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• Shannon’s Channel Coding Theorem 
• Error-Correcting Codes – State-of-the-Art
• LDPC Code Basics

• Encoding
• Decoding

• LDPC Code Design
• Asymptotic performance analysis
• Design optimization
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• EXIT Chart Analysis
• Applications

• Binary Erasure Channel
• Binary Symmetric Channel
• AWGN Channel
• Rayleigh Fading Channel
• Partial-Response Channel

• Basic References



A Noisy Communication System
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Channels

5/ 31/ 07 5LDPC Codes

• Binary erasure channel   BEC(ε)
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More Channels
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• Additive white Gaussian noise channel AWGN
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Shannon Capacity
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Every communication channel is characterized by 
a single number C, called the channel capacity. 

It is possible to transmit information over this 
channel reliably (with probability of error → 0)      
if and only if:
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Channels and Capacities
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More Channels and Capacities
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• Additive white Gaussian noise channel AWGN
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Coding 
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We use a code to communicate over the noisy channel.

kxxx ,,, 21 …=x

kxxx ˆ,,ˆ,ˆˆ 21 …=x

Code rate: n
kR =

Source Encoder

DecoderSink

Channel

nccc ,,, 21 …=c

nyyy ,,, 21 …=y



Shannon’s Coding Theorems
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If C is a code with rate R>C, then the 
probability of error in decoding this code is 
bounded away from 0.  (In other words, at any 
rate R>C, reliable communication is not
possible.)

For any information rate R < C and any δ > 0,
there exists a code C of length nδ and rate R, 
such  that the probability of error in maximum 
likelihood decoding of this code is at most δ.

Proof:  Non-constructive!(x))H – (H(x)Max   C y=



Review of Shannon’s Paper
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• A pioneering paper:
Shannon, C. E. “A mathematical theory of communication. Bell System 
Tech. J. 27, (1948). 379–423, 623–656

• A regrettable review:
Doob, J.L., Mathematical Reviews, MR0026286 (10,133e)

“The discussion is suggestive throughout, rather than 
mathematical, and it is not always clear that the author’s
mathematical intentions are honorable.”

Cover, T. “Shannon’s Contributions to Shannon Theory,” AMS Notices, 
vol. 49, no. 1, p. 11, January 2002

“Doob has recanted this remark many times, saying that it 
and his naming of super martingales (processes that go down 
instead of up) are his two big regrets.”



Finding Good Codes
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• Ingredients of Shannon’s proof:

• Random code

• Large block length

• Optimal decoding

• Problem

Randomness + large block length + optimal decoding =

COMPLEXITY!



State-of-the-Art  
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• Solution
• Long, structured, “pseudorandom” codes
• Practical, near-optimal decoding algorithms

• Examples
• Turbo codes (1993)
• Low-density parity-check (LDPC) codes (1960, 1999)

• State-of-the-art
• Turbo codes and LDPC codes have brought Shannon limits 

to within reach on a wide range of channels.



Evolution of Coding Technology 
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LDPC 
codes from Trellis and Turbo Coding, 

Schlegel and Perez, IEEE Press, 2004



Linear Block Codes  - Basics
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• Parameters of  binary linear block code C
• k =   number of information bits
• n =   number of code bits
• R =   k/n
• dmin =   minimum distance 

• There are many ways to describe C 
• Codebook (list)
• Parity-check matrix / generator matrix
• Graphical representation (“Tanner graph”)



Example:  (7,4) Hamming Code
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1
2 3

47

5

6

• (n,k) = (7,4) ,  R = 4/7

• dmin = 3 
• single error correcting

• double erasure correcting

• Encoding rule:

1. Insert data bits in 1, 2, 3, 4.

2. Insert “parity” bits in 5, 6, 7 
to ensure an even number                                  
of 1’s in each circle

• (n,k) = (7,4) ,  R = 4/7

• dmin = 3 
• single error correcting

• double erasure correcting

• Encoding rule:

1. Insert data bits in 1, 2, 3, 4.

2. Insert “parity” bits in 5, 6, 7 
to ensure an even number                                  
of 1’s in each circle



Example:  (7,4) Hamming Code
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• 2k=16 codewords

• Systematic encoder places input bits in positions 1, 2, 3, 4

• Parity bits are in positions 5, 6, 7
1 0 0 0    1 1 1

1 0 0 1    1 0 0

1 0 1 0    0 0 1

1 0 1 1    0 1 0

1 1 0 0    0 1 0

1 1 0 1    0 0 1

1 1 1 0    1 0 0

1 1 1 1    1 1 1

0 0 0 0   0 0 0 

0 0 0 1   0 1 1

0 0 1 0   1 1 0

0 0 1 1   1 0 1

0 1 0 0   1 0 1

0 1 0 1   1 1 0

0 1 1 0   0 1 1

0 1 1 1   0 0 0



Hamming Code – Parity Checks
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1
2 3

47

5

6

1 1 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

1   2    3   4    5   6    71   2    3   4    5   6    7



Hamming Code: Matrix Perspective
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Parity-Check Equations
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• Parity-check matrix implies system of linear equations.

0
0
0
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• Parity-check matrix is not unique.

• Any set of vectors that span the rowspace generated by H
can serve as the rows of a parity check matrix  (including 
sets with more than 3 vectors). 



