev.i, pages=1)
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Q95 : Compare the additive model to the two single-factor models.
How do the smooth fits differ? Where does the interaction tensor most
modify the additive relation? Jump to A95 •

Task 114 : Display a 3D plot of the response surface to distance and
elevation. •

A very nice plot to show this is vis.gam.
vis.gam(m.g.dist.elev, theta=+60,

plot.type="persp", color="terrain")
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linear predictor

The standard errors of prediction can also be shown, along with the
prediction; the se argument specifies how many standard errors away
from the prediction to display.
vis.gam(m.g.dist.elev, theta=+60, color="terrain", se=1.96)

dist

elev

linear predictor

red/green are +/− 1.96 s.e.

dist

elev

linear predictor

red/green are +/− 1.96 s.e.

dist

elev

linear predictor

red/green are +/− 1.96 s.e.

Of course once we have a model we can use it for prediction, i.e., to show
the predicted metal content everywhere in the study area. For this, we
need the prediction grid to include all the predictors we used to build
the GAM, i.e., normalized distance and elevation. Normalized distance
was already in the sample data meuse.grid, but elevation was not. We
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added that in §9.1.1, above.

Task 115 : Predict the log10Zn concentration over the grid using the
best fitted GAM. •

The predict.gam function predicts using a fitted GAM.
tmp <- predict.gam(object=m.g.dist.elev.i, newdata=meuse.grid, se.fit=TRUE)
names(tmp)

[1] "fit" "se.fit"

meuse.grid$k.g.i <- tmp$fit
meuse.grid$k.g.i.se <- tmp$se.fit
p1 <- spplot(meuse.grid, zcol="k.g.i",

col.regions=bpy.colors(64),
main="Predicted log(Zn) ppm, GAM")

p2 <- spplot(meuse.grid, zcol="k.g.i.se",
col.regions=cm.colors(64),
main="Standard error of prediction")

grid.arrange(p1, p2, ncol=2)

Predicted log(Zn) ppm, GAM
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Q96 : Comment on the suitability of this GAM. Jump to A96 •

We can compare this result with a linear model using the same formula.

Task 116 : Build a linear model with the same structure as the GAM,
i.e., predictors elevation, distance, and their interaction. Summarize the
model and plot its diagnostics. •
summary(m.dist.elev.i <- lm(logZn ~ dist*elev, data=meuse))

Call:
lm(formula = logZn ~ dist * elev, data = meuse)

Residuals:
Min 1Q Median 3Q Max

-0.4391 -0.1133 -0.0084 0.1060 0.6434

Coefficients:
Estimate Std. Error t value Pr(>|t|)

130



(Intercept) 4.13897 0.17885 23.142 < 2e-16 ***
dist -3.02561 0.62826 -4.816 3.53e-06 ***
elev -0.16886 0.02267 -7.448 6.76e-12 ***
dist:elev 0.25228 0.07220 3.494 0.000624 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1797 on 151 degrees of freedom
Multiple R-squared: 0.6779,Adjusted R-squared: 0.6715
F-statistic: 105.9 on 3 and 151 DF, p-value: < 2.2e-16

par(mfrow=c(1,3))
plot(m.dist.elev.i, which=c(1,2,5))
par(mfrow=c(1,1))
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Task 117 : Plot the predictions and their standard errors. •
tmp <- predict.lm(object=m.dist.elev.i,

newdata=meuse.grid, se.fit=TRUE)
meuse.grid$k.i <- tmp$fit
meuse.grid$k.i.se <- tmp$se.fit
p1 <- spplot(meuse.grid, zcol="k.i",

col.regions=bpy.colors(64),
main="Predicted log(Zn) ppm, linear")

p2 <- spplot(meuse.grid, zcol="k.i.se",
col.regions=cm.colors(64),
main="Standard error of prediction")

plot(p1, split=c(1,1,2,1), more=T)
plot(p2, split=c(2,1,2,1), more=F)

Predicted log(Zn) ppm, linear
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The residuals-vs.-fitted plot shows the difficulty that the linear model has
with the lowest and highest values; there is one very poorly predicted
point with high leverage.
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Task 118 : Display the fitted and actual values for the high-leverage,
high-residual point. •

The row.names function gives a vector of row names; these are displayed
on the diagnostic plots. We find the row number for this and examine its
values.
ix <- which(row.names(meuse)=="76")
meuse[ix,c("zinc","elev","dist")]

coordinates zinc elev dist
76 (179852, 330801) 778 6.32 0.575877

log10(meuse@data[ix,"zinc"])

[1] 2.89098

fitted(m.dist.elev.i)[ix]

76
2.247543

fitted(m.g.dist.elev.i)[ix]

[1] 2.920624

plot(coordinates(meuse), asp=1, pch=21, cex=4*meuse$zinc/max(meuse$zinc),
bg=ifelse(row.names(meuse)=="76","red","gray"))

data(meuse.riv)
lines(meuse.riv)
grid()
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Q97 : What is the anomaly at this observation? Jump to A97 •

Task 119 : Plot the difference between the GAM and linear model pre-
dictions. •

We compute the difference and add as a field to the prediction grid, then
display with the usual spatial plot:
meuse.grid$diff <- meuse.grid$k.g.i - meuse.grid$k.i
print(spplot(meuse.grid, zcol="diff",

col.regions=terrain.colors(64),
main="Difference, GAM prediction - linear prediction"))

Difference, GAM prediction − linear prediction

−0.3

−0.2

−0.1

0.0
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0.3

Q98 : What are the differences between the two models? Which appears
more realistic? Jump to A98 •

Challenge: Compare the GAM predictions with those from OK and KED.

Now that we’ve seen that the GAM does a fairly good job, let’s see if there
is any residual spatial correlation.

