

Introduction to IBM Rational
Rhapsody
QQ001
ERC 1.0
Student Workbook

IBM Corporation
Rational software

U.S. Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this documentation in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify
the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You
can send license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions of
the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web
sites are not part of the materials for this IBM product and use of those Web sites is at your own
risk.

Licensees of this program who wish to have information about it for the purpose of enabling: (i)
the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged, should
contact:

Intellectual Property Dept.
IBM Corporation
20 Maguire Road
Lexington, Massachusetts 02421-3112
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results may vary. Users of
this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information in softcopy, the photographs and color illustrations may not
appear.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other product and service
names might be trademarks of IBM or other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.html

x Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

x IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government Commerce

x Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron,
Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.
Intel trademark information

x Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

http://www.ibm.com/legal/copytrade.shtml
http://www.intel.com/sites/corporate/tradmarx.htm#Trademark

x Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.
Microsoft trademark guidelines

x ITIL is a registered trademark, and a registered community trademark of the Office of
Government Commerce, and is registered in the U.S. Patent and Trademark Office

x UNIX is a registered trademark of The Open Group in the United States and other
countries.

x Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

x Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

http://www.microsoft.com/about/legal/intellectualproperty/trademarks/usage/default.mspx

Lab 1: Starting a new IBM Rational Rhapsody project
Objectives
After completing this lab, you will be able to:

Ź Start a new Rational Rhapsody project that is a vending machine

Ź Create an Object Model (Requirement) diagram

Ź Add nested requirements to the diagram

Ź Resize elements on the diagram

Scenario
A new VendingMachine project is created in Rational Rhapsody. Four Money Management requirements are added.
Two separate Object Model (requirement diagrams) are created to show common diagram editing techniques. In a
real development effort, you would take a less academic approach, and probably use just one diagram to illustrate
the requirements hierarchy.

© Copyright IBM Corp. 2010 Lab 1 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Course materials may not be reproduced in whole or in part without the prior written permission of IBM. !

Introduction to Rational Rhapsody — Student Workbook
!
!
!
Task 1: Start a new project

!
In this task, you will start Rational Rhapsody and begin a new project.

!

1. Create a work directory where you can save Rational Rhapsody project files. For example, P:\work.
!

2. Launch Rational Rhapsody.

a. Select Start > All Programs > IBM Rational > IBM Rational Rhapsody for C++ 8.0

b. Close the Welcome to Rhapsody screen.
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Lab 1 - 2 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM. !

Lab 1 – Starting a new Rational Rhapsody project
!
!
!

!

4. Start a new Rational Rhapsody project.

a. Select File > New

Or
!

b. Select the blank paper icon

5. Name the project VendingMachine and select a writable directory, such as P:\Work. Keep Default as the
Project Type and Project Settings.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

© Copyright IBM Corp. 2010 Lab 1 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM. !

Introduction to Rational Rhapsody — Student Workbook
!
!
!

!

6. Click OK and Yes when prompted with a question about creating the new project directory. Rational Rhapsody
creates an initial Object Model diagram.

!

7. Expand the Packages category. Change the name of the Default package to Analysis.
!

a. Double-click the package name and change the name in the Features > Name field, or right-click the name
in the browser, right-click again and edit the name in the browser.

!

8. Right-click the Packages category, and click Add new package. Name the new package Design.

9. To add a description to the Analysis package, right-click the package name and select Features > Description.
Add the following description for the Analysis package: Systems level model including
requirements and use case analysis.

!
Task 2: Create a diagram
1. Create a subpackage under the Analysis package by right-clicking Analysis and selecting Add new package.

Name it Requirements.
!

2. Right-click the Requirements package, select Add New > Diagrams > Object Model Diagram (Requirements
diagram). Name it Requirements Overview.

!
3. Go to View > Toolbars and verify the Drawing toolbar is checked. Confirm that the Drawing toolbar

appears to the right of the Object Model diagram.
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Lab 1 - 4 © Copyright IBM Corp. 2010

 Lab 1 – Starting a new Rational Rhapsody project

4. Use the Common section of the Drawing toolbar to find the requirement icon and add a requirement called
Money Management to the Requirements Overview diagram. Right-click the Money Management
requirement to get the Features. Add the following specification to the Features > General>Specification: The
system shall handle ‘Hard’ and ‘Electronic’ money.

5. Right-click the Money Management requirement and select Notation Style. Confirm that Box Style is selected.

6. Add three new requirements under the Money Management requirement by right-clicking on Money
Management in the browser and selecting Add New>Requirement. Name them as follows:

a. Coin drop throughs

b. Currency denominations

c. No change available

d. Confirm the new requirements are nested under the Money Management requirement as follows:

7. In the Features > General tab for each of the new requirements, enter the following text into the Specification
field for the respective requirements (to match the order in step 6).

a. The vending machine shall not accept deposits when all product
categories are sold out or when the deposit total has already exceeded
the maximum priced product. Coins deposited in these situations shall
drop through to the coin return.

b. The vending machine shall accept and return any combination of U.S.
denomination coins.

c. When no change is available, the vending machine shall notify the user
that the exact change is required.

