Autodesk University 2009 LEARN. CONNECT. EXPLORE.

Introduction to Macro Writing

Kate Morrical — Autodesk, Inc.

CP214-1 Do you want to customize your AutoCAD® or AutoCAD LT® software, but don't have the
time to learn a programming language? In that case, macros may be just what you need. I'll show you
how to combine commands and options into repeatable macros that perform complex operations and
can be launched with a single click on an interface element like a toolbar or a ribbon panel. If you want to
maximize your productivity while minimizing effort, this class is for you.

About the Speaker:

Kate joined Autodesk in 2008 as the Technical Marketing Manager for AutoCAD LT®. She started using
AutoCAD® in 1999 with Release 14, and has been blogging about LT since April 2007. Prior to joining
Autodesk, Kate was a structural engineer and CAD manager for the Washington, DC, office of Robert
Silman Associates, PLLC, where she provided technical support for 20 users of AutoCAD, AutoCAD LT,
and Revit® Structure. She has a B.S. in Civil Engineering from Case Western Reserve University.

kate.morrical@autodesk.com

Introduction to Macro Writing

Introduction

First of all, I’d just like to say that I’'m not a programmer. I’'m guessing most of you aren’t either. There
could be all sorts of reasons for this— too busy (who isn’t?), programming languages don’t work with
the program (AutoCAD LT)—but you and | have just never learned how to write programs.

That doesn’t mean we’re content with the out-of-the-box configuration, though. No, we want to set up
our programs just the way we want it, and to be able to quickly repeat commands and command
seguences we use on a regular basis.

Fortunately, plenty of customization capabilities are built right in to AutoCAD and AutoCAD LT, and you
don’t need to be a coding expert to use them. In fact, all you need is a little knowledge of the command
line and the CUI editor.

To give you an idea of what's available, here’s a screenshot of the AutoCAD LT Help file. At the bottom
of the Table of Contents, there’s an entire section called “Customization Guide.”

e Can you believe how many topics are in there? The
E;E] bbb » AutoCAD Help file looks just the same, except it has a
= @ L few more links for external programming languages like
Hide Back Home i

LISP and ARX.
Contents l [ndes] Eearch]

AutaCAD LT Help
+ @ User's Guide
+ @ Command Reference
+ @ Driver and Peripheral Guide
+ @ Installation and Licensing Guides

Having so many customization options means that they

can’t all possibly fit into a 90-minute class. So I’'m going
to highlight some of my favorites, and give you some
more resources at the end to learn about the rest.

___ One of those resources is the Appendix, which includes
+ B azic Customization

+ @ Cuztom Linetypes

+ @ Custom Hatch Patterns

+ @ User Interface Customization
+ @ DIESEL

+ @ Slides and Command Scripts

‘J—-'"' 'hb’ ---.r

all the macros referenced in the handout, as well as a
bunch more | found on the Autodesk discussion groups.

5

Introduction to Macro Writing

What’s In

This class is focused on the macro-writing aspects of the built-in customization opportunities in AutoCAD
and AutoCAD LT. Specifically:

e Writing Macros

e Using DIESEL in Macros

e Using Macros in CUIl elements
e Using Macros in Tool Palettes
e The Action Recorder

Of these topics, the only one that doesn’t apply to AutoCAD LT is the Action Recorder. Everything else
translates perfectly between both programs—and for that matter, between all AutoCAD-based
programs, including verticals like AutoCAD Architecture or AutoCAD MEP.

What’s Out

As you saw from the Help file contents, there are also a lot of customization topics that we don’t have
time to cover, including (but not limited to):

e Templates

e Command aliases
e Linetypes

e Hatch patterns

e Scripts

e Dynamic blocks

While all these can be important and effective tools for customizing your setup and CAD standards,
they’re not in the same category as macros and the CUL. (Besides, | had to draw the line somewhere.)

This class also excludes LISP, VBA, .NET, and any other external programming languages. There are
plenty of other resources for learning how to program (including many excellent classes here at AU 2009
and on AU Online). This class will teach you how to customize without programming.

Notes on Handout Formatting
This handout involves a lot of command-line input, so it’s important to understand when a certain line is
an AutoCAD prompt, text or numbers, or input like Enter or a left-mouse click.

Here are the formatting conventions that will be used in this handout:

e AutoCAD-generated command-line text
e USER-GENERATED TEXT OR NUMBERS
e Enter, left-click, or other special characters

Introduction to Macro Writing

Writing Macros

The majority of this class is about understanding the syntax and rules for writing macros. Once you’ve
learned how to create macros, you can use them in all sorts of places: pull-down menus, ribbon panels,
toolbars, and tool palettes.

What Is a Macro?

A macro is a text string that combines commands and options for repeated use. It's a way of taking
command-line input and storing it for later use, so that one click of the mouse can accomplish a drawing
task that would otherwise take a series of actions by a user. A macro can be as simple as calling a
command and providing a single input, or a complex series of commands and options.

Example: Draw a Circle
For now, let’s start with something simple. Let’s say you want to draw a circle with a radius of 1 unit.

Here’s what that would look like at the command line:

Command: CIRCLE (enter)

Specify center point for circle or [3P/2P/Ttr (tan tan radius)]:
(left-click)

Specify radius of circle or [Diameter]: 1 (enter)

Now, let’s convert that string of commands into a macro, one step at a time.
circle Enters the command name.

; A macro can’t press ENTER for you, so you need to use a semicolon instead. This one starts
the CIRCLE command. The effect of circle; is the same as if you’d typed circle at the
command line and pressed ENTER.

\ Pauses for user input. In this case, the first prompt of the CIRCLE command is for a center
point. So the macro will wait to allow you to specify your own center point each time you
run the macro.

1 Provides input for the next prompt. Here, that’s the radius. Every time you run this macro,
the circle created will have a radius of 1 unit.

