
Introduction to Information Retrieval
http://informationretrieval.org

IIR 1: Boolean Retrieval

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-04-09

1 / 60

http://informationretrieval.org


Boolean retrieval

The Boolean model is arguably the simplest model to base an
information retrieval system on.

Queries are Boolean expressions, e.g., Caesar and Brutus

The seach engine returns all documents that satisfy the
Boolean expression.

Does Google use the Boolean model?

7 / 60



Outline

1 Introduction

2 Inverted index

3 Processing Boolean queries

4 Query optimization

5 Course overview

9 / 60



Unstructured data in 1650: Shakespeare

10 / 60



Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus and

Caesar, but not Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and
Caesar, then strip out lines containing Calpurnia.

Why is grep not the solution?

Slow (for large collections)
grep is line-oriented, IR is document-oriented
“not Calpurnia” is non-trivial
Other operations (e.g., find the word Romans near
countryman) not feasible

11 / 60



Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius

Caesar. Entry is 0 if term doesn’t occur. Example: Calpurnia

doesn’t occur in The tempest.

12 / 60



Incidence vectors

So we have a 0/1 vector for each term.

To answer the query Brutus and Caesar and not

Calpurnia:

Take the vectors for Brutus, Caesar, and Calpurnia

Complement the vector of Calpurnia

Do a (bitwise) and on the three vectors
110100 and 110111 and 101111 = 100100

13 / 60



0/1 vectors and result of bitwise operations

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

result: 1 0 0 1 0 0

14 / 60



Answers to query

Anthony and Cleopatra, Act III, Scene ii

Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii

Lord Polonius: I did enact Julius Caesar: I was killed i’ the
Capitol; Brutus killed me.

15 / 60



Bigger collections

Consider N = 106 documents, each with about 1000 tokens

⇒ total of 109 tokens

On average 6 bytes per token, including spaces and
punctuation ⇒ size of document collection is about 6 · 109 =
6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)

16 / 60



Can’t build the incidence matrix

M = 500,000× 106 = half a trillion 0s and 1s.

But the matrix has no more than one billion 1s.

Matrix is extremely sparse.

What is a better representations?

We only record the 1s.

17 / 60



Inverted Index

For each term t, we store a list of all documents that contain t.
Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings

18 / 60



Tokenization and preprocessing
Doc 1. I did enact Julius Caesar: I
was killed i’ the Capitol; Brutus killed
me.
Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

=⇒

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

20 / 60



Generate postings

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

=⇒

term docID

i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

21 / 60



Sort postings
term docID

i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

22 / 60



Create postings lists, determine document frequency
term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

=⇒

term doc. freq. → postings lists

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

i 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

23 / 60



Split the result into dictionary and postings file

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings file

24 / 60



Outline

1 Introduction

2 Inverted index

3 Processing Boolean queries

4 Query optimization

5 Course overview

26 / 60



Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To find all matching documents using inverted index:
1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings file
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings file
5 Intersect the two postings lists
6 Return intersection to user

27 / 60



Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

28 / 60



Intersecting two postings lists

Intersect(p1, p2)
1 answer ← 〈 〉
2 while p1 6= nil and p2 6= nil

3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)
10 return answer

29 / 60



Query processing: Exercise

france −→ 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 11 → 12 → 13 → 14 → 15

paris −→ 2 → 6 → 10 → 12 → 14

lear −→ 12 → 15

Compute hit list for ((paris AND NOT france) OR lear)

30 / 60



Boolean retrieval model: Assessment

The Boolean retrieval model can answer any query that is a
Boolean expression.

Boolean queries are queries that use and, or and not to join
query terms.
Views each document as a set of terms.
Is precise: Document matches condition or not.

Primary commercial retrieval tool for 3 decades

Many professional searchers (e.g., lawyers) still like Boolean
queries.

You know exactly what you are getting.

Many search systems you use are also Boolean: spotlight,
email, intranet etc.