© Copyright IBM Corp. 2010 Lab 1 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Richard Rutledge

Introduction to Rational Rhapsody — Student Workbook

d. Drag the requirements from the browser onto the Requirements Overview diagram.

8. Add dependencies from the Money Management requirement to each of the other three requirements to
visualize requirement containment.

a. Select the dependency icon on the drawing toolbar and draw a dependency from the Money
Management requirement to the No change available requirement. Draw another dependency from
Money Management to Currency denominations and from Money Management to Coin drop
throughs.

b. Right-click each new dependency. In the Features>General>Stereotype field, select the radio button for
contain in Requirements. If «contain» is not available in the selections, select the New radio button
and name the new stereotype contain.

Lab 1 - 6 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Lab 1 – Starting a new Rational Rhapsody project

9. You can use the Layout toolbar to align the requirements on the diagram. You need to select two requirements
on the diagram to activate the Layout

toolbar .

10. Create a new Object Model diagram called Structured Requirements in the Requirements package.
This diagram is used to practice the editing of graphically nested elements.

11. Drag the Money Management requirement from the browser onto the new diagram and use the

Specification/Structured view icon on the Zoom toolbar to switch its view to Structured View. If the icon
is greyed out, click an element in the diagram.

12. Enlarge the Money Management requirement by dragging a corner anchor.

13. Drag the three nested requirements from the browser into the diagram’s Money Management requirement.

© Copyright IBM Corp. 2010 Lab 1 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Lab 1 - 8 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Money Management
«Requirement»

No change available
«Requirement»

When no change is available, the vending machine shall notify
the user that exact payment is required.

Currency denominations
«Requirement»

The vending machine shall accept and return any combination
of US denomination coins.

Coin drop throughs
«Requirement»

The vending machine shall not accept deposits when all product
categories are sold out or when the deposit total has already
exceeded the maximum priced product. Coins deposited in
these situations shall drop through to the coin return.

14. If the contain dependencies appear on your diagram, right-click each dependency and select Remove from
View.

15. Select the border of the Money Management requirement and resize it. Note that the contents expand as the
border expands.

16. To expand the container without resizing its contents, hold the Alt key before dragging. Alternatively, use Edit
> Resize Without Contained.

17. Save the model.

Remember to use the Layout toolbar and Resize without Contained throughout the upcoming lab exercises.

Lab 2: Set properties and create diagrams
Objectives
After completing this lab, you will be able to:

Ź View and set a property for a project

Ź Create a use case diagram

Ź Create a black-box activity diagram

Ź Create a use case-level sequence diagram

Ź Allocate activities to subsystems

Scenario
You have started a new project and now you will build on it by adding more diagrams. A system-level use case
diagram is created in this lab. The requirements will be realized by the design, but first are linked to use cases.
Each use case describes a primary function of the vending machine system and is traced to one or more requirements
to ensure all requirements are satisfied. The functional behavior of the black-box system is elaborated on using an
activity diagram and sequence diagram to describe the services to be provided by the system. Three subsystems are
introduced, and the activity diagram is updated to show the allocation of the services across the subsystems.

© Copyright IBM Corp. 2010 Lab 2 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Task 1: Set a property
In this task, you will bring up the properties for the Rational Rhapsody project and make a modification.

1. Your Vending Machine project is open. Right-click the project and select Features.

2. In the Features window, select Properties.

3. The property view filter makes it easy to locate properties. Select View > Filter and type predefined in the
Filter text box. What do you see?

Note that the properties with predefined in the name appear as shown above. And currently the predefined types
appear in the browser.

Lab 2 - 2 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 2 – Set properties and create diagrams

4. You can set a property to remove the predefined types packages from the browser view. Select the
Browser:Settings:ShowPredefinedPackage property so the check mark is cleared. Click OK, and observe that
the predefined types packages are no longer shown.

5. Click elsewhere in the Properties tab to confirm that the modified property is highlighted, and observe that the
predefined types packages are no longer shown.

6. Select View Locally Overridden on the top left of the Properties dialog, to see all the properties that have been
overridden at the project level.

Task 2: Create a use case diagram
In this task you create a use case diagram and add actors and use cases to it.

1. Add a new use case diagram called Primary Uses in the Analysis package.

a. Right-click the Analysis package and select Add New > Diagrams > Use Case Diagram.

