

Introduction to GPU computing

Computional Tools for Data Science (Fall 2014)

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f^{(i)}$

182818284

Hans Henrik Brandenborg Sørensen DTU Computing Center <hhbs@dtu.dk>

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

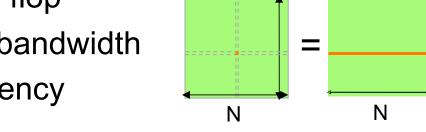
- 1. Some basics on computing
- 2. GPUs / CUDA programming model
- 3. Numbapro
- 4. Exercise 1+2+3

This is a very brief introduction to GPU computing, which assumes that the student has studied some of the details beforehand.

Running time of scientific applications: # flops * time per flop

- # bytes moved / bandwidth
- # messages * latency

Computing basics



flops = $O(N^3)$, # bytes = $O(N^2)$

X

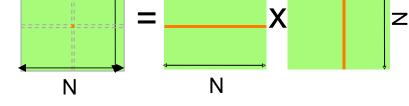
Ζ

November 14, 2014

Computing basics

Running time of scientific applications:

- # flops * time per flop
- # bytes moved / bandwidth
- # messages * latency
- What is a flop?
 - \Box In theory: +, -, *, /, $\sqrt{}$



flops = $O(N^3)$, # bytes = $O(N^2)$

□ In practice: *+ = 1 cycle, / = ~8 cycles, $\sqrt{}$ = ~10 cycles,...

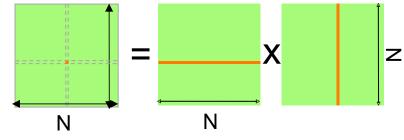
What is a flop?

 \Box In theory: +, -, *, /, $\sqrt{}$

Computing basics

Running time of scientific applications:

- # flops * time per flop
- # bytes moved / bandwidth
- # messages * latency



flops = $O(N^3)$, # bytes = $O(N^2)$

□ In practice: *+ = 1 cycle, / = ~8 cycles, $\sqrt{}$ = ~10 cycles,...

What is a memory access? □ Pages of 4K: disk drive → mem (> ms) \Box Cache line of 64B: mem \rightarrow L3 \rightarrow L2 \rightarrow L1 (12-100 cycles) \Box Word of 8 bit – 512 bit: L1 \rightarrow Register (4 cycles)

November 14, 2014

Computational Tools for Data Science

6

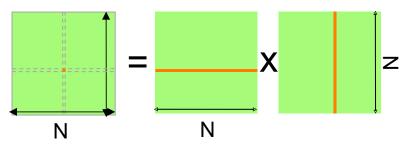
Running time of scientific applications:

- •# Compute bound <u>Lbandwidth</u> hove moved Memory bound
- What is a flop?
 - \Box In theory: +, -, *, /, $\sqrt{}$

□ In practice: *+ = 1 cycle, / = ~8 cycles, $\sqrt{}$ = ~10 cycles,...

What is a memory access? \Box Pages of 4K: disk drive \rightarrow mem (> ms) \Box Cache line of 64B: mem \rightarrow L3 \rightarrow L2 \rightarrow L1 (12-100 cycles) \Box Word of 8 bit – 512 bit: L1 \rightarrow Register (4 cycles)

Computing basics



flops = $O(N^3)$, # bytes = $O(N^2)$

Computing basics

- Peak performance
 doubles every ~2 years...
- Maximum memory bandwidth
 doubles every ~3-4 years...

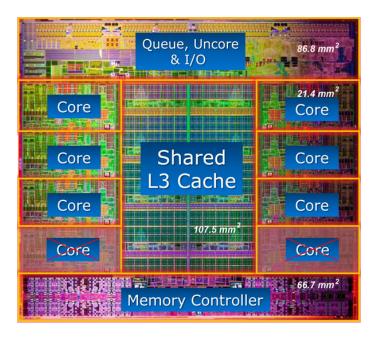
"The memory wall"

- Anyone notice a problem with these rates?
- "Flops-to-spare"
 - Determining factor in application performance is <u>likely</u> to be memory access patterns rather than flop count
 - Most important tuning techniques are related to reducing memory movement (flops are well "hidden")

Data sciences (big data)

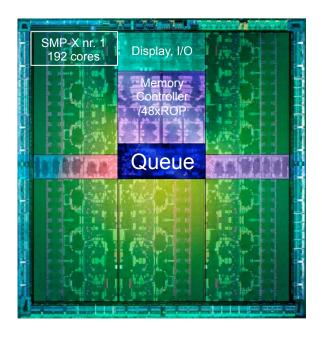
We are typically inherently memory bound!

