Introdu‘ction to GP
computing

U

Computional Tools for Data Science (Fall 2014)

Hans Henrik Brandenborg Sgrensen
DTU Computing Center

<hhbs@dtu.dk>
A

///&P U lab ran=Y) y @05 E

DTU Informatics

DTU Compute |

=
—
—

i

+ @

oo

<) X

1/
qﬁei”—

—{2.71 8281 8284

l

Outline

Some basics on computing

GPUs / CUDA programming model
Numbapro

Exercise 1+2+3

> W b=

m This is a very brief introduction to GPU
computing, which assumes that the student has
studied some of the details beforehand.

November 14, 2014 Computational Tools for Data Science

i

Computing basics

i

® Running time of scientific applications:
Q # flops * time per flop ’
Q # bytes moved / bandwidth

O # messages * latency — . .
N

flops = O(NA3), # bytes = O(NA2)

]
X

November 14, 2014 Computational Tools for Data Science 3

i

Computing basics

® Running time of scientific applications:
Q # flops * time per flop

Q # bytes moved / bandwidth = X
Q # messages * latency — .
m Whatis a flop? # flops = O(NA3), # bytes = O(NA2)

aIn theory: +, -, *, /,
a In practice: *+ = 1 cycle, / = ~8 cycles, \ = ~10 cycles, ..

November 14, 2014 Computational Tools for Data Science 4

Computing basics

i

® Running time of scientific applications:
Q # flops * time per flop

Q # bytes moved / bandwidth = X z
Q # messages * latency — .
m Whatis a flop? # flops = O(NA3), # bytes = O(NA2)

aIn theory: +, -, *, /,
a In practice: *+ = 1 cycle, / = ~8 cycles, \ = ~10 cycles, ..
m What is a memory access?
a Pages of 4K: disk drive = mem (> ms)
a Cache line of 64B: mem = L3 = L2 = L1 (12-100 cycles)
0 Word of 8 bit — 512 bit: L1 =» Register (4 cycles)

November 14, 2014 Computational Tools for Data Science 5

i

Computing basics

® Running time of scientific applications:

Q1 » Compute bound t

o = X =z
5 » Memory bound
N N
m What is a flop? # flops = O(NA3), # bytes = O(N"2)

aIn theory: +, -, *, /,
a In practice: *+ = 1 cycle, / = ~8 cycles, \ = ~10 cycles, ..
m What is a memory access?
a Pages of 4K: disk drive = mem (> ms)
a Cache line of 64B: mem = L3 = L2 = L1 (12-100 cycles)
0 Word of 8 bit — 512 bit: L1 =» Register (4 cycles)

November 14, 2014 Computational Tools for Data Science 6

i

Computing basics

“The memory wall”

m Peak performance
2 s W |

Qd doubles every ~2 years... e
m Maximum memory bandwidth >

a doubles every ~3-4 years...
m Anyone notice a problem with these rates?
m "Flops-to-spare”

a Determining factor in application performance is likely
to be memory access patterns rather than flop count

a Most important tuning techniques are related to
reducing memory movement (flops are well "hidden”)

November 14, 2014 Computational Tools for Data Science 7

Data sciences (big data)

m We are typically inherently memory bound!

November 14, 2014 Computational Tools for Data Science

i

=
—
—

CPUs and GPUs (rough comp.) =
-,j.-vb_ler}nory éontrgll;ze;rz i
Intel Core i7 3960X NVIDIA Kepler K20X
129.6 Gflop dp peak performance 1.31 Tflop dp peak performance
6 cores 2680 cores (FP32), 896 cores (FP64)
15MB L3 cache (25% of die). 1536KB L2 cache (2% of die)
51.2 GB/s bandwidth 250 GB/s bandwidth

November 14, 2014 130 watt Computational Tools for Data Science 233 watt 9

=
—
—

General purpose CPU

i

m Usual tasks of the CPU:

Q To run desktop applications

= Lightly threaded
m Lots of branches

» Lots of (indirect) memory accesses

vim 1ls
Conditional branches 13.6% 12.5%
Memory accesses 45.7% 45.7%
Vector instructions 1.1% 0.2%

a Modern branch predictors > 90% accuracy

m CPUs are general purpose by construction
m HPC: Can use CPUs for any problem / code

November 14, 2014 Computational Tools for Data Science 10

"General purpose” GPU

m Usual task of the GPU:
a Compute a pixel => requires floating point operations

a Compute many pixels => massively parallel flops

m |t turns out to be a very efficient way to do
computing — for particular problems

m Since ~2001 GPUs have been programmable

“General purpose” in the sense “not only pixels”

November 14, 2014 Computational Tools for Data Science

i

11

Which problems fit the GPU?

i

m Problems that use many flops but “little data”
m Problems that have a high degree of parallelism

m One kind of problem is “matrix computations™:
a E.g., matrix-vector and matrix-matrix multiplication

A
C A B

k
<

m So-to-say: “the heart” of scientific computing

November 14, 2014 Computational Tools for Data Science 12

=
—
—

GPU performance share Top 500 =
40%
35%
S
L 30%
o
E % 25%
2 E 20%
5 &
S E 15%
g 10%
L
5%
0%
O P~ 0 o o A\ N o
3 3 3 S S S S S
N N N N N N N N

Source: Supercomputing 13, BOF, “Highlights of the 42" Top500 List at SC’13”, Denver, November, 2013

November 14, 2014 Computational Tools for Data Science 13

=
—
—

i

When to consider using GPUs"?

