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Outline 

1.  Some basics on computing 
2.  GPUs / CUDA programming model 
3.  Numbapro 
4.  Exercise 1+2+3 

n  This is a very brief introduction to GPU 
computing, which assumes that the student has 
studied some of the details beforehand. 
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Computing basics 

n  Running time of scientific applications: 
q # flops * time per flop 
q # bytes moved / bandwidth 
q # messages * latency 
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Ø Memory bound 

Ø Compute bound 
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Computing basics 

n  Peak performance  
q doubles every ~2 years… 

n  Maximum memory bandwidth  
q doubles every ~3-4 years… 

n  Anyone notice a problem with these rates? 
n  “Flops-to-spare”  

q Determining factor in application performance is likely 
to be memory access patterns rather than flop count 

q Most important tuning techniques are related to 
reducing memory movement (flops are well ”hidden”) 
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“The memory wall” 
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Data sciences (big data) 

n  We are typically inherently memory bound! 
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CPUs and GPUs (rough comp.) 
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Intel Core i7 3960X  
129.6 Gflop dp peak performance 

6 cores 
15MB L3 cache (25% of die).  

51.2 GB/s bandwidth 
130 watt 

NVIDIA Kepler K20X 
1.31 Tflop dp peak performance 

2680 cores (FP32), 896 cores (FP64)  
1536KB L2 cache (2% of die) 

250 GB/s bandwidth 
233 watt 

Queue 

SMP-X nr. 1 
192 cores Display, I/O 

Memory 
Controller 
/48xROP 



General purpose CPU 

n  Usual tasks of the CPU: 
q To run desktop applications 

n  Lightly threaded 
n  Lots of branches 
n  Lots of (indirect) memory accesses 

 

 
q Modern branch predictors > 90% accuracy 

n  CPUs are general purpose by construction 
n  HPC: Can use CPUs for any problem / code 
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”General purpose” GPU 

n  Usual task of the GPU: 
q Compute a pixel => requires floating point operations 
q Compute many pixels => massively parallel flops 

n  It turns out to be a very efficient way to do 
computing – for particular problems 

n  Since ~2001 GPUs have been programmable 
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“General purpose” in the sense “not only pixels” 



Which problems fit the GPU? 

n  Problems that use many flops but ”little data” 
n  Problems that have a high degree of parallelism 
n  One kind of problem is “matrix computations”: 

q E.g., matrix-vector and matrix-matrix multiplication 

n  So-to-say: “the heart” of scientific computing 
Computational Tools for Data Science 12 November 14, 2014 
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GPU performance share Top 500 
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Source: Supercomputing 13, BOF, “Highlights of the 42nd Top500 List at SC’13”, Denver, November, 2013 



When to consider using GPUs? 

n  Example: Matmult - large N 
q  Tcpu ≈ 1e-9*N^3/96 s (+ 1e-9*N^2/32 s) 
q  Tgpu ≈ 1e-9*N^3/1310 s + 1e-9*N^2/6 s 
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Theoretical 
bandwidth 
250 Gb/s 

Theoretical 
bandwidth 
32 Gb/s 
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Which speed-ups can you expect? 
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Intel Core i7 3960X  
129.6 Gflop dp peak performance 

6 cores 
15MB L3 cache (25% of die).  

51.2 GB/s bandwidth 
130 watt 

NVIDIA Kepler K20X 
1.31 Tflop dp peak performance 

2680 cores (FP32), 896 cores (FP64)  
1536KB L2 cache (2% of die) 

250 GB/s bandwidth 
233 watt 

Queue 

SMP-X nr. 1 
192 cores Display, I/O 

Memory 
Controller 
/48xROP 
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Trends for GPU algorithms 

n  Synchronization-reducing algorithms 
q Embarrassingly parallel techniques 

n  Communication-reducing algorithms 
q Use methods which have lower bound on 

communication 
n  Mixed precision methods 

q   >3x speed of ops and 2x speed for data movement 
n  Autotuning 

q Today’s machines are too complicated, build “smarts” 
into software to adapt to the hardware 
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CPU vs. GPU trends 
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GeForceGTX TITAN 

n  Peak performance trend: 

K20X (kepler) 

Currently 
a significant 
performance 

gap! 

Double precision 
support in GPUs 

(scientific computing) 

Source: 
Nvidia, ”CUDA 
programming 

guide” 



n  Memory bandwidth trend: 

CPU vs. GPU trends 
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GeForceGTX TITAN 

Source: 
Nvidia, ”CUDA 
programming 

guide” 

Currently a 
significant 

memory gab! 