2. Add actors, use cases, and associations to the diagram as shown here:

© Copyright IBM Corp. 2010 Lab 2 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

a. Add two actors using the actor icon on the Drawing toolbar: name one Buyer and the other Supplier.

b. Add three new use cases: Buy Product with Cash, Buy Product with Smartcard,
Restock System.

c. Use the Layout toolbar to align and space the use cases.

d. Draw a boundary box around the use cases naming it Vending System. Here, the boundary box sets
the context of the use cases as being the entire vending machine system.

Note - Later in development when the subsystems have been determined, other use case diagrams would be
created for each subsystem. At the subsystem level, the boundary box would have the name of a subsystem and
the use cases would be in the context of that subsystem, and the actors would be Buyer, Supplier, or another
subsystem.

e. Draw an association from the Restock System use case to the Supplier.

f. Draw an association from the Buy Product with Smartcard use case to the Supplier and to the Buyer.

g. Draw an association from the Buy Product with Cash use case to the Buyer and the Supplier.

3. Select the Use Case View in the Rational Rhapsody browser to view the newly created elements.

Lab 2 - 4 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 2 – Set properties and create diagrams

4. Switch back to the Entire Model view.

5. Right-click the project at the project level and select Format. Select UseCase as the Meta-class, select Format
selected meta-class. Change the fill color of the use case to yellow. This will change all use cases in the project.

6. Change the format of the actors at the project level to a color of your choice.

7. Except for the Buy Product with Cash use case, add a description of your choice for the use cases.

a. For the Buy Product with Cash use case, add the following description:
The vending machine accepts US denominations of quarters (25 cents), dimes
(10 cents), and nickels (5 cents).

Purchases can be cancelled prior to product selection.

The vending machine returns change to the user after the product is
selected.

When no change is available, the vending machine provides a visual
indication that exact change is required.

© Copyright IBM Corp. 2010 Lab 2 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

You created a few requirements in the last lab. In a real development effort, you would have many more
requirements. Each of the functional requirements should be satisfied by one or more use cases. If you were using
SysML, you would use a <<satisfy>> dependency to show the linkage from a use case to a requirement. With
UML, a <<trace>> dependency is used.

The requirements are organized into functional groups, with each functional group aligned with a use case. For
example, the three requirements are satisfied by the Buy Product with Cash use case. This traceability linkage can
be tracked and shown in Rational Rhapsody using a matrix, in the browser, or on a diagram as shown below.

Task 3: Create a black-box activity diagram
In this task you create a black-box activity diagram. A black-box activity diagram has a system-level scope, where

Lab 2 - 6 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 2 – Set properties and create diagrams

the internal components of the system are not being considered. In a black-box activity diagram, each action
describes the activities (or services) provided by the system. If swimlanes are used, all but the system swimlane are
represented by actors.

1. Add a new activity diagram to the Buy Product with Cash use case. Right-click the Buy Product with Cash
use case and select Add New > Diagrams > Activity.

2. Add swimlanes, activities, and flows to the diagram as shown in the following figure:

a. Locate the action icon on the diagram tools and add the following four actions to the diagram:

insertMoney, updateTotal, displayTotal, and enableProducts.

b. Add an initial flow to the insertMoney action.

c. Add a control flow from the insertMoney action to the updateTotal action.

d. Add a control flow from updateTotal to displayTotal, and from displayTotal to enableProducts.

e. Add a swimlane frame and a swimlane divider to create two swimlanes. Name the swimlanes customer
and machine.

3. The customer swimlane will be represented by the Buyer actor from the use case diagram.

a. Open the customer swimlane’s features dialog and in the General tab select Represents:Buyer in Analysis.

4. The project browser should look as follows:

© Copyright IBM Corp. 2010 Lab 2 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Task 4: Create a use-case level sequence diagram
Sequence diagrams can help describe the scenarios of a use case. Use case-level sequence diagrams have just
one use case and one or more actors. The use case represents the system, but only in the context of the use case.

1. Add a new sequence diagram called Buyer inserts coin in the Analysis package.

2. Confirm that the Operation Mode is set to Analysis.

3. Drag the Buyer actor from the browser onto the sequence diagram.

4. Drag the Buy Product with Cash use case from the browser onto the diagram.

Lab 2 - 8 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 2 – Set properties and create diagrams

5. Use the Message icon on the diagram toolbar and draw the message from the Buyer to Buy Product with
Cash. This will create a synchronous message. Name the message moneyInserted

6. Draw a message from Buy Product with Cash to itself and name the message updateTotal.

7. Draw another message from Buy Product with Cash to itself and name the message displayTotal.

8. Draw another message from Buy Product with Cash to itself and name the message enableProducts.

© Copyright IBM Corp. 2010 Lab 2 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Note that each reflexive message matches the activities in the Buy Product with Cash activity diagram. Generally
speaking, activity diagrams are preferred by systems engineers, and sequence diagrams are preferred by software
developers. As you will see in the next lab, sequence diagrams play a key role in the transition from use case
analysis to a software design.