CPUs and GPUs (rough comp.)



Intel Core i7 3960X

129.6 Gflop dp peak performance 6 cores 15MB L3 cache (25% of die). 51.2 GB/s bandwidth November 14, 2014 130 watt



NVIDIA Kepler K20X

1.31 Tflop dp peak performance 2680 cores (FP32), 896 cores (FP64) 1536KB L2 cache (2% of die) 250 GB/s bandwidth 233 watt Computational Tools for Data Science

General purpose CPU

Usual tasks of the CPU:

- To run desktop applications
 - Lightly threaded
 - Lots of branches
 - Lots of (indirect) memory accesses

	vim	ls
Conditional branches	13.6%	12.5%
Memory accesses	45.7%	45.7%
Vector instructions	1.1%	0.2%

- Modern branch predictors > 90% accuracy
- CPUs are general purpose by construction
 HPC: Can use CPUs for any problem / code

"General purpose" GPU

Usual task of the GPU:

Compute a pixel => requires floating point operations

Compute many pixels => massively parallel flops

- It turns out to be a very efficient way to do computing for particular problems
- Since ~2001 GPUs have been programmable

"General purpose" in the sense "not only pixels"

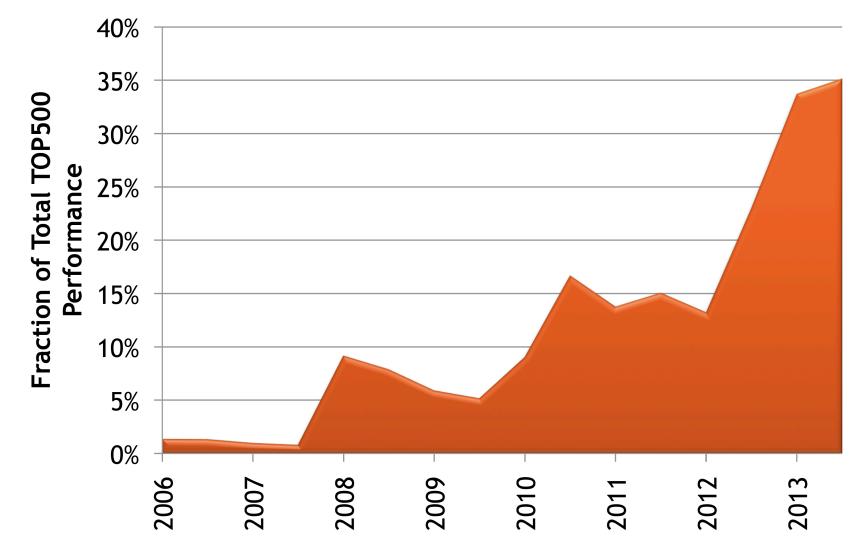
Which problems fit the GPU?

- Problems that use many flops but "little data"
- Problems that have a high degree of parallelism
- One kind of problem is "matrix computations":
 E.g., matrix-vector and matrix-matrix multiplication



So-to-say: "the heart" of scientific computing

GPU performance share Top 500

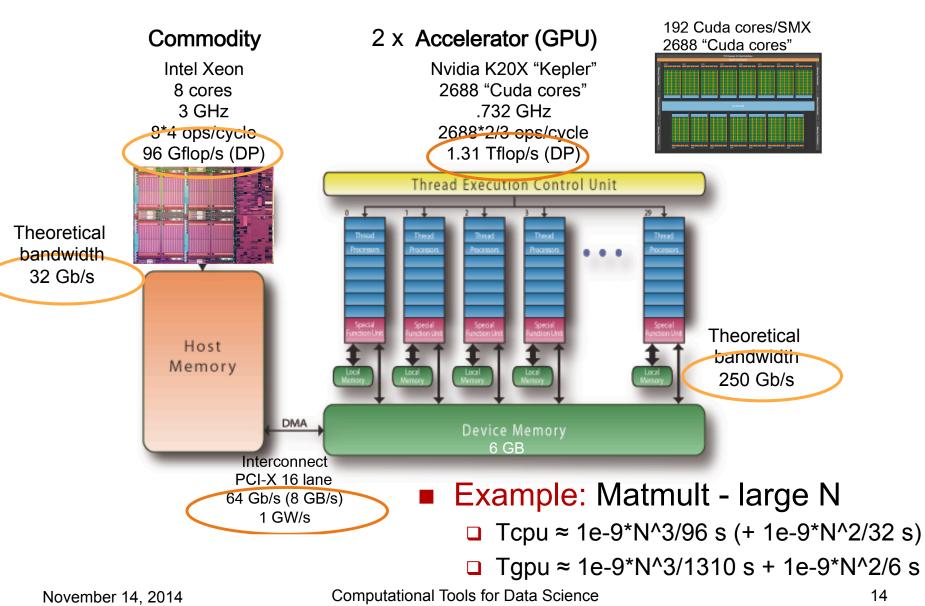


Source: Supercomputing 13, BOF, "Highlights of the 42nd Top500 List at SC'13", Denver, November, 2013

