Introduction to Malware Analysis

Lenny Zeltser
SANS Institute

Lenny Zeltser teaches SANS malware
analysis course. See LearnREM.com.

Copyright 2009-2010 Lenny Zeltser

My popular SANS Institute malware analysis
course has helped IT administrators, security
professionals, and malware specialists fight
malicious code in their organizations. In this
briefing, | introduce the process of reverse-
engineering malicious software. | cover
behavioral and code analysis phases, to make
this topic accessible even to individuals with a
limited exposure to programming concepts.
You'll learn the fundamentals and associated
tools to get started with malware analysis.

Security incident responders benefit from
knowing how to reverse-engineer malware,
because this process helps in assessing the
event's scope, severity, and repercussions. It also
assists in containing the incident and in planning
recovery steps. Those who perform forensic
investigations also benefit from mastering this
topic, because they learn how to understand key
characteristic of malware present on
compromised systems.

Malicious software is
an integral component
of many breaches.

Copyright 2009-2010 Lenny Zeltser

How relevant malware has become in the context
of computer intrusions! Almost every data breach
announced publically, it seems, involves some form
of malicious software, such as backdoors, trojans,
network worms, exploits, and so on.

In this session, | will introduce you to the
approaches for analyzing malware, so you can turn
malicious executable inside out to understand
their inner-workings.

When such an intrusion occurs at your
organization, will you be able to quickly assess the
threat? Knowing how to analyze malware can help
you understand the context of the incident, its
severity and repercussions. It can help you plan
your response to contain the incident’s scope and,
in some cases, understand what entities might be
behind the intrusion.

Organizations struggle
to understand malware
they encounter.

Perhaps that is why the individuals who are
looking to acquire malware analysis skills are no
longer just anti-virus and threat researchers, but
also system and network administrators, as well as
general security professionals. More and more
often, these individuals are being asked to
understand the capabilities of malware that their
organizations discover.

Copyright 2009-2010 Lenny Zeltser

Knowing how to analyze malware lets
you to take control of the incident.

Copyright 2009-2010 Lenny Zeltser

Knowing how to analyze malware can bring an
element of control into an otherwise chaotic
environment that exists around a security incident.
It’s also a critical aspect of modern forensic
analysis actions, because it’s all too frequent for
investigators to discover malware on the
compromised systems.

The reversing course covers
a practical approach to
analyzing the threat.

Behavioral
Analysis

Code
Analysis

Copyright 2009-2010 Lenny Zeltser

The approach to reverse-engineering that has
worked for many analysts involves two key phases:
behavioral analysis and code analysis. During
behavioral analysis, we examine how the specimen
interacts with its environment. The code analysis
phase allows us to learn about the specimen’s
capabilities by examining the code from which the
program is comprised.

You’ll see this approach in action in the upcoming
slides.

Our challenge for this

briefing: a trojan copy of
Windows Live Messenger

Copyright 2009-2010 Lenny Zeltser

| find that the best way to learn malware analysis is
by going through examples. The malicious
executable from which we’ll learn in this session is
captured on this slide. It’s a trojan copy of
Windows Live Messenger—a fake instant
messenger client that was being distributed to
victims via email. Many such trojans have the
capability of capturing the victims’ logon
credentials, and may have other “undocumented”
features.

Let’s see what capabilities are built into this
malicious executable. As | lead you through the
analysis, I'll introduce the tools and techniques
that will help with the reverse-engineering
process.

Note that in this example, as with the majority of
malicious incidents you’ll probably encounter, we’ll
be examining a compiled Windows executable for
which we have no source code.

. . . | typically start examining a malicious executable
Behavioral analysis examines ypieally S ne .
with behavioral analysis, because it comes more

interactions with the environment. easily to me than code analysis. If your strength is

in programming and x86 assembly, then you may
prefer to start with the code analysis phase
instead.

* Execute malware in an isolated laboratory
system.