Hamming Code: Tanner Graph 
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• Bi-partite graph representing parity-check equations
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c3
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07421 =+++ cccc



Tanner Graph Terminology
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variable nodes

(bit, left) # check nodes

(constraint, right)

The degree of a node is the number 
of edges connected to it.
The degree of a node is the number 
of edges connected to it.



Low-Density Parity-Check Codes
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• Proposed by Gallager (1960) 
• “Sparseness” of matrix and graph descriptions

• Number of 1’s in H grows linearly with block length
• Number of edges in Tanner graph grows linearly with 

block length
• “Randomness” of construction in:

• Placement of 1’s in H
• Connectivity of variable and check nodes

• Iterative, message-passing decoder 
• Simple “local” decoding at nodes
• Iterative exchange of information (message-passing)



Review of Gallager’s Paper
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• Another pioneering work:
Gallager, R. G., Low-Density Parity-Check Codes, M.I.T. Press, 
Cambridge, Mass: 1963.

• A more enlightened review:
Horstein, M., IEEE Trans. Inform. Thoery, vol. 10, no. 2,  p. 172, April 
1964, 
“This book is an extremely lucid and circumspect exposition of an
important piece of research. A comparison with other coding and 
decoding procedures designed for high-reliability transmission ... is 
difficult...Furthermore, many hours of computer simulation are needed 
to evaluate a probabilistic decoding scheme... It appears, however, that 
LDPC codes have a sufficient number of desirable features to make 
them highly competitive with ... other schemes ....”



Gallager’s LDPC Codes
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• Now called “regular” LDPC codes
• Parameters (n,j,k)

─ n =  codeword length
─ j =  # of parity-check equations involving each code bit

=  degree of each variable node
─ k =  # code bits involved in each parity-check equation

=   degree of each check node

• Locations of 1’s can be chosen randomly, subject to 
(j,k) constraints.  



Gallager’s Construction
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1 1 1 1 
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
---------------------------------------------
1 0 0 0 1 0 0 0 1 0 0 0 1 
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
---------------------------------------------
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

(n,j,k) =(20,3,4)
•First n/k =5 rows have k=4 
1’s each, descending.

•Next j-1=2 submatrices of 
size n/k x n =5 x 20 obtained 
by applying randomly chosen  
column permutation to first 
submatrix.

•Result: jn/k x n = 15 x 20
parity check matrix for a 
(n,j,k) =(20,3,4) LDPC code.

1π

2π



Regular LDPC Code – Tanner Graph
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#
#

n = 20 variable 
nodes

left degree j = 3

nj = 60 edges

nj/k = 15  check 

right degree k = 4

nj = 60  edges



Properties of Regular LDPC Codes
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• Design rate:  R(j,k) =1─ j/k
• Linear dependencies can increase rate
• Design rate achieved with high probability as n 

increases
• Example:  (n,j,k)=(20,3,4) with  R = 1 ─ 3/4 = 1/4.

• For j ≥3,  the “typical” minimum distance of codes in the 
(j,k) ensemble grows linearly in the codeword length n.

• Their performance under maximum-likelihood decoding on 
BSC(p) is “at least as good...as the optimum code of a 
somewhat higher rate.” [Gallager, 1960]



Performance of Regular LDPC Codes
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Gallager, 1963Gallager, 1963



Performance of Regular LDPC Codes
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Gallager, 1963Gallager, 1963



Performance of Regular LDPC Codes
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Gallager, 1963Gallager, 1963



Performance of Regular LDPC Codes
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(3,6)(3,6)Irregular LDPCIrregular LDPC
Richardson, 
Shokrollahi, 
and Urbanke, 
2001

n=106

R=1/2

Richardson, 
Shokrollahi, 
and Urbanke, 
2001

n=106

R=1/2



Irregular LDPC Codes
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• Irregular LDPC codes are a natural generalization of Gallager’s
LDPC codes.

• The degrees of variable and check nodes need not be constant.
• Ensemble defined by “node degree distribution” functions.

• Normalize for fraction of nodes of specified degree
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Irregular LDPC Codes
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• Often, we use the degree distribution from the edge 
perspective
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Irregular LDPC Codes
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• Design rate
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• Under certain conditions related to codewords of weight ≈ n/2, 
the design rate is achieved with high probability as n increases.



Examples of Degree Distribution Pairs
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• Hamming (7,4) code
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• (j,k) – regular LDPC code, length-n
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Encoding LDPC Codes
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• Convert H into equivalent upper triangular form H′

11111111
0

H′ = n-k

n-k k

(e.g., by Gaussian elimination and column swapping –
complexity ~ O(n3) )

• This is a “pre-processing” step only.



Encoding LDPC Codes
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• Set cn-k+1,…,cn equal to the data bits x1,…,xk .
• Solve for parities cℓ, ℓ=1,…, n-k, in reverse order; i.e.,         

starting with ℓ=n-k, compute

(complexity ~O(n2) )
• Another general encoding technique based upon “approximate 

lower triangulation” has complexity no more than O(n2), with 
the constant coefficient small enough to allow practical 
encoding for block lengths on the order of n=105.
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Linear Encoding Complexity
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• It has been shown that “optimized” ensembles of irregular 
LDPC codes can be encoded with preprocessing complexity at 
most O(n3/2), and subsequent complexity ~O(n).

