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Introduction
In the last two decades a new field in chemistry has opened up; experiments on individual molecules have
been performed using a number of different techniques e.g. scanning probe microscopy (SPM), atomic
force microscopy (AFM) etc.
These experiments investigate:

elastic properties of polymers
conformational changes
the rupture of covalent bonds
and even the formation of new bonds

Manipulations on single molecules involve external forces. The whole field of mechanical manipulation of
molecules by applying an external force is known collectively as mechanochemistry.

A molecule exposed to the stresses caused by external forces changes its structure.

How to predict such structural changes ?



Finding molecular structures
A common theoretical tool used to determine molecular structure is the geometry
optimization procedure. In general two types of molecular structure are needed:

the equilibrium geometry Req and the transition state geometry Rts

both correspond to the stationary points on the potential energy surface (PES)
(molecular energy E(R) as a function of nuclear positions R=(R1, R2,…) )

The equilibrium geometry – local minimum
The transition state – saddle point (I-st order)

These points are determined by the condition that the first derivatives of the
energy with respect to the nuclei positions vanish (the total force acting on each
nucleus vanishes) and the second derivatives are all positive at local minimums and one
is negative at saddle points.



Finding molecular structures

It is propose to use the geometry optimization procedure also to
determine enforced structural changes in a molecule.



• In the field of computational chemistry, energy minimization is the
process of finding an arrangement in space of a collection of atoms where,
the net inter-atomic force on each atom is acceptably close to zero and the
position on the potential energy surface (PES) is a stationary point.

• The collection of atoms might be a single molecule, an ion, a condensed
phase, a transition state or even a collection of any of these.



• As an example, when optimizing the geometry of a water molecule, one
aims to obtain the H-H bond lengths and the H-OH bond angle which
minimize the forces.

• The motivation for performing a geometry optimization is the physical
significance of the obtained structure: optimized structures often correspond
to a substance as it is found in nature and the geometry of such a structure
can be used in a variety of experimental and theoretical investigations.



• Typically, but not always, the process seeks to find the geometry of a
particular arrangement of the atoms that represents a local or global energy
minimum.

• Instead of searching for global energy minimum, it might be desirable to
optimize to a transition state, that is, a saddle point on the potential energy
surface. Additionally, certain coordinates (such as a chemical bond length)
might be fixed during the optimization.



Geometry Optimization
Le Chatliers’ Principle

The optimum geometry is the geometry which 
minimizes the strain on a given system.  Any 

perturbation from this geometry will induce the 
system to change so as to reduce this perturbation 

unless prevented by external forces

Mathematical Surface Reflects This Principle!!



Features of  Potential Energy Surfaces
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Potential Energy Surface Terms
• Gradient - the first derivative of  the energy with 

respect to geometry (X, Y  & Z); also termed the 
Force (strictly speaking, the negative of  the 
gradient is the force)

• Stationary Points - points on the PES where the 
gradient (or force) is zero; this includes Maxima, 
Minima, Transition States (which are first 
order saddle points), and higher order Saddle 
Points.



PES Terms...
• In order to distinguish among the latter, one 

must examine the second derivatives of  the 
PES with respect to geometry; the matrix of  
these is termed a Hessian (or force) matrix.

• Diagonalization of  this matrix yields 
Eigenvectors which are normal modes of  
vibration; the Eigenvalues are proportional to
the square of  the vibrational frequency. (IR 
spectra can be derived from these)



Sign of  2nd Derivatives

• The sign of  the second derivative can be used to distinguish 
between Maxima and Minima on the PES

• Minima on the PES have only positive eigenvalues (vibrational 
frequencies)

• Maxima or Saddle Points (maximum in one direction but 
minimum in other directions) have one or more negative
(imaginary) frequencies.

• A frequency calculation must be performed to determine the 
sign of  the vibrational frequencies.



Molecular geometry and mathematical interpretation
• The geometry of a set of atoms or molecules can be described by Cartesian

coordinates of the atoms or, internal coordinates formed from a set of bond lengths,
bond angles and dihedral angles.

• Given a set of atoms and a vector, r, describing the atoms' positions, one can
introduce the concept of the energy as a function of the positions, E(r).

• Geometry optimization is then a mathematical optimization problem, in which it
is desired to find the value of r for which E(r) is at a local minimum, that is, the
derivative of the energy with respect to the position of the atoms, ∂E/∂r, is the
zero vector.



A special case of a geometry optimization is a search for the geometry of
a transition state, and this will be discussed later.

The computational model that provides an approximate E(r) could be
based on quantum mechanics (using either density functional
theory or semi-empirical methods), force fields, or a combination of those
in case of QM/MM.



