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Increasing the complexity of our models

Transformations Geometry Materials, lighting, ...
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Q: What is geometry?
A: Geometry is the study of two-column

proofs. A
g
D.5. Let AABC be inscribed in a semicircle with diameter /

TF
A C.
Then ZAB

\

t\y le. \
&
0 ¢

Proof:

Statement _
1. Draw radius OB. Then OB = OC = 0% iven
2. mZLOBC =m4£BCA / PP asceles Triangle Theorem

mZOBA = mZBAC -
/ \

3. mZABC = mZOBA +4 3. Angi& Mastulate

4. mZLABC + mZB %//// PEBAC = 180 4. The sum'® cles of a triangle 1s 180
5. // _ ZOBA =180 5. Substitution (I Q

6. 6. Substitution (line 3) .

7. 7. Division Property of Eq

e 8. Definition of Right Angle

Ceci n'est pas geometrie.

See: Paul Lockhart, “A Mathematician’s Lament” CMU 15-462/662



What is geometry?

“Earth” “measure”

1 The study of shapes, sizes, patterns and positions.
2. The study of spaces where some quantity (lengths,
angles, etc.) can be measured.

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”

(MU 15-462/662



How can we describe geometry?

IMPLICIT LINGUISTIC EXPLICIT
332_|_y2 —1 unit circle (COS f. sin 9)
L Y
TOMOGRAPHIC DYNAMIC
) ,. . DvNam
SR : 312 L = gj . -
:éi‘&_i.a’:
(corg,!r:'tant -
SYMMETRIC D'SCARETE
CURVATURE — / \
k=1 )

(MU 15-462/662



Given all these options, what'’s the best
way to encode geometry on a computer?



Examples of geometry




Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry
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‘s a Jungle Out There!
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No one “best” choice—geometry is hard!

“I hate meshes.
| cannot believe how hard this is.
Geometry is hard.”

—David Baraff

Senior Research Scientist
Pixar Animation Studios

Slide cribbed from Jeff Erickson. CMU 15-462/662



Many ways to digitally encode geometry

m EXPLICIT
- point cloud

- polygon mesh
- subdivision, NURBS

m IMPLICIT
- level set
- algebraicsurface

- L-systems
2%

m Each choice best suited to a different task/type of geometry
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“Implicit” Representations of Geometry

m Points aren’t known directly, but satisfy some relationship
m E.g., unitsphereis all points such that x2+y2+z2=1

m More generally, f(x,y,z) =0
f(x,y)

+1
0
-1

(MU 15-462/662



Many implicit representations in graphics

algebraic surfaces
constructive solid geometry
level set methods
blobby surfaces
fractals

(Will see some of these a bit later.)
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But first, let’s play a game:
I’'m thinking of an implicit surface f(x,y,z)=0.

Find any point on it.



Give up?
My function was f(x,y,z) = x - 1.23 (a plane):
y

Observation: implicit surfaces make some tasks hard (like sampling)
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Let’s play another game.
| have a new surface f(x,y,z) = x2 + y2 + 22- 1.

| want to see if a point is inside it.



Check if this point is inside the unit sphere
How about the point(3/4,1/2,1/4)?

9/16 +4/16 +1/16 = 7/8 y

7/8 <1
YES.

Implicit surfaces make other tasks easy (like inside/outside tests).

(MU 15-462/662



“Explicit” Representations of Geometry

m All points are given directly
m E.g., points on sphere are (cos(u) sin(v), sin(u) sin(v), cos(v)),
for0<u<2rand 0 <ov <7
m Moregenerally: f : R® — R?; (u,v) — (2,9, 2)
V

<[

m (Might have a bunch of these maps, e.g., one per triangle!)
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Many explicit representations in graphics

triangle meshes
polygon meshes
subdivision surfaces

NURBS
point clouds e

N

é\‘
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)
f 4""’ J

r

see some of thesea b
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But first, let’s play a game:
I'll give you an explicit surface.

You give me some points on it.



Sampling an explicit surface
My surfaceisf(u,v)=(1.23,u,v).

Just plug in any values u, v! y

Explicit surfaces make some tasks easy (like sampling).
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Let’s play another game.
| have a new surface f(u,v).

| want to see if a point is inside it.



Check if this point is inside the torus

My surface is f(u,v) = ( (2+cos u)cos v, (2+cos u)sin v, sin u )

How about the point (1.96, -0.39, 0.9)?
y

..NO!

7 X

Explicit surfaces make other tasks hard (like inside/outside tests).
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CONCLUSION:
Some representations work better
than others—depends on the task!




Different representations will also be better
suited to different types of geometry.

Let’s take a look at some common
representations used in computer graphics.