Several sequence diagrams may be used to describe use case scenarios, and each can be set as a reference from the
use case.

9. Right-click the Buy Product with Cash use case in the browser and select Add New > Diagrams >
Referenced Sequence diagram. In the drop-down box select Buyer inserts coin in Analysis.

Task 5: Allocate activities to subsystems
In this task you will allocate the system-level activities to subsystems. Rational Rhapsody and SysML can be used
to perform a trade study to evaluate candidate architectures. However, trade studies are outside the scope of this
lesson. For this lab, assume that there are three primary subsystems: the MoneyHandler, FrontPanel, and
ProductHandler subsystems.
Lab 2 - 10 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 2 – Set properties and create diagrams

1. Using the swimlane divider, break the machine swimlane into two more swimlanes and name the swimlanes
MoneyHandler, FrontPanel, ProductHandler. Replace the machine swimlane with either
MoneyHandler, FrontPanel, or ProductHandler. Move the actions to be in the appropriate swimlane
as shown in the picture below:

2. Save the model.

© Copyright IBM Corp. 2010 Lab 2 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Lab 2 - 12 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 3: Create an Object Model diagram
Objectives
After completing this lab, you will be able to:

Ź Create an Object Model diagram

Ź Create a class-level sequence diagram

Ź Generate and build source code

Scenario
A Rational Rhapsody Object Model diagram (OMD) is a general purpose structural diagram that can show classes,
packages, objects, and the relationships between them. – A class diagram (object model diagram) is created in this
lab showing the relations between the subsystems. A class-level sequence diagram is created to elaborate the
messages defined in the Lab 2 use-case level sequence diagram. These messages are realized as new operations on
the classes. You will see that Rational Rhapsody generates code for the classes and relations.

Task 1: Add a new Object Model diagram to the model
In this task you add a new Object Model diagram to the VendingMachine project.

1. Add a new Object Model diagram called Subsystem Overview to the Design package.

2. Add three classes to the Object Model diagram. Name them FrontPanel, ProductHandler,
MoneyHandler. Move the classes on the diagram so MoneyHandler is in the top left, ProductHandler
in the top right, and FrontPanel in the bottom left. Resize the classes and align their edges using the Layout
toolbar.

3. Set the stereotype of all three classes to Subsystem.

© Copyright IBM Corp. 2010 Lab 3 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

4. Add a directed association between the MoneyHandler and the ProductHandler class. End1 has
multiplicity set to 1.

5. Add a symmetric association between the MoneyHandler and the FrontPanel class. End1 and End2
of the association have multiplicity set to 1.

Lab 3 - 2 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 3 – Create an Object Model Diagram

In the Subsystem Overview diagram, the associations will enable object communication in support of the
Buyer inserts coin sequence diagram. Each instance of MoneyHandler communicates with one instance of
ProductHandler, and knows that instance by the role name itsProductHandler.

6. Select the association between MoneyHandler and FrontPanel, and use the association’s Display options to

turn off the display of role names of the association ends.

© Copyright IBM Corp. 2010 Lab 3 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Following are the Display Options for the association between MoneyHandler and ProductHandler:

Following are the Display Options for the association between MoneyHandler and FrontPanel:

Lab 3 - 4 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 3 – Create an Object Model Diagram

Task 2: Detail the sequence diagram
In this lab you will elaborate the use-case level sequence diagram to include classes and their messages. You also
create operations by realizing the model, and you update the operations with arguments and return types.

1. Place a copy of the Buyer inserts coin sequence diagram into the Design package.

a. Select the diagram in the browser, press and hold the Ctrl key, and drag it to the Design package. Rename
the copy to Money inserted.

2. Open the new Design::Money inserted sequence diagram.

3. Drag the MoneyHandler, FrontPanel, and ProductHandler classes from the browser onto the Money
inserted sequence diagram, move the messages by dragging their end points, and change the message names as
shown following. Change the text on the message by editing it right where it is shown on the diagram. When
completed, remove from view the original Buy Product with Cash use case instance line.

© Copyright IBM Corp. 2010 Lab 3 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

4. With the Money inserted sequence diagram as the active diagram, select Edit > Select > Select Un-Realized
from the main menu.

5. Select Edit > Auto Realize from the main menu. This causes the messages to become realized as operations in
the classes.

6. Confirm that the operations now show up on the Subsystem Overview Object Model diagram as shown below.
You may need to change your Display options.

7. Resize and move the classes in the Object Model Diagram as needed.

Lab 3 - 6 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 3 – Create an Object Model Diagram

8. Update the updateTotal operation with a return type as follows:

a. Expand the MoneyHandler class in the Design package of the browser.

b. Select the updateTotal operation in the Operations category. In the Features>General tab, set the
Returns Type to int. Click OK.

