
5/ 31/ 07
1

An Introduction to
Low-Density Parity-Check Codes

Paul H. Siegel
Electrical and Computer Engineering
University of California, San Diego

© Copyright 2007 by Paul H. Siegel© Copyright 2007 by Paul H. Siegel

Outline

5/ 31/ 07 2LDPC Codes

• Shannon’s Channel Coding Theorem
• Error-Correcting Codes – State-of-the-Art
• LDPC Code Basics

• Encoding
• Decoding

• LDPC Code Design
• Asymptotic performance analysis
• Design optimization

Outline

5/ 31/ 07 3LDPC Codes

• EXIT Chart Analysis
• Applications

• Binary Erasure Channel
• Binary Symmetric Channel
• AWGN Channel
• Rayleigh Fading Channel
• Partial-Response Channel

• Basic References

A Noisy Communication System

5/ 31/ 07 4LDPC Codes

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

MESSAGE

SIGNAL RECEIVED
SIGNAL

MESSAGE

NOISE
SOURCE

CHANNEL

Channels

5/ 31/ 07 5LDPC Codes

• Binary erasure channel BEC(ε)

0 0

1 1
?

ε

ε

1- ε

1- ε

• Binary symmetric channel BSC(p)

0 0

1 1

1-p

1-p

p
p

More Channels

5/ 31/ 07 6LDPC Codes

• Additive white Gaussian noise channel AWGN

PP−

)1|(yf)1|(−yf

Shannon Capacity

5/ 31/ 07 7LDPC Codes

Every communication channel is characterized by
a single number C, called the channel capacity.

It is possible to transmit information over this
channel reliably (with probability of error → 0)
if and only if:

CR
def

<=
use channel

bitsn informatio #

Channels and Capacities

5/ 31/ 07 8LDPC Codes

ε1−=C• Binary erasure channel BEC(ε)
1- ε

0 0

1 1
?

ε

ε

1- ε 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

• Binary symmetric channel BSC(p))(1 2 pHC −=

0 0

1 1

1-p

1-p

p
p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

)1(log)1(log)(222 pppppH −−−−=

More Channels and Capacities

5/ 31/ 07 9LDPC Codes

• Additive white Gaussian noise channel AWGN

⎟
⎠
⎞

⎜
⎝
⎛ += 222

1 1log
σ
PC

PP−

)0|(yf)1|(yf

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Coding

5/ 31/ 07 10LDPC Codes

We use a code to communicate over the noisy channel.

kxxx ,,, 21 …=x

kxxx ˆ,,ˆ,ˆˆ 21 …=x

Code rate: n
kR =

Source Encoder

DecoderSink

Channel

nccc ,,, 21 …=c

nyyy ,,, 21 …=y

Shannon’s Coding Theorems

5/ 31/ 07 11LDPC Codes

If C is a code with rate R>C, then the
probability of error in decoding this code is
bounded away from 0. (In other words, at any
rate R>C, reliable communication is not
possible.)

For any information rate R < C and any δ > 0,
there exists a code C of length nδ and rate R,
such that the probability of error in maximum
likelihood decoding of this code is at most δ.

Proof: Non-constructive!(x))H – (H(x)Max C y=

Review of Shannon’s Paper

5/ 31/ 07 12LDPC Codes

• A pioneering paper:
Shannon, C. E. “A mathematical theory of communication. Bell System
Tech. J. 27, (1948). 379–423, 623–656

• A regrettable review:
Doob, J.L., Mathematical Reviews, MR0026286 (10,133e)

“The discussion is suggestive throughout, rather than
mathematical, and it is not always clear that the author’s
mathematical intentions are honorable.”

Cover, T. “Shannon’s Contributions to Shannon Theory,” AMS Notices,
vol. 49, no. 1, p. 11, January 2002

“Doob has recanted this remark many times, saying that it
and his naming of super martingales (processes that go down
instead of up) are his two big regrets.”

Finding Good Codes

5/ 31/ 07 13LDPC Codes

• Ingredients of Shannon’s proof:

• Random code

• Large block length

• Optimal decoding

• Problem

Randomness + large block length + optimal decoding =

COMPLEXITY!

State-of-the-Art

5/ 31/ 07 14LDPC Codes

• Solution
• Long, structured, “pseudorandom” codes
• Practical, near-optimal decoding algorithms

• Examples
• Turbo codes (1993)
• Low-density parity-check (LDPC) codes (1960, 1999)

• State-of-the-art
• Turbo codes and LDPC codes have brought Shannon limits

to within reach on a wide range of channels.

Evolution of Coding Technology

5/ 31/ 07 15LDPC Codes

LDPC
codes from Trellis and Turbo Coding,

Schlegel and Perez, IEEE Press, 2004

Linear Block Codes - Basics

5/ 31/ 07 16LDPC Codes

• Parameters of binary linear block code C
• k = number of information bits
• n = number of code bits
• R = k/n
• dmin = minimum distance

• There are many ways to describe C
• Codebook (list)
• Parity-check matrix / generator matrix
• Graphical representation (“Tanner graph”)

Example: (7,4) Hamming Code

5/ 31/ 07 17LDPC Codes

1
2 3

47

5

6

• (n,k) = (7,4) , R = 4/7

• dmin = 3
• single error correcting

• double erasure correcting

• Encoding rule:

1. Insert data bits in 1, 2, 3, 4.

2. Insert “parity” bits in 5, 6, 7
to ensure an even number
of 1’s in each circle

• (n,k) = (7,4) , R = 4/7

• dmin = 3
• single error correcting

• double erasure correcting

• Encoding rule:

1. Insert data bits in 1, 2, 3, 4.

2. Insert “parity” bits in 5, 6, 7
to ensure an even number
of 1’s in each circle

Example: (7,4) Hamming Code

5/ 31/ 07 18LDPC Codes

• 2k=16 codewords

• Systematic encoder places input bits in positions 1, 2, 3, 4

• Parity bits are in positions 5, 6, 7
1 0 0 0 1 1 1

1 0 0 1 1 0 0

1 0 1 0 0 0 1

1 0 1 1 0 1 0

1 1 0 0 0 1 0

1 1 0 1 0 0 1

1 1 1 0 1 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0 1 0 1 1 0

0 0 1 1 1 0 1

0 1 0 0 1 0 1

0 1 0 1 1 1 0

0 1 1 0 0 1 1

0 1 1 1 0 0 0

Hamming Code – Parity Checks

5/ 31/ 07 19LDPC Codes

1
2 3

47

5

6

1 1 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

1 2 3 4 5 6 71 2 3 4 5 6 7

Hamming Code: Matrix Perspective

5/ 31/ 07 20LDPC Codes

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
0

TcH

[]7654321 ,,,,,, cccccccc =• Parity check matrix H

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1001011
0101101
0010111

H

•Generator matrix G

[]
[]

cGu
cccccccc

uuuuu

=⋅
=
=

7654321

4321

,,,,,,
.,,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1101000
0110100
1010010
1110001

G

Parity-Check Equations

5/ 31/ 07 21LDPC Codes

• Parity-check matrix implies system of linear equations.