31 / 60



Commercially successful Boolean retrieval: Westlaw

Largest commercial legal search service in terms of the
number of paying subscribers

Over half a million subscribers performing millions of searches
a day over tens of terabytes of text data

The service was started in 1975.

In 2005, Boolean search (called “Terms and Connectors” by
Westlaw) was still the default, and used by a large percentage
of users . . .

. . . although ranked retrieval has been available since 1992.

32 / 60



Introduction to Information Retrieval
http://informationretrieval.org

IIR 2: The term vocabulary and postings lists

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-04-09

1 / 62

http://informationretrieval.org


Outline

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

15 / 62



Definitions

Word – A delimited string of characters as it appears in the
text.

Term – A “normalized” word (case, morphology, spelling etc);
an equivalence class of words.

Token – An instance of a word or term occurring in a
document.

Type – The same as a term in most cases: an equivalence
class of tokens.

16 / 62



Normalization

Need to “normalize” words in indexed text as well as query
terms into the same form.

Example: We want to match U.S.A. and USA

We most commonly implicitly define equivalence classes of
terms.

Alternatively: do asymmetric expansion

window → window, windows
windows → Windows, windows
Windows (no expansion)

More powerful, but less efficient

Why don’t you want to put window, Window, windows, and
Windows in the same equivalence class?

17 / 62



Normalization: Other languages

Normalization and language detection interact.

PETER WILL NICHT MIT. → MIT = mit

He got his PhD from MIT. → MIT 6= mit

18 / 62



Tokenization: Recall construction of inverted index

Input:

Friends, Romans, countrymen. So let it be with Caesar . . .

Output:

friend roman countryman so . . .

Each token is a candidate for a postings entry.

What are valid tokens to emit?

19 / 62



Exercises

In June, the dog likes to chase the cat in the barn. – How many
word tokens? How many word types? Why tokenization is difficult

– even in English. Tokenize: Mr. O’Neill thinks that the boys’

stories about Chile’s capital aren’t amusing.

20 / 62



Tokenization problems: One word or two? (or several)

Hewlett-Packard

State-of-the-art

co-education

the hold-him-back-and-drag-him-away maneuver

data base

San Francisco

Los Angeles-based company

cheap San Francisco-Los Angeles fares

York University vs. New York University

21 / 62



Numbers

3/20/91

20/3/91

Mar 20, 1991

B-52

100.2.86.144

(800) 234-2333

800.234.2333

Older IR systems may not index numbers . . .

. . . but generally it’s a useful feature.

Google example

22 / 62



Chinese: No whitespace

莎拉波娃!在居住在美国"南部的佛#里$。今年４月

９日，莎拉波娃在美国第一大城市%&度'了１８(生

日。生日派)上，莎拉波娃露出了甜美的微笑。 

23 / 62



Ambiguous segmentation in Chinese

和尚 
The two

characters can be treated as one word meaning ‘monk’ or as a
sequence of two words meaning ‘and’ and ‘still’.

24 / 62



Outline

1 Recap

2 Documents

3 Terms
General + Non-English
English

4 Skip pointers

5 Phrase queries

30 / 62



Case folding

Reduce all letters to lower case

Even though case can be semantically meaningful

capitalized words in mid-sentence
MIT vs. mit
Fed vs. fed
. . .

It’s often best to lowercase everything since users will use
lowercase regardless of correct capitalization.

31 / 62



Stop words

stop words = extremely common words which would appear
to be of little value in helping select documents matching a
user need

Examples: a, an, and, are, as, at, be, by, for, from, has, he, in,

is, it, its, of, on, that, the, to, was, were, will, with

Stop word elimination used to be standard in older IR systems.

But you need stop words for phrase queries, e.g. “King of
Denmark”

Most web search engines index stop words.