Task 120 : Display a bubble plot of the GAM model residuals and the
residual variogram •
meuse$resid.gam <- residuals(m.g.dist.elev.i)
p1 <- bubble(meuse, zcol="resid.gam", pch=1)
vr <- variogram(resid.gam ~ 1, locations=meuse)
p2 <- plot(vr, plot.numbers=T)
plot(p1, split=c(1,1,2,1), more=T)
plot(p2, split=c(2,1,2,1), more=F)
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Q99 : Do the residuals show spatial dependence? Jump to A99 •

Note however that most of the overall variability in log10Zn has been
removed by the GAM; the proportion of the total remaining is less than
20%:
max(vr$gamma)/max(variogram(logZn ~ 1, locations=meuse)$gamma)

[1] 0.1887966

Challenge: Fit a variogram model to the GAM residuals, interpolate
them over the grid by simple kriging (SK) with mean 0, add them to the
GAM predictions. Hint: use the beta argument to krige to specify a
known mean.

The Simple Kriging residuals look like this:

GAM residuals interpolated by SK

positive: white, negative: black
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The Regression Kriging using the GAM and SK of the residuals look like
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this:

RK using GAM

2.0

2.2

2.4

2.6

2.8

3.0

3.2

135



17 Final words

There is much more to geostatistics than this simple introduction. Some
good reference texts are by Goovaerts [12], Webster & Oliver [28] and
Isaaks & Srivastava [16]. For spatial analysis in R, the essential reference
is Bivand et al. [2]. For general modelling in R, a good text is Fox [10]. For
data-driven approaches, see Hastie et al. [13] and a simplified version in
James et al. [17]

The spatial analysis in R can be linked to other GIS; here is an example:
a Google Earth image of the Meuse study area, with the kriging interpo-
lation overlaid:
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18 Answers

A1 : Before: none (reported as character(0), meaning a zero-length vector
of characters); After: one object, meuse. Return to Q1 •

A2 : 155 observations (cases) and 14 fields (variables). Return to Q2 •

A3 : Fields x and y are coordinates, so this is spatial data. But, this is not
explicit in the dataframe, we have to read the documentation to know what
each field represents. Return to Q3 •

A4 : mg kg-1 (popularly called “parts per million” on a weight basis). Return
to Q4 •

A5 : Minimum: 14; Median: 31; Maximum: 128 Return to Q5 •

A6 : The distribution is not symmetric, it is strongly right-skewed (decreasing
number of observations at increasing values of the variable). There may be two
populations: The skewed distribution from 0 to about 1200, and then six very
high values. But with this small sample size, it may just be one population.

Return to Q6 •

A7 : Minimum: 113, first quartile: 198, median: 326, third quartile: 674.5,
maximum: 1839, mean: 469.72. Return to Q7 •

A8 : The mean is well above the median, this implies a right-skew. Return to
Q8 •

A9 : The distribution is now symmetric with no outliers. But the clear
dip in frequency around 2.4 to 2.8 log(mg kg-1) shows clearly two partially-
overlapping populations: low and high pollution. Return to Q9
•

A10 : The two variables are strongly related in feature space. The relation ap-
pears to be bivariate normal, so that a linear correlation is appropriate. There
are four clear observations that do not fit the pattern: relatively high Cu but
low to moderate Zn.

Among the reasons could be: (1) field procedure error; (2) lab error; (3) record-
ing error. However this was a well-conducted study and we have no reason to
suspect these.

Another reason could be (4) use of Cu-containing agro-chemicals at these sites,
so some of the Cu comes from polluted river water, along with the Zn, but some
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additional from the agro-chemical. We have no evidence for this since we do
not know the land-use history. Return to Q10 •

A11 : Variance explained: 80.4%. Return to Q11 •

A12 : The slope (gain) is 1.274 log10(mg kg-1), i.e., log10Zn increases at a
higher rate than log10-Cu. The standard error of this coefficient is 0.051, a
small proportion of the coefficient. Return to Q12 •

A13 : The histogram shows a normal shape except for the negative “tail”, i.e.,
the log10Zn values at a few points are strongly over-predicted by the model,
leading to a large negative residual. Return to Q13 •

A14 : Yes, there is some pattern. Medium values of log10-Zn, around 2.6
log10(mg kg-1), are on average slightly under-predicted, whereas at higher and
(especially) lower values they are on average over-predicted. However this is
not a strong pattern; most residuals are within a fairly narrow range [−0.2 . . .+
0.2] log10(mg kg-1). Return to Q14 •

A15 : The observation with ID 129 has the highest positive residual, i.e., its
actual value is much higher than that predicted by log10Cu33. This point does
have a high Zn concentration, 703 mg kg-1. Return to Q15 •

A16 : No, and we saw this in the histogram of the residuals. The negative
residuals are much more negative that would be expected by chance, if the
residuals were normally distributed. This is because of the log10Zn values at
a few points that are strongly over-predicted by the model, due to the high
log10Cu values at these points. Return to Q16 •

A17 : No, the high-leverage points do not have high Cook’s distance, that is,
they are consistent with the overall model fit. Return to Q17 •

A18 : The model is in general fairly successful: it explains about 4/5 of the
variance, the coefficients have small relative standard errors, and the residuals
are mostly within a narrow range and mostly normally-distributed. Most of
the poorly-fit points are over-predicted, so a pollution map made with them
would be too cautious; however one high-Zn point is strongly under-predicted.

Return to Q18 •

A19 : The most frequently flooded soils have all the high metal concentra-
tions, as well as a higher median. The other two classes are almost identical.

33 This observation is row 123 in the data frame, but has been assigned a different
observation ID, probably because some original observations were dropped from
the dataset.
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But, all three classes contain observations with low concentrations. Return to
Q19 •

A20 : Variance explained: 24.3% Return to Q20 •

A21 : To answer this, look at the summary table of the linear model. The
number at the (Intercept) row and Estimate column shows the best esti-
mate for the mean of the first-listed class, in this case with the name 1; this is
Flood Frequency class 1, prediction 2.7 log10(mg kg-1).

