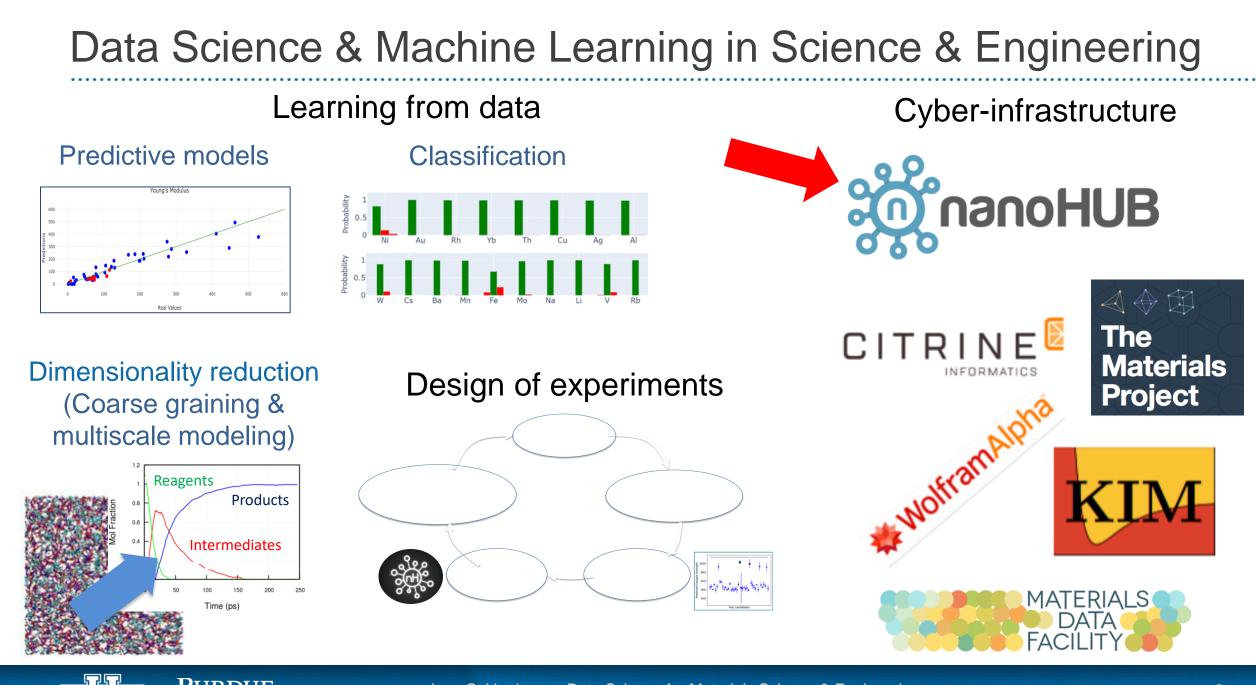
Hands-on Data Science and Machine Learning Training – April 2020

Introduction to Jupyter notebooks, data organization and plotting

In this tutorial:


- Using a Jupyter notebook in nanoHUB
- Organizing and filtering data using Pandas
- Creating a simple scatter plot using Plotly

Juan C. Verduzco and Alejandro Strachan

jverduzc@purdue.edu || strachan@purdue.edu School of Materials Engineering & Birck Nanotechnology Center Purdue University West Lafayette, Indiana USA

NANOHUB

- 1. Launch a Jupyter notebook in nanoHUB
- 2. Python 101 using Jupyter
- 3. Organizing data using Pandas
- 4. Visualizing data using Plotly
- 5. Working with Jupyter in nanoHUB
- 6. Q&A

Let's get our hands dirty – use the subsequent slides to follow along

Launching a Jupyter tool in nanoHUB

Machine Learning for Materials Science: Part 1

From your browser go to link: <u>https://nanohub.org/tools/mseml/</u>

Collect Machine Learning for Materials Science: Part 1 By Juan Carlos Verduzco Gastelum¹, Alejandro Strachan¹, Saaketh Desai¹ Launch Tool ▲ 1087 users, detailed usage 1. Purdue University 66 0 Citation(s) Version 1.1 - published on 25 Feb 2019 0 questions (Ask a question) Machine learning and data science tools applied to materials science doi:10.21981/9QJN-7N65 cite this 1 review(s) 🖊 Edit Open source: license | download 0 wish(es) (New Wish) View All Supp ting Documents

Click on Launch Tool to begin

Landing Page – Notebook: Querying

Navigate to the first link in the landing page, to access the notebook we will be working on during this workshop.