0
0
0

7421

6431

5321

=+++
=+++
=+++

cccc
cccc
cccc

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1001011
0101101
0010111

H

• Parity-check matrix is not unique.

• Any set of vectors that span the rowspace generated by H
can serve as the rows of a parity check matrix (including
sets with more than 3 vectors).

Hamming Code: Tanner Graph

5/ 31/ 07 22LDPC Codes

• Bi-partite graph representing parity-check equations

c1

c2

c3

c4

c5

c6

c7

05321 =+++ cccc

06431 =+++ cccc

07421 =+++ cccc

Tanner Graph Terminology

5/ 31/ 07 23LDPC Codes

variable nodes

(bit, left) # check nodes

(constraint, right)

The degree of a node is the number
of edges connected to it.
The degree of a node is the number
of edges connected to it.

Low-Density Parity-Check Codes

5/ 31/ 07 24LDPC Codes

• Proposed by Gallager (1960)
• “Sparseness” of matrix and graph descriptions

• Number of 1’s in H grows linearly with block length
• Number of edges in Tanner graph grows linearly with

block length
• “Randomness” of construction in:

• Placement of 1’s in H
• Connectivity of variable and check nodes

• Iterative, message-passing decoder
• Simple “local” decoding at nodes
• Iterative exchange of information (message-passing)

Review of Gallager’s Paper

5/ 31/ 07 25LDPC Codes

• Another pioneering work:
Gallager, R. G., Low-Density Parity-Check Codes, M.I.T. Press,
Cambridge, Mass: 1963.

• A more enlightened review:
Horstein, M., IEEE Trans. Inform. Thoery, vol. 10, no. 2, p. 172, April
1964,
“This book is an extremely lucid and circumspect exposition of an
important piece of research. A comparison with other coding and
decoding procedures designed for high-reliability transmission ... is
difficult...Furthermore, many hours of computer simulation are needed
to evaluate a probabilistic decoding scheme... It appears, however, that
LDPC codes have a sufficient number of desirable features to make
them highly competitive with ... other schemes”

Gallager’s LDPC Codes

5/ 31/ 07 26LDPC Codes

• Now called “regular” LDPC codes
• Parameters (n,j,k)

─ n = codeword length
─ j = # of parity-check equations involving each code bit

= degree of each variable node
─ k = # code bits involved in each parity-check equation

= degree of each check node

• Locations of 1’s can be chosen randomly, subject to
(j,k) constraints.

Gallager’s Construction

5/ 31/ 07 27LDPC Codes

1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(n,j,k) =(20,3,4)
•First n/k =5 rows have k=4
1’s each, descending.

•Next j-1=2 submatrices of
size n/k x n =5 x 20 obtained
by applying randomly chosen
column permutation to first
submatrix.

•Result: jn/k x n = 15 x 20
parity check matrix for a
(n,j,k) =(20,3,4) LDPC code.

1π

2π

Regular LDPC Code – Tanner Graph

5/ 31/ 07 28LDPC Codes

#
#

n = 20 variable
nodes

left degree j = 3

nj = 60 edges

nj/k = 15 check

right degree k = 4

nj = 60 edges

Properties of Regular LDPC Codes

5/ 31/ 07 29LDPC Codes

• Design rate: R(j,k) =1─ j/k
• Linear dependencies can increase rate
• Design rate achieved with high probability as n

increases
• Example: (n,j,k)=(20,3,4) with R = 1 ─ 3/4 = 1/4.

• For j ≥3, the “typical” minimum distance of codes in the
(j,k) ensemble grows linearly in the codeword length n.

• Their performance under maximum-likelihood decoding on
BSC(p) is “at least as good...as the optimum code of a
somewhat higher rate.” [Gallager, 1960]

Performance of Regular LDPC Codes

5/ 31/ 07 30LDPC Codes

Gallager, 1963Gallager, 1963

Performance of Regular LDPC Codes

5/ 31/ 07 31LDPC Codes

Gallager, 1963Gallager, 1963

Performance of Regular LDPC Codes

5/ 31/ 07 32LDPC Codes

Gallager, 1963Gallager, 1963

Performance of Regular LDPC Codes

5/ 31/ 07 33LDPC Codes

(3,6)(3,6)Irregular LDPCIrregular LDPC
Richardson,
Shokrollahi,
and Urbanke,
2001

n=106

R=1/2

Richardson,
Shokrollahi,
and Urbanke,
2001

n=106

R=1/2

Irregular LDPC Codes

5/ 31/ 07 34LDPC Codes

• Irregular LDPC codes are a natural generalization of Gallager’s
LDPC codes.

• The degrees of variable and check nodes need not be constant.
• Ensemble defined by “node degree distribution” functions.

• Normalize for fraction of nodes of specified degree

∑
=

Λ=Λ
vd

i

i
i xx

1

)(∑
=

Ρ=Ρ
cd

i

i
i xx

2

)(

i
i

 degree of nodes
 variableofnumber =Λ

i
i

 degree of nodes
check ofnumber =Ρ

)1(
)()(

Λ
Λ

=
xxL

)1(
)()(

P
xPxR =

Irregular LDPC Codes

5/ 31/ 07 35LDPC Codes

• Often, we use the degree distribution from the edge
perspective

∑
=

−=
vd

i

i
i xx

1

1)(λλ ∑
=

−=
cd

i

i
i xx

2

1)(ρρ

i
i

 degree of nodescheck to
 connected edges offraction =ρ

i
i

 degree of nodes variable to
 connected edges offraction =λ

• Conversion rule

()
()

()
()11

)(
L

xLxx
′
′

=
Λ′
Λ′

=λ ()
()

()
()11

)(
R

xR
P

xPx
′
′

=
′
′

=ρ

Irregular LDPC Codes

5/ 31/ 07 36LDPC Codes

• Design rate

∫

∫

−=−=
∑
∑

1

0
)(

1

0
)(

11),(
dxx

dxx

i i

i i

i

i

R
λ

ρ

λ

ρ

ρλ

• Under certain conditions related to codewords of weight ≈ n/2,
the design rate is achieved with high probability as n increases.

Examples of Degree Distribution Pairs

5/ 31/ 07 37LDPC Codes

• Hamming (7,4) code

()
() 4

32

3

33

xx

xxxx

=Ρ

++=Λ

edges = 12# edges = 12

()
() 3

2
4
1

2
1

4
1

xx

xxx

=

++=

ρ

λ
7
4

7
31),(=−=ρλR

• (j,k) – regular LDPC code, length-n

()

() k

j

x
k
jnx

nxx

=Ρ

=Λ ()
() 1

1

−

−

=

=
k

j

xx

xx

ρ

λ
k
j

j
kR −=−= 1

/1
/11),(ρλ

Encoding LDPC Codes

5/ 31/ 07 38LDPC Codes

• Convert H into equivalent upper triangular form H′

11111111
0

H′ = n-k

n-k k

(e.g., by Gaussian elimination and column swapping –
complexity ~ O(n3))

• This is a “pre-processing” step only.