.

9. Add arguments to the displayMoneyTotal and enableProducts operations.

a. Expand the FrontPanel class in the Design package of the browser. Select the displayMoneyTotal
operation in the Operations folder. In the Features>Arguments tab, add a new argument of type int and
name the argument total. Click OK.

© Copyright IBM Corp. 2010 Lab 3 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

b. Expand the ProductHandler class in the Design package of the browser. Add a total argument of type
int to the enableProducts operation.

Lab 3 - 8 © Copyright IBM Corp. 2010

10. Double-click the MoneyHandler class and in the Attributes tab of the Features dialog, add a new attribute
called total_deposit to the class. Assign Private visibility.

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 3 – Create an Object Model Diagram

11. Add an enumerated type. Right-click the Design package and select Add New>Type. Name the new type
CoinType.

a. In the Features>General>Kind field of the type, select Enumeration.

b. In the Literals tab, add enumerations as shown.

12. Right-click the MoneyHandler class and select Add New > Operation to create a new processCoin
operation for it.

a. Add an argument coin of type CoinType to the processCoin operation.

© Copyright IBM Corp. 2010 Lab 3 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

b. Right-click the processCoin operation in the browser and select the Features>Implementation tab.
Update the implementation of the processCoin operation as follows:

total_deposit = total_deposit + coin;

//Enable racks for all products that can be afforded

itsProductHandler->enableProducts(total_deposit);

//Display how much money has been deposited

itsFrontPanel->displayMoneyTotal(total_deposit);

13. Add a description to the ProductHandler class as follows:

Controls and monitors all racks. Reports when a rack is empty.

14. Right-click the ProductHandler class on the Object Model diagram and select Display Options. Click the
Compartments button and confirm that you can see the Description as Available.

Lab 3 - 10 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Course materials may not be reproduced in whole or in part without the prior written permission of IBM. !

Lab 3 – Create an Object Model Diagram
!
!
!

!

15. Add Description as a third compartment.
!

!

16. Confirm that you can see the description displayed in a compartment of the ProductHandler class.

17. Save your work.
!

Task 3: Build the Model
Generating and building the source code enables Rhapsody to play a key role in iterative software development. Just as you would
frequently test the quality of your handwritten source code, use Rhapsody to iteratively generate code from the model, and to
invoke the build. Consider this next task your first build iteration.

!

1. Save the Model.
!

© Copyright IBM Corp. 2010 Lab 3 - 11

Introduction to Rational Rhapsody — Student Workbook

Lab 3 - 12 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2. In the browser at the top level of the project, right-click the DefaultConfig. Confirm the DefaultConfig
Features > Settings > Environment> is set to Cygwin or your chosen compiler.

3. Select Code > Generate > DefaultConfig. (If you are using Rhapsody Designer for Systems Engineers, you

can do Smart Build - note that this build includes Make and Run. You will need to close the simulation –
this will be covered in Lab 5.)

4. When prompted to create a new directory, answer Yes. Save the model.

5. Select the Make icon from the top toolbar.

6. If the build fails, double-click the first line of the error message. Troubleshoot the errors starting at the top.
After each error is fixed build the model again.

7. Save the model.

Richard Rutledge

Richard Rutledge

Richard Rutledge

Richard Rutledge

Richard Rutledge

Richard Rutledge

Richard Rutledge

Richard Rutledge

Richard Rutledge

Richard Rutledge
MSVC

Lab 4: Navigate the model and add a state machine
diagram
Objectives
After completing this lab, you will be able to:

Ź Create hyperlinks to facilitate model navigation

Ź Create a state machine diagram

Ź Build the model

Scenario
In this lab several hyperlinks are added to the model to facilitate navigation throughout the model. Hyperlinks can
add to the readability of a model when used to show related diagrams and model elements. A state machine is used
to describe the behavior of the MoneyHandler class. You will see that Rhapsody generates code for the state
machine.

© Copyright IBM Corp. 2010 Lab 4 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Task 1: Create a hyperlink
In this task you create several types of hyperlinks. Hyperlinks can point to diagrams, model elements, files, or web
sites. Hyperlinks aid in model navigation and understanding, and are particularly helpful when used to tell a story
by guiding the reader through the model.

1. Find the Design::MoneyHandler class in the browser, right-click and select Add new > Relations >
Hyperlink.

2. Open the Features of the hyperlink . For the Text to display, confirm the Free Text radio button is selected and
enter Buyer inserts coin.

3. Browse to find the Money inserted sequence diagram and select it as the Link target. Click OK.

4. Double-click Analysis::Buy Product with Cash use case to launch the Features dialog.

5. Highlight some text in the use case description and create a hyperlink from the text to a model element of your
choice. To do this, right-click the text and select Hyperlink.

