
Introduction to GPU
computing

Computional Tools for Data Science (Fall 2014)

Hans Henrik Brandenborg Sørensen
DTU Computing Center
<hhbs@dtu.dk>

March 13, 2014
PPCES 2014, RWTH Aachen

University 1

Outline

1.  Some basics on computing
2.  GPUs / CUDA programming model
3.  Numbapro
4.  Exercise 1+2+3

n  This is a very brief introduction to GPU
computing, which assumes that the student has
studied some of the details beforehand.

2 Computational Tools for Data Science November 14, 2014

Computing basics

n  Running time of scientific applications:
q # flops * time per flop
q # bytes moved / bandwidth
q # messages * latency

3

N

= x N

Computational Tools for Data Science November 14, 2014

N

flops = O(N^3), # bytes = O(N^2)

Computing basics

n  Running time of scientific applications:
q # flops * time per flop
q # bytes moved / bandwidth
q # messages * latency

n  What is a flop?
q  In theory: +, -, *, /, √
q  In practice: *+ = 1 cycle, / = ~8 cycles, √ = ~10 cycles,..

4 Computational Tools for Data Science November 14, 2014

N

= x N

N

flops = O(N^3), # bytes = O(N^2)

Computing basics

n  Running time of scientific applications:
q # flops * time per flop
q # bytes moved / bandwidth
q # messages * latency

n  What is a flop?
q  In theory: +, -, *, /, √
q  In practice: *+ = 1 cycle, / = ~8 cycles, √ = ~10 cycles,..

n  What is a memory access?
q Pages of 4K: disk drive è mem (> ms)
q Cache line of 64B: mem è L3 è L2 è L1 (12-100 cycles)
q Word of 8 bit – 512 bit: L1 è Register (4 cycles)

5 Computational Tools for Data Science November 14, 2014

N

= x N

N

flops = O(N^3), # bytes = O(N^2)

Computing basics

n  Running time of scientific applications:
q # flops * time per flop
q # bytes moved / bandwidth
q # messages * latency

n  What is a flop?
q  In theory: +, -, *, /, √
q  In practice: *+ = 1 cycle, / = ~8 cycles, √ = ~10 cycles,..

n  What is a memory access?
q Pages of 4K: disk drive è mem (> ms)
q Cache line of 64B: mem è L3 è L2 è L1 (12-100 cycles)
q Word of 8 bit – 512 bit: L1 è Register (4 cycles)

6

Ø Memory bound

Ø Compute bound

Computational Tools for Data Science November 14, 2014

N

= x N

N

flops = O(N^3), # bytes = O(N^2)

Computing basics

n  Peak performance
q doubles every ~2 years…

n  Maximum memory bandwidth
q doubles every ~3-4 years…

n  Anyone notice a problem with these rates?
n  “Flops-to-spare”

q Determining factor in application performance is likely
to be memory access patterns rather than flop count

q Most important tuning techniques are related to
reducing memory movement (flops are well ”hidden”)

7

“The memory wall”

Computational Tools for Data Science November 14, 2014

Data sciences (big data)

n  We are typically inherently memory bound!

Computational Tools for Data Science 8 November 14, 2014

CPUs and GPUs (rough comp.)

Computational Tools for Data Science 9 November 14, 2014

Intel Core i7 3960X
129.6 Gflop dp peak performance

6 cores
15MB L3 cache (25% of die).

51.2 GB/s bandwidth
130 watt

NVIDIA Kepler K20X
1.31 Tflop dp peak performance

2680 cores (FP32), 896 cores (FP64)
1536KB L2 cache (2% of die)

250 GB/s bandwidth
233 watt

Queue

SMP-X nr. 1
192 cores Display, I/O

Memory
Controller
/48xROP

General purpose CPU

n  Usual tasks of the CPU:
q To run desktop applications

n  Lightly threaded
n  Lots of branches
n  Lots of (indirect) memory accesses

q Modern branch predictors > 90% accuracy

n  CPUs are general purpose by construction
n  HPC: Can use CPUs for any problem / code

Computational Tools for Data Science 10 November 14, 2014

”General purpose” GPU

n  Usual task of the GPU:
q Compute a pixel => requires floating point operations
q Compute many pixels => massively parallel flops

n  It turns out to be a very efficient way to do
computing – for particular problems

n  Since ~2001 GPUs have been programmable

Computational Tools for Data Science 11 November 14, 2014

“General purpose” in the sense “not only pixels”