Encoding LDPC Codes

5/ 31/ 07 39LDPC Codes

• Set cn-k+1,…,cn equal to the data bits x1,…,xk .
• Solve for parities cℓ, ℓ=1,…, n-k, in reverse order; i.e.,

starting with ℓ=n-k, compute

(complexity ~O(n2))
• Another general encoding technique based upon “approximate

lower triangulation” has complexity no more than O(n2), with
the constant coefficient small enough to allow practical
encoding for block lengths on the order of n=105.

∑∑
+=

+−

−

+=

−−=
k

lj
jknjl

kn

lj
jjll xHcHc

1
,

1
,

Linear Encoding Complexity

5/ 31/ 07 40LDPC Codes

• It has been shown that “optimized” ensembles of irregular
LDPC codes can be encoded with preprocessing complexity at
most O(n3/2), and subsequent complexity ~O(n).

• It has been shown that a necessary condition for the ensemble of
(λ, ρ)-irregular LDPC codes to be linear-time encodable is

• Alternatively, LDPC code ensembles with additional “structure”
have linear encoding complexity, such as “irregular repeat-
accumulate (IRA)” codes.

1)1()0(>′′ ρλ

Decoding of LDPC Codes

5/ 31/ 07 41LDPC Codes

• Gallager introduced the idea of iterative, message-
passing decoding of LDPC codes.

• The idea is to iteratively share the results of local
node decoding by passing them along edges of the
Tanner graph.

• We will first demonstrate this decoding method for
the binary erasure channel BEC(ε).

• The performance and optimization of LDPC codes
for the BEC will tell us a lot about other channels,
too.

Decoding for the BEC

5/ 31/ 07 42LDPC Codes

• Recall: Binary erasure channel, BEC(ε)

x = (x1, x2, … , xn) transmitted codeword
y = (y1, y2, … , yn) received word

• Note: if yi∈{0,1}, then xi = yi.

0 0

1 1

?ε
ε

1-ε

1-ε

xi yi

Optimal Block Decoding - BEC

5/ 31/ 07 43LDPC Codes

• Maximum a posteriori (MAP) block decoding rule minimizes
block error probability:

• Assume that codewords are transmitted equiprobably.

• If the (non-empty) set X(y) of codewords compatible with y
contains only one codeword x, then

• If X(y) contains more than one codeword, then declare a block
erasure.

)|(maxarg)(ˆ | yxPyx YX
Cx

MAP

∈
=

xyxMAP =)(ˆ

)|(maxarg)(ˆ | xyPyx XY
Cx

MAP

∈
=

Optimal Bit Decoding - BEC

5/ 31/ 07 44LDPC Codes

• Maximum a posteriori (MAP) bit decoding rule minimizes
bit error probability:

• Assume that codewords are transmitted equiprobably.
• If every codeword x∈X(y) satisfies xi=b, then set

• Otherwise, declare a bit erasure in position i.

{ }

{ } ∑
=
∈∈

∈

=

=

bx
Cx

YX
b

YX
b

MAP

i

ii

yxP

ybPyx

)|(maxarg

)|(maxarg)(ˆ

|
1,0

|
1,0

byxMAP =)(ˆ

MAP Decoding Complexity

5/ 31/ 07 45LDPC Codes

• Let E ⊆{1,…,n} denote the positions of erasures in y, and let
F denote its complement in {1,…,n}.

• Let wE and wF denote the corresponding sub-words of word w.
• Let HE and HF denote the corresponding submatrices of the

parity check matrix H.
• Then X(y), the set of codewords compatible with y, satisfies

• So, optimal (MAP) decoding can be done by solving a set of
linear equations, requiring complexity at most O(n3).

• For large blocklength n, this can be prohibitive!

{ }T TX() | and F F E E F Fy x C x y H x H y= ∈ = =

Simpler Decoding

5/ 31/ 07 46LDPC Codes

• We now describe an alternative decoding procedure
that can be implemented very simply.

• It is a “local” decoding technique that tries to fill in
erasures “one parity-check equation at a time.”

• We will illustrate it using a very simple and familiar
linear code, the (7,4) Hamming code.

• We’ll compare its performance to that of optimal bit-
wise decoding.

• Then, we’ll reformulate it as a “message-passing”
decoding algorithm and apply it to LDPC codes.

Local Decoding of Erasures

5/ 31/ 07 47LDPC Codes

• dmin = 3, so any two erasures can be
uniquely filled to get a codeword.

• Decoding can be done locally:
Given any pattern of one or two
erasures, there will always be a
parity-check (circle) involving
exactly one erasure.

• The parity-check represented by the
circle can be used to fill in the erased
bit.

• This leaves at most one more erasure.
Any parity-check (circle) involving it
can be used to fill it in.

1
2 3

47

5

6

Local Decoding - Example

5/ 31/ 07 48LDPC Codes

• All-0’s codeword transmitted.

• Two erasures as shown.

• Start with either the red parity
or green parity circle.

• The red parity circle requires
that the erased symbol inside it
be 0.

0
? 0

?
0

0

0

Local Decoding -Example

5/ 31/ 07 49LDPC Codes

• Next, the green parity circle or
the blue parity circle can be
selected.

• Either one requires that the
remaining erased symbol be 0.

0
0 0

?
0

0

0

Local Decoding -Example

5/ 31/ 07 50LDPC Codes

• Estimated codeword:

[0 0 0 0 0 0 0]

• Decoding successful!!

• This procedure would have
worked no matter which
codeword was transmitted.

0
0 0

0
0

0

0

Decoding with the Tanner Graph:
an a-Peeling Decoder

5/ 31/ 07 51LDPC Codes

• Initialization:
• Forward known variable node

values along outgoing edges
• Accumulate forwarded values at

check nodes and “record” the
parity

• Delete known variable nodes and
all outgoing edges

Peeling Decoder – Initialization

5/ 31/ 07 52LDPC Codes

x

0

?

0

?

0

?

1

x

0

?

0

?

0

?

1

Forward known valuesForward known values

Peeling Decoder - Initialization

5/ 31/ 07 53LDPC Codes

Delete known variable
nodes and edgesx

0

?

0

?

0

?

1

x

0

?

0

?

0

?

1

Accumulate parity

Decoding with the Tanner Graph:
an a-Peeling Decoder

5/ 31/ 07 54LDPC Codes

• Decoding step:
• Select, if possible, a check node with one edge remaining;

forward its parity, thereby determining the connected
variable node

• Delete the check node and its outgoing edge
• Follow procedure in the initialization process at the known

variable node

• Termination
• If remaining graph is empty, the codeword is determined
• If decoding step gets stuck, declare decoding failure

Peeling Decoder – Step 1

5/ 31/ 07 55LDPC Codes

Find degree-1 check node;
forward accumulated parity;
determine variable node value

x

0

0

0

?

0

?

1

x

0

0

0

?

0

?

1

Delete check node and edge;
forward new variable node value

Peeling Decoder – Step 1

5/ 31/ 07 56LDPC Codes

Delete known variable
nodes and edgesx

0

0

0

?

0

?

1

Accumulate parityx

0

0

0

?