Practical aspects of  optimization
• Some method such as quantum mechanics can be used to calculate the

energy, E(r) , the gradient of the PES, that is, the derivative of the energy with
respect to the position of the atoms, ∂E/∂r .

• An optimization algorithm can use some or all of E(r) , ∂E/∂r and ∂∂E/∂ri∂rj to
try to minimize the forces and this could in theory be any method such as gradient
descent, conjugate gradient or Newton's method.

• For most systems of practical interest, however, it may be prohibitively expensive
to compute the second derivative matrix.



The choice of the coordinate system can be crucial for performing a successful
optimization.

Cartesian coordinates, for example, are redundant since a non-linear molecule with
N atoms has 3N–6 vibrational degrees of freedom.

Additionally, Cartesian coordinates are highly correlated, that is, the Hessian matrix has
many non-diagonal terms that are not close to zero. This can lead to numerical
problems in the optimization, because, for example, it is difficult to obtain a good
approximation to the Hessian matrix and calculating it precisely is too computationally
expensive.

Internal coordinates tend to be less correlated but are more difficult to set-up and it can
be difficult to describe some systems, such as ones with symmetry or large condensed
phases.



Degree of  freedom restriction

• Some degrees of freedom can be eliminated from an optimization, for
example, positions of atoms or bond lengths and angles can be given fixed
values. Sometimes these are referred to as being frozen degrees of freedom.



Transition state optimization
• Transition state structures can be determined by searching for saddle points on the

PES.

• A first-order saddle point is a position on the PES corresponding to a minimum in
all directions except one; a second-order saddle point is a minimum in all
directions except two, and so on.

• Algorithms to locate transition state geometries fall into two main categories: local
methods and semi-global methods.

• Local methods are suitable when the starting point for the optimization is very
close to the true transition state and semi-global methods find application when it
is sought to locate the transition state with very little a priori knowledge of its
geometry. Some methods, such as the Dimer method, fall into both categories.



Local searches
• A so-called local optimization requires an initial guess of the transition state. Initial

guess must have a corresponding Hessian matrix with one negative Eigenvalue, or,
the negative Eigenvalue corresponding to the reaction coordinate must be greater
in magnitude than the other negative Eigenvalues.

• Given the above pre-requisites, a local optimization algorithm can then move
"uphill" along the Eigenvector with the most negative Eigenvalue and "downhill"
along all other degrees of freedom, using something similar to a quasi-Newton
method.



Dimer method

• The dimer method can be used to find possible transition states without
knowledge of the final structure or to refine a good guess of a transition
structure. The “dimer” is formed by two images very close to each other on
the PES. The method works by moving the dimer uphill from the starting
position whilst rotating the dimer to find the direction of lowest curvature
(ultimately negative).



Activation Relaxation Technique (ART)

• The Activation Relaxation Technique (ART) is also an open-ended method
to find new transition states or to refine known saddle points on the PES.
The method follows the direction of lowest negative curvature (computed
using the Lanczos algorithm) on the PES to reach the saddle point, relaxing
in the perpendicular hyperplane between each "jump" (activation) in this
direction.



Chain-of-state methods
• Chain-of-state methods can be used to find the approximate geometry of the

transition state based on the geometries of the reactant and product. The
generated approximate geometry can then serve as a starting point for refinement
via a local search.

• Chain-of-state methods use a series of vectors, that is points on the PES,
connecting the reactant and product of the reaction of interest, rreactant and rproduct,
thus discretizing the reaction pathway. Very commonly, these points are referred to
as beads due to an analogy of a set of beads connected by strings or springs, which
connect the reactant and products. The series of beads is often initially created by
interpolating between rreactant and rproduct,



• for example, for a series of N + 1 beads, bead i might be given by

• where i ∈ 0, 1, ..., N. Each of the beads ri has an energy, E(ri), and forces, -
∂E/∂ri and these are treated with a constrained optimization process that seeks to get
an as accurate as possible representation of the reaction pathway. For this to be
achieved, spacing constraints must be applied so that each bead ri does not simply get
optimized to the reactant and product geometry.

• Often this constraint is achieved by projecting out components of the force on each
bead ri, or alternatively the movement of each bead during optimization, that are
tangential to the reaction path. For example, if for convenience, it is defined that gi =
∂E/∂ri, then the energy gradient at each bead minus the component of the energy
gradient that is tangential to the reaction pathway is given by



• where I is the identity matrix and τi is a unit vector representing the reaction
path tangent at ri. By projecting out components of the energy gradient or
the optimization step that are parallel to the reaction path, an optimization
algorithm significantly reduces the tendency of each of the beads to be
optimized directly to a minimum.