Which problems fit the GPU?

n  Problems that use many flops but ”little data”
n  Problems that have a high degree of parallelism
n  One kind of problem is “matrix computations”:

q E.g., matrix-vector and matrix-matrix multiplication

n  So-to-say: “the heart” of scientific computing
Computational Tools for Data Science 12 November 14, 2014

C

n

m

= x

A B

k

k

GPU performance share Top 500

Computational Tools for Data Science 13 November 14, 2014

Source: Supercomputing 13, BOF, “Highlights of the 42nd Top500 List at SC’13”, Denver, November, 2013

When to consider using GPUs?

n  Example: Matmult - large N
q  Tcpu ≈ 1e-9*N^3/96 s (+ 1e-9*N^2/32 s)
q  Tgpu ≈ 1e-9*N^3/1310 s + 1e-9*N^2/6 s

Computational Tools for Data Science 14 November 14, 2014

Theoretical
bandwidth
250 Gb/s

Theoretical
bandwidth
32 Gb/s

2 x

Which speed-ups can you expect?

Computational Tools for Data Science 15 November 14, 2014

Intel Core i7 3960X
129.6 Gflop dp peak performance

6 cores
15MB L3 cache (25% of die).

51.2 GB/s bandwidth
130 watt

NVIDIA Kepler K20X
1.31 Tflop dp peak performance

2680 cores (FP32), 896 cores (FP64)
1536KB L2 cache (2% of die)

250 GB/s bandwidth
233 watt

Queue

SMP-X nr. 1
192 cores Display, I/O

Memory
Controller
/48xROP

x5

x10

x112 Remember
Amdahl!

Trends for GPU algorithms

n  Synchronization-reducing algorithms
q Embarrassingly parallel techniques

n  Communication-reducing algorithms
q Use methods which have lower bound on

communication
n  Mixed precision methods

q  >3x speed of ops and 2x speed for data movement
n  Autotuning

q Today’s machines are too complicated, build “smarts”
into software to adapt to the hardware

Computational Tools for Data Science 16 November 14, 2014

CPU vs. GPU trends

Computational Tools for Data Science 17 November 14, 2014

GeForceGTX TITAN

n  Peak performance trend:

K20X (kepler)

Currently
a significant
performance

gap!

Double precision
support in GPUs

(scientific computing)

Source:
Nvidia, ”CUDA
programming

guide”

n  Memory bandwidth trend:

CPU vs. GPU trends

Computational Tools for Data Science 18 November 14, 2014

GeForceGTX TITAN

Source:
Nvidia, ”CUDA
programming

guide”

Currently a
significant

memory gab!

CUDA terminology

n  Thread (“Unit of parallelism” in CUDA)
q  Concurrent code and associated state executed on the CUDA

device in parallel with other threads. Independent control flow.

n  Warp (“Unit of execution”)
q  A group of threads in same block that are executed physically

in parallel – currently 32 threads.

n  Block (“Unit of resource assignment”)
q  A virtual group of threads executed together that can

cooperate and share data.

n  Grid (“Task unit”)
q  A virtual group of thread blocks that must all finish before the

invoked kernel is completed.

02614 – High Performance Computing 19 January 8, 2013

G
ra

nu
la

rit
y

Fine

Coarse

Scalable execution model

n  Why are blocks scheduled in no particular order?

n  Independence among blocks provides the basis
for scalability across present and future GPUs!

02614 – High Performance Computing 20 January 8, 2013

A GPU with more SMs will
automatically execute the

program in less time than a
GPU with fewer SMs.