; Another semicolon, this time to accept the value of 1 and end the command. This one isn’t
technically necessary. AutoCAD can see that this is the end of the macro, and automatically
finishes the command for you. I still like to put them in, though, so that | can see exactly
what’s happening.

Put it all together, and it looks like this:

circle;\1;

Introduction to Macro Writing

But this isn’t quite finished yet. What if there was another command running when you started the
circle command? You’'d get an error message, right? So let’s cancel any running commands first.

NCACceircle;\1;

This actually runs “cancel” twice, just in case you happen to be doing something that would require
more than one step to get out of. Most commands these days would only need one ~C to exit, but it’s
still considered good practice to have two—just in case.

And one more what-if: What if someone tried to use this macro in a non-English version of AutoCAD or
AutoCAD LT? The French version, for example, has its own word for circle. So let’s force the macro to
use the English command definition by putting an underscore in front of the command name. If you
know that your macro will only be used in English, you can leave this out, but it’s easy to add and
ensures that anyone around the world can also use this macro.

ANCAC_circle;\1;

Special Characters in Macros

The macro above uses three “special characters”: underscore (_), semicolon (;), and backslash (\).
These are characters that tell the macro to perform certain non-command actions. In addition to these
three, there are several other special characters that can be used in macros. A full list can be found in
the Help file, but here are some of the most important:

Character Description

; Issues ENTER

[blank space] | Enters a space; a blank space between command sequences in a macro is equivalent to
pressing the SPACEBAR

\ Pauses for user input

Translates AutoCAD commands and options that follow

- Runs the command line version of a command

* Repeats the macro until the user cancels it

n Equivalent to pressing CTRL on the keyboard. You can combine the caret with another
character to construct macros that do such things as turn the grid on and off (*G) or
cancel a command (*C)

$ Introduces a DIESEL expression.

@ Uses the coordinates of the last point specified.

The behaviors described above only apply when the characters are used in macros. If you typed these
characters at the command line, outside a macro, either they wouldn’t work, they’d give you an error, or
they’d have a different behavior than they would in a macro.

Introduction to Macro Writing

So if you wanted to use the above macro to create multiple circles at a time, just add an asterisk to the
beginning:

*NCNC_circle;\1;

Note: Spaces in macros have the same effect as semicolons. This is important, because stray spacesin a
macro can have unexpected effects. | always recommend using semicolons in macros instead of
spaces—they’re so much easier to count! None of the macros in this handout have spaces. Some of
them do run on to more than one line, though, so if you’re copying and pasting them, watch out for
word wrap.

Basic Macros

To get started writing a macro, you need to choose the command you want to run and figure out what
happens at the command line when you run it. If you’re a command line fan, this is probably already
second nature to you. If you prefer toolbars or menus, though, all you need to do is run your sequence a
few times and pay attention to what’s going on at the command line while you do it.

Here’s another basic example.

Example: Rotate by Fixed Angle
Maybe you often need to rotate objects by a fixed angle.

If you did this by typing at the command line, you’d see this:

Command: ROTATE (enter)

Current positive angle in UCS: ANGDIR=counterclockwise ANGBASE=0
Select objects: (left-click) 1 found

Select objects: (enter)

Specify base point: (left-click)

Specify rotation angle or [Copy/Reference] <0>: 180 (enter)

So to translate this into a macro, just put all the pieces together, remembering to make use of the
special characters.

NCNC Cancel any running commands.

_rotate; Start the ROTATE command.

\ Pause for user input, so you can select the object to rotate.

; End the “select objects” mode.

\ Pause for user input, so you can select the base point.

180; Specify a rotation angle of 180 degrees, and end the command.

Introduction to Macro Writing

Put it all together:
ACNC_rotate;\;\180;

Obviously this is still a pretty simple example. But the principles can be applied to all kinds of AutoCAD
and AutoCAD LT commands, and tweaked to apply best to what you’re doing.

Example: Copy and Rotate

Let’s expand on that rotate macro for a minute. You probably know that the ROTATE command has a
copy option included now, which enables you to rotate a copy of an object while leaving the original
intact. But what if you want to copy the object first, and then rotate it? Try this macro:

ACNC_copy;\;_rotate;L;;0;\

ACNC Cancels any running commands.

_copy; Starts the COPY command.

\ Pauses for user input, so you can select the object to copy.

; Ends the “select objects” mode.

\\ Pauses for user input, so you can select the base point and the second point. (Even

though COPY usually lets you make multiple copies, for some reason here it defaults to a
single copy. It works, though.)

_rotate; Starts the ROTATE command.

L;; Selects the last object created as the object to rotate and ends the selection mode. (If
we used “P” here, for “previous”, the rotate command would select the original object,
not the copy.)

@; Uses the coordinates of the last point specified. In this case, that’s the end point of the
copy.
\ Pauses for user input, so you can specify the rotation angle.

Example: Arc with Donut
Here’s one more macro that makes use of the “@” function. It creates a leader-like object consisting of a
3-point arc and a solid donut on the end.

ANCAC_arc;\\\donut;0;0.5;0;

Introduction to Macro Writing

The three pauses are there so you can specify the three parts of the arc. The donut has the same inside
and outside diameters every time (0 and 0.5 units), and it’s automatically placed at the end of the
newly-created arc.

Macros for Dialog-Based Commands

Creating macros based on most commands is very straightforward—all the options you have are right
there in the command line. But you can’t use a macro to select an option in a dialog box, because
macros are completely text-based. So if you want to use a macro to create hatches, insert blocks, or run
plots, you have to use the command line versions to do it.

Getting a dialog-based command on the command line is as simple as prefixing the command name with
a hyphen (-). For example, —hatch or -insert.