0

?

1

Peeling Decoder – Step 2

5/ 31/ 07 57LDPC Codes

Find degree-1 check node;
forward accumulated parity;
determine variable node value

Delete check node and edge;
forward new variable node valuex

0

0

0

1

0

?

1

x

0

0

0

1

0

?

1

Peeling Decoder – Step 2

5/ 31/ 07 58LDPC Codes

Delete known variable
nodes and edgesx

0

0

0

1

0

?

1

Accumulate parityx

0

0

0

1

0

?

1

Peeling Decoder – Step 3

5/ 31/ 07 59LDPC Codes

Find degree-1 check node;
forward accumulated parity;
determine variable node value

Delete check node and edge;
decoding completex

0

0

0

1

0

1

1

x

0

0

0

1

0

1

1

Message-Passing Decoding

5/ 31/ 07 60LDPC Codes

• The local decoding procedure can be
described in terms of an iterative,
“message-passing” algorithm in
which all variable nodes and all
check nodes in parallel iteratively
pass messages along their adjacent
edges.

• The values of the code bits are
updated accordingly.

• The algorithm continues until all
erasures are filled in, or until the
completion of a specified number of
iterations.

Variable-to-Check Node Message

5/ 31/ 07 61LDPC Codes

u
?

?

v=u?

?

v=?
?

from channel

edge eedge e
uu

edge eedge e

?

Variable-to-check message on edge e
If all other incoming messages are ?, send message v = ?
If any other incoming message u is 0 or 1, send v=u and,
if the bit was an erasure, fill it with u, too.

(Note that there are no errors on the BEC, so a message that
is 0 or 1 must be correct. Messages cannot be inconsistent.)

Check-to-Variable Node Message

5/ 31/ 07 62LDPC Codes

v1

v3

u = v1+ v2+ v3

v2

edge eedge e

?

v2

u = ?

v1

edge eedge e

Check-to-variable message on edge e
If any other incoming message is ?, send u = ?
If all other incoming messages are in {0,1},
send the XOR of them, u = v1+ v2+ v3.

Message-Passing Example – Initialization

5/ 31/ 07 63LDPC Codes

y

0

?

0

?

0

?

1

y

0

?

0

?

0

?

1

x y

0 0

? ?

0 0

? ?

0 0

? ?

1 1

x y

0 0

? ?

0 0

? ?

0 0

? ?

1 1

Variable-to-CheckVariable-to-Check

Message-Passing Example – Round 1

5/ 31/ 07 64LDPC Codes

x y

0 0

0 ?

0 0

? ?

0 0

? ?

1 1

x y

0 0

? ?

0 0

? ?

0 0

? ?

1 1

Variable-to-CheckCheck-to-Variable

Message-Passing Example – Round 2

5/ 31/ 07 65LDPC Codes

x y

0 0

0 ?

0 0

1 ?

0 0

? ?

1 1

x y

0 0

0 ?

0 0

? ?

0 0

? ?

1 1

Variable-to-CheckCheck-to-Variable

Message-Passing Example – Round 3

5/ 31/ 07 66LDPC Codes

x y

0 0

0 ?

0 0

1 ?

0 0

1 ?

1 1

x y

0 0

0 ?

0 0

1 ?

0 0

? ?

1 1

Variable-to-Check
Decoding completeCheck-to-Variable

Sub-optimality of Message-Passing Decoder

5/ 31/ 07 67LDPC Codes

Hamming code: decoding of 3 erasures

• There are 7 patterns of 3 erasures that
correspond to the support of a weight-3
codeword. These can not be decoded by
any decoder!

• The other 28 patterns of 3 erasures can be
uniquely filled in by the optimal decoder.

• We just saw a pattern of 3 erasures that
was corrected by the local decoder. Are
there any that it cannot?

• Test: ? ? ? 0 0 1 0

?
? ?

00

0

1

Sub-optimality of Message-Passing Decoder

5/ 31/ 07 68LDPC Codes

• Test: ? ? ? 0 0 1 0

• There is a unique way to fill the
erasures and get a codeword:

1 1 0 0 0 1 0

The optimal decoder would find it.

• But every parity-check has at least 2
erasures, so local decoding will not
work!

1
1 0

00

0

1

Stopping Sets

5/ 31/ 07 69LDPC Codes

• A stopping set is a subset S of the variable nodes such
that every check node connected to S is connected to
S at least twice.

• The empty set is a stopping set (trivially).

• The support set (i.e., the positions of 1’s) of any
codeword is a stopping set (parity condition).

• A stopping set need not be the support of a codeword.

Stopping Sets

5/ 31/ 07 70LDPC Codes

• Example 1: (7,4) Hamming code

Codeword
support set

S={4,6,7}

1 2 3 4 5 6 7

0 0 0 1 0 1 1

Stopping Sets

5/ 31/ 07 71LDPC Codes

• Example 2: (7,4) Hamming code

1 2 3 4 5 6 7

Stopping Sets

5/ 31/ 07 72LDPC Codes

• Example 2: (7,4) Hamming code

Not the support
set of a codeword
S={1,2,3}

1 2 3 4 5 6 7

Stopping Set Properties

5/ 31/ 07 73LDPC Codes

• Every set of variable nodes contains a largest stopping set
(since the union of stopping sets is also a stopping set).

• The message-passing decoder needs a check node with
at most one edge connected to an erasure to proceed.

• So, if the remaining erasures form a stopping set, the decoder
must stop.

• Let E be the initial set of erasures. When the message-
passing decoder stops, the remaining set of erasures is the
largest stopping set S in E.
• If S is empty, the codeword has been recovered.
• If not, the decoder has failed.

Suboptimality of Message-Passing Decoder

5/ 31/ 07 74LDPC Codes

• An optimal (MAP) decoder for a code C on the BEC
fails if and only if the set of erased variables includes
the support set of a codeword.

• The message-passing decoder fails if and only the set
of erased variables includes a non-empty stopping set.

• Conclusion: Message-passing may fail where optimal
decoding succeeds!!

Message-passing is suboptimal!!

Comments on Message-Passing Decoding

5/ 31/ 07 75LDPC Codes

• Bad news:
• Message-passing decoding on a Tanner graph is

not always optimal...
• Good news:

• For any code C, there is a parity-check matrix on
whose Tanner graph message-passing is optimal,
e.g., the matrix of codewords of the dual code .

• Bad news:
• That Tanner graph may be very dense, so even

message-passing decoding is too complex.

⊥C

Another (7,4) Code

5/ 31/ 07 76LDPC Codes

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1011000
0101100
0001011

H

R=4/7 dmin=2

All stopping sets contain codeword supports.

Message-passing decoder on this graph is optimal!

(Cycle-free Tanner graph implies this.)

Comments on Message-Passing Decoding

5/ 31/ 07 77LDPC Codes

• Good news:
• If a Tanner graph is cycle-free, the message-

passing decoder is optimal!
• Bad news:

• Binary linear codes with cycle-free Tanner graphs
are necessarily weak...

• Good news:
• The Tanner graph of a long LDPC code behaves

almost like a cycle-free graph!