The other two classes have the coefficients named ffreq2 and ffreq3; their
Estimate is then the difference from the first-listed class (the intercept). So
their mean concentrations are: class 2: 2.368 log10(mg kg-1) (i.e., 2.7 + -0.332);
class 3: 2.425 log10(mg kg-1). Return to Q21 •

A22 : The variance explained is given by the adjusted R2: 80.2%; this is a bit
less than the same as that explained by Cu only: 80.4%, but much more than
that explained by flooding frequency only: 24.3%. Return to Q22 •

A23 : There are 2 fewer degrees of freedom; these correspond to the two
flooding frequency class differences from the first (base), which is equivalent
to the intercept in the Cu-only model.

The residual sum of squares is only reduced by 0.01 log10Zn2.

There is a quite high probability, 0.692, of a Type I error if the additive model is
considered better than the single-predictor model. Thus we prefer the single-
predictor model. Return to Q23
•

A24 : Variance explained: 81.1%, a slight improvement over the additive and
single-factor models. The residual sum of squares is reduced by 0.19 log10Zn2.
We have only a 0.043 probability of a Type I error if the interaction model is
considered better than the single-predictor model.

So the improvement is statistically significant but practically unimportant.
We conclude that a map of flooding frequency is not needed if we know the Cu
at a location to be predicted. Return to Q24 •

A25 : The slope considering just the observations in flooding frequency class
2 (every 2–5 years) is considerably steeper than the others; this can also be
seen in the model coefficient ffreq2:logCu. Return to Q25 •

A26 : Slots coords, coords.nrs, bbox, proj4string refer to the spatial
structure; slot data to the feature-space (attribute) data. Note that the data
slot has two fewer variables than before the conversion to a spatial object;
these are the two coördinates which are now in the special coords slot. Return
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to Q26 •

A27 : The points are unevenly distributed. Many are along the river; the
density away from the river is lower, and there are some unsampled areas.

Return to Q27 •

A28 : The heavy metal comes from river flooding: closer distances, lower el-
evation and more frequent flooding are expected to increase its concentration
in soil. If the metal came from air pollution, we would not expect any of these
predictors to be important, except perhaps elevation if there would be local
movement of surface soil. If the metal was from agricultural practices, these
predictors would only be important if they would be correlated to the spatial-
ization of agricuture. Return to Q28
•

A29 : The tree has 36 leaves and 35 internal nodes. Return to Q29 •

A30 : Distance to river is by far the most important, followed by elevation.
Flooding frequency is unimportant. Return to Q30 •

A31 : The model appears to be overfit; after 9 splits the cross-validation error
increases. Note this may be different in different runs, because the random
split of the full dataset for cross-validation will be different each time. There
is very little reduction in this error between eight and nine splits, so eight
seems to be the best choice for a parsimonious model. Return to Q31 •

A32 : The minimum cross-validation error is 0.28; this corresponds to 9 splits
and a complexity parameter of 0.0087. Return to Q32 •

A33 : The pruned tree has 10 leaves and 9 internal nodes. These are 27.8%
and 25.7% of the original number, respectively. The tree is much smaller. with
many fewer unique fitted values. Return to Q33 •

A34 : Only distance to river and elevation were used. This implies that
any effect from flooding can be well-explained by distance and elevation; the
recorded flooding frequency adds no useful information. Return to Q34 •

A35 : The first split is on distance: closer than 145 m to the river leads
to much higher metal concentrations, on average, than further. Within each
distance class elevation is then important. In both cases, lower elevations
have substantially higher metal concentrations. The third split is different;
one group is not split, two based on distance and one on elevation. The final
split, for one third-level group, makes a small distinction based on elevation at
the furthest distance (> 230 m). The interpretation is that the distance flood-
water travels is the most important, and the elevation then separates deeper
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from shallower floods. Return to Q35 •

A36 : The parsimonious model only predicts 10 different values for the 155
points. Each predicted value is associated with a wide range of actual values.
Thus the model is not very precise. It does, however, separate the highest and
lowest values fairly well. This implies either missing predictors (but we did try
flooding frequency, which did not improve the model) or local spatial variabiity
not captured by these factors. Return to Q36 •

A37 : (1) The full model correctly classifies 28% of the observations. This is
the sum of the CP values for all the splits in the tree – each CP in the table is
the increase in R2 due to that split.

(2) It is minimum at 2.

(3) But, there is not a clear choice, because the more complicated trees do not
differ much in their cross-validation error.

Return to Q37 •

A38 : The model is modertely successful. It correctly classifies 38 + 44 (class
1) + 19 (class 2) + 4 (class 3) = 105/155 = 67.7% of the observations. Return to
Q38 •

A39 : Each run of randomForest will give different results; in most cases
about 200 trees are needed to stabilize the out-of-bag MSE. Return to Q39 •

A40 : As with the single regression tree, distance to river is the most impor-
tant, followed by elevation; flooding frequency is much less important. How-
ever the variables are much closer to equally important here – in the single tree
distance was responsible for about 58% of the single tree’s succcess, whereas
in the forest permuting elevation causes almost as much increase in error as
permuting distance. Even permuting flood frequency causes a 14% increase in
error; this implies that flooding frequency was used in some trees, whereas it
was never used in the single regression tree. Return to Q40 •

A41 : The random forest prediction is essentially continuous: each point has a
separate prediction. By contrast, the tree only predicts one value for all points
in the same “rectangle”. The random forest fit seems more realistic. Return
to Q41 •

A42 : The out-of-bag RMSE is 0.148 log(mg kg-1), about double the fits RMSE,
0.073 log(mg kg-1). The out-of-bag RMSE is a more realistic estimate of the
prediction error when applied at an unknown point, since when predicting at
an unknown point, it could of course not be included in the model building. So
this value is a more honest way to report the precision of the random forest
model. Return to Q42 •
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A43 : Class 1 (annual flooding, red line) has the lowest rate and class 3 (rarely
flooded, blue line) by far the most. For this class errors stabilize at about
80% incorrect allocation. None are good; even class 1 has about 1/4 of the
observations incorrectly allocated. Return to Q43 •

A44 : About 200 trees are needed. Return to Q44 •

A45 : (1) Class 1: 69.8%; class 2: 53.7%; class 3: 33.3%. The least frequently
flooded areas are often mapped as classes 1 and 2; this means if the map
user trusts these as not often flooded, he or she will be facing flooding more
frequently than expects.