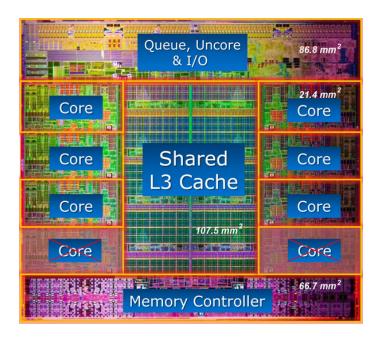
November 14, 2014

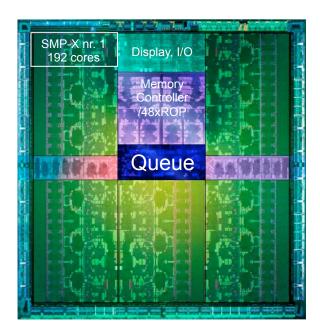
Computational Tools for Data Science

When to consider using GPUs?



Which speed-ups can you expect?





Intel Core i7 3960X ×10 NVIDIA Kepler K20X 129.6 Gflop dp peak performance 1.31 Tflop dp peak performance Remember 6 cores ×112 2680 cores (FP32), 896 cores (FP64) 15MB L3 cache (25% of die). 1536KB L2 cache (2% of die) 51.2 GB/s bandwidth ×5 250 GB/s bandwidth November 14, 2014 130 watt Computational Tools for Data Science 233 watt 15