• It has been shown that a necessary condition for the ensemble of
(λ, ρ)-irregular LDPC codes to be linear-time encodable is 

• Alternatively, LDPC code ensembles with additional “structure”
have linear encoding complexity, such as “irregular repeat-
accumulate (IRA)” codes.

1)1()0( >′′ ρλ



Decoding  of LDPC Codes
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• Gallager introduced the idea of iterative, message-
passing decoding of LDPC codes.

• The idea is to iteratively share the results of local 
node decoding by passing them along edges of the 
Tanner graph.

• We will first demonstrate this decoding method for 
the binary erasure channel BEC(ε).

• The performance and optimization of LDPC codes 
for the BEC will tell us a lot about other channels, 
too. 



Decoding for the  BEC
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• Recall: Binary erasure channel, BEC(ε)

x = (x1, x2, … , xn)            transmitted codeword
y = (y1, y2, … , yn)            received word 

• Note:  if yi∈{0,1}, then xi = yi.

0 0

1 1

?ε
ε

1-ε

1-ε

xi yi



Optimal Block Decoding - BEC
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• Maximum a posteriori (MAP) block decoding rule minimizes 
block error probability:

• Assume that codewords are transmitted equiprobably.

• If the (non-empty) set X(y) of codewords compatible with y 
contains only one codeword x, then

• If X(y) contains more than one codeword, then declare a block 
erasure. 

)|(maxarg)(ˆ | yxPyx YX
Cx

MAP

∈
=

xyxMAP =)(ˆ

)|(maxarg)(ˆ | xyPyx XY
Cx

MAP

∈
=



Optimal Bit Decoding - BEC
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• Maximum a posteriori (MAP) bit decoding rule minimizes 
bit error probability:

• Assume that codewords are transmitted equiprobably.
• If every codeword x∈X(y) satisfies xi=b, then set

• Otherwise, declare a bit erasure in position i. 

{ }
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MAP Decoding Complexity
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• Let E ⊆{1,…,n} denote the positions of erasures in y, and let  
F denote its complement in {1,…,n}.

• Let wE and wF denote the corresponding sub-words of word w.
• Let HE and HF denote the corresponding submatrices of the 

parity check matrix H.
• Then X(y), the set of codewords compatible with y, satisfies

• So, optimal (MAP) decoding can be done by solving a set of 
linear equations, requiring complexity at most O(n3).

• For large blocklength n, this can be prohibitive!

{ }T TX( )  |   and  F F E E F Fy x C x y H x H y= ∈ = =



Simpler Decoding
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• We now describe an alternative decoding procedure 
that can be implemented very simply.

• It is a “local” decoding technique that tries to fill in 
erasures “one parity-check equation at a time.”

• We will illustrate it using a very simple and familiar 
linear code, the (7,4) Hamming code.

• We’ll compare its performance to that of optimal bit-
wise decoding.

• Then, we’ll reformulate it as a “message-passing”
decoding algorithm and apply it to LDPC codes.



Local Decoding of Erasures
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• dmin = 3, so any two erasures can be 
uniquely filled to get a codeword.

• Decoding can be done locally:    
Given any pattern of one or two 
erasures, there will always be a 
parity-check (circle) involving 
exactly one erasure. 

• The parity-check represented by the 
circle can be used to fill in the erased 
bit.  

• This leaves at most one more erasure. 
Any parity-check (circle) involving it 
can be used to fill it in.

1
2 3

47

5

6



Local Decoding - Example
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• All-0’s codeword transmitted.

• Two erasures as shown.

• Start with either the red parity   
or green parity circle.

• The red parity circle requires 
that the erased symbol inside it 
be 0.

0
? 0

?
0

0

0



Local Decoding -Example
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• Next, the green parity circle or 
the blue parity circle can be 
selected.

• Either one requires that the 
remaining erased symbol be 0.

0
0 0

?
0

0

0



Local Decoding -Example
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• Estimated codeword:

[0 0 0 0 0 0 0]   

• Decoding successful!!

• This procedure would have    
worked no matter which   
codeword  was transmitted.

0
0 0

0
0

0

0



Decoding with the Tanner Graph:  
an a-Peeling Decoder 
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• Initialization: 
• Forward known variable node 

values along outgoing edges
• Accumulate forwarded values at 

check nodes and “record” the 
parity

• Delete known variable nodes and 
all outgoing edges



Peeling Decoder  – Initialization 
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x

0

?

0

?

0

?

1

x

0

?

0

?

0

?

1

Forward known valuesForward known values



Peeling Decoder - Initialization
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Delete known variable 
nodes and edgesx

0

?

0

?

0

?

1

x

0

?

0

?

0

?

1

Accumulate parity



Decoding with the Tanner Graph:  
an a-Peeling Decoder 
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• Decoding step:
• Select, if possible, a check node with one edge remaining; 

forward its parity, thereby determining the connected 
variable node

• Delete the check node and its outgoing edge
• Follow procedure in the initialization process at the known 

variable node

• Termination
• If remaining graph is empty, the codeword is determined
• If decoding step gets stuck, declare decoding failure



Peeling Decoder – Step 1 
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Find degree-1 check node; 
forward accumulated parity; 
determine variable node value

x

0

0

0

?

0

?

1

x

0

0

0

?

0

?

1

Delete check node and edge; 
forward new variable node value



Peeling Decoder – Step 1 
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Delete known variable 
nodes and edgesx

0

0

0

?