Analysis of LDPC Codes on BEC

5/ 31/ 07 78LDPC Codes

• In the spirit of Shannon, we can analyze the
performance of message-passing decoding on
ensembles of LDPC codes with specified degree
distributions (λ,ρ).

• The results of the analysis allow us to design LDPC
codes that transmit reliably with MP decoding at rates
approaching the Shannon capacity of the BEC.

• In fact, sequences of LDPC codes have been designed
that actually achieve the Shannon capacity.

• The analysis can assume the all-0’s codeword is sent.

Key Results - 1

5/ 31/ 07 79LDPC Codes

• Concentration
• With high probability, the performance of ℓ rounds

of MP decoding on a randomly selected (n, λ, ρ)
code converges to the ensemble average
performance as the length n→∞.

• Convergence to cycle-free performance
• The average performance of ℓ rounds of MP

decoding on the (n, λ, ρ) ensemble converges to the
performance on a graph with no cycles of length
≤ 2ℓ as the length n→∞.

Key Results - 2

5/ 31/ 07 80LDPC Codes

• Computing the cycle-free performance
• The cycle-free performance can be computed by a

tractable algorithm – density evolution.

• Threshold calculation
• There is a threshold probability p*(λ,ρ) such that,

for channel erasure probability ε < p*(λ,ρ), the
cycle-free error probability approaches 0 as the
number of iterations ℓ→∞.

Asymptotic Performance Analysis

5/ 31/ 07 81LDPC Codes

• We assume a cycle-free (λ,ρ) Tanner graph.
• Let p0 = ε, the channel erasure probability.
• We find a recursion formula for pℓ , the

probability that a randomly chosen edge carries a
variable-to-check erasure message in round ℓ.

• We then find the largest ε such that pℓ converges
to 0, as ℓ→∞. This value is called the threshold.

• This procedure is called “density evolution”
analysis.

Density Evolution-1

5/ 31/ 07 82LDPC Codes

• Consider a check node of degree d
with independent incoming messages.

• Consider a check node of degree d
with independent incoming messages.

() ()
()

1
1)1(1

1,,1 allfor ?,Pr1
1,,1 somefor ?,Pr?Pr

−
−−−=

−=≠−=
−====

d
i

i

p
div
divu

A

…
…

• The probability that edge e connects to
a check node of degree d is ρd , so

() ()

()1

1
1

1

1
1

1

11

)1(1

)1(1?Pr

−

−
−

=

−
−

=

−−=

−−=

−−==

∑

∑

A

A

A

p

p

pu

d
d

d
d

d
d

d
d

c

c

ρ

ρ

ρ

#
1v

2−dv
1−dv

edge eedge euu

Density Evolution-2

5/ 31/ 07 83LDPC Codes

• Consider a variable node of degree
d with independent incoming
messages.

#
2−du

1−du

0u
1u

vvedge eedge e () () ()
[] 1

10

0

)1(1

1,,1 allfor ?,Pr?Pr?Pr
−

−−−=

−=====
d

i

pp

diuuv

A

…

ρ

• The probability that edge e connects to
a variable node of degree d is λd , so

from channel

() ()[]

()()10

1
1

1
0

11

11?Pr

−

−
−

=

−−=

−−== ∑
A

A

pp

ppv d
d

d
d

v

ρλ

ρλ

pℓ = p0 λ (1–ρ(1–pℓ-1))

Threshold Property

5/ 31/ 07 84LDPC Codes

pℓ = p0 λ (1–ρ(1–pℓ-1))

• There is a threshold probability p*(λ, ρ) such that

if

then

() ,,* 0 ρλε pp <=

.0lim →
∞→ AA

p

Threshold Interpretation

5/ 31/ 07 85LDPC Codes

• Operationally, this means that using a code drawn
from the ensemble of length-n LDPC codes with
degree distribution pair (λ, ρ), we can transmit as
reliably as desired over the BEC(ε) channel if

for sufficiently large block length n .

() , ,* ρλε p<

Computing the Threshold

5/ 31/ 07 86LDPC Codes

• Define f (p,x) = p λ (1–ρ(1–x))
• The threshold p*(λ, ρ) is the largest probability p such

that
f (p,x) – x < 0

on the interval x∈(0,1].

• This leads to a graphical interpretation of the
threshold p*(λ, ρ)

Graphical Determination of the Threshold

5/ 31/ 07 87LDPC Codes

• Example: (j,k)=(3,4)

() xxpxpxf −−−=−
23)1(1),(p*≈ 0.6474

p = 0.7

p = 0.6474

p=0.6

p=0.5

(j,k)-Regular LDPC Code Thresholds

5/ 31/ 07 88LDPC Codes

• There is a closed form expression for thresholds of
(j,k)-regular LDPC codes.

• Examples:

(j,k) R pSh p*(j,k)
(3,4) 1/4 ¾=0.75 ≈0.6474
(3,5) 2/5 3/5=0.6 ≈0.5176
(3,6) 1/2 ½=0.5 ≈0.4294
(4,6) 1/3 ⅔≈0.67 ≈0.5061
(4,8) 1/2 ½=0.5 ≈0.3834

647426.0
212523672

3125)4,3(*

≈
+

=p

Degree Distribution Optimization

5/ 31/ 07 89LDPC Codes

• Two approaches:
• Fix design rate R(λ,ρ) and find degree

distributions λ(x), ρ(x) to maximize the threshold
p*(λ,ρ).

• Fix the threshold p*, and find degree distributions
λ(x), ρ(x) to maximize the rate R(λ,ρ).

• For the latter, we can:
• start with a specific ρ(x) and optimize λ(x);
• then, for the optimal λ(x), find the optimal check

distribution;
• ping-pong back and forth until satisfied with the

results.

Variable Degree Distribution Optimization

5/ 31/ 07 90LDPC Codes

• Fix a check degree distribution ρ(x) and threshold ε.
• Fix maximum variable degree lmax .
• Define

• Use linear programming to find

• Since the rate R(λ,ρ) is an increasing function of λi/i,
this maximizes the design rate.

xx

xxxg
i

i
i −−−=

−−−=
−

≥
∑ 1

2

2

))1(1(

))1(1(),,,(

ρλε

ρελλλ
maxl…

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈≤=≥∑ ∑
= =

max max

2 2

]1,0[for 0;1;0/max
l

i

l

i
iii xgi λλλ

λ

Practical Optimization

5/ 31/ 07 91LDPC Codes

• In practice, good performance is found for a check degree
distribution of the form:

• Example 1: lmax = 8, r =6, design rate ½

• Rate: R(λ,ρ) ≈ 0.5004
• Threshold: p*(λ,ρ) ≈ 0.4810

rr xaaxx)1()(1 −+= −ρ

5

7632

)(

1151.01971.00768.0202.0409.0)(

xx

xxxxxx

=

++++=

ρ

λ

Bound on the Threshold

5/ 31/ 07 92LDPC Codes

• Taylor series analysis yields the general upper bound:

• For previous example with p*(λ,ρ) ≈ 0.4810, the upper bound
gives:

.
)1()0(

1),(*
ρλ

ρλ
′′

≤p

4890.0
5(0.409)

1
)1()0(

1
≤

⋅
=

′′ ρλ

EXIT Chart Analysis

5/ 31/ 07 93LDPC Codes

• Extrinsic information transfer (EXIT) charts provide a nice
graphical depiction of density evolution and MP decoding
[tenBrink,1999]

• Rewrite the density evolution recursion as:

where

))(c(v
))1(1(),(

x
xppxf

p=
−−= ρλ

)1(1)(

)()(

xxc

xpxv p

−−=

=

ρ

λ

EXIT Chart Analysis

5/ 31/ 07 94LDPC Codes

• Recall that the MP convergence condition was

• Since λ(x) is invertible, the condition becomes

• Graphically, this says that the curve for c(x) must lie
below the curve for for all p < p*.