When using text-based versions of dialog boxes, you have to pay attention to the order in which options
and settings are presented. In a dialog box, you can pick any button or box at any time, but that’s not
necessarily the case with command-line commands.

Example: Create a Hatch
Here’s an example of the command-line syntax you might use to create a hatch:

Command: -HATCH(enter)

Current hatch pattern: ANSI31

Specify internal point or [Properties/Select objects/draW
boundary/remove Boundaries/Advanced/DRaw order/0Origin/ANnotative]:
P(enter)

Enter a pattern name or [?/Solid/User defined] <ANSI131>: ANSI37(enter)
Specify a scale for the pattern <1.0000>: 4(enter)

Specify an angle for the pattern <0>: 45(enter)

Current hatch pattern: ANSI137

Specify internal point or [Properties/Select objects/draw
boundary/remove Boundaries/Advanced/DRaw order/Origin/ANnotative]:
S(enter)

Select objects: (left-click) 1 found

Select objects: (enter)

Current hatch pattern: ANSI37

Specify internal point or [Properties/Select objects/draW
boundary/remove Boundaries/Advanced/DRaw order/Origin/ANnotative]:
(enter)

This sequence sets the properties of the hatch to be the ANSI37 pattern with a scale of 4 and an angle of
45, and uses a pre-drawn object as the hatch boundary. Notice that once we entered the properties
section, we had to specify pattern, then scale, then angle. It's one example of how sequence matters in
a macro where it wouldn’t in a dialog box.

Introduction to Macro Writing

You’ll notice that we could have specified an internal point, or drawn the boundary from scratch. Other
boundary options, like retention and island detection, would be available through the advanced option.
We could also have set the draw order, origin, and annotative properties of the hatch with this macro.

Replacing all the “enters” with semicolons and the left-clicks with backslashes results in the following
macro:

NCNC-hatch;P;ANS137;4;45;S;\;;
Hatches can also be inserted from Tool Palettes (see section later in this handout).

Example: Insert a Block
Like HATCH, using INSERT at the command line means that some of your options are presented in a
specific order.

Command: -INSERT (enter)

Enter block name or [?]: SAMPLE (enter)

Units: Inches Conversion: 1.0000

Specify insertion point or [Basepoint/Scale/Rotate]: S (enter)
Specify scale factor for XYZ axes <1>: 12 (enter)

Specify insertion point or [Basepoint/Scale/Rotate]: R (enter)
Specify rotation angle <0.0000>: 90 (enter)

Specify insertion point or [Basepoint/Scale/Rotate]: (left-click)

In this case, the block is specified to have a scale factor of 12 and a rotation of 90 degrees. Replacing
“enters” and “left-clicks” with semicolons and backslashes gives us this:

ACNC-insert;sample;S;12;R;90;\
You can also replace any of the numbers here with backslashes for user input.

Sometimes you want blocks to be exploded on insertion, so their contents can be edited immediately. (I
used to do this for typical detail files, which needed a new sheet name and number—with the same
title—every time.)

The easiest way to accomplish this is to precede the block name with an asterisk.

Command: -INSERT (enter)

Enter block name or [?]: *SAMPLE

Specify insertion point for block: (left-click)
Specify scale factor for XYZ axes: 12 (enter)
Specify rotation angle <0>: 90(enter)

Notice that the order of the prompts here is a little different using this method. You don’t need to enter
R or S for rotation and scale, because you’re prompted for them by default. Here’s what the macro looks
like with all the “enters” and “left-clicks” replaced:

Introduction to Macro Writing

ACNC-insert;*sample;\12;90;

A side-effect to this method is that the block definition isn’t added to the drawing if it’s not already
there. This can either be a good thing or a bad thing, depending on your workflow. Another side-effect is
that you can’t see a preview of the block before you insert it. So, if seeing where to place the block is
more important than keeping the definition out of the drawing, you can use the following macro. It uses
EXPLODE with the “last” selection option to explode the most recently created object—in this case, the
newly-inserted block.

NCNC-insert;sample;S;12;R;90;\explode;L;

You might also want the best of both worlds, where you can see the block as you place it but still keep
the block definition out of the drawing. In that case, tack the PURGE command onto the end of the
macro.

Command: -PURGE (enter)

Enter type of unused objects to purge
[Blocks/Dimstyles/LAyers/LTypes/MAterials/MUltileaderstyles/Plotstyles
/SHapes/textSTyles/Mlinestyles/Tablestyles/Visualstyles/Regapps/Zero-
length geometry/Empty text objects/All]: B (enter)

Enter name(s) to purge <*>: SAMPLE (enter)

Verify each name to be purged? [Yes/No] <Y>: N (enter)

Deleting block *sample™.

1 block deleted.

The resulting macro would look like this:
NCAC-1Insert;sample;S;12;R;90;\explode;L;-purge;B;sample;N;

This only works if no other copies of the block exist in the drawing when you run the macro, because
you can’t purge objects in use.

Note: When using a macro to insert a block, the block you’re inserting either has to already exist in your
drawing, or a file with that name must be in your support file search paths. You can get around this by
including the entire path to the block file in the macro, but I’'ve found it less cumbersome to keep the
macros short and control the block location with the support file paths.

10

Introduction to Macro Writing

Example 3: Change Layer Settings
Using macros is a great way to create layers in a drawing or reset layer properties. Here are the steps for
creating a red, continuous layer called S-ANNO-TEXT.