Introduction to Machine Learning for Materials Science

The tutorials here will give you an insight into the usage of Machine Learning to approach problems related to materials science.

- Get started Click on the links below to begin each tutorial.
- Important To exit individual tutorials and return to this page, use File -> Close and Halt. "Terminate Session" (top right) will kill your entire Jupyter session.

Querying databases, Organizing and Plotting Data:

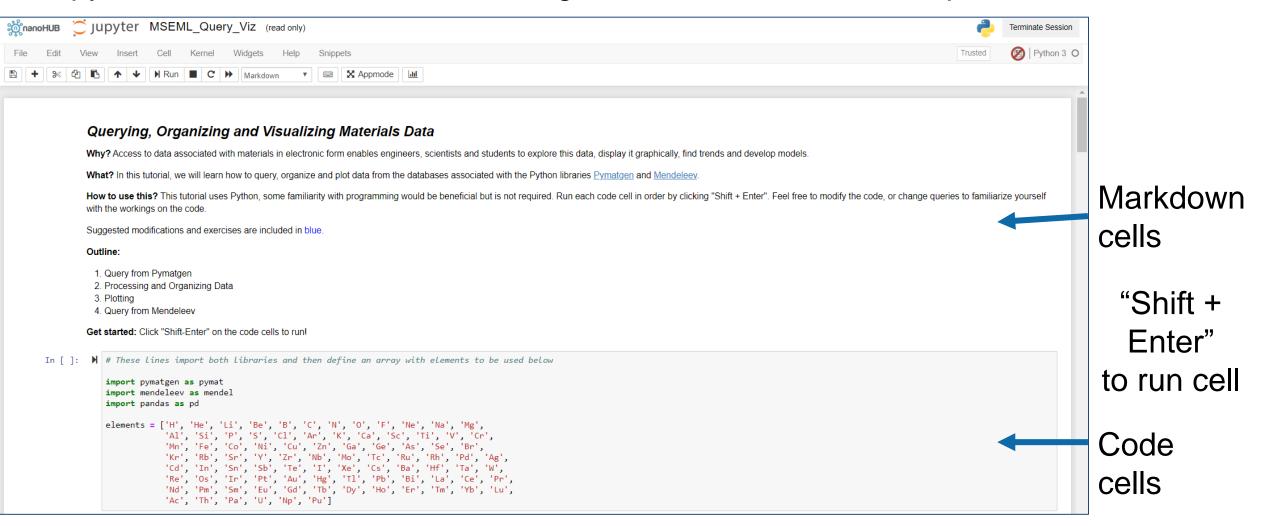
- · Query Pymatgen and Mendeleev for properties like Young's modulus and melting temperature
- Organize data into Pandas dataframes and python dictionaries and plot using Plotly

Linear Regression to predict material properties:

- · Perform linear regression using the scikit learn package and predict Young's modulus
- · Visualize trends in data and 'goodness of fit' of linear model

Neural Network Regression to predict material properties:

- Use neural networks to perform non-linear, higher order regression
- Visualize trends and compare non-linear model to linear regression


Neural Network Classification to predict crystal structures:

Use neural networks to classify elements according to their crystal structures

Introduction to Jupyter

Jupyter notebooks combine text using markdown, live code and powerful visualization

Let's get some data

Data can be queried or uploaded

Query Pymatgen and Mendeleev, two libraries with materials properties

Run the cells sequentially for this exercise.