CUDA terminology 

n  Thread (“Unit of parallelism” in CUDA) 
q  Concurrent code and associated state executed on the CUDA 

device in parallel with other threads. Independent control flow. 

n  Warp (“Unit of execution”) 
q  A group of threads in same block that are executed physically 

in parallel – currently 32 threads.  

n  Block (“Unit of resource assignment”) 
q  A virtual group of threads executed together that can 

cooperate and share data. 

n  Grid (“Task unit”) 
q  A virtual group of thread blocks that must all finish before the 

invoked kernel is completed. 
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Scalable execution model 

n  Why are blocks scheduled in no particular order? 

n  Independence among blocks provides the basis 
for scalability across present and future GPUs! 
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A GPU with more SMs will 
automatically execute the 

program in less time than a 
GPU with fewer SMs. 



CUDA processing flow 

n  Typical steps 
1. Copy input data from CPU 
memory to GPU memory 
2. Invoke GPU kernel and 
execute, caching data on chip 
for performance 
3. Copy results from GPU 
memory to CPU memory 
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Source: Timothy Lanfear, Nvidia, 2009 



Numbapro compiler 

n  Open source 
n  JIT compilation 
n  Multiple targets 

(cpu, gpu, parallel) 
n  http://

numba.pydata.org/
numba-doc/0.15.1/
developer/
architecture.html 
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Python Bytecode 
 
High-Level Analysis & 

Transformation 
 

Local Type Inference 

LLVM 

Native Code 
Code does not use the 
Python Runtime API 



CUDA-Python 

n  Kernel definition 
q @cuda.jit('void(float64[:])’)         
def kernelname(array): 

n  Kernel invocation 
q Syntax: kernelname[griddim, blockdim](…) 
q Launches a fixed number of threads 
q All threads execute the same code 
q Each thread has an ID 

n  To decide what data to read or write, to decide control flow  

n  Commonly thousands of threads are launched 
q Rule-of-thumb 25.000 – 100.000 threads are needed. 
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Hints for exercises 

n  Numbapro 
q from numbapro import * 

n  JIT for both CPU and GPU 
q @jit('float64(float64, int64, int64)', 
target="cpu") 

q @cuda.jit('void(float64, int64, 
float64[:])') 

q @cuda.jit('float64(float64)', 
device=True, inline=True) 

n  CUDA device context and name 
q gpu = numba.cuda.get_current_device() 
print("Device: %s\n" % gpu.name) 
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Hints for exercises 

n  Global thread ID inside kernel 
q idx = cuda.grid(1) 

q idx, idy = cuda.grid(2) 

n  Block and grid size inside kernel 
q cuda.blockDim.x (and .y, .z) 
q cuda.gridDim.x (and .y) 

n  http://numba.pydata.org/numba-doc/0.15.1/
CUDAJit.html#thread-identity-by-cuda-intrinsics 

n  Rule-of-thumb numbers 
q blockdim = 256 
q griddim = 1024 
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Hints for exercises 

n  Transfer data CPUçèGPU 
q A_d = cuda.to_device(A) 

q x_d.copy_to_device(y_d) 
q x_d.copy_to_host(x) 

n  Wait for kernels 
q cuda.synchronize() 

n  CUDA libraries 
q import numbapro.cudalib.cublas as cublas 

q blas = cublas.Blas() 
q blas.gemv('T', n, n, 1.0, A, x, 0.0, y) 
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Research and education in Graphics Processing Units in Denmark 

Established in August 2010 and is a unique  
national competence center and hardware  
laboratory at DTU Informatics. 

- Development of efficient algorithms 
- High-performance scientific computing 
- Performance profiling and prediction 
- Software development 
- Education 

http://gpulab.imm.dtu.dk 
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Some completed and ongoing GPULab projects – Jan 2014: 
MSc: Max la Cour Christensen, M. and Eskildsen, K. L. Nonlinear Multigrid for Efficient Reservoir 
Simulation. 2012. 
BSc: Mieritz, Andreas. GPU-Acceleration of Linear Algebra using OpenCL. 2012. 
Special course: Leo Emil Sokoler and Oscar Borries, Conjugate Gradients on GPU using CUDA, 2012. 
MSc: Høstergaard, Gade-Nielsen, Nicolai Fog, Implementation and evaluation of fast computational 
methods for high-resolution ODF problems on multi-core and many-core systems, 2010 
PhD: Stefan L. Glimberg, Designing Scientific Software for Heterogeneous Computing, 2010-2013 
PhD: Nicolai Fog Gade-Nielsen, Scientific GPU Computing for Dynamical Optimization, 2010-2014 
PhD: Oscar Borries, Large-Scale Computational Electromagnetics for Reflector Antenna Analysis, 2011- 
 

Some available projects: 
-Acceleration of Wind Turbine Vortex Simulation (in collaboration with DTU RISØ). 
-Large-scale 3D image reconstruction using GPU acceleration (in collaboration with University of Antwerp). 
-Computational Electromagnetics for Reflector Antennas using Accelerators (in collaboration with TICRA). 
-Fast Large-scale Banded Solver on the GPU (in collaboration with RESON A/S). 
-Sparse matrix computations in genome-wide association studies (in collaboration with GenoKey). 
-Your own project idea! 
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