Command: -LAYER (enter)

Current layer: "O"

Enter an option
[?/Make/Set/New/Rename/ON/OFF/Color/Ltype/LWeight/MATerial/Plot/Freeze
/Thaw/LOck/Unlock/stAte/Description/rEconcile]: M (enter)

Enter name for new layer (becomes the current layer) <0>: S-ANNO-TEXT
(enter)

Enter an option
[?/Make/Set/New/Rename/ON/OFF/Color/Ltype/LWeight/MATerial/Plot/Freeze
/Thaw/LOck/Unlock/stAte/Description/rEconcile]: C (enter)

New color [Truecolor/COlorbook] : 1 (enter)

Enter name list of layer(s) for color 1 (red) <S-ANNO-TEXT>: (enter)
Enter an option
[?/Make/Set/New/Rename/ON/OFF/Color/Ltype/LWeight/MATerial/Plot/Freeze
/Thaw/L0Ock/Unlock/stAte/Description/rEconcile]: L (enter)

Enter loaded linetype name or [?] <Continuous>: Continuous (enter)
Enter name list of layer(s) for linetype "Continuous™ <S-ANNO-TEXT>:
(enter)

Enter an option
[?/Make/Set/New/Rename/ON/OFF/Color/Ltype/LWeight/MATerial/Plot/Freeze
/Thaw/LOck/Unlock/stAte/Description/rEconcile]: (enter)

Notice how many places you have to press Enter more than once. Replacing all the “enters” with
semicolons (be sure to count them all!) results in this:

ACAC-layer;M;S-ANNO-TEXT;C;1;;L;Continuous;;;

The next example uses a linetype that may or may not exist in the drawing already. (In the previous
example, it’s a safe bet that “continuous” is always loaded.)

To get around this, the macro first inserts a drawing that contains nothing but that linetype definition.
No objects, no styles—just that linetype. It inserts it exploded (note the asterisk), so that the block
definition isn’t saved in the current drawing. Then the macro can continue with the layer settings.

ACNC-insert;*LT_beam_removed;0,0;1;;-layer;M;S-BEAM-STEL-
DEMO;C;1;;L;BEAM_REMOVED; ;;

Both of these examples use the command line version of the Layer command with the Make option. |
like Make here, instead of Set or New, because Make combines Set and New.

11

Introduction to Macro Writing

Example 4: Plot a Drawing
This plotting macro assumes that you already have a page setup defined in the drawing.

WEe’'ll continue to follow the #1 rule of macro writing and go through the command line prompts first:

Command: -PLOT (enter)

Detailed plot configuration? [Yes/No] <No>: N(enter)

Enter a layout name or [?] <Layoutl>: Layoutl (enter)

Enter a page setup name <>: Setupl (enter)

Enter an output device name or [?] <HP Officejet 4300 series>: (enter)
Write the plot to a file [Yes/No] <N>: (enter)

Save changes to page setup [Yes/No]? <N>: (enter)

Proceed with plot [Yes/No] <Y>: (enter)

This would plot Layout1 to the HP Officejet using the page setup Setupl. Replacing all the “enters” with
semicolons results in the following:

If you wanted to use the same setup with a different plotter, you would put the plotter name right after
the semicolon for the Setup1 call.

Once you have the basic structure of the macro down, you can copy it and refine it to use different page
setup names or different plotters.

Repeating Macros
Because macros are basically series of commands, you can’t repeat them by just pressing Enter or the
space bar, or with a right-click (if right-click is set to act as Enter).

However, if your right-click is set to bring up shortcut menus, or if you have the time-sensitive right-
clicks turned on (my favorite), then you can use them to repeat macros. It’ll be the top option in the
shortcut menu.

If you launched the macro from the ribbon, though, you can’t repeat it without selecting the ribbon icon
again. This is true for the 2009 and 2010 families of AutoCAD-based products.

Bringing Macros Through Upgrades

Command options (and sometimes command names) don’t always stay the same from release to
release. For example, the variable PEDITACCEPT was introduced a few versions ago, which meant that
one of the prompts in the PEDIT command could be eliminated. (“Selected object is not a polyline. Do
you want to turn it into one?”) If you had an old macro that ran PEDIT, it might have an extra character
or two that could cause some unexpected behavior.

12

Introduction to Macro Writing

Some commands also actually change behavior from release to release. For those, you might need to
use the control character AR (for “command versioning”) to launch the version of the command that will
work in a macro. You'll see below that the FILLET command is one that requires command versioning.

Even if you don’t anticipate any changes, it’s a good idea to review all your custom commands when you
upgrade to a new release of AutoCAD or AutoCAD LT.

Using DIESEL in Macros

Okay, I'll admit it. DIESEL is a programming language. If you use it, you’re technically programming. But |
don’t classify it with the other languages like LISP and VBA—everything’s in one line, there aren’t too
many parentheses to worry about, and it still does basically what you would do in a regular command.
That’s my story, and I’'m sticking to it.

DIESEL stands for Direct Interpretively Evaluated String Expression Language, and it’s the only
programming language available in AutoCAD LT. It's completely built in to the program—you don’t have
to create external files to use it, the way you do with LISP and VBA.

You can use DIESEL expressions to do basic math calculations, and to retrieve or set system variables.
Using DIESEL means that you can do much more with a macro than simple command prompts might
allow.

DIESEL Macro components
DIESEL expressions that are used in CUI elements must always begin with the same command string:

$M=
Dollar signs also always precede DIESEL expressions, and they’re always surrounded by parentheses:
$(diesel expression here)

The next thing to know about DIESEL expressions is that their command sequence is backwards from
regular calculators. In a standard calculator, you would enter 243 to get 5, or 12/3 to get 4. But in
DIESEL, the operator comes first.

$(+,2,3)
$(/,12,4)

It helps to think about this verbally. “I want to add 2 and 3.” “l want to divide 12 by 4.” If you visualize
the expression this way, you'll always get the order right.

13

Introduction to Macro Writing

Using Variables in DIESEL

You probably wouldn’t use either of the above examples in an actual macro. You’d just do the math
yourself first, and plug in the result where you needed it. But what if one of the numbers you needed
was a variable—maybe the current DIMSCALE of your drawing?

This is where DIESEL really comes in handy. The GETVAR function can be used in some really powerful
ways, although we’ll start with a pretty simple example.