Lab 4 - 2 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4 – Navigate the model

6. Find the Comment icon in the Drawing:Common toolbar. Add the following comment to the
Design:SubSystem Overview Object Model diagram.
TODO – make sure weight and size are checked.

7. Highlight some text in the new comment, right-click the text and hyperlink it to the About The United
States Mint.htm file found in your C:/work/Handouts directory. Set the Text to display to Target name.

8. Test the link to confirm that it links correctly.

© Copyright IBM Corp. 2010 Lab 4 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Richard Rutledge

Richard Rutledge

Introduction to Rational Rhapsody — Student Workbook

Task 2: Create a state machine diagram
In this task, you build a new state machine to describe the behavior of the MoneyHandler class..

1. Right-click the MoneyHandler class (on a diagram or in the browser) and select Add New>Diagrams>
Statechart.

2. Confirm that the icon to the link to the statechart appears on the class on the Subsystem Overview OMD.

3. Add an active state to the statechart using the state icon on the drawing toolbar.

4. Add two new states to the statechart inside the active state using the state icon on the drawing toolbar. The two
states are accepting_deposits and rejecting_deposits.

5. Using the icon on the drawing toolbar, draw a default transition to the accepting_deposits state.

6. In the Features > General tab for the default transition, add an action to the action field. The action is

total_deposit = 0;

Lab 4 - 4 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4 – Navigate the model

When the Features dialog is used, Rational Rhapsody automatically displays the trigger, guard, and action with
proper syntax trigger [guard] / action list.

When the trigger, guard, and action list are entered directly on the diagram, you must manually enter the [] and /.
Use Ctrl+Enter to complete an entry.

7. Draw a transition from the accepting_deposits action to rejecting_deposits. Immediately type evDisable on
the transition when you are prompted to name it.. Press Ctrl+Enter to complete the entry. If you miss the
opportunity to type immediately on the transition, click the transition label button on the
drawing toolbar and then click the transition to type the text.

© Copyright IBM Corp. 2010 Lab 4 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

8. Draw a transition from the accepting_deposits action to itself. Immediately type
evCoin/processCoin(params->value); You are creating an action by putting a slash in the name.
The first part is a trigger and the second part is an action.

9. On the active state, add a transition to itself. Type evReset immediately on the transition.

10. In the Rational Rhapsody browser under Design:Events, in the Features > Arguments tab add to the evCoin
event an argument named value of type CoinType.

If an event has an argument, then Rational Rhapsody provides a pointer called params that can be used on the
transition where the event occurs to get access to the argument.

Lab 4 - 6 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4 – Navigate the model

Task 3: Build the Model
1. Save the model.

2. Select Code > Generate > DefaultConfig. (If you are using Rhapsody Designer for Systems Engineers, you

can do Smart Build - note that this build includes Make and Run. You will need to close the simulation.
Simulation is covered in Lab 5.)

3. Select the Make icon from the top toolbar.

4. If the build fails, double-click the first line of the error message. Troubleshoot the errors starting at the top.
After each error is fixed build the model again.

5. Save the model.

© Copyright IBM Corp. 2010 Lab 4 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Lab 4 - 8 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5: Model Execution
Objectives
After completing this lab, you will be able to:

Ź Build a report on the model

Ź Execute and test the model

Scenario
In this lab, two reports are generated on the model. The first is a simple report, generated using a fixed format. The
second report uses ReporterPLUS to generate a heavily hyperlinked HTML report that includes diagrams with
navigable hot spots. Source code is then generated from the model, built, and executed. Model execution is used to
observe object interactions, and also to unit test a reactive class. Finally, the animated sequence diagram is
compared to the expected scenario as captured in Lab 3, and two discrepancies are found.

© Copyright IBM Corp. 2010 Lab 5 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Task 1: Report on model
In this task you create a new report using the standard Report on Model and then you use one of the ReporterPLUS
ready to use templates to create a report.

1. In the browser, right-click the top level VendingMachine project. Open the Features>Properties tab for the
project. View all properties.

2. Confirm the General.Graphics.ExportedDiagramScale property for the project is set to
FitToOnePage.

3. Select Tools > Report on Model.

4. Select the report settings of your choice and click OK.

5. A simple rtf format file is created. The Report on Model format cannot be customized by the user.

6. View and then close the new report.

7. Select Tools > ReporterPLUS > Create/edit template with ReporterPLUS.

8. When you are prompted with the question “What would you like to do?” answer Generate HTML page.

9. When you are prompted to select a template, browse to find the Rhapsody HTML Exporter.tpl.

10. Click Next>Open and browse to open the VendingMachine model to report on. Name the new report
mynewreport. Generate the report. The report takes a few minutes to generate. When you are prompted with
“Do you wish to open the report now” answer Yes.

