Introduction to Graph
Database with Neo4|

Zeyuan Hu
Dec. 4th 2020
Austin, TX

History

* Lots of logical data models have been proposed in the history of

DBMS

e Hierarchical (IMS), Network (CODASYL), Relational, etc

* What Goes Around Comes Around

* Graph database uses data models that are “spirit successors” of Network data
model that is popular in 1970’s.

* CODASYL = Committee on Data Systems Languages

Supplier (sno, sname, scity)

supplies

Supply (qty, price)

supplied_by

Part (pno, pname, psize, pcolor)

Edge-labelled Graph

* We assign labels to edges that indicate the different types of relationships
between nodes

acts_in

acts _in
Steve Carell ¥ The Office B.J. Novak

““'*-.

produces

* Nodes = {Steve Carell, The Office, B.J. Novak}

* Fdges = {(Steve Carell, acts _in, The Office)| (B.J. Novak, produces, The
Office), (B.J.Novak, acts_in, The Office

* Basis of Resource Description Framework (RDF) aka. “Triplestore”

The Property Graph Model

* Extends Edge-labelled Graph with labels

* Both edges and nodes can be labelled with a set of property-value pairs
attributes directly to each edge or node.

* The Office crew graph o-iexiactsin i
:—"--"----i--: é roIe=RyanHoward §
--- €12 acts in 5 ref = Wikipedia

' i] ’
ny : Person ' role = Michael G. Scott | ng : TV.Show S —zemezso------- - ng : Person

| ref = Wikipedia
name = Steve Carell \ ’ T : name = B.J. Novak
gender = male J HiG = The COffice gender = male

<gender, male>

* Edge e, has edge label acts_in with attributes: <role, Michael G. Scott>,
<ref, Wikipedia>

i€ : produces:

Property Graph Against Other Players

* v.s. Edge-labelled Graph Model

* Having node labels as part of the model can offer a more direct abstraction that is
easier for users to query and understand
 Steve Carell and B.J. Novak can be labelled as Person

 Suitable for scenarios where various new types of meta-information may regularly
need to be added to edges or nodes

* v.s. Relational Model
e Graph Structure is more intuitive than a collection of tables (e.g., HW7 org chart)
* Avoid repetitive data storage from user perspective (e.g., primary key & foreign key)

 Enable same relation name with different attributes

* CREATE TABLE TVSHOW(title, year);

* CREATE TABLE TVSHOW(title, year, production company); //Not
possible!

Same Data, Different Model

* The same data represented in relational model

foreign key

foreign key

Acts in Person Produces

Redundant!

foreign key

ﬂ:ﬁ id2 role ref pid pname gender / id1 id2 \
n3 n2 Ryan Wikipedia n1 Steve Carell male n3 n2
Howard N\ /
Michael G. e
N V Scott Wikipedia n3 B.J. Novak male

foreign key

tid

title

n2

The Office

TV Show

Neod|

* Neodj is a graph database that uses property graph data model with a
query language called Cypher

* |n graph database domain, there is no standard query language (yet). Many
vendor-dependent flavors
e SPARQL for RDF

* Cypher, Gremlin, etc. for property graph
 Ex: Find co-stars of The Office

MATCH (xl:Person) -[:acts_in]->

PREFIX : <http://ex.org/#> (:TVSHOW {title: "The Office"})
SELECT ?x1 ?x2 <-[:acts_in]- (x2:Person)
WHERE { RETURN x1, x2

?x1 :acts_in ?x3 . ?xl1 :type :Person .

?x2 :acts_in ?x3 . ?x2 :type :Person .

g.V().has("TVSHOW", "title", "The Office").
in('acts_in').hasLabel ("Person").
values ("name")

?x3 :title "The Office" . ?x3 :type :TVSHOW .
FILTER(?x1 != ?x2)

* There has been ongoing standardization effort — Graph Query Language (GQL)

First Property Graph with Neo4|

' .o + role = Ryan Howard
4 € ractsan \ ref = Wikipedia

...............

ny : Person \ role = Michael G. Scott | ny : TVShow e mmeso oot ’ ng : Person

] E ref = Wikipedia
name = Steve Carell \

gender = male J - title = The Office

name = B.J. Novak
gender = male

CREATE
(nl:Person {name: "Steve Carell", gender:
(n2:Person {name: "B.J. Novak", gender: "male"}),

(n3:TVShow {title: "The Office"}),

(nl)-[:acts_in {role: "Michael G. Scott", ref: "Wikipedia"}]->(n3),
(n2)-[:acts_in {role: "Ryan Howard", ref: "Wikipedia"}]->(n3),
(n2)-[:produces]->(n3);

Let’s Practice MIFFLIN:

PAPER COMPANY

* Let’s create the org. chart of Dunder Mifflin, Scranton Branch !