Synchronous transit

• The simplest chain-of-state method is the linear synchronous transit (LST)
method. It operates by taking interpolated points between the reactant and
product geometries and choosing the one with the highest energy for
subsequent refinement via a local search. The quadratic synchronous transit
(QST) method extends LST by allowing a parabolic reaction path, with
optimization of the highest energy point orthogonally to the parabola.



Nudged elastic band
In Nudged elastic band method, the beads along the reaction pathway have simulated spring forces
in addition to the chemical forces, -∂E/∂ri, to cause the optimizer to maintain the spacing constraint.
Specifically, the force fi on each point i is given by

where

is the spring force parallel to the pathway at each point ri (k is a spring constant and τi, is a unit
vector representing the reaction path tangent at ri).
In a traditional implementation, the point with the highest energy is used for subsequent refinement
in a local search. There are many variations on the NEB (nudged elastic band) method, such
including the climbing image NEB, in which the point with the highest energy is pushed upwards
during the optimization procedure so as to give a geometry which is even closer to that of the
transition state.



String method
• The string method uses splines connecting the points, ri, to measure and

enforce distance constraints between the points and to calculate the tangent
at each point. In each step of an optimization procedure, the points might be
moved according to the force acting on them perpendicular to the path, and
then, if the equidistance constraint between the points is no-longer satisfied,
the points can be redistributed, using the spline representation of the path to
generate new vectors with the required spacing.

• Variations on the string method include the growing string method, in which
the guess of the pathway is grown in from the end points (that is the reactant
and products) as the optimization progresses.



Comparison with other techniques
• Geometry optimization is fundamentally different from a molecular

dynamics simulation. The latter simulates the motion of molecules with
respect to time, subject to temperature, chemical forces, initial
velocities, Brownian motion of a solvent, and so on, via the application
of Newton's laws of Motion. This means that the trajectories of the atoms
which get computed, have some physical meaning. Geometry optimization,
by contrast, does not produced a "trajectory" with any physical meaning – it
is concerned with minimization of the forces acting on each atom in a
collection of atoms, and the pathway via which it achieves this is lacks
meaning. Different optimization algorithms could give the same result for
the minimum energy structure, but arrive at it via a different pathway.



OPTIMIZATION METHODS



Methods of  Optimisation
• Energy only:

• simplex

• Energy and first derivatives (forces):
• steepest descents (poor convergence)
• conjugate gradients (retains information)
• approximate Hessian update

• Energy, first and second derivatives
• Newton-Raphson
• Broyden (BFGS) updating of  Hessian (reduces inversions)
• Rational Function Optimisation (for transition states/ and soft modes)



Energy Only (Univariate) Method

• Simplest to implement
• Proceeds one direction until 

energy increases, then turns 90º, 
etc.

• Least efficient 
• many steps
• steps are not guided

• Not used very much.



Steepest Descents
• Simplest method in use
• Start at xo
• Minimize f(x) along the line defined 

by the gradient
• Follows most negative gradient 

(max. force)
• Fastest method from a poor starting 

geometry
• Converges slowly near the energy 

minimum, start again until tolerance 
is reached



Steepest Descents

Performance depends on
• Eigenvalues of Hessian  (λmax / λmin)
• Starting point



Conjugate Gradients
• Same idea, but retaining information about previous steps

• Search directions ‘conjugate’ (orthogonal) to previous

• Convergence assured for N steps

• Variations on this  procedure are the Fletcher-Reeves, the 
Davidon- Fletcher-Powell and the Polak-Ribiere methods.



Second Derivative Methods

• The 2nd derivative of  the                                  
energy with respect to                               
X,Y,Z [the Hessian]                                                               
determines the pathway.

• Computationally more                                     
involved, but generally                                            
fast and reliable, esp.                                             
near the minimum. 



Geometry Optimization
(Summary)

• Optimum structure gives useful information

• First Derivative is Zero - At minimum/maximum

• Use Second Derivative to establish 
minimum/maximum

• As N increases so does 
dimensionality/complexity/beauty/difficulty
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Geometry Optimization
(Summary)• Method used depends on

• System size

• 1-d (line search, bracketing, steepest descent)

• N-d local (Downhill)

• W/o derivatives

• Simplex  

• Direction set methods (Powell’s)

• W/ derivatives

• Conjugate gradient

• Newton or variable metric methods

• N-d Global

• Monte Carlo

• Simulated Annealing

• Genetic Algoritms

• Form of  energy

• Analytic

• Not analytic