0

?

1

Accumulate parityx

0

0

0

?

0

?

1



Peeling Decoder – Step 2 
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Find degree-1 check node; 
forward accumulated parity; 
determine variable node value

Delete check node and edge; 
forward new variable node valuex

0

0

0

1   

0

?

1

x

0

0

0

1   

0

?

1



Peeling Decoder – Step 2 
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Delete known variable 
nodes and edgesx

0

0

0

1

0

?

1

Accumulate parityx

0

0

0

1

0

?

1



Peeling Decoder – Step 3 
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Find degree-1 check node; 
forward accumulated parity; 
determine variable node value

Delete check node and edge; 
decoding completex

0

0

0

1   

0

1 

1

x

0

0

0

1   

0

1 

1



Message-Passing Decoding 
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• The local decoding procedure can be 
described in terms of an iterative, 
“message-passing” algorithm in 
which all variable nodes and all 
check nodes in parallel iteratively 
pass messages along their adjacent 
edges.

• The values of the code bits are 
updated accordingly.

• The algorithm continues until all 
erasures are filled in, or until the 
completion of a specified number of 
iterations.



Variable-to-Check Node Message
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u
?

?

v=u?

?

v=?
?

from channel

edge  eedge  e
uu

edge  eedge  e

?

Variable-to-check message on edge e
If all other incoming messages are ?, send message v = ?
If any other incoming message u is 0 or 1, send v=u and,       
if the bit was an erasure, fill it with u, too. 

(Note that there are no errors on the BEC, so a message that    
is 0 or 1 must be correct. Messages cannot be inconsistent.)



Check-to-Variable Node Message
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v1

v3

u = v1+ v2+ v3

v2

edge  eedge  e

?

v2

u = ?

v1

edge  eedge  e

Check-to-variable message on edge e
If any other incoming message is ?,  send u = ?
If all other incoming messages are in {0,1}, 
send the XOR of them, u = v1+ v2+ v3.
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y

0

?

0

?

0

?

1 

y

0

?

0

?

0

?

1 

x y

0   0

? ?

0 0

? ?

0 0

? ?

1   1 

x y

0   0

? ?

0 0

? ?

0 0

? ?

1   1 

Variable-to-CheckVariable-to-Check



Message-Passing Example – Round 1
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x y

0   0

0 ?

0 0

? ?

0 0

? ?

1   1 

x y

0   0

? ?

0 0

? ?

0 0

? ?

1   1 

Variable-to-CheckCheck-to-Variable



Message-Passing Example – Round 2
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x y

0   0

0 ?

0 0

1 ?

0 0

? ?

1   1 

x y

0   0

0 ?

0 0

? ?

0 0

? ?

1   1 

Variable-to-CheckCheck-to-Variable



Message-Passing Example – Round 3
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x y

0   0

0 ?

0 0

1 ?

0 0

1 ?

1   1 

x y

0   0

0 ?

0 0

1   ?

0 0

? ?

1   1 

Variable-to-Check 
Decoding completeCheck-to-Variable
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Hamming code: decoding of 3 erasures

• There are 7 patterns of 3 erasures that 
correspond to the support of a weight-3  
codeword. These can not be decoded by          
any decoder!

• The other 28 patterns of 3 erasures can be 
uniquely filled in by the optimal decoder.

• We just saw a pattern of 3 erasures that 
was corrected by the local decoder. Are 
there any that it cannot?

• Test:       ? ? ? 0  0 1 0

?
? ?

00

0

1



Sub-optimality of Message-Passing Decoder
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• Test:       ? ? ? 0  0 1 0

• There is a unique way to fill the 
erasures and get a codeword:   

1 1 0 0  0 1 0

The optimal decoder would find it.

• But every parity-check has at least 2
erasures, so local decoding will not 
work!

1
1 0

00

0

1
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• A stopping set is a subset S of the variable nodes such 
that every check node connected to S is connected to 
S at least twice. 

• The empty set is a stopping set (trivially).

• The support set (i.e., the positions of 1’s) of any 
codeword is a stopping set (parity condition).

• A stopping set need not be the support of a codeword.



Stopping Sets
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• Example 1:  (7,4) Hamming code 

Codeword 
support set

S={4,6,7}

1     2     3 4 5      6     7

0     0     0 1     0 1     1



Stopping Sets
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• Example 2:  (7,4) Hamming code 

1     2     3     4     5      6     7



Stopping Sets
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• Example 2:  (7,4) Hamming code 

Not the support  
set of a codeword 
S={1,2,3}

1     2     3     4     5      6     7



Stopping Set Properties
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• Every set of variable nodes contains a largest stopping set 
(since the union of stopping sets is also a stopping set).

• The message-passing decoder needs a check node with           
at most one edge connected to an erasure to proceed. 

• So, if the remaining erasures form a stopping set, the decoder 
must stop.

• Let E be the initial set of erasures. When the message-
passing decoder stops, the remaining set of erasures is the 
largest stopping set S in E. 
• If S is empty, the codeword has been recovered.
• If not, the decoder has failed.



Suboptimality of Message-Passing Decoder
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• An optimal (MAP) decoder for a code C on the BEC 
fails if and only if the set of erased variables includes 
the support set of a codeword.

• The message-passing decoder fails if and only the set 
of erased variables includes a non-empty stopping set.