192 Cuda cores/SMX

Commaodity 2 X Accelerator (GPU)
Intel Xeon Nvidia K20X “Kepler”
8 cores 2688 “Cuda cores”
3 GHz .732 GHz
S*4opsicycic 2688= cle
96 Gflop/s (DP) 1.31 Tflop/s (DP
o S —

Thread Eerc ncontrol Unit

Theoretical
bandwidth
32 Gb/s

Theoretical
wanawidatii

250 Gb/s
Device Memory
6 GB
erconnect
PCI-X 16 lane
7 Gbls (8 GB/s m Example: Matmult - large N
1 GW/s

O Tcpu = 1e-9*NA3/96 s (+ 1e-9*N"2/32 s)
a Tgpu = 1e-9*N"3/1310 s + 1e-9*N*2/6 s

November 14, 2014 Computational Tools for Data Science 14

Which speed-ups can you expect?g

& Queue, Uncore
& I/0
=1 i

e ST

A=l

T6 5 ke

Memory Controller .:: -

Intel Core i7 3960X - x10 — NVIDIA Kepler K20X

129.6 Gflop dp peak performance 1.31 Tflop dp peak performance
RZTnedf;‘Eﬁr 6 cores — x112 — 2680 cores (FP32), 896 cores (FP64)
15MB L3 cache (25% of die). 1536KB L2 cache (2% of die)

51.2 GB/s bandwidth —___ 5 ___—230 GB/s bandwidth

November 14, 2014 130 watt Computational Tools for Data Science 233 watt 15

i

Trends for GPU algorithms

m Synchronization-reducing algorithms
0 Embarrassingly parallel techniques

m Communication-reducing algorithms

3 Use methods which have lower bound on
communication

m Mixed precision methods
QO >3x speed of ops and 2x speed for data movement
m Autotuning

Q Today’s machines are too complicated, build “smarts”
into software to adapt to the hardware

November 14, 2014 Computational Tools for Data Science 16

CPU vs. GPU trends

m Peak performance trend:

Theoretical
GFLOP/s
3250

3000
NVIDIA GPU Single Predision

2750 === NVIDIA GPU Double Predision
2500 =g==|ntel CPU Single Predsion
Intel CPU Double Predision

Source: 2250
Nvidia, "CUDA 2000
programming

guide”

1750
1500
1250
1000

750

500

Tesla C1060
250 Woodcrest Bt

0 y -
V4

) v v Vv
Sep-(FPFNtiuM Jun-04 Mar-0

November 14, 2014

=
—
—

i

Currently
a significant
performance
gap!

K20X (kepler)

Double precision
support in GPUs
(scientific computing)

Computational Tools for Data Science 17

=
—
(—

CPU vs. GPU trends

i

m Memory bandwidth trend:

Theoretical GB/s
200

180
w=@=CPU

GPU

| S_ou”rce: 140 Currently a
Nvidia, "CUDA 120 significant

programming '
quide’ - memory gab!

160

80

60 Sandy Bridge

Westmere

4
0 Bloomfield
Woodcrest
20 Prescott

Harpertown

0 worthwood
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

November 14, 2014 Computational Tools for Data Science 18

CUDA terminology

i

Fine “ . . »y o
m Thread (“Unit of parallelism” in CUDA)
O Concurrent code and associated state executed on the CUDA
device in parallel with other threads. Independent control flow.
m Warp (“"Unit of execution”)
= a A group of threads in same block that are executed physically
= in parallel — currently 32 threads.
(-
& | ® Block (*Unit of resource assignment”)
a A virtual group of threads executed together that can
cooperate and share data.
m Grid ("Task unit”)
Q A virtual group of thread blocks that must all finish before the
invoked kernel is completed.
Coarse

January 8, 2013 02614 — High Performance Computing 19

Scalable execution model =

m Why are blocks scheduled in no particular order?

Multithreaded QJDA Program
BlockO Block1l Block2 Block3

Block4 BlockS Block6 Block7

l—l I_l A GPU with more SMs will

e s A automatically execute the
-z program in less time than a
GPU with fewer SMs.