* All edges have labels e;: manages with i being numbers from 1 to n,
the number of edges

e Some useful commands & notes
* See the graph- MATCH (n) RETURN n LIMIT 50
* Delete the graph-MATCH (n) DETACH DELETE n

* To create list of values, use "[]”
* Forexample, role: ["Sales", "Assistant Regional Manager"]

ny : Person \e; : Tanages:

...............

name = David Wallace
role = CFO
dept = management

If some text is illegible, please reference
Y http://my.ilstu.edu/~llipper/com329/dunder_mifflin_org_chart.pdf

ny : Person

name = Ryan Howard
role = VP, North East Region
dept = management

v
ny : Person n; : Person

ns : Person

name = Todd Pecker
role = Travel Sales Rep.
dept = Sales

name = Michael Scott
role = Regional Manager
dept = management

name = Tobby Flenderson
role = HR Rep.
dept = HR

> >

ng : Person ny : Person ng : Person ng : Person nyo : Person ny, : Person
name = Angela Martin name = Dwignt Schrute name = Jim Halpert name = Pam Beesley — — o
role = Senior Accountant role = Sales, Assistant to the role = Sales, Assistant role = Receptionist role Eag:aﬁtcfsesiﬁgnﬁ ep ol :Emvsa_r e?\i::;?;:g'; -
dept = Accounting, Party Regional Manager Regional Manager dept = Reception, Party deot = Qyu ality Control dent = Warehouse
Planning Committee dept = Sales dept = Sales Planning Committee L= y L=
‘/,\
nys : Person ny3 : Person nyy : Person nys : Person
g nyg : Person ny7 : Person nyg : Person
. . = -
name = Kevin Malone name = Oscar Martinez naln € Slilerlé_ a'nni Ial.mer l Ea(r:ne IeIIySI {apoorR
le = Accountant role = Accountant role = Supplier Relations role = Customer Service Rep. _ . _ _))
role dept = Supplier Relations dept = Customer Service, Party name = Jerry DiCanio name = Madge Madsen name = Lonnie Collins
dept = Accounting dept = Accounting . P : g dept = Wareh dept = Wareh dept = Wareh
Party Planning Committee Planning Committee ept = Warehouse ept = Warehouse iept = Warehouse
.
v

nyg : Person

name = Andy Bemard
role = Regional Director in
Sales
dept = Sales

L T~

nay : Person nsy : Person

name = Phyllis Lapin
role = Sales

dept = Sales, Party Planning

Committee

name = Stanley Hudson
role = Sales
dept = Sales

Graph Query Languages

* Two important usage patterns for graph query languages:
* Graph Pattern Matching
* Graph Navigation

* We’ll focus on Cypher in this tutorial. However, any significant graph
qguery languages will have these two important patterns in their
languages.

Graph Pattern Matching

* Graph Pattern Matching

* A match is a mapping from variables to constants such that when the
mapping is applied to the given pattern, the result is, roughly speaking,

contained within the original graph (i.e., subgraph).

v 0 role = Ryan Howard !
: e1 : acts_in :—--\ ! ref = Wikipedia

...............

ny : Person i role = Michael G. Scott | ns : TV Show N eeeeeczamacz—meeeees ! ns : Person

= I . L
: ref = Wikipedia [
name = Steve Carell \ R

gender = male J >L title = The Office

name = B.J. Novak
gender = male

I

L9

Steve Carell | B.J. Novak

The Office Crew graph 77777

Result set (i.e., matching) for Q4

ny : TV .Show

[.