$(getvar ,DIMSCALE)

This expression returns a number, specifically the current DIMSCALE of the drawing. Once you have it,
you can use it in another expression.

$M=$(*,$(getvar ,DIMSCALE),0.25)

Reading from left to right, this expression multiplies (with the asterisk) the DIMSCALE (the number from
the GETVAR expression) by 0.25 (the last number in the expression).

So now we have a new number, one that’s 1/4 of the current DIMSCALE. Finally, we can use it to set the
radius for the FILLET command.

ACACARFiI L let;R; $M=$(*,$(getvar,DIMSCALE),0.25);

Again reading from left to right, this macro cancels any running command (with *R to launch the correct
version of the fillet command), starts FILLET, enters “R” to set the radius, and lastly plugs in our DIESEL
expression to set the value.

You could use DIMSCALE in an expression to set the insertion scale of a block, or linetype scales for
plotting, or any number of things.

Here are two more macros for starting the TEXT and MTEXT commands with a specific text height (they
assume that the style height is 0):

ACNC_dtext;\$M=$(*,$(getvar ,DIMSCALE),0.125);
ACAC_mtext; \H;3M=$(*,$(getvar,DIMSCALE),0.125);\

And of course, DIMSCALE isn’t the only variable you can use—anything that you can set from the
command line, you can call with GETVAR.

Conditional Expressions
DIESEL also supports an IF function, which is handy for toggling between two variable settings, or for
performing an operation only if another value meets certain criteria. IF functions look like this:

$(if,expression,true, false)

14

Introduction to Macro Writing

It’s a lot like the similar function in Excel. First, you give it an expression to evaluate. If that comes back
as “true”, IF will run the “true” part of the expression. Otherwise, it’ll run “false.”

Here’s a macro for switching between cursor sizes of 5% and 100%.

NCACEM=3$ (i F,$(=,%(getvar,cursorsize),100),cursorsize;5;;,cursorsize;10
0:3)

In this case, the expression is:

$(=,%(getvar,cursorsize),100)

In other words, is the cursor size already set to 1007 If it is, then it runs the “true” part:
cursorsize;5;;

And if the cursor size isn’t 100, it runs the “false” part:

cursorsize;100;;

So the value of CURSORSIZE is switched back and forth each time the macro is run.

USER Variables
DIESEL doesn’t have the same flexibility with variable names as LISP, but there are several preset-values
you can use.

There are ten variables that can be used to store numbers: five USERI (for integers) and five USERR (for
real numbers, or numbers with decimals). The next macro uses them in a pretty neat way—to
automatically increment the value of a block attribute each time it’s inserted.

*/\C/\C—_
insert;label;\; ;$M=$(getvar,USERI1) ;USERI1;$M=$(+,$(getvar,USERI1),1);

The first half of this macro (up to the first) just inserts the block the way any other macro would. But
after that, it calls up the USERI1 variable, and puts that in as the attribute value. When it’s done, it uses
the addition function to add 1 to USER1, incrementing it for the next insertion.

This macro will work best if you only have one attribute to fill in. You also need to reset USERI1 to your
desired starting value before each use. You could do this resetting with a macro, or simply type it in at
the command line.

15

Using Macros in CUIl Elements

Now that you have a macro, you need a place to put it. Macros can be added to a number of interface
elements using the Customize User Interface (CUI) Editor.

Introduction to Macro Writing

The CUl is a big topic, but the next few pages will give you a crash course in what you need to know to
begin experimenting with your own macros.

Creating a New Macro-Based Command

Macros are custom commands, so you’ll need to use the “New Command” button in the Command List

pane of the CUI Editor.

&, Customize User Interface

=%

Customize | Transfer

Customizations in All Files

~ Properties
All Customization Files v H r‘EI 7= A
= [By] ACADLT A a2
5 3'6 Workspaces E General
£ 20 Drafting & Annatation Default [current] Hame ACADLT
'l:'.‘ AutaCAD LT Classic Dizplay Marme AutaCAD LT
+- 5 Quick Access Toolbars
+-[23 Ribbon
+-E Toolbars
=+ M ez
FY Quick Properties
+ Fallover Toaoltips
+ Shartzut Menus
+ ’:E] Keyboard Shartcuts
+-([Double Click Actions
E F@ Mouse Buttons
1) 1 [
Command Lisk: o
Q
&l Commands Only - ?:\E;
Cornmand Source ~
16 Colar Filled ACADLT
16 Calar Hidden Line ACADLT
256 Colar ACADLT
ﬁi 2AE Color Edge Highlight ACADLT
2B\ 30 Polyline ACADLT
About ACADLT
" Add Color-Dependent Plot Style T able... ACADLT Bl
Ab Add Current Scale ACADLT
. dd Current Scale ACADLT
7O fdd Leader ACEDLT [y,
A e
Ok] [Cancel

(e] @

»

16

Introduction to Macro Writing

In the new command pane that opens, you can fill in all the information about your command.

In the Name Field, give your command a
Button Image o~

- Apply to: A ArE(C you remember what it does.
O smallimage | O Cy =4

O Lageimage |{4 (@)
Omn oo ma
E E ;(ﬁ },('(The Extended Help File can point to a

descriptive name, something that will help

The Description Field is what will show up
in the tooltip.

D separate file containing information that
Name: ACDATA_16_CIRRAD r— « av. . ™ would show up in an extended tooltip (the
_ ones that show up after you’ve hovered
Properties o
over a button for a while).
o= |21
- The Command Display name shows the
B Command] ;
Name Multiple Circles command-line version of the command. It
D escription Creates multiple circles with a radi isn’t necessarily helpful for macros, since
Extendzd Help File you can’t call them from the command line.
Command Display Marne
r;la':":' L Ceircle:A1: (P The Macro field is where you put your
ags
5 Advanced custom command syntax. The small button
Element ID kb1 _0002 at the end of the line opens a bigger
B Images window that can be helpful when entering
Small image RCDATA_1E_CIRRAD |
Large image RCDATA_16_CIRRAD ong Macros.