(2) Classes 1 and 2 are often confused and class 3 is very poorly mapped.

(3) This model is quite poor. One reason might be that the original records
of flooding frequency are poor. Another is the geomorphology: an area can
be flooded by concentrated flow even at a far distance and higher elevation.

Return to Q45 •

A46 : Yes, big circles tend to be near other big ones, same for small circles.
Return to Q46 •

A47 : There are (155 * (155-1))/2 = 1.1935× 104 point-pairs. Return to Q47 •

A48 : Separation is 70.84 m, semivariance is 0.001144 log(mg kg-1)2. Return
to Q48 •

A49 : Most of the point-pairs have very low semi-variance, i.e., they have quite
similar values of log10Zn. However, points 76 and 138 are only separated by
63 m but have a semivariance of 0.1345. Return to Q49 •

A50 : Average separation is 72.25 m, average semivariance is 0.0265 log(mg kg-1)2;
this is an estimate from 41 point-pairs. Return to Q50 •

A51 : The evidence is that at closer separations the semivariance is, on aver-
age, lower. This increases steadily until the range. Return to Q51
•

A52 : At about 850 m separation there is not any reduction in average semi-
variance; this is the range. Return to Q52
•

A53 : The trend in decreasing semivariance with decreasing separation seems
to intersect the y-axis (i.e., at 0 separation) at about 0.01 log(mg kg-1)2; this is
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the nugget. Return to Q53 •

A54 : At the range and beyond the average semivariance is about 0.13 log(mg kg-1)2;
this is the total sill. Return to Q54 •

A55 : The fitted model is: nugget 0.01 log(mg kg-1)2, partial sill 0.1153
log(mg kg-1)2, range 967 m. So the total sill is 0.1253 log(mg kg-1)2. Com-
pared to the estimate, the range is longer, the nugget almost the same, and the
structural sill a bit lower. Return to Q55 •

A56 : The kriged map is very smooth. “Hot” and “cold” spots are clearly
controlled by observations with especially high and low values. Return to
Q56 •

A57 : The kriging prediction variances are lowest at observation points, still
low near many points, and highest away from any points. There is no relation
with the data value or kriged prediction. Return to Q57 •

A58 : Only 140 of the 155 observations above the threshold. Return to Q58 •

A59 : The range is 1527 m; the range of the variogram of the value was 967 m.
Thus there is stronger spatial dependence if we just want to know if the value
is above or below this threshold. Return to Q59 •

A60 : The total sill is 0.1457; units are dimensionless. Return to Q60 •

A61 : Only the right-centre is “definitely” safe. One could pick any probability
threshold (depending on one’s risk tolerance) and slice the map at that value.

Return to Q61 •

A62 : The prediction is simply a reclassification of each pixel according to
the mean of its flood-frequency class, so there are only three predicted values,
corresponding to the three classes.

The variance is from the linear model summary and is also uniform for each
class; it depends on the variance of that class’ observations. The spatial pat-
tern is exactly the same as the map of flood-frequency classes. The variance
is lowest in the annually flooded class, because this has more observations.

Return to Q62 •

A63 : This empirical variogram has a shorter range (about 700 instead of
about 950 m) and a lower total sill (about 0.08 instead of about 0.125 log(mg kg-1)2;
the estimated nugget is 0.01 log(mg kg-1)2 about the same (indeed, theory re-
quires that the nugget be exactly the same, since no model could remove noise
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at a point). Return to Q63 •

A64 : Confirming the eyeball estimate: the range has reduced by -110 m (about
30%), the total sill by about 0.102 log(mg kg-1)2 (about 25%). The modelled
nugget is lower, although by theory it should not be any different. Return to
Q64 •

A65 : The KED map clearly shows the boundary of flood frequency class 1
(frequently flooded). “Hot” and “cold” spots are somewhat smaller because of
the shorter variogram model range. Return to Q65 •

A66 : Distance from river dist, flooding frequency class ffreq, and soil type
soil. Return to Q66 •

A67 : There is a clear inverse relation: further from the river there is, in
general, lower metal concentration. All the high concentrations are very close
to the river. The relation is diffuse (scattered). It seems (by eye) not quite
linear, maybe an inverse power, but not too far from linear. Return to Q67 •

A68 : The single-predictor model with distance has a much lower residual
sum-of-squares (RSS) than the single-predictor model with flood frequency.

Return to Q68 •

A69 : The prediction is simply a re-assignment to each pixel by a linear func-
tion of distance, so the spatial pattern looks exactly like the map of distance
to river (i.e., contours of distance) with different units of measure, here the
metal concentration. The prediction variance is lowest at the centroid of the
metal-vs.-distance plot; this will be Return to Q69 •

A70 : Yes, the two-predictor models give significantly lower residual sum-of-
squares. Return to Q70
•

A71 : Yes, the interaction model has lower RSS than the additive model. The
probability this is due to chance is only 0.0025. Return to Q71 •

A72 : Again, the interaction model gives the lowest (most negative) AIC. Thus
the interaction is significant. The process of pollution depends on how fre-
quently an area is flooded, but within that, the closer distance to river tends to
be more polluted. Together these are strong evidence that the pollution comes
from river flooding. Return to Q72 •
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A73 : Variance explained: 63.5%. Return to Q73 •

A74 : No, there is a clear trend (shown by the red curve): at intermediate
fitted values the residuals tend to be negative; at both lower and higher fitted
values the residuals tend to be positive. The variance (spread of residuals) is
also not the same throughout the range of the fitted values: it is greater at
the middle of the range. And of course there are three very poorly-modelled
points, indentified in the graph. Return to Q74 •