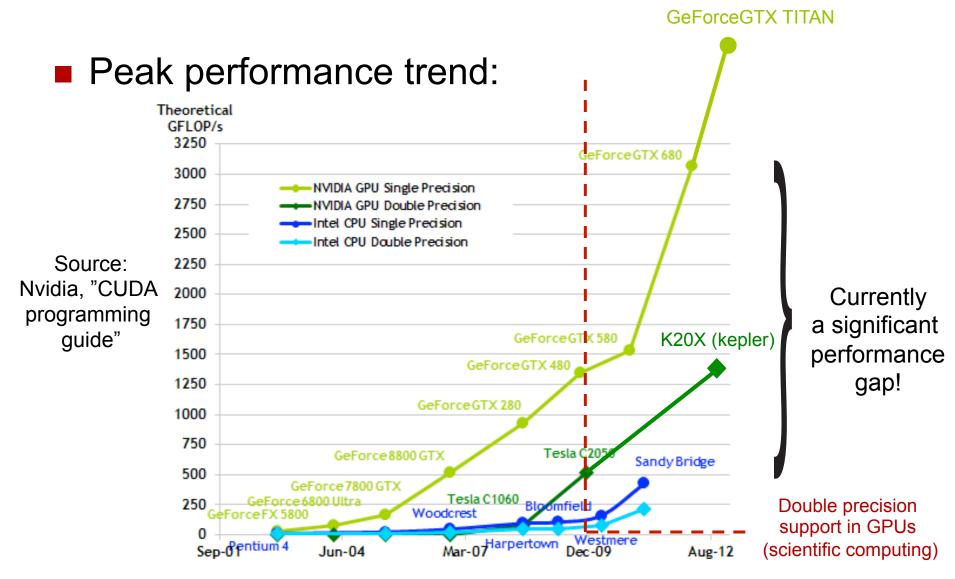
Trends for GPU algorithms

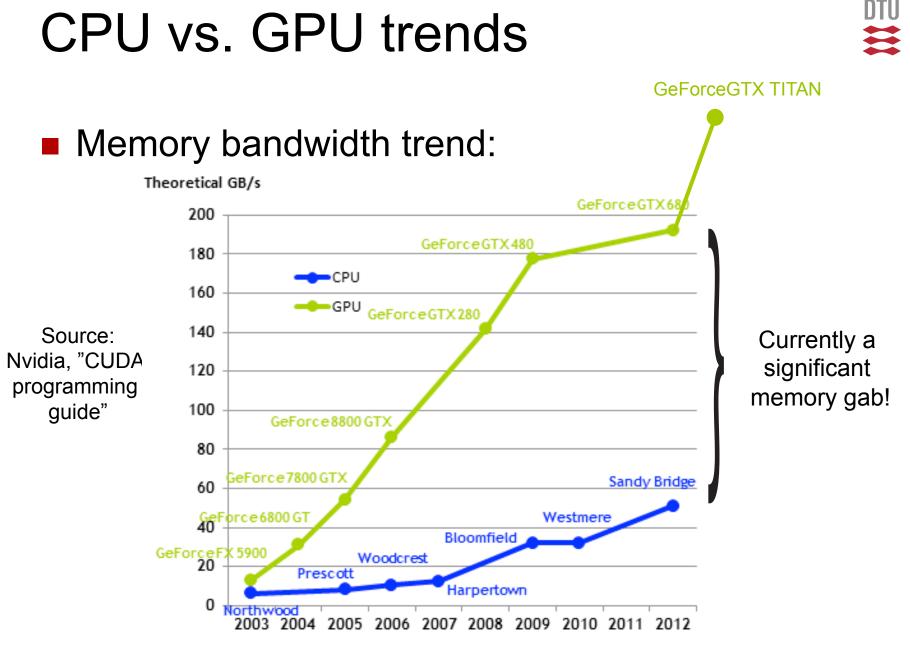
- Synchronization-reducing algorithms
 Embarrassingly parallel techniques
- Communication-reducing algorithms
 - Use methods which have lower bound on communication
- Mixed precision methods
 - >3x speed of ops and 2x speed for data movement

Autotuning

Today's machines are too complicated, build "smarts" into software to adapt to the hardware

CPU vs. GPU trends





CUDA terminology

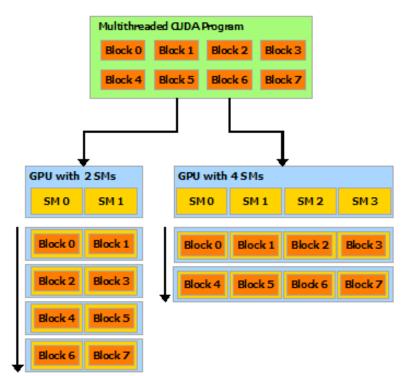
Fine **Thread** ("Unit of parallelism" in CUDA)

- Concurrent code and associated state executed on the CUDA device in parallel with other threads. Independent control flow.
- Warp ("Unit of execution")
 - A group of threads in same block that are executed physically in parallel – currently 32 threads.
- Block ("Unit of resource assignment")
 - A virtual group of threads executed together that can cooperate and share data.
- Grid ("Task unit")
 - A virtual group of thread blocks that must all finish before the invoked kernel is completed.

Coarse

Scalable execution model

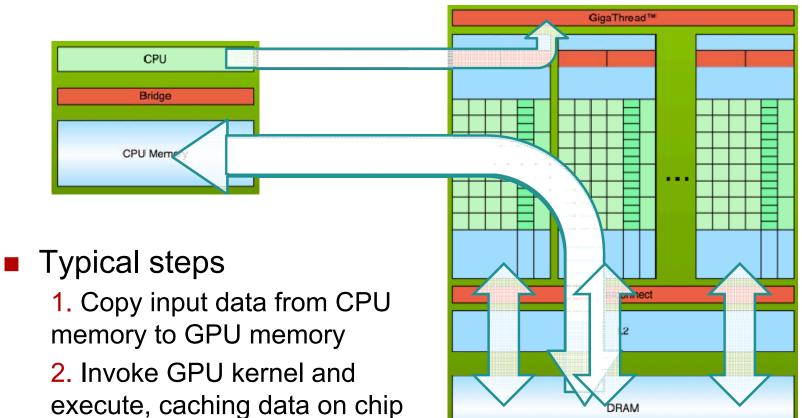
Why are blocks scheduled in no particular order?



A GPU with more SMs will automatically execute the program in less time than a GPU with fewer SMs.

Independence among blocks provides the basis for scalability across present and future GPUs!