Algebraic Surfaces (Implicit)

m Surfaceis zero set of a polynomial inx, y, z
m Examples:

(R—\/z2+y2)% + 22 =12

m What about more complicated shapes?
| R

" & -
R SR,

gl (4

Pt

w.r Oy o
S T - " g
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. _"‘t\ ‘% -‘ @ X\ ," -
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Very hard to come up with polynomials!
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Constructive Solid Geometry (Implicit)

m Build more complicated shapes via Boolean operations
m Basicoperations:

UNION

DIFFERENCE

. INTERSECTION

 —

m Then chain together expressions: @ (XNY)\ (UUV UW)
7~

/ A\ v\

/
9 7
Y U

X

/N
< 0
V W
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Blobby Surfaces (Implicit)

m Instead of Booleans, gradually blend surfaces together:

m Easier to understand in 2D:
¢p ($ ) .= 6_‘$_p ° (Gaussian centered at p)

(Sum of Gaussians centered at different points)
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Blending Distance Functions (Implicit)

m Adistance function gives distance to closest point on object

Can blend any two distance functions d,, d,:

@0 p

|

v

/P

/)

N

Similar strategy to points, though many possibilities. E.g.,

f(z) = eh(®)” 4 gd2()”

1
2

Appearance depends on how we combine functions

Q: How do we implement a Boolean union of d, (x), d,(x)?

A: Just take the minimum: f(x) = min(d,(x), d,(x))
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Scene of pure distance functions (not easy!)

see http://iquilezles.org/
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http://iquilezles.org/

Level Set Methods (Implicit)

m Implicit surfaces have some nice features (e.g., merging/splitting)

m But, hard to describe complex shapes in closed form
m Alternative: store a grid of values approximating function
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m Surfaceis found where interpolated values equal zero
m Provides much more explicit control over shape (like a texture)
m Unlike closed-form expressions, run into problems of aliasing!
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Level Sets from Medical Data (CT, MRI, etc.)

m Level sets encode, e.g., constant tissue density

(MU 15-462/662



Level Sets in Physical Simulation
Level set encodes distance to air-liquid boundary:

see http://physham.stanford.edu
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http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

Level Set Storage

m Drawback: storage for 2D surface is now 0(n3)
m (Can reduce cost by storing only a narrow band around surface:

(MU 15-462/662



Fractals (Implicit)

m No precise definition; exhibit self-similarity, detail at all scales
m New “language” for describing natural phenomena
m Hard to control shape!
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Mandelbrot Set - Definition

® For each point c in the plane:

- double the angle
- square the magnitude

- add the original point ¢ -

- repeat 2
m Complex version:

- Replace z with 77+ ¢

- repeat

If magnitude remains bounded (never goes to ), it’s in the Mandelbrot set.

(MU 15-462/662



Mandelbrot Set - Examples

starting point

B (1/3,1/2) (diverges)
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Mandelbrot Set Zoommg In
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(Colored according to how quickly each point diverges/converges.)
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Iterated Function Systems

g

Scott Draves (CMU alumn) - see http://electricsheep.org
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http://electricsheep.org

Implicit Representations - Pros & Cons

m Pros:
- description can be very compact (e.g., a polynomial)
- easy to determine if a point is in our shape (just plug it in!)
- other queries may also be easy (e.g., distance to surface)
- for simple shapes, exact description/no sampling error
- easy to handle changes in topology (e.qg., fluid)
m Cons:
- expensive to find all points in the shape (e.qg., for drawing)
- very difficult to model complex shapes

(MU 15-462/662



What about explicit representations?



Point Cloud (Explicit)

Easiest representation: list of points (x,y,z) é\

Often augmented with normals

Easily represent any kind of geometry

Easy to draw dense cloud (>>1 point/pixel)
Hard to interpolate undersampled regions
Hard to do processing / simulation/ ...

!!!!!

(MU 15-462/662



Polygon Mesh (Explicit)

Store vertices and polygons (most often triangles or quads)
Easier to do processing/simulation, adaptive sampling
More complicated data structures

Irreqular neighborhoods

(Much more about polygon meshes in upcoming lectures!)
(MU 15-462/662



Triangle Mesh (Explicit) :
m Store vertices as triples of coordinates (x,y,z)
m Store triangles as triples of indices (i,j,k)

m E.g.tetrahedron:  VERTICES  TRIANGLES 2
X Z i j k -
0: -1 -X -1 0 ; 1 0
l1: 1 -1 1 0 3 2
2: 1 1 -1 3 0 1
3: -1 1 1 3 1 2 1
m Use barycentricinterpolation to define points inside triangles:
Pjt
oLy /p]\
i+ ¢+ s =1 Pk P,
q>i/ qb]f q>k > 0 (1,0,0) ¢
0,01 Z p=¢ip; + ¢jp; + PrPx
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Recall: Linear Interpolation (1D)

m [nterpolate values using linear interpolation; in 1D:

f(t) = (1 —=t)f; +1tf,

m (Can think of this as a linear combination of two functions:

f
m Why limit ourselves to linear basis functions?

m (an we get more interesting geometry with other bases?