A75 : Yes, normally-distributed except for the three most positive residuals.
Return to Q75 •

A76 : The high-leverage residuals do not have high influence as shown by
Cook’s distance, this is good. Return to Q76 •

A77 : As the model includes more predictors, the total sills decrease and the
ranges are shorter. More of the variability is taken out in feature space, leaving
less for spatial structure. Return to Q77 •

A78 : In this KED map we can see some “banding” due to distance from the
river, as well as the boundaries between the flood frequency classes. The effect
of distance from river is especially noticeable at the central E edge of the study
area, where the predictions are lowest (darkest colours); this is the furthest
from the river and so the prediction is lowered. Return to Q78 •

A79 : Adding distance to river reduces the prediction variances and makes
them almost uniform across the area. Return to Q79 •

A80 : All coefficients vary; the intercept is only a little bit different, but the
interaction terms are quite different. This is likely because GLS accounts for
geographic clustering of particularly high and low values, which are at the
“edges” of multivariate feature space and thus have high leverage in the inter-
action terms. Return to Q80
•

A81 : The range of spatial dependence has been adjusted; from the residual
variogram fit, i.e., 665 m; the REML estimate is somewhat longer, 1163 m.
These are 1/3 of the effective range, since we fit an exponential model. The
effective range found by gls is thus 3489 m. Return to Q81 •

A82 : The areas near the river and more flooded are predicted to have some-
what lower log10Zn concentrations with the GLS model. Again, this is because
GLS accounts for geographic clustering of the highest values (along the river).
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Return to Q82 •

A83 : The largest differences are where the interaction terms were most
important, i.e., high flood frequency and far distance from river. We saw that
these terms were the ones most affected by the GLS fit. Return to Q83 •

A84 : The empirical variogram estimates of the GLS residuals (blue points)
are similar to those from the OLS residuals (red points). The variogram model
fit by gls (blue line) is reasonable, but has stronger spatial correlation at close
ranges than the fit to the empirical variogram (red dashed line). The fit from
the OLS residuals adjusts better to the close-range bins; but recall, the corre-
lation structure uses all the points, not as summarized in an empirical vari-
ogram. Return to Q84
•

A85 : The differences are fairly small, never more than ±0.11 log10Zn mg kg-1.
The patterns are almost identical. Return to Q85 •

A86 : The means of the cross-validations are −1.47 × 10−4 (OK), 9.37 × 10−4

(KED, flood frequency), and 0.001413 (KED, flood frequency * distance to river).
All are quite close to zero, thus almost unbiased.

KED with flood frequency has the narrowest overall range: 1.0381. The two-
factor KED has the narrowest IQR: 0.1631. Return to Q86
•

A87 : The one-factor KED prediction, with flood frequency as co-variable, is
most precise; RMSE is 0.141 log(mg kg-1). Return to Q87 •

A88 : In all cases the positive residuals are concentrated along the river; these
are under-predicted due to the influence of nearby less-polluted sites. The
reverse is true for points just behind the river dikes. In the middle of the area
the positive and negative residuals are mixed in no apparent pattern. There
are differences in detail among the three cross-validations but the pattern is
quite similar. Return to Q88 •

A89 : The metal comes from flood water. Concentrations are higher where
there has been more flooding and for longer times. But it’s not the water,
it’s the sediment in the water, that carries the metals. As water flows over the
flooded areas it drops sediment, so we expect higher concentrations nearer the
rivers. Less water covers higher elevations, and less frequently, so we expect
lower concentrations at high elevations. Return to Q89 •

A90 : Neither relation looks linear. The relation with distance appears to be
inverse linear at short range, but then inverse squared at medium range and
almost constant at long range. The relation with elevation appears to be very

146



noisy but constant at short range, and then inverse linear at medium and long
ranges. Perhaps a higher-order polynomial could fit these. Return to Q90 •

A91 : Both models are useful; distance (R2 = 0.655) more so than elevation
(R2 = 0.451). Also the range of residuals and the inter-quartile range is much
narrower when distance is the predictor. Return to Q91 •

A92 : The fits are smooth functions of the noisy data. They match well with
the hypothesis. However it’s clear that there is a lot of variability not explained
by either of these. Return to Q92 •

A93 : Elevation is weakly related to distance: higher elevations tend to be fur-
ther from the river, but there is quite a spread at all distances. The correlation
coefficients, both parametric and non-parametric, show that about 25% of the
variability is common between the two predictors. Thus the two predictors are
mostly independent. Return to Q93 •

A94 : Both models are better than the single-factor models. The model with-
out interaction explains R2 = 0.77 of the variance, the model with interaction
explains R2 = 0.785. The residuals are also considerably smaller than those
from the single-factor models. The interaction term is significant but does not
add much to the overall fit. Return to Q94 •

A95 : The interaction term (tensor) makes the two marginal smoothers (dis-
tance and elevation) more regular; in particular it removes the anomaly at the
lowest and highest elevations, and the “hump” at medium-long distances. Re-
turn to Q95 •

A96 : The GAM prediction clearly mostly depends on the distance from river,
with some adjustments for elevation. Return to Q96 •

A97 : This point has much higher Zn concentration than predicted, and quite
different from nearby points. It is medium distance from the river and at a
moderately low elevation, but has a concentration similar to points a shorter
distance back from the river. Notice how the GAM fit is much better at this
point. This is because it is not forced to predict with a single linear model over
the whole range of the predictors. Return to Q97 •

A98 : The GAM predicts higher near the river and in the highest area (E of
map). It predicts lower in the middle. Thus the smoothly-adjusting fit of the
GAM matches the pattern better than the linear model. Return to Q98 •

A99 : Yes, there is strong spatial dependence. Return to Q99 •
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19 Assignment

This section is a small test of how well you mastered this material. You
should be able to complete the tasks and answer the questions with the
knowledge you have gained from the exercise. After completing it, you
can compare with an answer sheet.

For this test we will work with another dataset.