• Conclusion: Message-passing may fail where optimal 
decoding succeeds!!

Message-passing is suboptimal!!
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• Bad news: 
• Message-passing decoding on a Tanner graph is 

not always optimal...
• Good news: 

• For any code C, there is a parity-check matrix on 
whose Tanner graph  message-passing is optimal, 
e.g., the matrix of codewords of the dual code      .

• Bad news: 
• That  Tanner graph may be very dense, so even 

message-passing decoding is too complex.

⊥C



Another (7,4) Code
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1011000
0101100
0001011

H

R=4/7               dmin=2

All stopping sets contain codeword supports.

Message-passing decoder on this graph is optimal!

(Cycle-free Tanner graph implies this.) 



Comments on Message-Passing Decoding

5/ 31/ 07 77LDPC Codes

• Good news: 
• If a Tanner graph is cycle-free, the message-

passing decoder is optimal!
• Bad news:  

• Binary linear codes with cycle-free Tanner graphs 
are necessarily weak...

• Good news:  
• The Tanner graph of a long LDPC code behaves 

almost like a cycle-free graph!



Analysis of LDPC Codes on BEC
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• In the spirit of Shannon, we can analyze the 
performance of message-passing decoding on 
ensembles of LDPC codes with specified degree 
distributions (λ,ρ).

• The results of the analysis allow us to design LDPC 
codes that transmit reliably with MP decoding at rates 
approaching the Shannon capacity of the BEC.

• In fact, sequences of LDPC codes have been designed 
that actually achieve the Shannon capacity.

• The analysis can assume the all-0’s codeword is sent.



Key Results - 1
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• Concentration
• With high probability, the performance of ℓ rounds 

of MP decoding on a randomly selected (n, λ, ρ) 
code converges to the ensemble average 
performance as the length n→∞.

• Convergence to cycle-free performance
• The average performance of ℓ rounds of MP 

decoding on the (n, λ, ρ) ensemble converges to the 
performance on a graph with no cycles of length     
≤ 2ℓ as the length n→∞.



Key Results - 2
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• Computing the cycle-free performance
• The cycle-free performance can be computed by a 

tractable algorithm – density evolution.

• Threshold calculation
• There is a threshold probability p*(λ,ρ) such that, 

for channel erasure probability ε < p*(λ,ρ), the 
cycle-free error probability approaches 0 as the 
number of iterations ℓ→∞.



Asymptotic Performance Analysis
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• We assume a cycle-free (λ,ρ) Tanner graph.
• Let p0 = ε, the channel erasure probability.
• We find a recursion formula for pℓ , the 

probability that a randomly chosen edge carries a 
variable-to-check erasure message in round ℓ.

• We then find the largest ε such that pℓ converges 
to 0, as ℓ→∞. This value is called the threshold.

• This procedure is called “density evolution”
analysis.



Density Evolution-1
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• Consider a check node of degree d 
with independent incoming messages.

• Consider a check node of degree d 
with independent incoming messages.
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Density Evolution-2
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• Consider a variable node of degree 
d  with independent incoming 
messages.

#
2−du

1−du

0u
1u

vvedge  eedge  e ( ) ( ) ( )
[ ] 1

10

0

)1(1               

1,,1 allfor  ?,Pr?Pr?Pr
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d

i

pp

diuuv
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…

ρ

• The probability that edge e connects to 
a variable node of degree d is λd , so

from channel
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Threshold Property
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pℓ = p0 λ (1–ρ(1–pℓ-1))

• There is a threshold probability  p*(λ, ρ) such that

if

then

( )  ,,* 0 ρλε pp <=

.0lim →
∞→ AA

p



Threshold Interpretation
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• Operationally, this means that using a code drawn 
from the ensemble of  length-n LDPC codes with 
degree distribution pair (λ, ρ), we can transmit as 
reliably as desired over the BEC(ε) channel if    

for sufficiently large block length  n .

( )  , ,* ρλε p<



Computing the Threshold
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• Define f (p,x) = p λ (1–ρ(1–x)) 
• The threshold p*(λ, ρ) is the largest probability p such 

that 
f (p,x) – x < 0

on the interval x∈(0,1].

• This leads to a graphical interpretation of the 
threshold p*(λ, ρ)



Graphical Determination of the Threshold
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• Example:  (j,k)=(3,4) 

( ) xxpxpxf −−−=−
23)1(1),( p*≈ 0.6474

p = 0.7

p = 0.6474

p=0.6

p=0.5



(j,k)-Regular LDPC Code Thresholds
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• There is a closed form expression for thresholds of 
(j,k)-regular  LDPC codes.

• Examples: 

(j,k) R pSh p*(j,k)
(3,4) 1/4 ¾=0.75 ≈0.6474
(3,5) 2/5 3/5=0.6 ≈0.5176
(3,6) 1/2 ½=0.5 ≈0.4294
(4,6) 1/3 ⅔≈0.67 ≈0.5061
(4,8) 1/2 ½=0.5 ≈0.3834

647426.0              
212523672

3125)4,3(*

≈
+

=p



Degree Distribution Optimization
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• Two approaches:
• Fix design rate R(λ,ρ) and find degree 

distributions λ(x), ρ(x) to maximize the threshold 
p*(λ,ρ).

• Fix the threshold p*, and find degree distributions 
λ(x), ρ(x) to maximize the rate R(λ,ρ).

