Lecture 12

Graph Theory and Applications

* Introduction to Graph Theory Historical Problems
Graph Theory and Networks Graph and its basic components
* Application to Circuit Analysis

Introduction to graph theory

- Graph theory - study of graphs and their applications
- Graph - mathematical object consisting of a set of:
$O V=$ nodes (vertices, points).
$O E=$ edges (links, arcs) between pairs of nodes.
ODenoted by $G=(V, E)$.
OCaptures pairwise relationship between objects.
OGraph size parameters: $n=|V|, m=|E|$.

What Is a Graph?

- A graph G is a triple consisting of:
- A vertex set $V(G)$
- An edge set $E(G)$
- A relation between an edge and a pair of vertices

Examples of Applications

- Graphs can be used to model many types of relations and processes in physical, biological, social and information systems.
- In computer science, can be used to represent networks of communication, data organization, computational devices, the flow of computation, etc.
- Chemistry, e.g., model of molecule (atom \& bond)
- Physics, e.g., interactions of system components.
- Sociology, e.g., social network (friendship, acquaintance, work collaboration, etc.)
- Biology, e.g., animal migration, spread of disease.

Graph Theory - History

Leonhard Euler's paper on " 7 Bridges of Königsberg", published in 1736.
Here, vertices = islands;
edges = bridges

The 7 Bridges of Königsburg

- Königsburg (now called Kalingrad) is a city on the Baltic Sea wedged between Poland and Lithuania.
- A river runs through the city which contains a small island.
- There are 7 bridges which connect the various land masses of the city.

The Problem

- The people of Königsburg made a sport during the $18^{\text {th }}$ century of trying to cross each and every one of the 7 bridges exactly once.
- This was to be done in such a way that one would always end up where one began.

Euler and Graph Theory

- Euler's solution to the Königsburg bridge problem was more than a trivial matter.
- He didn't just solve the problem as stated; he made a major contribution to graph theory. Indeed, he essentially invented the subject.
- His contribution has many practical applications.

Some Vocabulary

- A graph is a set of vertices connected by edges.
- The valence (degree) of a vertex is the number of edges that meet there.
- An Euler Circuit is a path within a graph that covers each and every edge exactly once and returns to its starting point.

Euler's Theorem

- A connected graph has an Euler circuit if and only if every vertex has an even valence.
- The Königsburg bridge problem translated into a graph in which all valences were odd. Thus there was no way to walk on each bridge precisely once.

Euler's Theorem

Why is it true?

- Any vertex with odd valence must be either a starting point or an ending point.
- All points that are neither starting nor ending points must be left as often as they are entered.

Why is it important?

- There are many, many examples of circuits that one wishes to traverse such that every edge is covered and no edge is repeated.
- Routes for letter carriers, meter readers, and the like, share these characteristics.

Not all graphs have even valence on all vertices --- What then?

- One cannot expect that every street layout or route will translate into a graph with all vertices of even valence.
- In these cases, one can try to minimize the number of edges that are repeated.
- There is an algorithm to do this. It is called Eulerizing the graph.

Eulerizing a Graph

- Select pairs of vertices in the graph that have odd valence.
- Do this in such a way that the vertices are as close together (have the fewest edges between them) as possible.
- Neighboring vertices would be the best choice, if possible.
- For each edge on the path that connects a pair of oddvalenced vertices, generate a "phantom edge" duplicating that edge.
- Do this for each pair of odd-valenced vertices.
- In general, there will be more than one Eulerization of a graph. The fewer duplicated edges, the better.

Recall the City of Königsburg

Let us Eulerize Königsburg I

Eulerizing Königsburg II

- Here, we have selected pairs of oddvalenced vertices, $B D$ and $A C$.
- We have added a "phantom" edge between these pairs of vertices. These phantom edges are edges that are traversed twice.
- Now, with the addition of just two edges, the graph has all even-valenced vertices.

A Troublesome Question

- How do we know that we can always do this?
- In particular, how do we know that the oddvalenced vertices will occur in pairs?
Theorem: The number of odd-valenced vertices is even.
Proof Suppose that there are N edges, thus, there are 2 N "ends" of edges. The sum of all the valences must be 2 N . Therefore, it is not possible to have an odd number of oddvalenced vertices. Hence, the odd-valence vertices occur in pairs.