Block0 Block 1 l BlockO Block1l Block2 Block3

Block2 Block3 Block4 BlockS Blok6 Block7

Block4 Block5

Block6 Block7
v

m Independence among blocks provides the basis
for scalability across present and future GPUSs!

January 8, 2013 02614 — High Performance Computing 20

CUDA processing flow

CPU

CPU Me| ‘

pa
LTI

m Typical steps

1. Copy input data from CPU =8
memory to GPU memory

2. Invoke GPU kernel and

execute, caching data on chip RAM
for performance
3. Copy results from GPU Source: Timothy Lanfear, Nvidia, 2009

memory to CPU memory

January 8, 2013 02614 — High Performance Computing

=
—
—

i

21

i

Numbapro compiler

= Open source Python Bytecode

= JIT compilation J,

= Multiple targets High-Level Anal_ysis &
(cpu, gpu, parallel) Transformation

s hitp:// 1
numba.pydata.org/ Local Type Inference
numba-doc/0.15.1/ J,
deve_loper/ VY
architecture.html l

Code does not use the _
Python Runtime API 7~ Native Code

November 14, 2014 Computational Tools for Data Science 22

CUDA-Python

i

m Kernel definition

QQcuda.jit ('void(floated[:])")

def kernelname (array) :

m Kernel invocation

Q Syntax: kernelname [griddim, blockdim] (...)

a Launches a fixed number of threads

a All threads execute the same code

Q Each thread has an ID

m [0 decide what data to read or write, to decide control flow

m Commonly thousands of threads are launched

Q Rule-of-thumb 25.000 — 100.000 threads are needed.

January 8, 2013 02614 — High Performance Computing 23

Hints for exercises

= Numbapro

d from numbapro 1mport *

m JIT for both CPU and GPU

Q@jit ('float64 (float64, int64, inte4)',

target="cpu")
Q@dcuda.jit ('void(floated, int64d,
floated[:])")

Q@Qcuda.jit ('floated (floated) ',
device=True, 1nline=True)

m CUDA device context and name

dgpu = numba.cuda.get current device ()

print ("Device: %s\n" % gpu.name)

November 14, 2014 Computational Tools for Data Science

=
—
—

i

24

Hints for exercises

m Global thread ID inside kernel
didx = cuda.grid(l)
didx, 1dy = cuda.grid(2)

m Block and grid size inside kernel

Qcuda.blockDim.x (and .y, .z)

Qcuda.gridbim.x (and .y)

m http://numba.pydata.org/numba-doc/0.15.1/
CUDAJit.html#thread-identity-by-cuda-intrinsics

m Rule-of-thumb numbers

dblockdim = 256
dgriddim = 1024

November 14, 2014 Computational Tools for Data Science

=
—
—

i

25

Hints for exercises

m [ransfer data CPU€=>GPU

QA d = cuda.

to device (A)

dx d.copy to device(y d)

dx d.copy to host (x)
m \Wait for kernels

d cuda.synchronize ()

m CUDA libraries

— |
—

s

d import numbapro.cudalib.cublas as cublas
dblas = cublas.Blas/()

dblas.gemv ('

November 14, 2014

T, n, n, 1.0,

Computational Tools for Data Science

A,

Xy

0.

0,

Y)

26

=
—
—

Advertisement
GPU-LABoratory

i

TesLaAD

Research and education in Graphics Processing Units in Denmark

Established in August 2010 and is a unique

national competence center and hardware ///‘PU
laboratory at DTU Informatics. a Iab
DTU Informatics

- Development of efficient algorithms : :
- High-performance scientific computing hitp: //qpulab imm.dtu.dk

- Performance profiling and prediction
- Software development VDI nViDia.

CUDA" CUDA”

= E d u Cati on e SESEARCH S R cHNe

Advertisement

02614 Teaching assistent DANSIS Graduate Prize of 2013

Some y}ﬁ\pleted and ongeing GPULab projects — Jwﬂ:/’

i

PhD: Stefan L. Gl esigning Scientific Software for Heterogeneous Computing, 2010-2013

PhD: Nicolai Fog e-Nie —Seientific GPU Computing for Dynamical Optimization, 2010-2014
PhD: Oscar Borries, Large-Sca tational Electromagneti ctor Antenna Analysis, 2011-

PostDoc DTU Physics Ind. PostDoc DTU Compute

Some available projects:

-Acceleration of Wind Turbine Vortex Simulation (in collaboration with DTU RIS@).

-Large-scale 3D image reconstruction using GPU acceleration (in collaboration with University of Antwerp).
-Computational Electromagnetics for Reflector Antennas using Accelerators (in collaboration with TICRA).
-Fast Large-scale Banded Solver on the GPU (in collaboration with RESON A/S).

-Sparse matrix computations in genome-wide association studies (in collaboration with GenoKey).

-Your own project idea!

November 14, 2014 Computational Tools for Data Science 28