’L title = The Office J‘

.

x5 : Person

-

graph pattern for Q,

Graph Pattern Matching Semantics

* Different query languages may have different evaluation rule for the input
query graph pattern

* No constraint at all (Homomorphism-based semantics)
 Ex: distinct variables can be mapped to same constants

e Certain types of variables are restricted to match distinct constants in the database
(Isomorphism-based semantics)

* No-repeated-anything semantics
« \Variables mapped to nodes and edges have to be distinct

* No-repeated-node semantics
* Variables mapped to nodes have to be distinct

* No-repeated-edge semantics
« \Variables mapped to edges have to be distinct

* Another angle: Set vs. Bag
* Different languages have different semantics

Graph Pattern Matching in Cypher

* Cypher has no-repeated-edges, bags semantics
* . Find co-stars of The Office

21 : Person ne : TVShow| . x5 : Person

acts_in | i acts_in |
"""""""" ' >L title = The Office J< i22oooeeeoooond L

@ > (:TVSHOW {title: "The Office"}) <-[:acts_in]- (x2:Person)
RETURN x1, x2

Graph pattern x1 has to connect to TVSHOW node through an incoming edge with label acts in

We want to match variable x;to node with type Person

* Cypher manual:
* https://neodj.com/docs/cypher-manual/current/syntax/patterns/

Example

* Who's inside Party Planning Committee?

MATCH (p:Person)
WHERE "Party Planning Committee" in p.dept

return p.name
* How many people does Michael directly manage? (hint: use count ())

MATCH (p:Person)<-[:manages]-(n:Person)
WHERE n.name = "Michael Scott”
RETURN count(p)

* Get the Dunder Mifflin employees that are on the same level as “Michael Scott”

MATCH pl = (n:Person)<-[:manages]-(p:Person)
MATCH p2 = (m:Person)<-[:manages]-(p:Person)
WHERE length(pl) = length(p2) AND m.name <> n.name AND n.name = "Michael Scott”

RETURN m

Let’s Practice

* Find all the employees that are directly managed by someone that
reports to Michael

MATCH (p {name: 'Michael Scott'})-[:manages]->()-[:manages]->(fof)
RETURN fof.name

* Does Michael directly manage more employees than Jim Halpert?
Each MATCH ... WHERE can be thought as

TCH (p:Person)<-[:manages]-(n:Person a SELECT ... FROM ... WHERE

RE n.name = "Michael Scott” MATCH (p:Person)<-[:manages]-(n:Person)
WITH count(p) AS Tl WHERE n.name = "Michael Scott"
MATCH (p:Person)<-[:manages]-(m:Person) MATCH (g:Person)<-[:manages]-(m:Person)
WHERE m.name = "Jim Halpert” WHERE m.name = "Darryl Philbin"

RETURN cl > count(p) RETURN p.name, {.name

Same Data, Different Model

* Let’s query the same data in Relational Model

- Actual schema and data see “sql-ex-2.sq

III

emplD name role dept mgriD
1 David Wallace {"CFO"} {"management”}
2 Ryan Howard {’VPF,{:;E:: .EaSt {"management”} 1
3 Tobby Flenderson {"HR Rep."} {"HR"} 2
4 Michael Scott {"Regional Manager'}| {"'manas~ant"} 2
‘d Pecker =

MATCH pl = (n:Person)<-[:manages]-(p:Person)

MATCH p2 = (m:Person)<-[:manages]-(p:Person)
WHERE length(pl) = length(p2) AND m.name <>
n.name AND n.name = "Michael Scott"

Same Data, Different Model =~

e Get the Dunder Mifflin employees that are on the same level as
“Michael Scott”

with recursive samelevel(sl, s2, s3, s4) as (
ct al.name, al.mgrID, a2.name, aZ.
from dunderMifflin al, dunderMifflin a2
l.mgrID = a2.mgrID)

their manager has to be the same.

Recursion: Same idea as
base case but

use the base relation and
the result table we just
computed in base case.

ect al.name, al.mgrID, a2.name, a2.mgrID
from dunderMifflin al, dunderMifflin a2, samelevel 11
rID = 11.s2 and a2.mgrID = 11

Base case: if two people are at the same level,

) select 12.s3 from samelevel L2 where 12.s1l = 'Michael Scott' and 12.sl1l <> 12.s3;

Graph Navigation

* A mechanism provided by graph query languages to navigate the
topology of the data.