32 / 62



More equivalence classing

Soundex: IIR 3 (phonetic equivalence, Muller = Mueller)

Thesauri: IIR 9 (semantic equivalence, car = automobile)

33 / 62



Lemmatization

Reduce inflectional/variant forms to base form

Example: am, are, is → be

Example: car, cars, car’s, cars’ → car

Example: the boy’s cars are different colors → the boy car be

different color

Lemmatization implies doing “proper” reduction to dictionary
headword form (the lemma).

Inflectional morphology (cutting → cut) vs. derivational
morphology (destruction → destroy)

34 / 62



Stemming

Definition of stemming: Crude heuristic process that chops off
the ends of words in the hope of achieving what “principled”
lemmatization attempts to do with a lot of linguistic
knowledge.

Language dependent

Often inflectional and derivational

Example for derivational: automate, automatic, automation

all reduce to automat

35 / 62



Porter algorithm

Most common algorithm for stemming English

Results suggest that it is at least as good as other stemming
options

Conventions + 5 phases of reductions

Phases are applied sequentially

Each phase consists of a set of commands.

Sample command: Delete final ement if what remains is longer
than 1 character
replacement → replac
cement → cement

Sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

36 / 62



Porter stemmer: A few rules

Rule Example

SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat

37 / 62



Three stemmers: A comparison

Sample text: Such an analysis can reveal features that are not easily
visible from the variations in the individual genes and can
lead to a picture of expression that is more biologically
transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili visibl
from the variat in the individu gene and can lead to a pictur
of express that is more biolog transpar and access to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from th
vari in th individu gen and can lead to a pictur of expres that
is mor biolog transpar and acces to interpres

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that
is mor biolog transp and access to interpret

38 / 62



Does stemming improve effectiveness?

In general, stemming increases effectiveness for some queries,
and decreases effectiveness for others.

Queries where stemming is likely to help: [tartan sweaters],
[sightseeing tour san francisco]

(equivalence classes: {sweater,sweaters}, {tour,tours})
Porter Stemmer equivalence class oper contains all of operate

operating operates operation operative operatives operational.

Queries where stemming hurts: [operational AND research],
[operating AND system], [operative AND dentistry]

39 / 62



Exercise: What does Google do?

Stop words

Normalization

Tokenization

Lowercasing

Stemming

Non-latin alphabets

Umlauts

Compounds

Numbers

40 / 62



Introduction to Information Retrieval
http://informationretrieval.org

IIR 6: Scoring, Term Weighting, The Vector Space Model

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-04-30

1 / 65

http://informationretrieval.org


Outline

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

13 / 65



Ranked retrieval

Thus far, our queries have been Boolean.

Documents either match or don’t.

Good for expert users with precise understanding of their
needs and of the collection.

Also good for applications: Applications can easily consume
1000s of results.

Not good for the majority of users

Most users are not capable of writing Boolean queries . . .

. . . or they are, but they think it’s too much work.

Most users don’t want to wade through 1000s of results.

This is particularly true of web search.

14 / 65



Problem with Boolean search: Feast or famine

Boolean queries often result in either too few (=0) or too
many (1000s) results.

Query 1 (boolean conjunction): [standard user dlink 650]

→ 200,000 hits – feast

Query 2 (boolean conjunction): [standard user dlink 650 no
card found]

→ 0 hits – famine

In Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.

15 / 65



Feast or famine: No problem in ranked retrieval

With ranking, large result sets are not an issue.

Just show the top 10 results

Doesn’t overwhelm the user

Premise: the ranking algorithm works: More relevant results
are ranked higher than less relevant results.

16 / 65



Scoring as the basis of ranked retrieval

How can we accomplish a relevance ranking of the documents
with respect to a query?

Assign a score to each query-document pair, say in [0, 1].

This score measures how well document and query “match”.

Sort documents according to scores

17 / 65



Query-document matching scores

How do we compute the score of a query-document pair?

If no query term occurs in the document: score should be 0.

The more frequent a query term in the document, the higher
the score

The more query terms occur in the document, the higher the
score

We will look at a number of alternatives for doing this.