Change "youngs_modulus" to "atomic_mass" and re-run

NANOHUB

Learn more about repositories and queries:

- 2. Repositories and data management
 - 1. Leader: Zachary McClure
 - 2. Date/Time-Friday, 10th April 2020 / 11 AM 12 PM EDT
 - 3. Topics covered:
 - Introduction to repository APIs
 - Querying and advanced plotting

sample = ['Fe', 'Co', 'Ni', 'Cu', 'Zn']

#for item in sample: # for i in querable pymatgen:

element_object = pymatsElement(item)

print(item, i, getattr(element_object,i))

"Shift + Enter" to run cell

In

Dictionaries = key-value pairs

Access to the entire entry, or specific attributes.

PURDUE

M	<pre>Fe_data = {} # Initializing a dictionary</pre>
	# Each of the following lines is making a single entry
	<pre>Fe_data["atomic_number"] = mendel.element("Fe").atomic_number Fe_data["coefficient_of_linear_thermal_expansion"] = pymat.Element("Fe").coefficient_of_linear_thermal_expansion Fe_data["youngs_modulus"] = pymat.Element("Fe").youngs_modulus Fe_data["specific_heat"] = mendel.element("Fe").specific_heat</pre>
	<pre>#Print the entire entry for Fe print(Fe_data)</pre>
	<pre>#Print a specific attribute: print(Fe_data["specific_heat"])</pre>
	<pre># This line is to delete an entry # del Fe_data["atomic_number"]</pre>

Learn more at: <u>https://docs.python.org/3/tutorial/datastructures.html#dictionaries</u>

Access elements by index number instead of their properties.

Add new information using the .append() method.

In []: N sample = elements.copy()
CTE = [] # In this list we will store the Coefficients of Thermal Expansion
youngs_modulus = [] # In this list we will store the Young's Moduli
melting_temperature = [] # In this list we will store the Melting Temperatures
for item in sample:
 CTE.append(pymat.Element(item).coefficient_of_linear_thermal_expansion)
 youngs_modulus.append(pymat.Element(item).youngs_modulus)
 melting_temperature.append(pymat.Element(item).melting_point)
You can visualize the lists by uncommenting these print statements
#print(CTE)
#print(youngs_modulus)
#print(melting_temperature)

Learn more at: <u>https://docs.python.org/3/tutorial/datastructures.html#more-on-lists</u>

Organizing data: Pandas dataframes

Created for data analysis in data science.

Advantages:

- Performing operations, sorts and filters.
- Working with nonnumeric data
- Handling of large datasets

In []: ▶ all_values = [] # Values for Attributes

for item in fcc_elements: element_values = []

element_object = pymat.Element(item)
for i in querable_pymatgen:
 element_values.append(getattr(element_object,i))

all_values.append(element_values) # All lists are appended to another list, creating a list of lists

Pandas Dataframe

df = pd.DataFrame(all_values, columns=querable_pymatgen)
display(df)

	atomic_mass	poissons_ratio	atomic_radius	electrical_resistivity	molar_volume	thermal_conductivity	bulk_modulus
Ag	107.868200	0.37	1.60	1.630000e-08	10.27	430.0	100.0
AI	26.981539	0.35	1.25	2.700000e-08	10.00	235.0	76.0
Au	196.966569	0.44	1.35	2.200000e-08	10.21	320.0	220.0
Cu	63.546000	0.34	1.35	1.720000e-08	7.11	400.0	140.0
Ir	192.217000	0.26	1.35	4.700000e-08	8.52	150.0	320.0
Ni	58.693400	0.31	1.35	7.200000e-08	6.59	91.0	180.0
Pb	207.200000	0.44	1.80	2.100000e-07	18.26	35.0	46.0
Pd	106.420000	0.39	1.40	1.080000e-07	8.56	72.0	180.0
Pt	195.084000	0.38	1.35	1.060000e-07	9.09	72.0	230.0
Rh	102.905500	0.26	1.35	4.300000e-08	8.28	150.0	380.0
Sr	87.620000	0.28	2.00	1.350000e-07	33.94	35.0	NaN
Th	232.038060	0.27	1.80	1.500000e-07	19.80	54.0	54.0
Yb	173.040000	0.21	1.75	2.500000e-07	24.84	39.0	31.0

Learn more at: https://pandas.pydata.org/docs/getting_started/index.html

pandas

One-line operations:

- Reindexing
- Filtering

Binary filters and custom conditions filter the dataframe.