(MU 15-462/662



Bernstein Basis

m Linear interpolation essentially uses 1st-order polynomials
m Provide more flexibility by using higher-order polynomials

m Instead of usual basis (1, x, X2, X3, ...), use Bernstein basis:
degree

\ 05;51 - N choose k"
n _
1\ B?(CE‘) - <k>xk<1 _aj)n :
/ ;
k=0,.%.,n B3

By

|—

By

N
|

| =

1
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Bezier Curves (Explicit)

m ABezier curveis a curve expressed in the Bernstein basis:

(s) ==Y Bu(s)pii

control points

P1

m Forn=1, just get aline segment!
m Forn=3, get “cubic Bezier”:
m Important features: w0
1. interpolates endpoints
2. tangent to end segments

3. contained in convex hull (nice for rasterization)

P2

P3

(MU 15-462/662



Just keep going...?

m What if we want an even more interesting curve?
m High-degree Bernstein polynomials don't interpolate well:

Very hard to control!

(MU 15-462/662



Piecewise Bezier Curves (Explicit)

m Alternative idea: piece together many Bézier curves
m Widely-used technique (lllustrator, fonts, SVG, etc.)

L M

\ -o—e
T/

m Formally, piecewise Bézier curve:
piecewisc; Bezier
u — Uy
2w = ). w<u<u
/! Uj+1 — Us

single Bézier

(MU 15-462/662



Bezier Curves — tangent continuity

m Toget“seamless” curves, need points and tangents to line up:

m Ok, but how?

Each curve is cubic: udpo + 3u2(1-u)p1 + 3u(1-u)2p2 + (1-u)3ps
Want endpoints of each segment to meet

Want tangents at endpoints to meet

Q: How many constraints vs. degrees of freedom?

Q: Could you do this with quadratic Bezier? Linear Beézier?

(MU 15-462/662



Tensor Product

m (an use a pair of curves to get a surface

m Value at any point (u,v) given b

a curve g at v (sometimes calle
f(u)]
A u
g(v)

roduct of a curve f at u and
he “tensor product”):

(MU 15-462/662



Bezier Patches
m Bezier patch is sum of (tensor) products of Bernstein bases

Pij

3 3

S(u,v) 1= Z Z B?}j(”zv)Pij

i=0 j=0

(MU 15-462/662



Bézier Surface

m Just as we connected Bezier curves, can connect Bezier patches
to get a surface:

m Very easy to draw: just dice each patch into reqular (u,v) grid!

Q: Can we always get tangent continuity?
(Think: how many constraints? How many degrees of freedom?)

(MU 15-462/662



Notice anything fishy
about the last picture?




Bezier Patches are Too Simple

Notice that exactly four patches
¥ meetaround every vertex!

In practice, far too
constrained.

To make interesting
shapes (with good
continuitx), we heed
patches that allow
more interesting
connectivity...

(MU 15-462/662



Spline patch schemes

m There are many alternatives!
m NURBS, Gregory, Pm, polar...
m Tradeoffs:

- degrees of freedom
- continuity

- difficulty of editing
- cost of evaluation

- generality

m As usual: pick the right tool for the job!

" (MU'15-462/662



Rational B-Splines (Explicit)

m Bezier can't exactly represent conics—not even the circle!

m Solution: interpolate in homogeneous coordinates, then
project back to the plane:

Result is called a rational B-spline.

(MU 15-462/662



NURBS (Explicit)

m (N)on-(U)niform (R)ational (B)-(S)pline
- knots at arbitrary locations (non-uniform)
- expressed in homogeneous coordinates (rational)
- piecewise polynomial curve (B-Spline)
m Homogeneous coordinate w controls “strength” of a vertex:

R
I\
q

(MU 15-462/662



NURBS Surface (Explicit)

m How do we go from curves to surfaces?
m Use tensor product of NURBS curves to get a patch:

S(u,v) := N;(u)N;(v)p;;
m Multiple NURBS patches form a surface

m Pros: easy to evaluate, exact conics, high degree of continuity
m Cons: Hard to piece together patches / hard to edit (many DOFs)

(MU 15-462/662



Subdivision

m Alternative starting point for curves/surfaces: subdivision

m Start with “control curve”

m Repeatedly split, take weighted average to get new positions

m For careful choice of averaging rule, approaches nice limit curve

- Often exact same curve as well-known spline schemes!

<

Q: Is subdivision an explicit or implicit representation?

(MU 15-462/662



Subdivision—Example 1

1 1
m Onepossible scheme: Lane-Riesenfeld
. L 1 2 1
- insert midpoint of each edge
- use row k of Pascal’s triangle L3 3 1
(normalized to 1) as weights for 1/2

neighbors

- e.g., k =2, get weights
(1/4,1/2,1/4)

- limitis B-spline of degree k£ + 1

iteration 1 iteration 2 iteration 3 limit curve



Subdivision Surfaces (Explicit)

Start with coarse polygon mesh (“control cage”)
Subdivide each element

Update vertices via local averaging
Many possible rules:

- Catmull-Clark (quads)

- Loop (triangles)

m Common issues:
- interpolating or approximating?
- continuity at vertices?
m Easier than splines for modeling; harder to evaluate pointwise
m Widely used in practice (2019 Academy Awards!)

(MU 15-462/662



Subdlwsmn in Actlon (Pixar’s ”Gerl S Game”)

see: de Rose et al, “Subdivision Surfaces in Character Animation” U 15.462/663



Next time: Curves, Surfaces, & Meshes
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