18 / 65



Take 1: Jaccard coefficient

A commonly used measure of overlap of two sets

Let A and B be two sets

Jaccard coefficient:

jaccard(A,B) =
|A ∩ B |
|A ∪ B |

(A 6= ∅ or B 6= ∅)
jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.

19 / 65



Jaccard coefficient: Example

What is the query-document match score that the Jaccard
coefficient computes for:

Query: “ides of March”
Document “Caesar died in March”
jaccard(q, d) = 1/6

20 / 65



What’s wrong with Jaccard?

It doesn’t consider term frequency (how many occurrences a
term has).

Rare terms are more informative than frequent terms. Jaccard
does not consider this information.

We need a more sophisticated way of normalizing for the
length of a document.

Later in this lecture, we’ll use |A ∩ B |/
√

|A ∪ B | (cosine) . . .
. . . instead of |A ∩ B |/|A ∪ B | (Jaccard) for length
normalization.

21 / 65



Outline

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

22 / 65



Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.

23 / 65



Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N
|V |.

24 / 65



Bag of words model

We do not consider the order of words in a document.

John is quicker than Mary and Mary is quicker than John are
represented the same way.

This is called a bag of words model.

In a sense, this is a step back: The positional index was able
to distinguish these two documents.

We will look at “recovering” positional information later in
this course.

For now: bag of words model

25 / 65



Term frequency tf

The term frequency tft,d of term t in document d is defined
as the number of times that t occurs in d .

We want to use tf when computing query-document match
scores.

But how?

Raw term frequency is not what we want because:

A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.

26 / 65



Instead of raw frequency: Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{

1 + log10 tft,d if tft,d > 0
0 otherwise

tft,d → wt,d :
0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q
and d :
tf-matching-score(q, d) =

∑

t∈q∩d (1 + log tft,d)

The score is 0 if none of the query terms is present in the
document.

27 / 65



Exercise

Compute the Jaccard matching score and the tf matching
score for the following query-document pairs.

q: [information on cars] d: “all you’ve ever wanted to know
about cars”

q: [information on cars] d: “information on trucks,
information on planes, information on trains”

q: [red cars and red trucks] d: “cops stop red cars more
often”

28 / 65



Outline

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

29 / 65



Frequency in document vs. frequency in collection

In addition, to term frequency (the frequency of the term in
the document) . . .

. . . we also want to use the frequency of the term in the
collection for weighting and ranking.

30 / 65



Desired weight for rare terms

Rare terms are more informative than frequent terms.

Consider a term in the query that is rare in the collection
(e.g., arachnocentric).

A document containing this term is very likely to be relevant.

→ We want high weights for rare terms like
arachnocentric.

31 / 65



Desired weight for frequent terms

Frequent terms are less informative than rare terms.

Consider a term in the query that is frequent in the collection
(e.g., good, increase, line).

A document containing this term is more likely to be relevant
than a document that doesn’t . . .

. . . but words like good, increase and line are not sure
indicators of relevance.

→ For frequent terms like good, increase, and line, we
want positive weights . . .

. . . but lower weights than for rare terms.

32 / 65



Document frequency

We want high weights for rare terms like arachnocentric.

We want low (positive) weights for frequent words like good,
increase, and line.

We will use document frequency to factor this into computing
the matching score.

The document frequency is the number of documents in the
collection that the term occurs in.

33 / 65



idf weight

dft is the document frequency, the number of documents that
t occurs in.

dft is an inverse measure of the informativeness of term t.

We define the idf weight of term t as follows:

idft = log10
N

dft

(N is the number of documents in the collection.)

idft is a measure of the informativeness of the term.

[logN/dft ] instead of [N/dft ] to “dampen” the effect of idf

Note that we use the log transformation for both term
frequency and document frequency.

34 / 65



Examples for idf

Compute idft using the formula: idft = log10
1,000,000

dft
term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

35 / 65



Effect of idf on ranking

idf affects the ranking of documents for queries with at least
two terms.