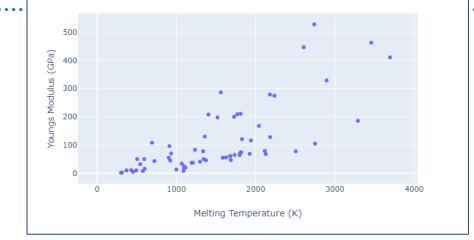
In []:	M	<pre>df.index = fcc_elements display(df)</pre>
In []:	M	<pre>df_big_atoms = df[df.atomic_mass.ge(150)] display(df_big_atoms)</pre>
In []:	M	<pre>df_poisson = df[df.poissons_ratio.eq(0.26)] display(df_poisson)</pre>
In []:	M	<pre>df_condition = df[(df['youngs_modulus'] < 120) & (df["poissons_ratio"] > 0.25)] display(df_condition)</pre>

Standard binary operators are: .eq() .neq() .ge() .le()

Try filtering our data to get elements with a Poisson's ratio different than 1.35.

Learn more at: https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/frame.html

Simple plot using Plotly


Create interactive plots using Plotly.

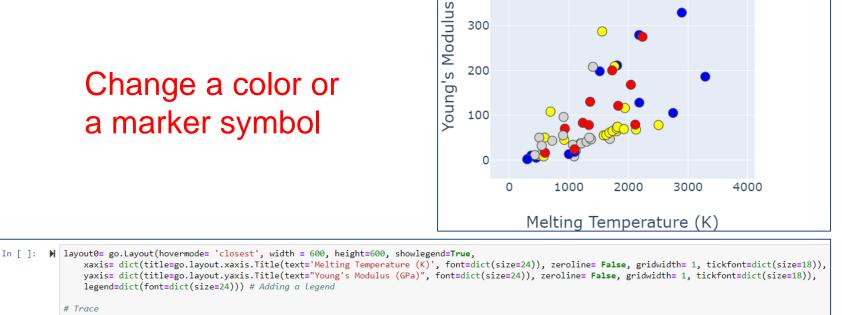
Interactive and publication quality plots.

Make a plot from your data with as little as 5 lines of code.

Young's Moduli vs Melting Temperature

In []:	M	<pre>import plotly #This is the library import import plotly.graph_objs as go # This is the graphical object (Think "plt" in Matplotlib if you have used that before)</pre>
		<pre>from plotly.offline import iplot # These lines are necessary to run Plotly in Jupyter Notebooks, but not in a dedicated environment plotly.offline.init_notebook_mode(connected=True)</pre>
		# To create a plot, you need a layout and a trace
		# The layout gives Plotly the instructions on the background grids, tiles in the plot, # axes names, axes ticks, legends, labels, colors on the figure and general formatting.
		<pre>layout = go.Layout(title = "Young's Moduli vs Melting Temperature",xaxis= dict(title= 'Melting Temperature (K)'), yaxis= dict(title= 'Youngs Modulus (GPa)'))</pre>
		# The trace contains a type of plot (In this case, Scatter, but it can be "Bars, Lines, Pie Charts", etc.), # the data we want to visualize and the way ("Mode") we want to represent it.
		<pre>trace = go.Scatter(x = melting_temperature, y = youngs_modulus, mode = 'markers')</pre>
		# To plot, we create a figure and implement our components in the following way:
		data = [trace] # We could include more than just one trace here
		fig= go.Figure(data, layout=layout) iplot(fig)

Learn more at: <u>https://plotly.com/python/</u>



Custom plot using Plotly

Create a custom plot, colored dynamically from the data.