Euler Circuits: In Summation

- A very simple and elegant idea has led to a wide variety of real-world applications.
- Nearly any process which involves routing (and there are many) can be made more efficient by these methods.
- Many millions of dollars can be saved in the process!!

Graph Theory - History

Cycles in Polyhedra

Thomas P. Kirkman

William R. Hamilton

Hamiltonian cycles in Platonic graphs

Graph Theory - History

Trees in Electric Circuits

Gustav Kirchhoff

Graph Theory - History

Enumeration of Chemical Isomers -n.b. topological distance a.k.a chemical distance

Graph Theory - History

Four Colors of Maps

Francis Guthrie

- The theorem asserts that four colors are enough to color any geographical map in such a way that no neighboring two countries are of the same color.

Graph Representation

- Representing a as a graph can provide a different point of view
- Representing a problem as a graph can make a problem much simpler
- More accurately, it can provide the appropriate tools for solving the problem

What makes a problem graph-like?

- There are two components to a graph
- Nodes and edges
- In graph-like problems, these components have natural correspondences to problem elements
- Entities are nodes and interactions between entities are edges
- Most complex systems are graph-like

Friendship Network

Scientific collaboration network

Business ties in US biotech-industry

Genetic interaction network

Protein-Protein Interaction Networks

Transportation Networks

Internet

Ecological Networks

Graphs \leftrightarrow Networks

Graph (Network)	Vertexes (Nodes)	Edges (Arcs)	Flow
Communications	Telephones exchanges, computers, satellites	Cables, fiber optics, microwave relays	Voice, video, packets
Circuits	Gates, registers, processors	Wires	Current
Mechanical	Joints	Rods, beams, springs	Heat, energy
Hydraulic	Reservoirs, pumping stations, lakes	Pipelines	Fluid, oil
Financial	Stocks, currency	Transactions	Money
Transportation	Airports, rail yards, street intersections	Highways, railbeds, airway routes	Freight, vehicles, passengers

Graph Theory : Terminology

Directed Graph (Digraph)

An edge $e \in E$ of a directed graph is represented as an ordered pair (u, v), where $u, v \in V$. Here u is the initial vertex and v is the terminal vertex. Also assume here that $u \neq v$

$$
\begin{aligned}
& V=\{1,2,3,4\},|V|=4 \\
& E=\{(1,2),(2,3),(2,4),(4,1),(4,2)\},|E|=5
\end{aligned}
$$

Undirected Graph

An edge $e \in E$ of an undirected graph is represented as an unordered pair $(u, v)=(v, u)$, where $u, v \in V$. Also assume that $u \neq v$

$$
\begin{aligned}
& V=\{1,2,3,4\},|V|=4 \\
& E=\{(1,2),(2,3),(2,4),(4,1)\},|E|=4
\end{aligned}
$$

Weighted Graph

A weighted graph is a graph for which each edge has an associated weight, usually given by a weight function w: $E \rightarrow \mathrm{R}$

Adjacent, neighbor, incident

- Two vertices are adjacent and are neighbors if they are the endpoints of an edge
- Example:
- A and B are adjacent
- A and D are not adjacent
- The edge e_{i} is said to be incident upon v_{j}, v_{k} if e_{i} is an edge whose endpoints are $\left(v_{j}, v_{k}\right)$, e.g., edge 1 is incident upon A, B.
- Degree of a vertex v_{k} is the number of edges incident upon v_{k}. It is denoted as $d\left(v_{k}\right)$. e.g., $d(\mathrm{~A})=2$

Complete Graphs

A complete graph is an undirected/directed graph in which every pair of vertices is adjacent. If (u, v) is an edge in a graph G, we say that vertex v is adjacent to vertex u.

4 nodes and (4*3)/2 edges
V nodes and $V^{*}(V-1) / 2$ edges

3 nodes and $3 * 2$ edges
V nodes and $V^{*}(V-1)$ edges

Complement

- Complement of G : The complement G ' of a simple graph G :
- A simple graph
- $V\left(G^{\prime}\right)=V(G)$
- $E\left(G^{\prime}\right)=\{u v \mid u v \notin E(G)\}$

Loop, Multiple edges, Simple Graph

- Loop : An edge whose endpoints are equal
- Multiple edges : Edges have the same pair of endpoints

- Simple graph : A graph has no loops or multiple edges

It is not simple.