• For the latter, we can:
• start with a specific ρ(x) and optimize λ(x); 
• then, for the optimal λ(x), find the optimal check 

distribution;
• ping-pong back and forth until satisfied with the 

results. 



Variable Degree Distribution Optimization
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• Fix a check degree distribution ρ(x) and threshold ε.
• Fix maximum variable degree lmax .
• Define 

• Use linear programming to find 

• Since the rate R(λ,ρ) is an increasing function of λi/i, 
this maximizes the design rate.

xx

xxxg
i

i
i −−−=

−−−=
−

≥
∑ 1

2

2

))1(1(                           

))1(1(),,,(

ρλε

ρελλλ
maxl…

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈≤=≥∑ ∑
= =

max max

2 2

]1,0[for  0;1;0/max
l

i

l

i
iii xgi λλλ

λ



Practical Optimization
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• In practice, good performance is found for a check degree 
distribution of the form:

• Example 1:  lmax = 8, r =6, design rate ½

• Rate:    R(λ,ρ)  ≈ 0.5004
• Threshold:   p*(λ,ρ) ≈ 0.4810

rr xaaxx )1()( 1 −+= −ρ

5

7632

)(

1151.01971.00768.0202.0409.0)(

xx

xxxxxx

=

++++=

ρ

λ



Bound on the Threshold
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• Taylor series analysis yields the general upper bound:

• For previous example with p*(λ,ρ) ≈ 0.4810, the upper bound 
gives:

. 
)1()0(

1),(*
ρλ

ρλ
′′

≤p

4890.0
5(0.409)

1   
)1()0(

1
≤

⋅
=

′′ ρλ



EXIT Chart Analysis
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• Extrinsic information transfer (EXIT) charts provide a nice 
graphical depiction of density evolution and MP decoding  
[tenBrink,1999]

• Rewrite the density evolution recursion as:

where

))(c( v           
))1(1(),(

x
xppxf

p=
−−= ρλ

        
)1(1 )(  

)()(

xxc

xpxv p

−−=
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EXIT Chart Analysis
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• Recall that the MP convergence condition was

• Since λ(x) is invertible, the condition becomes

• Graphically, this says that the curve for c(x) must lie 
below the curve for               for all p < p*.

)1,0( allfor  ,),( ∈< xxpxf

)1,0( allfor  ),( v)( 1 ∈< − xxxc p

 )(v 1 xp
−



EXIT Chart Example
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• Example: (3,4)-regular LDPC code,   p*=0.6474
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EXIT Chart Example
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• Example: (3,4)-regular LDPC code,   p*=0.6474

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p=0.5 
p=0.6

p=0.7 
p=0.8

p*≈0.6474 

3)1(1 )( xxc −−=
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⎝
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p
xxv p

for various 
values of 
initial erasure 
probability p



EXIT Charts and Density Evolution
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• EXIT charts can be used to visualize density 
evolution.
• Assume initial fraction of erasure messages p0=p.
• The fraction of erasures emitted successively by check 

node qi and by variable nodes and pi are obtained by 
successively applying c(x) and vp(x).
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EXIT Charts and Density Evolution
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• Graphically, this computation describes a staircase 
function.

• If p < p*, there is a “tunnel” between vp
-1(x) and c(x) 

through which the staircase descends to ground level, 
i.e., no erasures.

• If p > p*, the tunnel closes, stopping the staircase 
descent at a positive fraction of errors. 



Density Evolution Visualization - 1
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• Example:  (3,4)-regular LDPC code, p=0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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1
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Density Evolution Visualization-2
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• Example:  (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p0=0.6
q

fraction of 
erasures 
from check 
nodes

p
fraction of erasures from variable nodes



Density Evolution Visualization
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• Example:  (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q1=0.936

p0=0.6
q

fraction of 
erasures 
from check 
nodes

p
fraction of erasures from variable nodes



Density Evolution Visualization
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• Example:  (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1≈0.5257

q1≈0.936

p
fraction of erasures from variable nodes

q
fraction of 
erasures 
from check 
nodes



Density Evolution Visualization
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• Example:  (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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1

p1≈0.5257

q2≈0.8933

p
fraction of erasures from variable nodes

q
fraction of 
erasures 
from check 
nodes



Density Evolution Visualization
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• Example:  (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4
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0.8
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p2≈0.4788

p
fraction of erasures from variable nodes

q
fraction of 
erasures 
from check 
nodes

q2≈0.8933



Density Evolution Visualization
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• Example:  (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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0.3

0.4
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0.7

0.8
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p
fraction of erasures from variable nodes

q
fraction of 
erasures 
from check 
nodes

p2≈0.4788

q3≈0.8584



Density Evolution Visualization
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• Example:  (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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q3≈0.8584



Density Evolution Visualization
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• Example:  (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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p3≈0.4421

pℓ continues through  
the “tunnel” to 0.

p
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q
fraction of 
erasures 
from check 
nodes
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• Example:  (3,4)-regular LDPC code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5
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0.7
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pℓ continues through“
tunnel” to 0.

p
fraction of erasures from variable nodes

q
fraction of 
erasures 
from check 
nodes
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• For capacity-achieving sequences of LDPC codes for 
the BEC, the EXIT chart curves must match.