CUDA processing flow



for performance

3. Copy results from GPU memory to CPU memory

Source: Timothy Lanfear, Nvidia, 2009

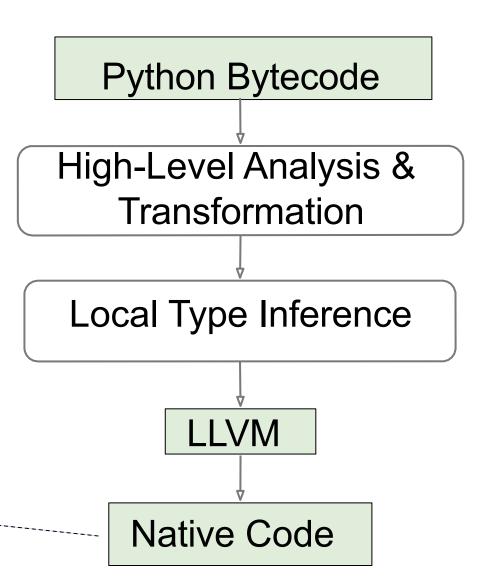
Numbapro compiler

- Open source
- JIT compilation
- Multiple targets (cpu, gpu, parallel)

http://

numba.pydata.org/ numba-doc/0.15.1/ developer/ architecture.html

Code does not use the Python Runtime API



CUDA-Python

Kernel definition

• @cuda.jit('void(float64[:])')
def kernelname(array):

Kernel invocation

- □ Syntax: kernelname[griddim, blockdim] (...)
- Launches a fixed number of threads
- All threads execute the same code
- Each thread has an ID
 - To decide what data to read or write, to decide control flow

Commonly thousands of threads are launched
 Rule-of-thumb 25.000 – 100.000 threads are needed.

Hints for exercises

Numbapro

- □ from numbapro import *
- JIT for both CPU and GPU

 - □@cuda.jit('void(float64, int64, float64[:])')
 - @cuda.jit('float64(float64)',
 device=True, inline=True)
- CUDA device context and name

gpu = numba.cuda.get_current_device()
print("Device: %s\n" % gpu.name)
November 14, 2014
Computational Tools for Data Science

Hints for exercises

Global thread ID inside kernel

- \Box idx = cuda.grid(1)
- \Box idx, idy = cuda.grid(2)
- Block and grid size inside kernel
 - □ cuda.blockDim.x (and .y, .z)
 - □ cuda.gridDim.x (and .y)
 - <u>http://numba.pydata.org/numba-doc/0.15.1/</u> <u>CUDAJit.html#thread-identity-by-cuda-intrinsics</u>
- Rule-of-thumb numbers

 \Box blockdim = 256

 \Box griddim = 1024

Hints for exercises

■ Transfer data CPU ← → GPU

- $\Box A_d = cuda.to_device(A)$
- x_d.copy_to_device(y_d)
- \[x_d.copy_to_host(x)

Wait for kernels

□ cuda.synchronize()

CUDA libraries

import numbapro.cudalib.cublas as cublas

□blas = cublas.Blas()

□ blas.gemv('T', n, n, 1.0, A, x, 0.0, y)

Advertisement

GPU-LABoratory

Research and education in Graphics Processing Units in Denmark

Established in August 2010 and is a unique national competence center and hardware laboratory at DTU Informatics.

- Development of efficient algorithms
- High-performance scientific computing
- Performance profiling and prediction
- Software development
- Education

http://gpulab.imm.dtu.dk

Advertisement

DTU

PhD stud. DTU Compute

02614 Teaching assistent

DANSIS Graduate Prize of 2013

Some completed and ongoing GPULab projects – Jan 2014:

MSc: Max la Cour Christensen, M. and Eskildsen, K. L. Nonlinear Multigrid for Efficient Reservoir Simulation. 2012. BSc: Mieritz, Andreas. *GPU-Acceleration of Linear Algebra using OpenCL*. 2012. Special course: Leo Emil Sokoler and Oscar Borries, *Conjugate Gradients on GPU using CUDA*, 2012. MSc: Høstergaard, Gade-Nielsen, Nicolai Fog, *Implementation and evaluation of fast computational methods for high-resolution ODF problems on multi-core and many-core systems*, 2010 PhD: Stefan L. Glimberg, *Designing Scientific Software for Heterogeneous Computing*, 2010-2013 PhD: Nicolai Fog Gade-Nielsen, *Scientific GPU Computing for Dynamical Optimization*, 2010-2014 PhD: Oscar Borries, *Large-Scale Computational Electromagnetics for Reflector Antenna Analysis*, 2011-

PostDoc DTU Physics

Ind. PostDoc DTU Compute

Some available projects:

-Acceleration of Wind Turbine Vortex Simulation (in collaboration with DTU RISØ).

-Large-scale 3D image reconstruction using GPU acceleration (in collaboration with University of Antwerp). -Computational Electromagnetics for Reflector Antennas using Accelerators (in collaboration with TICRA). -Fast Large-scale Banded Solver on the GPU (in collaboration with RESON A/S).

-Sparse matrix computations in genome-wide association studies (in collaboration with GenoKey).

-Your own project idea!

November 14, 2014

Computational Tools for Data Science