Tags are keywords that can be used as search terms in the Menu Browser.

The Element ID is a unique tag assigned to each command. AutoCAD will automatically generate one,
and if you use it you’re guaranteed that it won’t overlap anything else.

Finally, in the Images section, you can either use one of the included icons or point the macro to your
own BMP files.

The critical fields here for you to fill in are Name, Macro, and Images. The rest are optional, but may be
helpful to other people using your macro.

Using Your New Command

The last step in using this new command is to put it on an interface element so you can access it. Within
the CUI Editor, your choices for elements are ribbon panels, toolbars, and menus. Creating any one of
these makes use of the two main editing functions in the CUI: right-clicking and drag-and-dropping.

17

Introduction to Macro Writing

Toolbars

To put your new command on a toolbar, you have a couple of choices. You can either drag-and-drop it
straight onto an existing toolbar, or you can create a new toolbar and drag-and-drop the command
there.

Either way, the process is very straightforward. First, locate the Toolbar node in one of your loaded CUI
files, and expand it to see your available toolbars. If you want a new toolbar, just right-click on the
Toolbar node and select “New Toolbar”.

Once you have the toolbar you want, simply drag-and-drop your command from the Command List pane
onto the toolbar.

Menus
The procedure for putting a command on a menu is very similar to the one for toolbars, except that
menus can have multiple levels.

Again, if the menu you want to add the command to already exists, simply drag-and-drop the command
onto it.

If you want a new menu, right-click on either the Menu node or on an existing menu. From there, select
New Menu or New Sub-menu. “New Menu” adds a new menu at the same level as the one on which you
clicked, while “New Sub-menu” creates a new menu one level in from the original menu. Then you can
drag-and-drop your command into the new menu.

Ribbon Panels
Ribbon panels are a little more complicated than menus and toolbars, because they have more icon
display options.

Just like menus and toolbars, you can drag-and-drop commands directly onto an existing Ribbon panel,
or create new panels by right-clicking on nodes in the CUI editor. Keep in mind that if you create a new
Ribbon panel, you also have to create a new Ribbon tab for it (or drag it onto an existing tab), or it won’t
show up.

18

Introduction to Macro Writing

This is a screenshot of the Properties pane of a Ribbon button for the same command we created a page

earlier. You can see that although most of the fields are the same, there are three new sections—

Display, Appearance, and Access—with more options.

Properties

5=
+ =

B

24
Display
M ame

B Appearance

Button Style

Group Mame
Command

Command Mame
Dezcription

Extended Help File
Command Dizplay Mame
b acro

Tags

E Access

FeyTip
Tooltip Title

B Advanced

Images
Small image
Large image

Advanced

>

Srmalfaith T ext

Multiple Circles
Creates mulliple circles with a radi

*CCrircle;

RCDaTA_1E_CIRRAD
RCDaTA_1E_CIRRAD

Let’s start at the top.

“Display Name” is the text that is displayed on
the ribbon, if you want text. If it’s left blank,
the Command Name is used as the display
name.

Under “Appearance”, you have four choices
for the button style:

o largeWithText (Vertical)

e largeWithText (Horizontal)
e SmallWithText

e SmallWithoutText

These control the size of the icon and the
position of the text, if any.

“Grouping” only applies to flyout commands.

Finally, “KeyTip” is the hotkey combination
that can be used to launch the macro. They’re
used in combination with the Alt key to
activate ribbon tabs and commands.

Yes, that means it’s now possible to run macros from the keyboard.

Sharing CUI Macros
The easiest way to share the macros you create is by transferring them to a new CUI file, using the

Transfer tab in the CUI editor. Simply drag and drop your Ribbon panels/tabs, menus, and toolbars from

the left side to the right, and save the new CUI file. Then you can either give it to people to save on their

own computer, or put it in a networked location.

To load this new partial CUI file, use the “open” icon in the Customize tab of the editor.

=

After it’s

loaded, you can modify your workspace to turn on the new tools.

19

-

Introduction to Macro Writing

. Customize User Interface

B[]

Customize
Customizations in au_2009.cuix
au_2009. cui

¥ d

Customizations in New File

Mew File

= d

<
Fi

3)"3 Wworkspaces
+-5 Quick Access Toolbars
+-[23 Ribbon
+-E Toolbars
B Menuz
|==' Quick Properties
+ Rollover Toaltips
+ Shartcut Menus
+ L_E Kevboard Shortcuts
-9 Double Click Actions
= Fffj Mouze Buttons
+-{D" Legacy

Using Macros on Tool Palettes

You probably already know that you can add blocks and hatches to Tool Palettes. You may even know
that you can add commands to Tool Palettes. But did you know you can add macros to those command

tools?

Command Tools

?ift Workspaces
2 Quick Access Toolbars
-3 Ribbon
+-E Toobars
+ Menus

|-'=' Quick. Properties
+Ia] Rollover Toaltips

+ Shortcut Menus

+ L_@ kevboard Shortcuts
{77 Dauble Click Actions
E? EEI Mouze Buttars
+{0" Legacy

Let’s say you want to add that 1-unit-radius circle to a tool palette. So you create a circle and drag-and-

drop it onto a new or existing palette.

@ F Circle

Alz009

Bl = x

20

Introduction to Macro Writing

To make sure that all of your settings are correct, you can right-click on the circle and select Properties.