* Two important query classes:

e Path Query
* Path Query + Graph Pattern Matching (i.e., navigational graph pattern)

4 N

Pat h Qu e ry Often represented

using Regular

Expressions
- /

a
* Path query has the general form P = x - y where «a specifies
conditions on the paths we wish to retrieve and x and y are the

ints of
endpoints of the path. B |
\ es :acts_ :
oo role = Ryan Howard
-t iactesn : ref = Wikipedia
ny : Person role = Michael G. Scott ny : TVShow e d ng : Person
! ref = Wikipedia !
name = Steve Carell | N o : name = B.J. Novak
gender = male ’L thle = The Office gender = male
éc-_) : produces:
The Office Crew graph

*),. Find co-stars of The Office

_ @ Edge has direction!
ClCtS_lTl 'aCtS_l
P =x >y

Path Query Semantics

* There are different semantics for path query evaluation:

e Arbitrary path semantics
 All paths are considered

» Useful when user only cares about whether there is a path or pairs of nodes are
connected by such paths

* Shortest path semantics

* Only paths of minimal length that satisfy a in P are considered

* Useful when we want to find shortest path for a pair of nodes
* No-repeated-node semantics

* All matching paths with each node appears once in the path (i.e., simple path)
* No-repeated-edge semantics

* All matching paths with each edge appears once in the path

Path Query in Cypher

* Cypher has no-repeated-edge, bags semantics
* Qy Find co-stars of The Office e

i role = Ryan Howard

, e acts_in i ref = Wikipedia
ny : Person role = Michael G. Scott . na : TV.Show B ’ ng : Person
' ref = Wikipedia ! (
name = Steve Carell | R N : name = B.J. Novak
gender = male J 'L i = Tha Ofioo gender = male

................

MATCH \p (p:Person)-[:acts _in]->(:TVShow)<-[:acts in]-(g:Person)
return path

“path"

[{"gender":"male","name":"Steve Carell"},{"ref":"Wikipedia", "role":"Mi

¢ NOthing new bUt We rEtu rn a path nOW! chael G. Scott"},{"title":"The Office"},{"title":"The Office"},{"ref":

"Wikipedia“,"role":"Ryan Howard"},{"gender":"male","name":"B.J. Novak"

}H

[{"gender":"male","name":"B.J. Novak"},{"ref":"Wikipedia","role":"Ryan
Howard"},{"title":"The Office"},{"title":"The Office"},{"ref":"Wikipe
dia","role":"Michael G. Scott"},{"gender":"male","name":"Steve Carell"

}H

Navigational Graph Pattern in Cypher

* We can combine path query with graph pattern matching by allowing
edge labels in the graph pattern to be paths n1 : Peraon

* Q2: Find all the people that Michael Scott manages @T%:g’“oil?ﬂfn‘ﬁ’j}

dept = management

MATCH path=(p:Person)-[:manages*l..]->(g:Person) TJ"JQJ"?
WHERE p.name = "Michael Scott” S :
return g.name 1

* Resources: https.//neodj.com/docs/cypher- r _ T
manual/current/syntax/patterns/#cypher-pattern-relationship

Let’s Practice

* Does Jim Halpert manage Phyllis Lapin?

MATCH path=(p:Person)-[:manages*1l..]->(q:Person)
WHERE p.name = "Jim Halpert" and g.name = "Phyllis Lapin"
return count(path)

* Find all people that are indirectly managed by Michael Scott

MATCH path=(pl:Person {name: "Michael Scott"})-[:manages*1l..]->()
- [:manages*1l..]->(p2:Person)
return collect(distinct p2)

Is the number of
people same as the
number of paths?

Graph Algorithms in Cypher

* Cypher and many graph query languages allow user to directly embed
graph algorithms inside the query

* Q3: Find the shortest path between David Wallace and Andy Bernard

MATCH path = shortestPath(
(p:Person {name: "David Wallace"})-[:manages*l..]-(g:Person {name: "Andy Bernard"}))
RETURN path

Conclusion

* Introduced Edge-label Graph, Property Graph

e Discussed their difference with each other and with Relational Model

* Introduced graph query languages
e SPARQL for RDF (i.e., Edge-label Graph), Gremlin and Cypher for Property
Graph

* Introduced three important usage patterns in graph query languages
* Graph Pattern Matching
e Path Query
* Navigational Graph Pattern Matching

 Demonstrated and practiced those usage patterns in Cypher with Neo4;

Moving Forward

e Gremlin
* https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
* https://tinkerpop.apache.org/docs/current/tutorials/getting-started/

* Contrast among Cypher, SQL, and Datalog on the same data
e https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/sql-datalog-
cypher
* Code for this tutorial
e https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/intro-to-
sraphdb-with-neo4j
* Slides available
e https://zhu45.org/introduction-to-graph-database-with-neo4j.pdf

https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
https://tinkerpop.apache.org/docs/current/tutorials/getting-started/
https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/sql-datalog-cypher
https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/intro-to-graphdb-with-neo4j
https://zhu45.org/introduction-to-graph-database-with-neo4j.pdf