Task 1 : Load the jura dataset, provided with the gstat package.
This includes several workspace objects. Examine the structure of the
jura.pred dataframe; this is the “calibration” dataset. •

For your information, here is a perspective view of the calibration (green)
and evaluation (red) datasets, on the landscape near La Chaux-de-Fonds
(CH).

Q1 : How many observations are in the calibration dataframe? How
many fields? •

Task 2 : Display histograms of the copper (Cu) concentration at the
points in the calibration dataframe, and its log transform. •

Q2 : Describe the two distributions. •

Task 3 : Model the log(Cu) concentration at the points in the calibration
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dataframe as a linear function of rock type and land use separately, and
then additively. •

Q3 : Why might these be reasonable (real-world) predictors of Cu con-
centration? In other words, why might land use and/or rock type affect
Cu concentration in the soil? •

Q4 :

(1) Which of the single-predictor models is better?

(2) Is the additive model significantly better than the best single-predictor
model?

(3) How much of the log(Cu) concentration is explained by the additive
model? •

Task 4 : Display the graphs of linear model diagnostics for the addi-
tive model: (1) residuals vs. fitted; (2) normal Q-Q plot of residuals; (3)
residuals vs. leverage. •

Q5 : Comment on the linear model diagnostics: (1) do the residuals
have the same spread at all fitted values? (2) are the residuals normally-
distributed? (3) do any high-leverage points have high residuals? •

Task 5 : Display a cross-classification table of the two factors (rock
type and land use) using the table function. •

Q6 :

(1) Are all classes of each factor represented more or less equally?

(2) Are the two factors independent? That is, are the numbers of obser-
vations in each cross-classification cell as expected from the marginal
totals of each factor?

Hint: use the outer ‘array outer product’ function on the two one-way
tables to make a table of the expected values of the two-way table.

(3) Is it advisable to build an interaction model, i.e., to look for synergies
between the two factors in explaining the log(Cu) concentrations? •

Task 6 : Build a regression tree to model the log(Cu) concentration
modelled by rock type, land use, and the two coördinates (Xloc and
Yloc).
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1. Build the tree with default parameters;

2. Display the tree;

3. Print the variable importance;

4. Print and plot the cross-validation error vs. the complexity param-
eter;

5. Prune the tree back to the appropriate complexity parameter and
display it.

•

Q7 :

(1) Which variables were used in the tree? How many leaves does it have?

(2) Which variable was most important?

(3) What is the appropriate complexity parameter with which to prune
the tree? Why?

(4) Which variables were used in the pruned tree? How many leaves does
it have? •

Task 7 : Build a random forest to model the log(Cu) concentration
modelled by rock type, land use, and the two coördinates (Xloc and
Yloc). •

Q8 :

(1) How much of the variance in log(Cu) is explained by the random for-
est?

(2) Which variables are most important?

(3) How does the RMSE of the out-of-bag cross-validation compare to the
mean value of the variable being modelled?

(4) Do you consider this model successful? •

Optional: predict with the regression tree and random forest over the
prediction grid and display the maps. (This will require predicting in the
data frame, and then converting to a spatial grid for display.)

Task 8 : Convert the calibration dataframe jura.pred into a spatial ob-
ject, using the local metric coördinates(fields Xloc and Yloc, see ?jura).
Add the model residuals from your best model from Task 3, as deter-
mined in previous steps, as a field, and display a bubble plot of the
residuals. •
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Q9 : Does there appear to be spatial dependence in the residuals? •

Task 9 : Compute and display the empirical semivariogram of the linear
model residuals. Use a cutoff of 0.8 km (i.e., 800 m) and a bin width of
0.08 km (i.e., 80 m). •

Q10 : Describe the empirical variogram qualitatively. What are the
approximate partial (structural) sill, range, and nugget variance? •

Task 10 : Fit a spherical variogram model to the empirical variogram. •

Q11 : What are the fitted partial (structural) sill, range, and nugget
variance? •

Task 11 : Optional: Check the robustness of this fit to the noisy empir-
ical variogram by fitting to different bin widths and comparing the fitted
variogram parameters. •

Q12 : Optional: How robust is the variogram fit? •

Task 12 : Convert the prediction grid dataframe jura.grid, which was
loaded into the workspace with the jura dataset, into a gridded spatial
object, and display maps of the two covariates (land use and rock type).

•

Task 13 : Predict over the prediction grid by Kriging with External Drift
(KED) from the calibration points, using the fitted variogram model of the
linear model residuals. Plot the kriging predictions and their variances
(or standard deviations). •

Q13 : Where are the highest and lowest predicted concentrations? How
do these relate to the covariables (if at all)? •

Q14 : Where are the highest and lowest prediction standard deviations
(or variances)? How do these relate to the covariables (if at all) and sam-
ple point configuration? •

151



Task 14 : Cross-validate the KED predictions at the calibration points
set jura.pred, summarize the cross-validation statistics, and plot the
cross-validation residuals. •

Q15 : Is there any apparent spatial pattern to the cross-validation resid-
uals? •

152



References

[1] Bates, D. 2005. Fitting linear mixed models in R. R News 5(1):27–30
108

[2] Bivand, R. S.; Pebesma, E. J.; & Gómez-Rubio, V. 2008. Applied Spatial
Data Analysis with R. UseR! Springer. http://www.asdar-book.
org/ 5, 136

[3] Breiman, L. 2001. Statistical modeling: The two cultures (with com-
ments and a rejoinder by the author). Statistical Science 16(3):199–
231 18, 37

[4] Breiman, L.; Friedman, J. H.; Olshen, R. A.; & Stone, C. J. 1983. Clas-
sification and regression trees. Wadsworth 37

[5] Brus, D.; de Gruijter, J.; Walvoort, D.; Bronswijk, J.; Romkens, P.;
de Vries, F.; & de Vries, W. 2002. Mapping the risk of exceeding
critical thresholds for cadmium concentrations in soils in the Nether-
lands. Journal of Environmental Quality 31:1875–1884 160