Here’s what you see:
%, Tool Properties
Image: M amne:
Dlescription:

Command -
Ise Flyout Yes
Fheout options | <choose commands =
Zommand string

General -
Colar W Eylaver
Layer Ju]
Linetype BylLayer
Linetype scale |1,0000
Flok skyle BrvLaver
Lineweight ByLayer
Texk style -- use current
Dimension stvle |- use currert

[

ok | [Cancal ||

Help

Notice that the Name and Description, as well as the
Image, are blank. That’s because it’s using the default
command name and description. You can also see that
“Use Flyout” is set to “Yes”, and that the “Command
String” is gray—you can’t type there.

But in this case, you don’t need all the flyout options—
you just want to use the macro to create a circle. So
change the flyout to “No”, and enter your macro in the
“Command String” box. You could set the General
properties here as well, if you wanted to create the
circle on a particular layer, or with a particular color,
linetype, etc.

When you move away from the default options, this is also your chance to enter your own name for the

command, and a description that will show up as a tooltip.

Creates a Circle with a Fadiuz of 1 unit

% Tool Properties
Image: Name:
Circle Radiuz 1
Description;

Command -
se Flyaut Mo
Flyout options | <choose commands =
Command string | ~C~C_circle; 1;
General -
Color M BylLayer
Layer 1]
Linetype BvlLayer
Linetype scale |1,0000
Plak style ByLayer
Lineweight ByLaver
Texk style -- use current
Dimension stvle |-- use current

0K][Cancel][

Help

The image in this screenshot was assigned
automatically—if you’d rather use a different one, right-
click and select “Specify Image.”

Below is the final tool:

@ Circle Radius 1

Circle Radius 1

Creates a Circle with a Radius of 1 unit
T T

BB X

ALl 2005

tke

21

Introduction to Macro Writing

Block & Hatch Tools

When you drag and drop blocks or hatches onto Tool Palettes, they automatically inherit the properties
of the source object. If that’s what you want, then you’re done. If not, you can right-click the new tool
and select Properties, just like with command tools. The dialog boxes will look a little different, but the
effects are the same.

- -1
. [l
— &, Tool Properties
&, Tool Properties
Image: Marne:
Image: Mame: AMSI3T
label Description:
Description:
Pattern -
Insert - Tvpe Predefined
Mame label Pattern name AMSIET
Souree file C:iMy Documents\ Al Filest AU Block. .. Angle 45
Scale 1.0000 Scale 4.0000
Auxiliary scale Dimscale A auziliary scale |None
Rotation n] Spacing 40000
Prompt For rok... |No IS0 penwidth 11,00 rmm
Explode Mo Dauble Mo
General - General -~
Color W Bylaver Color M Bylaver
Layer] Layer i
Linetype ByLayer Linetype ByLayer
Flok style BrvLaver Plak style ByLayer
Lineweight — BylLavyer Lineweight — BylLavyer
[Ok] l Cancel] l Help] [Ok] l Cancel] l Help]

Any property that could be set in a command-line macro can be set through the tool’s properties. It’s an
easy way to make sure the same settings are used every time.

You can even mimic the effect of $S(getvar,DIMSCALE) in a tool with the Auxiliary Scale property. (See the
block properties image above.) If you set that to Dimscale, each time you insert the block or use the
hatch it will read the current DIMSCALE, multiply that by the Scale property, and scale itself accordingly.
You'll never have to do the math yourself again.

22

Introduction to Macro Writing

Creating Macros with the Action Recorder
The Action Recorder is the one part of this handout that doesn’t apply to LT. (Sorry.) But if you're

running full AutoCAD, it can be a handy way to create and store your macros without having to type

them out by hand.

Introduction
The Action Recorder is a way to record mouse clicks and command entry automatically. Then you can

play them back as needed to repeat the performed steps with minimal effort. Action macros are created

with an ACTM file extension, and those files can be easily shared between users.

@)=
Ry :

Record

[
2

Action Tree
= 8 Concentric_Circles A~

- [B] CIRCLE

s 1.0000
= [B] CIRCLE
|7 @0.0000,0.0000

g Action Recorder

The following options are available on the Action Recorder panel:

1.

Record. Starts recording the series of actions that will create an action macro.

Insert a Message, Insert a Base Point, Pause for User Input. A message is text you want to show
the user during the action macro playback. Base Points provide a reference location for
following relative coordinates in the action macro. Pausing for User Input replaces the stored
input with a place where the user can enter information.

Play. Plays back the selected action macro.

Preferences. Enables the Action Recorder Preferences dialog.

Manage Action Macros. Use the Action Macro Manager to copy, rename, modify, or delete
action macro files.

Action Macro list. Displays a list of all available action macros.

Action Tree. The series of actions that make up the macro.

Action Item. One command or input in the Action Tree.

23

Introduction to Macro Writing

Creating Action Macros

You use the Record button in the Action Recorder to begin creating an action macro. While it is
recording you can launch commands, enter values and select objects using familiar AutoCAD
functionality. The Action Recorder can record typical actions from the command line as well as from
toolbars, ribbon panels, pulldown menus, the Properties palette, the Layer Properties Manager and Tool
Palettes. However, most dialog boxes are not recorded in the Action Recorder unless you use the
command line equivalent of the dialog box setting. (See? Learning how to write macros by hand is still
useful.) When you’re finished recording, click Stop on the Action Recorder panel.

Remember that this is not a timed exercise! Even if you sit there for five minutes while you decide what
your next step should be, it won’t affect how fast the macro will play back. It'll play back as fast as it
can—as fast as an ordinary macro would. So don'’t let the bright red Record button make you nervous.

Action Macro File Locations

Each action macro you record is saved as an individual file and is recorded by the local machine at the
Actions Recording File Location with an ACTM extension. The file location is specified in the Options
dialog box, Files tab, under Action Recorder Settings.

Shared Action Macros
To allow others to use a macro you create, you must copy the macro file onto each computer where you
want to use it. Copy it to the location indicated by the Actions Recording File Location option.