- Modify the label sizes and fonts
- Add legends and grids
- Change the figure dimensions

Change a color or a marker symbol

500

400

(GPa)

Trace

trace0 = go.Scatter(x = melting_temperature,y = youngs_modulus, mode = 'markers', marker= dict(size= 14, line= dict(width=1), color=colors), # We add a size, a border and our custom colors to the markers text= sample, # This attribute (Text) labels each point to this list, which contains our elements in the same indexes as our properties showlegend = False)

Empty Traces for Legend

legend_plot_FCC = go.Scatter(x=[None], y=[None], mode='markers', marker=dict(size=14, line= dict(width=1),color='red'), name = 'FCC') legend_plot_BCC = go.Scatter(x=[None], y=[None], mode='markers', marker=dict(size=14, line= dict(width=1),color='blue'), name = 'BCC') legend_plot_HCP = go.Scatter(x=[None], y=[None], mode='markers', marker=dict(size=14, line= dict(width=1),color='yellow'), name = 'HCP')

data = [trace0, legend_plot_FCC, legend_plot_BCC, legend_plot_HCP]

fig= go.Figure(data, layout=layout0) iplot(fig)

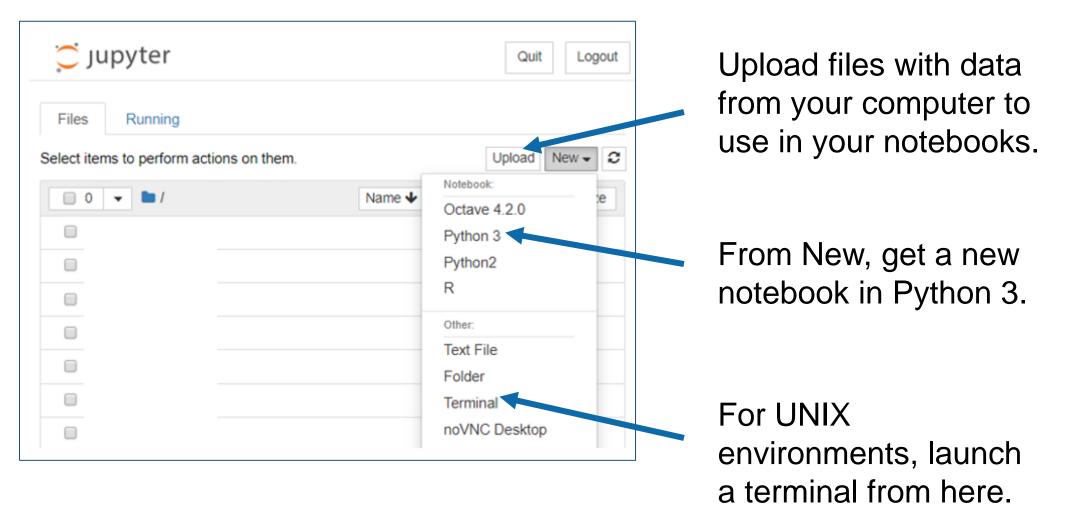
Learn more at: <u>https://plotly.com/python/</u>

plotly

FCC

BCC

HCP


From your browser go to link: <u>https://nanohub.org/tools/jupyter</u>

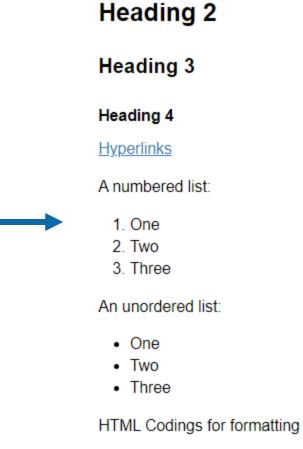
Jupyter Notebook

Home directory

All Jupyter notebooks created will be stored locally in your home directory.