)1,0(allfor ,),(∈< xxpxf

)1,0(allfor),(v)(1 ∈< − xxxc p

)(v 1 xp
−

EXIT Chart Example

5/ 31/ 07 95LDPC Codes

• Example: (3,4)-regular LDPC code, p*=0.6474

32)()(xxxx == ρλ

2
1

1

32

)(

)1(1

)1(1)()()(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−−==

−−==

−

p
xxv

xpx

xxcxpxv

p

p ρλ

EXIT Chart Example

5/ 31/ 07 96LDPC Codes

• Example: (3,4)-regular LDPC code, p*=0.6474

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p=0.5
p=0.6

p=0.7
p=0.8

p*≈0.6474

3)1(1)(xxc −−=

2
1

1)(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

p
xxv p

for various
values of
initial erasure
probability p

EXIT Charts and Density Evolution

5/ 31/ 07 97LDPC Codes

• EXIT charts can be used to visualize density
evolution.
• Assume initial fraction of erasure messages p0=p.
• The fraction of erasures emitted successively by check

node qi and by variable nodes and pi are obtained by
successively applying c(x) and vp(x).

])(:[note))(()(

)(

])(:[note))(()(

)(

22
1

122

12

11
1

011

01

qpvpcvqvp

pcq

qpvpcvqvp

pcq

ppp

ppp

===

=

===

=

−

−

EXIT Charts and Density Evolution

5/ 31/ 07 98LDPC Codes

• Graphically, this computation describes a staircase
function.

• If p < p*, there is a “tunnel” between vp
-1(x) and c(x)

through which the staircase descends to ground level,
i.e., no erasures.

• If p > p*, the tunnel closes, stopping the staircase
descent at a positive fraction of errors.

Density Evolution Visualization - 1

5/ 31/ 07 99LDPC Codes

• Example: (3,4)-regular LDPC code, p=0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3)1(1)(xxc −−=

2
1

1
6.0 6.0

)(⎟
⎠
⎞

⎜
⎝
⎛=− xxv

Density Evolution Visualization-2

5/ 31/ 07 100LDPC Codes

• Example: (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p0=0.6
q

fraction of
erasures
from check
nodes

p
fraction of erasures from variable nodes

Density Evolution Visualization

5/ 31/ 07 101LDPC Codes

• Example: (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q1=0.936

p0=0.6
q

fraction of
erasures
from check
nodes

p
fraction of erasures from variable nodes

Density Evolution Visualization

5/ 31/ 07 102LDPC Codes

• Example: (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1≈0.5257

q1≈0.936

p
fraction of erasures from variable nodes

q
fraction of
erasures
from check
nodes

Density Evolution Visualization

5/ 31/ 07 103LDPC Codes

• Example: (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1≈0.5257

q2≈0.8933

p
fraction of erasures from variable nodes

q
fraction of
erasures
from check
nodes

Density Evolution Visualization

5/ 31/ 07 104LDPC Codes

• Example: (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p2≈0.4788

p
fraction of erasures from variable nodes

q
fraction of
erasures
from check
nodes

q2≈0.8933

Density Evolution Visualization

5/ 31/ 07 105LDPC Codes

• Example: (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
fraction of erasures from variable nodes

q
fraction of
erasures
from check
nodes

p2≈0.4788

q3≈0.8584

Density Evolution Visualization

5/ 31/ 07 106LDPC Codes

• Example: (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p3≈0.4421

p
fraction of erasures from variable nodes

q
fraction of
erasures
from check
nodes

q3≈0.8584

Density Evolution Visualization

5/ 31/ 07 107LDPC Codes

• Example: (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p3≈0.4421

pℓ continues through
the “tunnel” to 0.

p
fraction of erasures from variable nodes

q
fraction of
erasures
from check
nodes

Density Evolution Visualization

5/ 31/ 07 108LDPC Codes

• Example: (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pℓ continues through“
tunnel” to 0.

p
fraction of erasures from variable nodes

q
fraction of
erasures
from check
nodes

Matching Condition

5/ 31/ 07 109LDPC Codes

• For capacity-achieving sequences of LDPC codes for
the BEC, the EXIT chart curves must match.

• This is called the matching condition.
• Such sequences have been developed:

• Tornado codes
• Right-regular LDPC codes
• Accumulate-Repeat-Accumulate codes

Decoding for Other Channels

5/ 31/ 07 110LDPC Codes

• We now consider analysis and design of LDPC codes for
BSC(p) and BiAWGN(σ) channels. We call p and σ the
“channel parameter” for these two channels, respectively.

• Many concepts, results, and design methods have natural
(but non-trivial) extensions to these channels.

• The messages are probability mass functions or log-
likelihood ratios.

• The message-passing paradigm at variable and check nodes
will be applied.

• The decoding method is called “belief propagation” or BP,
for short.

Belief Propagation

5/ 31/ 07 111LDPC Codes

• Consider transmission of binary inputs X∈{±1} over a
memoryless channel using linear code C.

• Assume codewords are transmitted equiprobably.
• Then

where is the indicator function for C.

{ }

{ }

{ }

{ }
)()|(argmax

)()|(argmax

)|(argmax

)|(maxarg)(ˆ

~ 1
|

1

~
|

1

~
|

1

|
1

xfxyP

xPxyP

yxP

yxPyx

C
x

n

j
jjXY

x

X
x

XY
x

x
YX

x

iYX
x

MAP

i

jj
i

ii

ii

i
i

i

⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

=

=

=

∑ ∏

∑
∑

=±∈

±∈

±∈

±∈

)(xfC

Belief Propagation

5/ 31/ 07 112LDPC Codes

• For codes with cycle-free Tanner graphs, there is a message-
passing approach to bit-wise MAP decoding.

• The messages are essentially conditional bit distributions,
denoted u = [u(1), u(-1)].

• The initial messages presented by the channel to the variable
nodes are of the form

• The variable-to-check and check-to-variable message updates
are determined by the “sum-product” update rule.

• The BEC decoder can be formulated as a BP decoder.