11. Examine and close the HTML report.

Task 2: Execute the model
In this task you execute the model to compile and generate code and validate the model to ensure correctness.

1. Create a new Build Overview Object Model diagram in the Design package.

2. Drag the MoneyHandler, FrontPanel, and ProductHandler classes from the browser onto the
diagram.

3. Right-click on the two red associations that are on the diagram and select Display Options>Remove from
View. Do not select Delete from Model.

4. Right-click each class on the diagram and select Make an Object. For each class, change to the structured view

by clicking the structured/specification view icon . Resize and align the object boxes. Examine the
diagram.

Lab 5 - 2 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Richard Rutledge

Richard Rutledge

Lab 5 – Report on the model

5. Add links between the classes on the diagram using the link icon. A link is an instantiation of an association,
just like an object is an instantiation of a class. Draw a link from the MoneyHandler class to the
FrontPanel class, and from the MoneyHandler class to the ProductHandler class.

6. Save the model.

7. In the browser at the top level of the project, right-click the DefaultConfig. Set the DefaultConfig
configuration Features > Settings > Environment>Instrumentation mode to Animation. Verify that the
environment setting is Cygwin (or your chosen compiler).

© Copyright IBM Corp. 2010 Lab 5 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

8. Select Code > Generate > DefaultConfig. (If you are using Rhapsody Designer for Systems Engineers you can

do a Full Build or a Smart Build - note that these builds include Make and Run. The animation toolbar
shown in Step 13 will appear after the Build.)

9. Select the Make icon from the top toolbar.

10. If the build fails, double-click the first line of the error message. Troubleshoot the errors starting at the top.
After each error is fixed build the model again.

Lab 5 - 4 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – Report on the model

11. After the build is successful, run the generated application.

12. When the build and run are successful, the model executes, the black console displays and the animation toolbar
is displayed.

13. Click the Go button on the animation toolbar to start the execution.

© Copyright IBM Corp. 2010 Lab 5 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

14. If it does not open automatically, open an animated Money inserted sequence diagram. To do this, select Tools
> Animated Sequence Diagram. Select the Money inserted sequence diagram in the Design package. Note
that if you are using Rhapsody Designer for Systems Engineers, it is called a simulated sequence diagram.

15. The animated sequence diagram has the lifelines of the Buyer inserts coin sequence diagram.

16. While the application is running, use the keyboard Delete key to delete the Buyer lifeline from the animated
sequence diagram.

17. Add an Env lifeline to replace the Buyer lifeline only on the animated sequence diagram by clicking on the

System border icon on the diagram tools and clicking in the diagram.

18. The model is in an idle state waiting for some operations to be called or events to be sent.

19. To generate the evCoin event, right-click the MoneyHandler lifeline in the animated sequence diagram, and
select Generate Event.

Lab 5 - 6 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – Report on the model

20. Select the evCoin event, and specify a value for the argument for evCoin by highlighting value and pressing
Edit. Enter 25 as the number and click Generate. When the event is injected, the animated sequence diagram
records the communication between the objects.

Note that the accepting deposits state is showing on the animated sequence diagram.

© Copyright IBM Corp. 2010 Lab 5 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

21. Reviewing the statechart explains why MoneyHandler called processCoin() in response to evCoin.

22. On the animated sequence diagram, right-click the MoneyHandler lifeline and select Open animated
Statechart. Examine the animated statechart of the MoneyHandler object. The model is again idle and
waiting for events.

23. To generate the evDisable event, right-click the animated statechart, and select Generate Event. Confirm
that MoneyHandler transitions to the rejecting_deposits state.

24. Stop the animation.

25. Close the animated sequence diagram. When asked if you want to save it, click Yes. The animated sequence
diagram is saved into the browser.

Lab 5 - 8 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – Report on the model

26. Select Tools > Sequence Diagram Compare and compare the animated results to see what happened.

Do your results show two significant differences?
x The MoneyHandler::updateTotal() operation is no longer needed since being replaced by

processCoin(). You can delete the updateTotal()operation.

x The calls to FrontPanel::displayMoneyTotal() and
ProductHandler::enableProducts() happened in reverse order.

27. Save the model. You do not need to save the animated diagrams.

© Copyright IBM Corp. 2010 Lab 5 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Lab 5 - 10 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6: Standard Ports
Objectives
After completing this lab, you will be able to:

Ź Add standard ports and contracts to the model

Scenario
In this lab, some of the subsystem interfaces are formalized using standard ports. UML ports are named interaction
points, and specify the provided and required services for the subsystem. Systems engineers commonly use ports to
specify systems and subsystem interfaces, and software developers use ports to implement component-based
development.