• This is called the matching condition.
• Such sequences have been developed:

• Tornado codes
• Right-regular LDPC codes
• Accumulate-Repeat-Accumulate codes



Decoding for Other Channels
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• We now consider analysis and design of LDPC codes for 
BSC(p) and BiAWGN(σ) channels.  We call p and σ the 
“channel parameter” for these two channels, respectively.

• Many concepts, results, and design methods have natural 
(but non-trivial) extensions to these channels.

• The messages are probability mass functions or log-
likelihood ratios. 

• The message-passing paradigm at variable and check nodes 
will be applied.

• The decoding method is called “belief propagation” or  BP, 
for short.



Belief Propagation
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• Consider transmission of binary inputs X∈{±1} over a 
memoryless channel using linear code C. 

• Assume codewords are transmitted equiprobably.
• Then

where            is the indicator function for C.
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Belief Propagation
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• For codes with cycle-free Tanner graphs, there is a message-
passing approach to bit-wise MAP decoding.

• The messages are essentially conditional bit distributions, 
denoted u = [u(1), u(-1)].

• The initial messages presented by the channel to the variable 
nodes are of the form 

• The variable-to-check and check-to-variable message updates 
are determined by the “sum-product” update rule.

• The BEC decoder can be formulated as a BP decoder.

)]1|(),1|([)]1(),1([ ||,,, −=−= iXYiXYichichich ypypuuu
iiii



Sum-Product Update Rule
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Variable Node Update - Heuristic
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from channel
#
2−du

1−du

chu
1u

v
• Variable-to-check• Variable-to-check
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Suppose incoming messages u0, u1, ..., ud-1
from check nodes 0,1, ..., d-1 and message 
uch from the channel are independent 
estimates of  [P(x = 1), P(x = -1)]. 

Suppose incoming messages u0, u1, ..., ud-1
from check nodes 0,1, ..., d-1 and message 
uch from the channel are independent 
estimates of  [P(x = 1), P(x = -1)]. 

Then, a reasonable estimate to send to check node 0 based upon the other 
estimates would be the product of those estimates (suitably normalized).  

We do not use the “intrinsic information” u0 provided by check node 0.  
The estimate v represents “extrinsic information”.

Then, a reasonable estimate to send to check node 0 based upon the other 
estimates would be the product of those estimates (suitably normalized).  

We do not use the “intrinsic information” u0 provided by check node 0.  
The estimate v represents “extrinsic information”.
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Check-Node Update - Heuristic
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Parity-check node equation:  r ⊕ s ⊕ t = 0

Over {-1,1}, this translates to: r · s · t = 1

P(r=1) = P(s = 1, t = 1) + P(s = -1, t = -1)

= P(s = 1)P(t = 1) + P(s = -1)P(t = -1)    

[by independence assumption]

Similarly

P(r = -1) = P(s = 1, t = -1)+P(s = -1, t = 1)

= P(s = 1)P(t = -1)+P(s = -1)P(t = 1)

Parity-check node equation:  r ⊕ s ⊕ t = 0

Over {-1,1}, this translates to: r · s · t = 1

P(r=1) = P(s = 1, t = 1) + P(s = -1, t = -1)

= P(s = 1)P(t = 1) + P(s = -1)P(t = -1)    

[by independence assumption]

Similarly

P(r = -1) = P(s = 1, t = -1)+P(s = -1, t = 1)

= P(s = 1)P(t = -1)+P(s = -1)P(t = 1)
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Log-Likelihood Formulation
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• The sum-product update is simplified using log-likelihoods
• For message u, define

• Note that  
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Log-Likelihood Formulation – Variable Node
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• The variable-to-check update rule then takes the form:

from channel
#

)( 2−duL
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)( 0uL )( 1uL

L(v)

∑
−

=

=
1

0

)()(
d

k
kuLvL



Log-Likelihood Formulation – Check Node
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• The check-to-variable update rule then takes the form:
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Log-Likelihood Formulation – Check Node
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• To see this, consider the special case of a degree 3 check node.
• It is easy to verify that

where 

• This can be generalized to a check node of any degree by a 
simple inductive argument. 
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Log-Likelihood Formulation – Check Node
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• Translating to log-likelihood ratios, this becomes

• Noting that 

we conclude
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Key Results -1
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• Concentration
• With high probability, the performance of ℓ

rounds of BP decoding on a randomly selected   
(n, λ, ρ) code converges to the ensemble average 
performance as the length n→∞.

• Convergence to cycle-free performance
• The average performance of ℓ rounds of MP 

decoding on the (n, λ, ρ) ensemble converges to 
the performance on a graph with no cycles of 
length     ≤ 2ℓ as the length n→∞.



Key Results -2
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• Computing the cycle-free performance
• The cycle-free performance can be computed by 

a somewhat more complex, but still tractable, 
algorithm – density evolution.

• Threshold calculation
• There is a threshold channel parameter  p*(λ,ρ) 

such that, for any “better” channel parameter p, 
the cycle-free error probability approaches 0 as 
the number of iterations ℓ→∞.



Density Evolution (AWGN)
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• Assume the all-1’s sequence is transmitted
• The density evolution algorithm computes the probability 

distribution or density of LLR messages after each round of 
BP decoding.

• Let P0 denote the initial LLR message density. It depends on 
the channel parameter σ. 