)]1|(),1|([)]1(),1([||,,, −=−= iXYiXYichichich ypypuuu
iiii

Sum-Product Update Rule

5/ 31/ 07 113LDPC Codes

from channel
#
2−du

1−du

chu
1u

v

∏
−

=

±∈=
1

1

}1{for ,)()(
d

k
kch bbuubv

• Variable-to-check• Variable-to-check

• Check-to-variable• Check-to-variable

,)(),,,,()(
},,,{

1

1
121

121

∑ ∏
−

−

=
−=

dxxx

d

k
kkd xvxxxbfbu

…

…

where f is the parity-check indicator function.where f is the parity-check indicator function.

0u

u

#
v1

vd-1
vd

v0

Variable Node Update - Heuristic

5/ 31/ 07 114LDPC Codes

from channel
#
2−du

1−du

chu
1u

v
• Variable-to-check• Variable-to-check

∏
−

=

±∈=
1

1

}1{for ,)()(
d

k
kch bbuubv

0u

Suppose incoming messages u0, u1, ..., ud-1
from check nodes 0,1, ..., d-1 and message
uch from the channel are independent
estimates of [P(x = 1), P(x = -1)].

Suppose incoming messages u0, u1, ..., ud-1
from check nodes 0,1, ..., d-1 and message
uch from the channel are independent
estimates of [P(x = 1), P(x = -1)].

Then, a reasonable estimate to send to check node 0 based upon the other
estimates would be the product of those estimates (suitably normalized).

We do not use the “intrinsic information” u0 provided by check node 0.
The estimate v represents “extrinsic information”.

Then, a reasonable estimate to send to check node 0 based upon the other
estimates would be the product of those estimates (suitably normalized).

We do not use the “intrinsic information” u0 provided by check node 0.
The estimate v represents “extrinsic information”.

∏
−

=

====
1

1

)()()(ˆ
d

k
kch bxPbxPbxP

Check-Node Update - Heuristic

5/ 31/ 07 115LDPC Codes

,)(),,,,()(
},,,{

1

1
121

121

∑ ∏
−

−

=
−=

dxxx

d

k
kkd xvxxxbfbu

…

…

Parity-check node equation: r ⊕ s ⊕ t = 0

Over {-1,1}, this translates to: r · s · t = 1

P(r=1) = P(s = 1, t = 1) + P(s = -1, t = -1)

= P(s = 1)P(t = 1) + P(s = -1)P(t = -1)

[by independence assumption]

Similarly

P(r = -1) = P(s = 1, t = -1)+P(s = -1, t = 1)

= P(s = 1)P(t = -1)+P(s = -1)P(t = 1)

Parity-check node equation: r ⊕ s ⊕ t = 0

Over {-1,1}, this translates to: r · s · t = 1

P(r=1) = P(s = 1, t = 1) + P(s = -1, t = -1)

= P(s = 1)P(t = 1) + P(s = -1)P(t = -1)

[by independence assumption]

Similarly

P(r = -1) = P(s = 1, t = -1)+P(s = -1, t = 1)

= P(s = 1)P(t = -1)+P(s = -1)P(t = 1)

u

v1

v2

v0

rr

ss

tt

Log-Likelihood Formulation

5/ 31/ 07 116LDPC Codes

• The sum-product update is simplified using log-likelihoods
• For message u, define

• Note that

)1(
)1(log)(

−
=

u
uuL

1

1)1(and
1

)1()()(

)(

uLuL

uL

e
u

e
eu

+
=−

+
=

Log-Likelihood Formulation – Variable Node

5/ 31/ 07 117LDPC Codes

• The variable-to-check update rule then takes the form:

from channel
#

)(2−duL

)(1−duL

)(0uL)(1uL

L(v)

∑
−

=

=
1

0

)()(
d

k
kuLvL

Log-Likelihood Formulation – Check Node

5/ 31/ 07 118LDPC Codes

• The check-to-variable update rule then takes the form:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∏

−

=

−
1

1

1

2
)(

tanhtanh2)(
d

k

kvL
uL

#

edge e

L(vd-2)

L(vd-1)

L(v1)

L(u)

Log-Likelihood Formulation – Check Node

5/ 31/ 07 119LDPC Codes

• To see this, consider the special case of a degree 3 check node.
• It is easy to verify that

where

• This can be generalized to a check node of any degree by a
simple inductive argument.

u

v1

v2

v0

rr

ss

tt

))((ttssrr QPQPQP −−=−

aaPQaPP aa nodefor),1(and)1(−====

Log-Likelihood Formulation – Check Node

5/ 31/ 07 120LDPC Codes

• Translating to log-likelihood ratios, this becomes

• Noting that

we conclude

u

v1

v2

v0

rr

ss

tt

1
1

1
1

1
1

)(

)(

)(

)(

)(

)(

2

2

1

1

+
−

⋅
+
−

=
+
−

vL

vL

vL

vL

uL

uL

e
e

e
e

e
e

)tanh(
1
1

2)(

)(
)(

2
)(

2
)(

2
)(

2
)(

aL

aLaL

aLaL

ee

ee
e
e

aL

aL

=
+

−
=

+
−

−

−

)tanh()tanh()tanh(222
)2()1()(vLvLuL

=

Key Results -1

5/ 31/ 07 121LDPC Codes

• Concentration
• With high probability, the performance of ℓ

rounds of BP decoding on a randomly selected
(n, λ, ρ) code converges to the ensemble average
performance as the length n→∞.

• Convergence to cycle-free performance
• The average performance of ℓ rounds of MP

decoding on the (n, λ, ρ) ensemble converges to
the performance on a graph with no cycles of
length ≤ 2ℓ as the length n→∞.

Key Results -2

5/ 31/ 07 122LDPC Codes

• Computing the cycle-free performance
• The cycle-free performance can be computed by

a somewhat more complex, but still tractable,
algorithm – density evolution.

• Threshold calculation
• There is a threshold channel parameter p*(λ,ρ)

such that, for any “better” channel parameter p,
the cycle-free error probability approaches 0 as
the number of iterations ℓ→∞.

Density Evolution (AWGN)

5/ 31/ 07 123LDPC Codes

• Assume the all-1’s sequence is transmitted
• The density evolution algorithm computes the probability

distribution or density of LLR messages after each round of
BP decoding.

• Let P0 denote the initial LLR message density. It depends on
the channel parameter σ.

• Let Pℓ denote the density after ℓ iterations.
• The density evolution equation for a (λ,ρ) degree distribution

pair is:

))))((((1
1

0 −
− ΓΓ⊗= AA PPP ρλ

Density Evolution

5/ 31/ 07 124LDPC Codes

))))((((1
1

0 −
− ΓΓ⊗= AA PPP ρλ

• Here ⊗ denotes convolution of densities and Γ is
interpreted as an invertible operator on probability densities.
• We interpret λ(P) and ρ(P) as operations on densities:

• The fraction of incorrect (i.e., negative) messages after ℓ
iterations is:

• Here ⊗ denotes convolution of densities and Γ is
interpreted as an invertible operator on probability densities.
• We interpret λ(P) and ρ(P) as operations on densities:

• The fraction of incorrect (i.e., negative) messages after ℓ
iterations is:

∑∑
≥

−⊗

≥

−⊗ ==
2

)1(

2

)1()()(and)()(
i

i
i

i

i
i PPPP ρρλλ

∫
∞−

0

)(dzzPA

Threshold

5/ 31/ 07 125LDPC Codes

))))((((1
1

0 −
− ΓΓ⊗= AA PPP ρλ

• The threshold σ* is the maximum σ such that

• Operationally, this represents the minimum SNR such that
a code drawn from the (λ,ρ) ensemble will ensure reliable
transmission as the block length approaches infinity.