For example, in the query “arachnocentric line”, idf weighting
increases the relative weight of arachnocentric and
decreases the relative weight of line.

idf has little effect on ranking for one-term queries.

36 / 65



Collection frequency vs. Document frequency

word collection frequency document frequency

insurance 10440 3997
try 10422 8760

Collection frequency of t: number of tokens of t in the
collection

Document frequency of t: number of documents t occurs in

Why these numbers?

Which word is a better search term (and should get a higher
weight)?

This example suggests that df (and idf) is better for weighting
than cf (and “icf”).

37 / 65



tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

wt,d = (1 + log tft,d) · log
N

dft

tf-weight

idf-weight

Best known weighting scheme in information retrieval

Alternative names: tf.idf, tf x idf

38 / 65



Summary: tf-idf

Assign a tf-idf weight for each term t in each document d :
wt,d = (1 + log tft,d) · log N

dft
The tf-idf weight . . .

. . . increases with the number of occurrences within a
document. (term frequency)
. . . increases with the rarity of the term in the collection.
(inverse document frequency)

39 / 65



Exercise: Term, collection and document frequency

Quantity Symbol Definition

term frequency tft,d number of occurrences of t in
d

document frequency dft number of documents in the
collection that t occurs in

collection frequency cft total number of occurrences of
t in the collection

Relationship between df and cf?

Relationship between tf and cf?

Relationship between tf and df?

40 / 65



Outline

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 tf-idf weighting

5 The vector space model

41 / 65



Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.

42 / 65



Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N
|V |.

43 / 65



Binary → count → weight matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .
Each document is now represented as a real-valued vector of tf-idf

weights ∈ R
|V |.

44 / 65



Documents as vectors

Each document is now represented as a real-valued vector of
tf-idf weights ∈ R

|V |.

So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when
you apply this to web search engines

Each vector is very sparse - most entries are zero.

45 / 65



Queries as vectors

Key idea 1: do the same for queries: represent them as
vectors in the high-dimensional space

Key idea 2: Rank documents according to their proximity to
the query

proximity = similarity

proximity ≈ negative distance

Recall: We’re doing this because we want to get away from
the you’re-either-in-or-out, feast-or-famine Boolean model.

Instead: rank relevant documents higher than nonrelevant
documents

46 / 65



How do we formalize vector space similarity?

First cut: (negative) distance between two points

( = distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of different
lengths.

47 / 65



Why distance is a bad idea

0 1
0

1

rich

poor

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of

~q and ~d2 is large although the distribution of terms in the query q
and the distribution of terms in the document d2 are very similar.
Questions about basic vector space setup?

48 / 65



Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to
itself. Call this document d ′. d ′ is twice as long as d .

“Semantically” d and d ′ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity . . .

. . . even though the Euclidean distance between the two
documents can be quite large.

49 / 65



From angles to cosines

The following two notions are equivalent.

Rank documents according to the angle between query and
document in decreasing order
Rank documents according to cosine(query,document) in
increasing order

Cosine is a monotonically decreasing function of the angle for
the interval [0◦, 180◦]

50 / 65



Cosine

51 / 65



Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length – here we use the L2 norm:

||x ||2 =
√

∑

i x
2
i

This maps vectors onto the unit sphere . . .

. . . since after normalization: ||x ||2 =
√

∑

i x
2
i = 1.0

As a result, longer documents and shorter documents have
weights of the same order of magnitude.

Effect on the two documents d and d ′ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.

52 / 65



Cosine similarity between query and document

cos(~q, ~d) = sim(~q, ~d) =
~q · ~d
|~q||~d |

=

∑|V |
i=1 qidi

√

∑|V |
i=1 q

2
i

√

∑|V |
i=1 d

2
i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

This is the cosine similarity of ~q and ~d . . . . . . or, equivalently,
the cosine of the angle between ~q and ~d .