• Let Pℓ denote the density after ℓ iterations.
• The density evolution equation for a (λ,ρ) degree distribution 

pair is:

))))(((( 1
1

0 −
− ΓΓ⊗= AA PPP ρλ



Density Evolution
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))))(((( 1
1

0 −
− ΓΓ⊗= AA PPP ρλ

• Here ⊗ denotes convolution of densities and Γ is 
interpreted as an invertible operator on probability densities.
• We interpret λ(P) and ρ(P) as operations on densities:

• The fraction of incorrect (i.e., negative) messages after ℓ
iterations is:

• Here ⊗ denotes convolution of densities and Γ is 
interpreted as an invertible operator on probability densities.
• We interpret λ(P) and ρ(P) as operations on densities:

• The fraction of incorrect (i.e., negative) messages after ℓ
iterations is:
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Threshold 
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))))(((( 1
1

0 −
− ΓΓ⊗= AA PPP ρλ

• The threshold σ* is the maximum σ such that

• Operationally, this represents the minimum SNR such that  
a  code drawn from the (λ,ρ) ensemble will ensure reliable 
transmission as the block length approaches infinity.

• The threshold σ* is the maximum σ such that

• Operationally, this represents the minimum SNR such that  
a  code drawn from the (λ,ρ) ensemble will ensure reliable 
transmission as the block length approaches infinity.
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Degree Distribution Optimization
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• For a given rate, the objective  is to optimize λ(x) 
and ρ(x) for the best threshold p*.

• The maximum left and right degrees are fixed.
• For some channels, the optimization procedure is 

not trivial, but there are some techniques that can 
be applied in practice.

• For a given rate, the objective  is to optimize λ(x) 
and ρ(x) for the best threshold p*.

• The maximum left and right degrees are fixed.
• For some channels, the optimization procedure is 

not trivial, but there are some techniques that can 
be applied in practice.



Thresholds - (j,k)-Regular
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• BSC(p) (j,k) R p*(j,k) pSh

(3,4) 0.25 0.167 0.215

0.174
0.146

0.11

0.11

(4,6) 0.333 0.116
(3,5) 0.4 0.113

(3,6) 0.5 0.084

(4,8) 0.5 0.076

• BiAWGN(σ) (j,k) R σ* σSh

(3,4) 0.25 1.26 1.549

1.295
1.148

0.979

0.979

(4,6) 0.333 1.01
(3,5) 0.4 1.0

(3,6) 0.5 0.88

(4,8) 0.5 0.83



Thresholds and Optimized Irregular Codes 
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BiAWGN Rate R=½

σSh = 0.979

BiAWGN Rate R=½

σSh = 0.979

λmax σ*
15 0.9622
20 0.9646
30 0.9690
40 0.9718



Irregular Code vs. Turbo Codes
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AWGN

R=1/2

n =103, 104,

105, 106

AWGN

R=1/2

n =103, 104,

105, 106

B
ER

Richardson, 
Shokrollahi, 
and Urbanke, 
2001

Richardson, 
Shokrollahi, 
and Urbanke, 
2001



Density Evolution
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• Density evolution must track probability 
distributions/densities of the log-likelihood ratio 
messages. 

• A “discretized” version of the sum-product 
algorithm, and associated “discretized” density 
evolution, speeds code design considerably.

• This design method has produced rate ½ LDPC 
ensembles with thresholds within 0.0045dB of the 
Shannon limit on the AWGN channel!

• A rate 1/2 code with block length 107 provided BER 
of 10-6 within 0.04 dB of the Shannon limit!



Some Really Good LDPC Codes
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0.0045dB from 
Shannon limit!

0.0045dB from 
Shannon limit!

Chung, et al., 
2001.

Chung, et al., 
2001.



Good Code Performance 
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Chung, et al., 
2001.

Chung, et al., 
2001.



Applications of LDPC Codes
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• The performance benefits that LDPC codes offer on 
the BEC, BSC, and AWGN channels have been 
shown empirically (and sometimes analytically) to 
extend to many other channels, including
• Fading channels
• Channels with memory
• Coded modulation for bandwidth-limited channels
• MIMO Systems



Rayleigh Fading Channels
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Hou, et al., 
2001

Hou, et al., 
2001

R=1/2, 
(3,6)

R=1/2, 
(3,6)



Rayleigh Fading Channels
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Rayleigh Fading Channels
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Partial-Response Channels

5/ 31/ 07 137LDPC Codes

Kurkoski, et 
al., 2002

Kurkoski, et 
al., 2002



Dicode (1-D) Channel Results
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Rate 7/8

Regular j=3

n=495

Rate 7/8

Regular j=3

n=495



EPR4 (1+D-D2-D3) Channel Results
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Rate 7/8

Regular j=3

n=495

Rate 7/8

Regular j=3

n=495



Optimized Codes for Partial Response
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Varnica and 
Kavcic, 2003

Varnica and 
Kavcic, 2003



Optimized Codes for Partial Response
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Optimized Codes for Partial Response
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R=0.7

n=106

R=0.7

n=106
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Concluding Remarks
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• LDPC codes are very powerful codes with enormous 
practical potential, founded upon deep and rich 
theory.

• There continue to be important advances in all of the 
key aspects of LDPC code design, analysis, and 
implementation.

• LDPC codes are now finding their way into many 
applications:
• Satellite broadcast
• Cellular wireless 
• Data storage 
• And many more …