CUDA processing flow

n  Typical steps
1. Copy input data from CPU
memory to GPU memory
2. Invoke GPU kernel and
execute, caching data on chip
for performance
3. Copy results from GPU
memory to CPU memory

02614 – High Performance Computing 21 January 8, 2013

Source: Timothy Lanfear, Nvidia, 2009

Numbapro compiler

n  Open source
n  JIT compilation
n  Multiple targets

(cpu, gpu, parallel)
n  http://

numba.pydata.org/
numba-doc/0.15.1/
developer/
architecture.html

Computational Tools for Data Science 22 November 14, 2014

Python Bytecode

High-Level Analysis &

Transformation

Local Type Inference

LLVM

Native Code
Code does not use the
Python Runtime API

CUDA-Python

n  Kernel definition
q @cuda.jit('void(float64[:])’)
def kernelname(array):

n  Kernel invocation
q Syntax: kernelname[griddim, blockdim](…)
q Launches a fixed number of threads
q All threads execute the same code
q Each thread has an ID

n  To decide what data to read or write, to decide control flow

n  Commonly thousands of threads are launched
q Rule-of-thumb 25.000 – 100.000 threads are needed.

02614 – High Performance Computing 23 January 8, 2013

Hints for exercises

n  Numbapro
q from numbapro import *

n  JIT for both CPU and GPU
q @jit('float64(float64, int64, int64)',
target="cpu")

q @cuda.jit('void(float64, int64,
float64[:])')

q @cuda.jit('float64(float64)',
device=True, inline=True)

n  CUDA device context and name
q gpu = numba.cuda.get_current_device()
print("Device: %s\n" % gpu.name)

Computational Tools for Data Science 24 November 14, 2014

Hints for exercises

n  Global thread ID inside kernel
q idx = cuda.grid(1)

q idx, idy = cuda.grid(2)

n  Block and grid size inside kernel
q cuda.blockDim.x (and .y, .z)
q cuda.gridDim.x (and .y)

n  http://numba.pydata.org/numba-doc/0.15.1/
CUDAJit.html#thread-identity-by-cuda-intrinsics

n  Rule-of-thumb numbers
q blockdim = 256
q griddim = 1024

Computational Tools for Data Science 25 November 14, 2014

Hints for exercises

n  Transfer data CPUçèGPU
q A_d = cuda.to_device(A)

q x_d.copy_to_device(y_d)
q x_d.copy_to_host(x)

n  Wait for kernels
q cuda.synchronize()

n  CUDA libraries
q import numbapro.cudalib.cublas as cublas

q blas = cublas.Blas()
q blas.gemv('T', n, n, 1.0, A, x, 0.0, y)

Computational Tools for Data Science 26 November 14, 2014

Research and education in Graphics Processing Units in Denmark

Established in August 2010 and is a unique
national competence center and hardware
laboratory at DTU Informatics.

- Development of efficient algorithms
- High-performance scientific computing
- Performance profiling and prediction
- Software development
- Education

http://gpulab.imm.dtu.dk

Advertisement

Advertisement

Computational Tools for Data Science 28 November 14, 2014

Some completed and ongoing GPULab projects – Jan 2014:
MSc: Max la Cour Christensen, M. and Eskildsen, K. L. Nonlinear Multigrid for Efficient Reservoir
Simulation. 2012.
BSc: Mieritz, Andreas. GPU-Acceleration of Linear Algebra using OpenCL. 2012.
Special course: Leo Emil Sokoler and Oscar Borries, Conjugate Gradients on GPU using CUDA, 2012.
MSc: Høstergaard, Gade-Nielsen, Nicolai Fog, Implementation and evaluation of fast computational
methods for high-resolution ODF problems on multi-core and many-core systems, 2010
PhD: Stefan L. Glimberg, Designing Scientific Software for Heterogeneous Computing, 2010-2013
PhD: Nicolai Fog Gade-Nielsen, Scientific GPU Computing for Dynamical Optimization, 2010-2014
PhD: Oscar Borries, Large-Scale Computational Electromagnetics for Reflector Antenna Analysis, 2011-

Some available projects:
-Acceleration of Wind Turbine Vortex Simulation (in collaboration with DTU RISØ).
-Large-scale 3D image reconstruction using GPU acceleration (in collaboration with University of Antwerp).
-Computational Electromagnetics for Reflector Antennas using Accelerators (in collaboration with TICRA).
-Fast Large-scale Banded Solver on the GPU (in collaboration with RESON A/S).
-Sparse matrix computations in genome-wide association studies (in collaboration with GenoKey).
-Your own project idea!

DANSIS Graduate Prize of 2013 PhD stud. DTU Compute 02614 Teaching assistent

Ind. PostDoc DTU Compute PostDoc DTU Physics