• The threshold σ* is the maximum σ such that

• Operationally, this represents the minimum SNR such that
a code drawn from the (λ,ρ) ensemble will ensure reliable
transmission as the block length approaches infinity.

.0)(lim
0

=∫
∞−

∞→
dzzPAA

Degree Distribution Optimization

5/ 31/ 07 126LDPC Codes

• For a given rate, the objective is to optimize λ(x)
and ρ(x) for the best threshold p*.

• The maximum left and right degrees are fixed.
• For some channels, the optimization procedure is

not trivial, but there are some techniques that can
be applied in practice.

• For a given rate, the objective is to optimize λ(x)
and ρ(x) for the best threshold p*.

• The maximum left and right degrees are fixed.
• For some channels, the optimization procedure is

not trivial, but there are some techniques that can
be applied in practice.

Thresholds - (j,k)-Regular

5/ 31/ 07 127LDPC Codes

• BSC(p) (j,k) R p*(j,k) pSh

(3,4) 0.25 0.167 0.215

0.174
0.146

0.11

0.11

(4,6) 0.333 0.116
(3,5) 0.4 0.113

(3,6) 0.5 0.084

(4,8) 0.5 0.076

• BiAWGN(σ) (j,k) R σ* σSh

(3,4) 0.25 1.26 1.549

1.295
1.148

0.979

0.979

(4,6) 0.333 1.01
(3,5) 0.4 1.0

(3,6) 0.5 0.88

(4,8) 0.5 0.83

Thresholds and Optimized Irregular Codes

5/ 31/ 07 128LDPC Codes

BiAWGN Rate R=½

σSh = 0.979

BiAWGN Rate R=½

σSh = 0.979

λmax σ*
15 0.9622
20 0.9646
30 0.9690
40 0.9718

Irregular Code vs. Turbo Codes

5/ 31/ 07 129LDPC Codes

AWGN

R=1/2

n =103, 104,

105, 106

AWGN

R=1/2

n =103, 104,

105, 106

B
ER

Richardson,
Shokrollahi,
and Urbanke,
2001

Richardson,
Shokrollahi,
and Urbanke,
2001

Density Evolution

5/ 31/ 07 130LDPC Codes

• Density evolution must track probability
distributions/densities of the log-likelihood ratio
messages.

• A “discretized” version of the sum-product
algorithm, and associated “discretized” density
evolution, speeds code design considerably.

• This design method has produced rate ½ LDPC
ensembles with thresholds within 0.0045dB of the
Shannon limit on the AWGN channel!

• A rate 1/2 code with block length 107 provided BER
of 10-6 within 0.04 dB of the Shannon limit!

Some Really Good LDPC Codes

5/ 31/ 07 131LDPC Codes

0.0045dB from
Shannon limit!

0.0045dB from
Shannon limit!

Chung, et al.,
2001.

Chung, et al.,
2001.

Good Code Performance

5/ 31/ 07 132LDPC Codes

Chung, et al.,
2001.

Chung, et al.,
2001.

Applications of LDPC Codes

5/ 31/ 07 133LDPC Codes

• The performance benefits that LDPC codes offer on
the BEC, BSC, and AWGN channels have been
shown empirically (and sometimes analytically) to
extend to many other channels, including
• Fading channels
• Channels with memory
• Coded modulation for bandwidth-limited channels
• MIMO Systems

Rayleigh Fading Channels

5/ 31/ 07 134LDPC Codes

Hou, et al.,
2001

Hou, et al.,
2001

R=1/2,
(3,6)

R=1/2,
(3,6)

Rayleigh Fading Channels

5/ 31/ 07 135LDPC Codes

Rayleigh Fading Channels

5/ 31/ 07 136LDPC Codes

Partial-Response Channels

5/ 31/ 07 137LDPC Codes

Kurkoski, et
al., 2002

Kurkoski, et
al., 2002

Dicode (1-D) Channel Results

5/ 31/ 07 138LDPC Codes

Rate 7/8

Regular j=3

n=495

Rate 7/8

Regular j=3

n=495

EPR4 (1+D-D2-D3) Channel Results

5/ 31/ 07 139LDPC Codes

Rate 7/8

Regular j=3

n=495

Rate 7/8

Regular j=3

n=495

Optimized Codes for Partial Response

5/ 31/ 07 140LDPC Codes

Varnica and
Kavcic, 2003

Varnica and
Kavcic, 2003

Optimized Codes for Partial Response

5/ 31/ 07 141LDPC Codes

Optimized Codes for Partial Response

5/ 31/ 07 142LDPC Codes

R=0.7

n=106

R=0.7

n=106

Some Basic References

5/ 31/ 07 143LDPC Codes

• R.G. Gallager, Low-Density Parity-Check Codes. Cambridge,
MA: MIT Press, 1963 (Sc.D. MIT, 1960).

• T. Richardson and R. Urbanke, Modern Coding Theory.
Cambridge University Press (Preliminary version, May 12,
2007)

• Special Issue on Codes on Graphs and Iterative Algorithms,
IEEE Transactions on Information Theory, February 2001.

• S-Y Chung, et al., “On the design of low-density parity-check
codes within 0.0045 dB of the Shannon limit,” IEEE Commun.
Letters, vol. 5, no. 2, pp. 58-60, February 2001.

Additional References

5/ 31/ 07 144LDPC Codes

• J. Hou, P.H. Siegel, and L.B. Milstein, “ Performance analysis
and code optimization of low density parity-check codes on
Rayleigh fading channels,” IEEE J. Select. Areas Commun.,
Issue on The Turbo Principle: From Theory to Practice I,
vol. 19, no. 5, pp. 924-934, May 2001.

• B.M. Kurkoski, P.H. Siegel, and J.K. Wolf, “Joint message
passing decoding of LCPC coded partial-response channels,”
IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 1410-1422,
June 2002. (See also B.M. Kurkoski, P.H. Siegel, and J.K.
Wolf, “Correction to “Joint message passing decoding of
LCPC coded partial-response channels”,” IEEE Trans. Inform.
Theory, vol. 49, no. 8, p. 2076, August 2003.)

• N. Varnica and A. Kavcic, “Optimized LDPC codes for partial
response channels,” IEEE Communications Letters, vol. 7,
pp. 168-170, April 2003.

Concluding Remarks

5/ 31/ 07 145LDPC Codes

• LDPC codes are very powerful codes with enormous
practical potential, founded upon deep and rich
theory.

• There continue to be important advances in all of the
key aspects of LDPC code design, analysis, and
implementation.

• LDPC codes are now finding their way into many
applications:
• Satellite broadcast
• Cellular wireless
• Data storage
• And many more …