It is a simple graph.

Subgraphs

- A subgraph of a graph \boldsymbol{G} is a graph \boldsymbol{H} such that:
- $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ and
- The assignment of endpoints to edges in \boldsymbol{H} is the same as in \boldsymbol{G}.
- Example:: $\boldsymbol{H}_{\mathbf{1}}, \boldsymbol{H}_{\mathbf{2}}$, and $\boldsymbol{H}_{\mathbf{3}}$ are subgraphs of \boldsymbol{G}

Clique and Independent set

- A Clique in a graph: a set of pairwise adjacent vertices (a complete subgraph)
- An independent set in a graph: a set of pairwise nonadjacent vertices
- Example:
- $\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{u}\}$ is a clique in \boldsymbol{G}
- $\{\boldsymbol{u}, \boldsymbol{w}\}$ is an independent set

Degree of a Vertex

Degree of a vertex in an undirected graph is the number of edges incident on it. In a directed graph, the out degree of a vertex is the number of edges leaving it and the in degree is the number of edges entering it

The degree of vertex
2 is 3

The in degree of vertex 2 is 2 and the in degree of vertex 4 is 1

Walks and Paths

A walk is an alternating sequence of vertices and edges, e.g. $\left(V_{2}, e_{3}, V_{3}, e_{2}, V_{6}, e_{4}, V_{5}, e_{1}, V_{3}\right)$
A simple path is a walk with no repeated nodes, e.g. $\left(V_{1}, V_{4}, V_{5}, V_{2}, V_{3}\right)$

A cycle is a closed path $\left(v_{1}, v_{2}, \ldots, v_{L}\right)$ where $v_{1}=v_{L}$ with no other nodes repeated and $L>3$, e.g. $\left(V_{1}, V_{2}, V_{5}\right.$, V_{4}, V_{1})
A graph is called cyclic if it contains a cycle; otherwise it is called acyclic

Connected Graphs

An undirected graph is connected if you can get from any node to any other by following a sequence of edges OR any two nodes are
 connected by a path

A directed graph is strongly connected if there is a directed path from any node to any other node

*A graph is sparse if $|E| \approx|V|$
*A graph is dense if $|E| \approx|V|^{2}$

Bipartite Graph

A bipartite graph
is an undirected graph
$G=(V, E)$ in which V can be partitioned into 2 sets
$V 1$ and $V 2$ such that ($u, v) \in E$ implies either
$u \in V 1$ and $v \in V 2$ OR
$v \in V 1$ and $u \in V 2$.

An example of bipartite graph application to telecommunication problems can be found in, C.A. Pomalaza-Ráez, "A Note on Efficient SS/TDMA Assignment Algorithms," IEEE Transactions on Communications, September 1988, pp. 1078-1082.

Applications of Bipartite Graph

OStable marriage: men = red, women = blue.
OScheduling: machines = red, jobs = blue.
OMetabolic networks: metabolites
= blue, enzymes = red.

Adjacency matrix

- Let $G=(V, E),|V|=n$ and $|E|=m$
- The adjacency matrix of G written $A(G)$, is the n -by-n matrix in which entry $a_{i, j}$ is the number of edges in G with endpoints $\left\{v_{i}, v_{j}\right\}$.

w
x
z
$z$$\left(\begin{array}{llll}w & x & y & z \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$

Incidence Matrix (undirected)

- Let $G=(V, E),|V|=n$ and $|E|=m$
- The incidence matrix $M(G)$ is the n-by-m matrix in which entry $m_{i, j}$ is 1 if v_{i} is an endpoint of e_{i} and otherwise is o. Note that for digraphs, the entry is 1 for "outward" connection, and -1 for "inward".

$$
\begin{aligned}
& \\
& w \\
& x \\
& y \\
& z
\end{aligned}\left(\begin{array}{lllll}
a & b & c & d & e \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Isomorphism

- An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v$ $\in E(G)$ if and only if $f(u) f(v) \in E(H)$
- We say " G is isomorphic to H ", written $G \cong H$

Directed Graph and Its edges

- A directed graph or digraph G is a triple:
- A vertex set V(G),
- An edge set $E(G)$, and
- A function assigning each edge an ordered pair of vertices.
- The first vertex of the ordered pair is the tail of the edge
- The second is the head
- Together, they are the endpoints.
- An edge is said to be from its tail to its head.
- The terms "head" and "tail" come from the arrows used to draw digraphs.