[6] Brus, D.; Kempen, B.; & Heuvelink, G. 2011. Sampling for validation
of digital soil maps. European Journal of Soil Science 62:394–407.
ISSN 13510754 117

[7] Cook, R. & Weisberg, S. 1982. Residuals and influence in regression.
New York: Chapman and Hall. ISBN 0-412-24280-X 23, 24, 97

[8] Draper, N. R. & Smith, H. 1998. Applied Regression Analysis. Wiley-
Interscience, third edition edition. ISBN 978-0-471-17082-2 23

[9] Efron, B. & Gong, G. 1983. A leisurely look at the bootstrap, the
jackknife & cross-validation. American Statistician 37:36–48 54

[10] Fox, J. 2002. An R and S-PLUS Companion to Applied Regression.
Newbury Park: Sage 136

[11] Fox, J. 2016. Applied regression analysis and generalized linear mod-
els. SAGE, 3rd ed edition. ISBN 978-1-4522-0566-3 23, 24, 97

[12] Goovaerts, P. 1997. Geostatistics for natural resources evaluation.
Applied Geostatistics. New York; Oxford: Oxford University Press
136

[13] Hastie, T.; Tibshirani, R.; & Friedman, J. H. 2009. The elements of
statistical learning data mining, inference, and prediction. Springer
series in statistics. New York: Springer, 2nd ed edition. ISBN
9780387848587 18, 37, 49, 54, 121, 136

[14] Hengl, T. 2009. A Practical Guide to Geostatistical Mapping. Amster-
dam. ISBN 978-90-9024981-0
URL http://spatial-analyst.net/book/ 9, 160

[15] Ihaka, R. & Gentleman, R. 1996. R: A language for data analysis
and graphics. Journal of Computational and Graphical Statistics
5(3):299–314 1

153

http://www.asdar-book.org/
http://www.asdar-book.org/
http://spatial-analyst.net/book/


[16] Isaaks, E. H. & Srivastava, R. M. 1990. An introduction to applied
geostatistics. New York: Oxford University Press 136

[17] James, G.; Witten, D.; Hastie, T.; & Tibshirani, R. 2013. An introduc-
tion to statistical learning: with applications in R. Number 103 in
Springer texts in statistics. Springer. ISBN 9781461471370 18, 37,
49, 54, 121, 136

[18] Lark, R. M. 1995. Components of accuracy of maps with special ref-
erence to discriminant analysis on remote sensor data. International
Journal of Remote Sensing 16(8):1461–1480 62

[19] Lark, R. M. & Cullis, B. R. 2004. Model based analysis using REML
for inference from systematically sampled data on soil. European
Journal of Soil Science 55(4):799–813 106, 107

[20] Pebesma, E. J. 2004. Multivariable geostatistics in S: the gstat pack-
age. Computers & Geosciences 30(7):683–691 5

[21] Pebesma, E. J. & Bivand, R. S. 2005. Classes and methods for spatial
data in R. R News 5(2):9–13
URL http://CRAN.R-project.org/doc/Rnews/ 1

[22] Pebesma, E. J. & Wesseling, C. G. 1998. Gstat: a program for geo-
statistical modelling, prediction and simulation. Computers & Geo-
sciences 24(1):17–31
URL http://www.gstat.org/ 1

[23] Pinheiro, J. C. & Bates, D. M. 2000. Mixed-effects models in S and
S-PLUS. Springer. ISBN 0387989579 107, 108

[24] R Core Team. 2015. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria
URL https://www.R-project.org 1

[25] R Development Core Team. 2015. R Data Import/Export. The R
Foundation for Statistical Computing, version 3.2.2 (2015-08-14)
edition
URL http://cran.r-project.org/doc/manuals/R-data.pdf 7

[26] Rikken, M. G. J. & Van Rijn, R. P. G. 1993. Soil pollution with heavy
metals - an inquiry into spatial variation, cost of mapping and the
risk evaluation of copper, cadmium, lead and zinc in the floodplains
of the Meuse west of Stein, the Netherlands. Doctoraalveldwerkver-
slag, Dept. of Physical Geography, Utrecht University 159

[27] Shalizi, C. 2010. The bootstrap. American Scientist 98(3):186–190
URL http://www.americanscientist.org/issues/pub/2010/
3/the-bootstrap/3 54

[28] Webster, R. & Oliver, M. A. 2008. Geostatistics for environmental
scientists. John Wiley & Sons Ltd., 2nd edition 75, 136

[29] Xie, Y. 2011. knitr: Elegant, flexible and fast dynamic report gener-

154

http://CRAN.R-project.org/doc/Rnews/
http://www.gstat.org/
https://www.R-project.org
http://cran.r-project.org/doc/manuals/R-data.pdf
http://www.americanscientist.org/issues/pub/2010/3/the-bootstrap/3
http://www.americanscientist.org/issues/pub/2010/3/the-bootstrap/3


ation with R. Accessed 04-Mar-2016
URL http://yihui.name/knitr/ 1

155

http://yihui.name/knitr/


Index of R Concepts

* formula operator, 32, 96, 126
+ formula operator, 31, 39, 96, 126
<- operator, 14, 21
== operator, 42
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[] operator, 17, 65, 99
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abline, 27
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as.matrix, 8
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bpy.colors (sp package), 76
breaks argument (hist function), 13
bubble (sp package), 120
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cloud argument (variogram function), 65
cm.colors (sp package), 77, 86
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col.regions graphics argument, 82
colnames, 18
control argument (rpart function), 44
coordinates (sp package), 35, 37, 99
coords slot (SpatialPoints class), 139
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correlation argument (gls function), 108
corSpher (nlme package), 108
corStruct class, 109
cp argument (prune function), 45

cp argument (rpart function), 38, 39
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data, 6, 7, 36, 37, 155
data function argument, 21
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data.frame class, 18, 34, 35
diag, 62
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grid.arrange (gridExtra package), 122
gridded (sp package), 37
gridExtra package, 122
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heat.colors, 82
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idp argument (idw function), 48
idw (gstat package), 48
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importance (randomForest package), 56
importance argument (randomForest func-
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install.packages, 2
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jura dataset, 148, 151
jura.grid dataset, 151
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krige.cv (gstat package), 118, 119
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lattice package, 78, 95, 122
lattice.options (lattice package), 95
layout.widths lattice graphics argument,