53 / 65



Cosine for normalized vectors

For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

cos(~q, ~d) = ~q · ~d =
∑

i qi · di
(if ~q and ~d are length-normalized).

54 / 65



Cosine similarity illustrated

0 1
0

1

rich

poor

~v(q)

~v(d1)

~v(d2)

~v(d3)

θ

55 / 65



Cosine: Example

How similar are
these novels? SaS:

Sense and
Sensibility PaP:

Pride and
Prejudice WH:

Wuthering
Heights

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

56 / 65



Cosine: Example

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

(To simplify this example, we don’t do idf weighting.)

57 / 65



Cosine: Example

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH

affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

58 / 65



Computing the cosine score

CosineScore(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d , tft,d) in postings list
6 do Scores[d ]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d ] = Scores[d ]/Length[d ]
10 return Top K components of Scores[]

59 / 65



Components of tf-idf weighting

Term frequency Document frequency Normalization

n (natural) tft,d n (no) 1 n (none) 1

l (logarithm) 1 + log(tft,d) t (idf) log N

dft
c (cosine) 1√

w2
1+w2

2+...+w2
M

a (augmented) 0.5 +
0.5×tft,d
maxt(tft,d )

p (prob idf) max{0, log N−dft

dft
} u (pivoted

unique)
1/u

b (boolean)

{

1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα,
α < 1

L (log ave)
1+log(tf t,d )

1+log(avet∈d(tf t,d ))

Best known combination of weighting options Default: no

weighting

60 / 65



tf-idf example

We often use different weightings for queries and documents.

Notation: ddd.qqq

Example: lnc.ltn

document: logarithmic tf, no df weighting, cosine
normalization

query: logarithmic tf, idf, no normalization

Isn’t it bad to not idf-weight the document?

Example query: “best car insurance”

Example document: “car insurance auto insurance”

61 / 65



tf-idf example: lnc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.
word query document product

tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted

term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n’lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
√
12 + 02 + 12 + 1.32 ≈ 1.92

1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68 Final similarity score between query and

document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08 Questions?

62 / 65



Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity between the query vector and
each document vector

Rank documents with respect to the query

Return the top K (e.g., K = 10) to the user

63 / 65



Take-away today

Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf-idf ranking: best known traditional ranking scheme

Vector space model: Important formal model for information
retrieval (along with Boolean and probabilistic models)

64 / 65



Introduction to Information Retrieval
http://informationretrieval.org

IIR 7: Scores in a Complete Search System

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-05-07

1 / 59

http://informationretrieval.org


Why is ranking so important?

Last lecture: Problems with unranked retrieval

Users want to look at a few results – not thousands.
It’s very hard to write queries that produce a few results.
Even for expert searchers
→ Ranking is important because it effectively reduces a large
set of results to a very small one.

Next: More data on “users only look at a few results”

12 / 59



Empirical investigation of the effect of ranking

The following slides are from Dan Russell’s JCDL 2007 talk

Dan Russell was the “Über Tech Lead for Search Quality &
User Happiness” at Google.

How can we measure how important ranking is?

Observe what searchers do when they are searching in a
controlled setting

Videotape them
Ask them to “think aloud”
Interview them
Eye-track them
Time them
Record and count their clicks

13 / 59















Importance of ranking: Summary

Viewing abstracts: Users are a lot more likely to read the
abstracts of the top-ranked pages (1, 2, 3, 4) than the
abstracts of the lower ranked pages (7, 8, 9, 10).

Clicking: Distribution is even more skewed for clicking

In 1 out of 2 cases, users click on the top-ranked page.

Even if the top-ranked page is not relevant, 30% of users will
click on it.

→ Getting the ranking right is very important.

→ Getting the top-ranked page right is most important.

20 / 59



Outline

1 Recap

2 Why rank?

3 More on cosine

4 The complete search system

5 Implementation of ranking

29 / 59



Complete search system

30 / 59