You can also put action macros on your network, and point the support paths in AutoCAD to the
appropriate location.

Guidelines for Using Action Macros
Here are a few recommended practices to enable you to use action macros efficiently. You can use these
guidelines to create, edit and play action macros.

e While recording a macro, only launch commands from ribbon panels, tool palettes, menus or
toolbars. Do not launch commands that bring up a dialog box.

e |f you want to record the settings changed in a dialog box, use the command line equivalent of
the command and specify the settings at the command line. This will ensure that the macro
records the steps.

e When you use the command line equivalents for dialog box settings in an action macro, don’t
accept command line defaults. Always type in a value.

e If you don’t want an action macro to be changed, you should use Windows Explorer to place a
read-only attribute on the file or on the directory it is shared in.

24

Introduction to Macro Writing

Additional Resources

If you need more information, check out these websites:

e The AutoCAD home page: www.autodesk.com/autocad

e The AutoCAD LT home page: www.autodesk.com/autocadlt

e The Autodesk Discussion Groups: www.autodesk.com/discussion
e LT Unlimited — the official LT blog: http://Itunlimited.typepad.com

e AUGI: www.augi.com

Appendix A: Summary of Handout Macros

Draw a circle with a radius of 1
ACNC_circle;\1;

Draw multiple circles with a radius of 1
*NCNC_circle;\1;

Rotate by a fixed angle
ACNC_rotate;\;\180;

Copy then Rotate
NCNC_copy;; \;_rotate;L;;@;\

Arc with Donut
ACAC_arc;\\\donut;0;0.5;0;

Create a hatch with pattern ANSI37, scale of 4, angle of 45, applied to a selected object
ACNC-hatch;P;ANSI37;4;45;S;\;;

Insert a block with a scale of 12 and a rotation of 90
ACNC-insert;sample;S;12;R;90;\

Insert an exploded block with a scale of 12 and a rotation of 90
ACNC-insert;*sample;\12;90;

Insert a block with a scale of 12 and a rotation of 90, then explode it
ANCNC-insert;sample;S;12;R;90;\explode;L;

Insert a block with a scale of 12 and a rotation of 90, then explode and purge it
NCAC-1Insert;sample;S;12;R;90;\explode;L;-purge;B;sample;N;

Create a red layer with a continuous linetype
ACAC-layer;M;S-ANNO-TEXT;C;1;;L;Continuous;;;

25

Introduction to Macro Writing

Load a linetype, then create a red layer that uses that linetype
ACNC-insert;*LT_beam_removed;0,0;1;;-layer;M;S-BEAM-STEL-
DEMO;C;1;;L;BEAM _REMOVED;;;

Plot a drawing

Create a fillet with a radius equal to 1/4 times the DIMSCALE
NCACARFI L Iet;R; $M=$(*,$(getvar ,DIMSCALE),0.25);

Create text with a height equal to 1/8 times the DIMSCALE
ACNC_dtext;;\$M=$(*,$(getvar ,DIMSCALE),0.125);

Create mtext with a height equal to 1/8 times the DIMSCALE
ACNAC_mtext; \H;$M=$(*,$(getvar ,DIMSCALE),0.125);\

Toggle CURSORSIZE between 5% and 100%
NCACHEM=3$(if,$(=,%(getvar,cursorsize),100),cursorsize;5;;,cursorsize;10
0::)

Insert a block with a single attribute, and increase the attribute value by 1 every time
*/\C/\C—_
insert; label;\; ;$M=$(getvar,USERI1) ;USERI1;$M=$(+,$(getvar,USERI1),1);

Appendix B: User Macros (Untested)

| haven’t been able to test most of these, but the people who posted them on the discussion groups
swear by them. If you have any questions about them, that’s the place to look.
(http://discussion.autodesk.com)

General clean-up before closing
CACAP-layout;set;Model ;-layer;s;0; ;zoom;e; .—purge;a;*;no;-
layout;set;;zoom;e; "spell;_gsave

Used for joining lines into polylines prior to sending to a CNC machine
ACNC_SELECT;SI;\"C"C_EXPLODE;@;~C"C_PEDIT;@;Y;J;ALL; ;~CNCNC

Redefine a block
NCNC-insert;sample=sample;\;;;

Lock and hide viewports
NCNC-layer;thaw;vport; ;MVIEW;L;ON;ALL; ;-LAYER;S;0;0FF;VPORT; ;

Unlock and show viewports
NCAC-layer;thaw;vport; ;MVIEW;L;OFF;ALL; ;-LAYER;ON;VPORT; ;

26

Introduction to Macro Writing

Toggle between rectangular and isometric snaps (from Kevin Chandler, Lane Associates)
This macro demonstrates the automatic checking/unchecking of a pulldown menu:

For the menu's Name field:
$(if,$(and,$(getvar, ,SNAPSTYL),1),!.)Isometric Cursor

For the macro field:
$M=$(if,$(and,$(getvar,SNAPSTYL),1), ;~C~C_SNAPSTYL;0, ;~C~C_SNAPSTYL;1)

Toggle between Layouts and Modelspace (from Erik Deyo, http://Itsideofthings.blogspot.com)
~C/Csetvar ;tilemode; $M=$(1=,$(getvar,tilemode), 1)

Sets the new current layer to DIM, creates a linear dimension, and restores the original layer to current:
NCNC_setenv;CURRENTLAYER ; $SM=$(getvar,CLAYER) ; CLAYER;Dim;_dimlinear;\\\
CLAYER; $M=""$(getenv,CURRENTLAYER)";

Labels a polyline with its area:

~CNCarea;e;\ -

mtext;$M=$(getvar,viewctr) ;@;AREA=$m=$(rtos,$(/,$(getvar,area),1000000
),2,3)m2;;_move;_L;;@;\

27