95
legend, 27
length, 64
library, 5, 34
list class, 34
lm, 20, 21, 23, 29, 85, 96, 108, 110
lm class, 24
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logical class, 34
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model gstat argument, 75
model argument (krige function), 85, 95
mtry argument (randomForest function),
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names, 92
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newdata argument (predict.randomForest

function), 58
newdata argument (predict.rpart func-

tion), 46, 57
newdata argument (predict function), 58
nlme, 109
nlme package, 108, 110
nmax argument (idw function), 48
notch argument (boxplot function), 29
numeric class, 34

order, 66
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package argument (data function), 6
pages argument (plot.gam function), 127
palette, 27, 61
par, 24
pch argument (plot function), 27
pch graphics argument, 36
pi constant, 3
plot, 15, 24, 55, 122
plot (lattice package), 90
plot.gam (mgcv package), 124, 127
plot.lm, 24
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predict, 46, 57, 58
predict.gam (mgcv package), 130
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predict.rpart (rpart package), 46
print, 54
printcp (rpart package), 42
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q, 11
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randomForest (randomForest package),
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randomForest class, 54, 55, 57, 58
randomForest package, 54
read.csv, 7
read.table, 7
require, 5
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rpart (rpart package), 38, 42, 44, 50
rpart class, 44, 46
rpart package, 37, 38, 49
rpart.control (rpart package), 44
rpart.plot (rpart.plot package), 40
rpart.plot package, 40
rug, 12

s (mgcv package), 123, 126
sample, 49, 53
save.image, 11
se argument (vis.gam function), 129
search, 5
seq, 90
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show.vgms (gstat package), 69
sort, 11
sp package, 1, 2, 5, 6, 11, 34, 47, 109, 119,
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sp.layout argument (spplot function),

78
sp.points (sp package), 78
SpatialPointsDataFrame class, 35
split lattice graphics argument, 90
spplot (sp package), 76, 78, 82, 90
str, 7
sum, 62
summary, 9, 12, 22

table, 28, 30, 62
ti (mgcv package), 126
topo.colors, 85

unique, 46

value argument (corSpher function), 108
varImpPlot (randomForest package), 56
variogram (gstat package), 65, 67, 68,

102
vgm (gstat package), 71, 88
vis.gam (mgcv package), 128

which, 16, 26, 99
which argument (plot.lm function), 24
which.max, 66
which.min, 66
width argument (variogram function), 67,
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A The Meuse dataset

The project that produced this data set is described in the fieldwork
report of Rikken & Van Rijn [26].

R data set The sp package includes this as a sample data set named
meuse, which can be loaded with the data function: data(meuse).

This package also includes a 40x40 m interpolation grid of the study
area, meuse.grid and a point file which outlines the banks of the Meuse
river, meuse.riv.

Structure The “Meuse” dataset consists of 155 observations taken on a
support of 15x15 m from the top 0-20 cm of alluvial soils in a 5x2 km
part of the right bank of the floodplain of the River Maas (in French and
English, “Meuse”) near Stein in Limburg Province (NL). The left bank of
this reach of the Meuse is in Belgium and was not sampled.

The dataset records the following data items (fields) for each observa-
tion:

x, y E and N coordinates on the Dutch national grid (RD), meters;
the EPSG code for this system is 28992

cadmium Cd concentration in the soil, in weight mg kg-1;
zero cadmium values have been shifted to 0.2
(half the lowest non-zero value, likely the detection limit)

copper Cu concentration in the soil, in mg kg-1

lead Pb concentration in the soil, in mg kg-1

zinc Zn concentration in the soil, in mg kg-1

elev elevation above local reference level, in meters
dist distance from the main Maas channel;

obtained from the nearest cell in meuse.grid;
this was derived by a ‘spread’ (spatial distance) GIS operation,
therefore it is accurate up to 20 metres;
normalized to [0, 1] across the study area

om organic matter loss on ignition, as percentage of dry weight
ffreq flood frequency class, 1: annual, 2: once in 10 years,

3: once in 50 years
soil soil class, arbitrary code
lime has the land here been limed? 0 or 1 = F or T
landuse land use, coded
dist.m distance from main Maas channel, in meters, from field survey

Metals were determined by digestion in 25% HNO3 followed by atomic
absorption spectroscopy.

Related datasets Two prediction grids are provided:

meuse.grid : 40x40m prediction grid on the Dutch RD coördinate system, as
used in the meuse dataframe.
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meuse.grid_ll : same, after transformation to geographical coördinates on the WGS84
datum.

meuse.riv : River Meuse outline

meuse.area : study area outline (covers meuse.grid)

Tomislav Hengl has extended the Meuse dataset34 for his “ Practical
Guide to Geostatistical Mapping” [14]; this includes a digital elevation
model with cm vertical resolution obtained from the LiDAR survey of
the Netherlands, and a 2 m vertical resolution contour map from the
topographic survey of the Netherlands.

Soil pollution thresholds According to the Berlin Digital Environmental
Atlas35, the critical level for the four metals in soils are 2 mg kg-1(Cd),
25 mg kg-1(Cu), 600 mg kg-1(Pb), and 150 mg kg-1(Zn) for agricultural
fields: crops to be eaten by humans or animals should not be grown in
these conditions. At half these levels crops must be tested.

There is much more to soil pollution risk than a simple threshold; the
path to the human must be specified and modelled. See for example the
study on risk for Cd in Dutch soils by Brus et al. [5].

34 http://spatial-analyst.net/book/meusegrids
35 http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.
htm
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