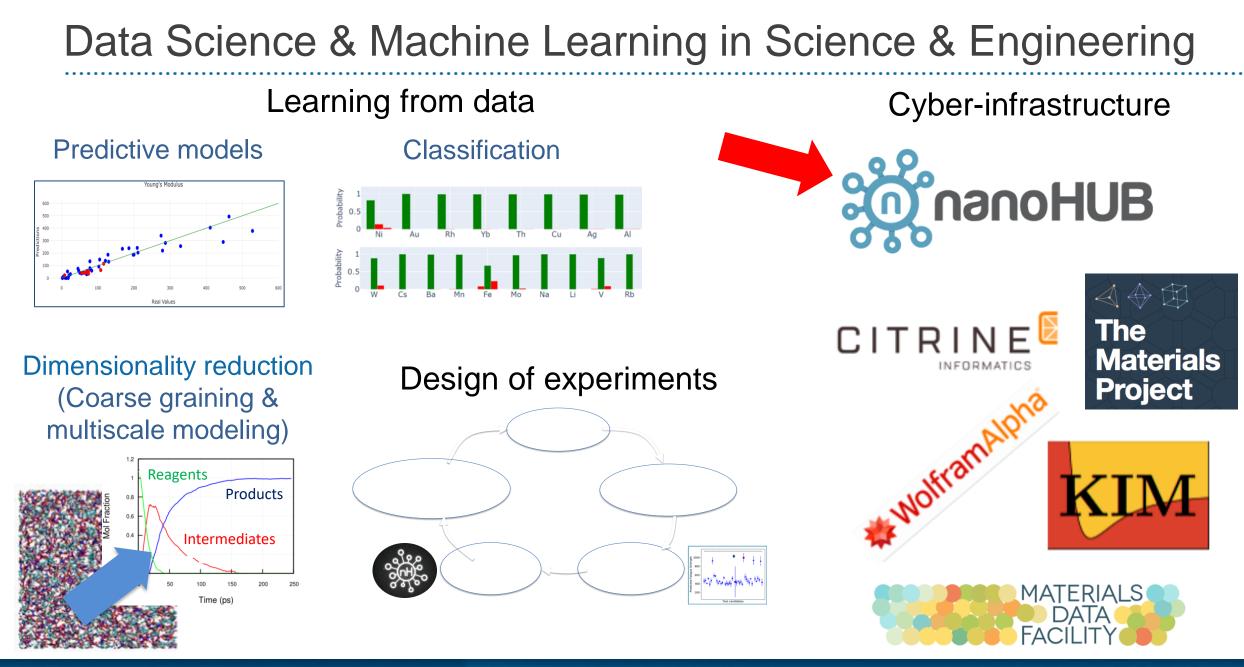
Working on a New Notebook

NANOHUB


PURDUE UNIVERSITY

imanoHUB jupyter NewNotebook Last Checkpoint: a few seconds ago (unsaved changes) File Edit View Insert Cell Kernel Widgets Help Snippets In []: N	Edit View Insert Cut Cells Copy Cells Paste Cells Above Paste Cells Below Paste Cells & Replace Delete Cells	
Create a new cell.	Undo Delete Cells Split Cell Merge Cell Above Merge Cell Below	
Run an individual cell. Run Cells Run Cells and Select E Run Cells and Insert B		Move Cell Up Move Cell Down Edit Notebook Metadata
Run All Run All Above Run All Above Run All Below Change the type of your cells from Markdowns (texts) to Code cells.	Code Markdown	Find and Replace Cut Cell Attachments Copy Cell Attachments Paste Cell Attachments
All Output	Raw NBConvert	Insert Image

Markdown


# Heading 1	Headin
# Heading 1 ## Heading 2 ### Heading 3	Heading
#### Heading 4	Heading 4
<pre>[Hyperlinks](website)</pre>	<u>Hyperlinks</u>
A numbered list: 1. One	A numbered
2. Two 3. Three	1. One 2. Two
An unordered list:	3. Three
- One - Two	An unorder
- Three	One
HTML Codings for formatting	Two Three
 bold 	HTML Codi
<i> italics </i> Different colors and sizes 	
	bold

Heading 1

Different colors and sizes

NANOHUB PURDUE

Q&A