Directed Graph and its edges

- As with graphs, we
- assign each vertex a point in the plane and
- each edge a curve joining its endpoints.
- When drawing a digraph, we give the curve a direction from the tail to the head.
- When a digraph models a relation, each ordered pair is the (head, tail) pair for at most one edge.
- In this setting as with simple graphs, we ignore the technicality of a function assigning endpoints to edges and simply treat an edge as an ordered pair of vertices

Loop and multiple edges in directed graph

- In a graph, a loop is an edge whose endpoints are equal.
- Multiple edges are edges having the same ordered pair of endpoints.
- A digraph is simple if each ordered pair is the head and tail of the most one edge; one loop may be present at each vertex.
- In the simple digraph, we write $u v$ for an edge with tail u and head v.
- If there is an edge form u to v, then v is a successor of u, and u is a predecessorof v.
- We write $u \rightarrow v$ for "there is an edge from u to v ".

Multiple edges

Path and Cycle in Digraph

- A digraph is a path if it is a simple digraph whose vertices can be linearly ordered so that there is an edge with tail u and head v if and only if v immediately follows u in the vertex ordering.
- A cycle is defined similarly using an ordering of the vertices on the cycle.

Adjacency Matrix and Incidence-Matrix of a Digraph

- In the adjacency matrix $A(G)$ of a digraph G, the entry in position i, j is the number of edges from v_{i} to v_{j}.
- In the incidence matrix $M(G)$ of a loopless digraph G, we set $m_{i, j}=+1$ if v_{i} is the tail of e_{j} and $m_{i, j}=-1$ if v_{i} is the head of e_{j}.

A(G)

G

$M(G)$

Trees

Let $G=(V, E)$ be an undirected graph.
The following statements are equivalent,

1. G is a tree
2. Any two vertices in G are connected by unique simple path
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected
4. G is connected, and $|E|=|V|-1$
5. G is acyclic, and $|E|=|V|-1$
6. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle

Spanning Tree

A tree (T) is said to span $G=(V, E)$ if $T=\left(V, E^{\prime}\right)$ and $E^{\prime} \subseteq E$

For the graph shown on the right two possible spanning trees are shown below
For a given graph there are
 usually several possible spanning trees

Planarity

- Another problem in graph theory also has a simple solution that has major consequences.
- The question of planarity refers to whether a graph can be drawn in the plane without any edges crossing any other ones.
- Example : Connect 3 houses to 3 utilities

H 1	H 2	H 3

U1 U2 U3
Draw edges from each U to each H without crossing edges.

An Attempted Solution

The graph connecting all vertices of a set of three to all vertices to another set of three is called $\mathrm{K}_{3,3}$
This graph is not planar. That is to say, it is not possible to draw it in the plane with no edges crossing others.

- K_{n} is called the complete graph on n vertices. It is the graph one gets by starting with n vertices and drawing an edge between each pair.
- K_{n} is planar or not depending upon n.

K_{n} ts Not Planar for $\mathrm{n}>4$

- As shown below, K_{5} is not planar.
- If n is bigger than or equal to 5 then K_{n} couldn't possibly be planar.

C

Planar Graphs --- A Theorem

- All non-planar graphs (those that cannot be drawn in the plane without crossing edges) contain either a copy of K_{5} or $\mathrm{K}_{3,3}$ as a sub-graph.
- Conversely, if neither K_{5} nor $\mathrm{K}_{3,3}$ is to be found embedded anywhere inside a graph, that graph will be planar.

Why's it important?

- Any physical interpretation of a graph that wants to avoid crossings of edges needs to take this into account.
- The most obvious examples are printed circuit boards and micro-chips