Task 1: Add a standard port with a contract that specifies a service

1. To add a new Interfaces package to the model, right-click the Packages category and select Add New
Package.

2. Right-click the new Interfaces package and select Add New>Interface. Name it IProductHandler.

3. Move the enableProducts() operation from the ProductHandler class to the IProductHandler
interface.

4. In the Subsystem Overview Object Model diagram, add ports with contracts as shown in the following figure.

a. Use the port icon to draw a port on the MoneyHandler. Name it product. In the Features > Contract
tab, add the iProductHandler as a Required interface .

© Copyright IBM Corp. 2010 Lab 6 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

b. Use the port icon to draw a port on the ProductHandler. Name it rack. In the Features > Contract tab
add the IProductHandler as a Provided interface.

Lab 6 - 2 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6 – Report on the model

5. The unidirectional association between the classes MoneyHandler and ProductHandler is no longer needed.

Delete from Model only this unidirectional association. The symmetric association between MoneyHandler
and FrontPanel is still needed.

© Copyright IBM Corp. 2010 Lab 6 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

6. Close the Subsystem Overview Object Model diagram, and open the Build Overview Object Model diagram.

a. Move the ports as needed.

b. Delete from Model the uni-directional link between objects itsMoneyHandler and itsProductHandler.

c. Add a new link between the ports on itsMoneyHandler and itsProductHandler.

7. In the browser, click both ports (rack and product) and make them behavioral by selecting Features >
General > Attributes > Behavior (behavioral means the services are provided by the class or block that
contains the port).

Lab 6 - 4 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6 – Report on the model

8. When you are prompted with a question, click Yes to add a realization of the interface to the
ProductHandler class.

9. The ProductHandler class now inherits from the interface IProductHandler.

The interface IProductHandler is the base class of ProductHandler. IProductHandler declares an
abstract operation enableProducts(int).

10. To add an implementation of enableProducts(int) to the ProductHandler class, right-click the
ProductHandler class and select Realize Base Classes.

© Copyright IBM Corp. 2010 Lab 6 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

A dialog is invoked to allow you to implement the abstract operations defined in the interface classes.

11. Select the elements to be implemented by the class ProductHandler by setting the filter to Required, and then
selecting the radio button for enableProducts(). The Edit Code button is now available, and you click
Edit Code to invoke the editor.

12. Add the following code in the editor:
std::cout << total << " cents." << std::endl;

13. Click OK and OK again after you enter the code.

14. Now that the itsMoneyHandler communicates with itsProductHandler through a port, the
processCoin operation’s implementation must be edited. Open the Features > Implementation tab for
MoneyHandler::processCoin(). Change the 2nd source line to use the product port.

total_deposit = total_deposit + coin;

//Enable racks for all products that can be afforded
OUT_PORT(product)->enableProducts(total_deposit);

//Display how much money has been deposited

itsFrontPanel->displayMoneyTotal(total_deposit);

Lab 6 - 6 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6 – Report on the model

15. Save the model.

16. Regenerate, Make, and Run the model. Open the animated Money Inserted sequence diagram. Click Go

on the animation toolbar. On the animated Money Inserted sequence diagram right-click the
MoneyHandler lifeline and inject the evCoin event with a value of 25. The animated sequence diagram
should be the same as it was without ports. The console window should now display 25 cents., showing that
the enableProducts() operation was called via the rack port on the itsProductHandler object.

17. Save and close the model.

© Copyright IBM Corp. 2010 Lab 6 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Introduction to Rational Rhapsody — Student Workbook

Lab 6 - 8 © Copyright IBM Corp. 2010

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

You have now completed the hands-on lab exercise. You have used ports as named interaction points that are typed
by interfaces. Ports specify the inputs and outputs of the port's class (subsystem). Ports provide a compact graphical
notation, and are particularly useful for clearly defining the interfaces of subsystems and software components. In
lab 6, ports of the same interface type were added to both the MoneyHandler and ProductHandler subsystems.
MoneyHandler and ProductHandler are not dependent on one another. ProductHandler could be replaced by another
subsystem as long as the other subsystem provides the same services as defined by the IProductHandler interface.
The ability to swap in new components is the benefit of component-based development.

	Rational ILT Cover Template
	Lab1
	Lab 1: Starting a new IBM Rational Rhapsody project
	Objectives
	Scenario

	Lab2
	Lab 2: Set properties and create diagrams
	Objectives
	Scenario

	Lab3update
	Lab 3: Create an Object Model diagram
	Objectives
	Scenario

	Lab 4wupdate
	Lab 4: Navigate the model and add a state machine diagram
	Objectives
	Scenario

	lab 5
	Lab 5: Model Execution
	Objectives
	Scenario

	lab 6
	Lab 6: Standard Ports
	Objectives
	Scenario