* Observe how it interacts with the file system,

registry, network. When performing behavioral analysis, we’re going

* Interact with malware to learn more about it. to infect a laboratory system with the specimen.
Then we’ll observe how the malicious executable
accesses the file system, the registry, and the
network. As we learn about the program’s
expectations of its runtime environment, we will
slightly adjust the laboratory infrastructure to

evoke additional behavior from the program. We
will also attempt to interact with the program to
discover additional characteristics it may exhibit.

Copyright 2009-2010 Lenny Zeltser

When performing malware analysis, it’s convenient to

|t'S convenient to virtualize the lab use virtualization software when setting up your lab.
] Such tools typically simulate the underlying hardware,
(VMwa re, Virtual PC, EtC.). allowing you two run multiple instances of “virtual”

machines simultaneously. For instance, you could use
Windows 7 as your base OS, while having a separate
instance of Windows XP running in another window,
and a Linux instance running in another window.

@) REM Lab (Windows XP 1) - VMware Workstation

File Edit View VM Team Windows Help

senle salk DE8e0 OEE &3

Each virtual machine behaves mostly as “real” physical
systems, in that it has its own set of I/O peripherals,
RAM, network settings, and so on. All these aspects of
the virtual machine are, well, virtualized.

The convenience of a virtualized lab comes, in part,
from the flexibility of having multiple instances of
various operating systems available to you within a
single physical system. Virtualization software can
even emulate a network, so that your lab doesn’t need
to be connected to a physical network at all. Yet, the
virtual machines will be able to communicate with
each other over the simulated network, blissfully
unaware that the network is not “real.”

| typically use VMware for virtualization. Other choices
include Microsoft Virtual PC, Sun VirtualBox, etc.

Copyright 2009-2010 Lenny Zeltser

Being able to switch between different
states of the system is very helpful.

* VMware Workstation supports
multiple snapshots

* For physical systems

use dd, Ghost, etc. F-G-a

Windows XP November Snapshot for
Professional Windows ...

| Youhre
i Here

Snapshot details

Name:

Copyright 2009-2010 Lenny Zeltser

One of the most convenient aspects of using
virtualization software is its support for snapshots.
They allow you to preserve the current state of the
virtual machine with a click of a button, and return
to it with another click. VMware Workstation
support multiple snapshots, which comes in very
handy for “bookmarking” different stages of your
analysis, so you can move back and forth during
your experiments without losing important
runtime details.

Snapshot capabilities are also very useful for
reverting back to the system’s pristine state after
you’ve completed your research and want prepare
the lab for your next analysis. Save the state of the
virtual machine after you’ve installed the OS,
patched it, and set up the necessary tools. Once
you’re done with your analysis, click a button to
revert to that state. Very convenient!

Malware may have defenses that prevent it from
executing properly in a virtualized environment. In
these cases, the easiest step might be to use a set
of physical systems, instead. To mimic snapshot
functionality when you’re unable to use
virtualization software, use disk cloning tools such
as dd and Norton Ghost.

Mitigate the risks of malware
attempting to escape from the lab.

Avoid production network connectivity.
Dedicate a host to the lab.

* Keep up with patches to virtualization
software (e.g. VMware).

Restore the host if anything suspicious occurs.

Copyright 2009-2010 Lenny Zeltser

Any malware analysis lab carries the risk of
malware finding a way to escape from your
sandbox. This risk is greater with a virtualized lab,
because the isolation it provides is not as reliable
as the literal air gap between physical systems.

Since virtualization software is written by human
beings, it will have bugs in it. Some of these bugs
are vulnerabilities that malicious software may use
in an attempt to escape the sandbox around your
laboratory system. To address this risk, | suggest
dedicating a single physical system to your
virtualized lab: run several virtual machines in it,
but don’t use that system for another purpose.
Also, don’t connect the laboratory box to your
production network unless required for performing
specific tasks.

It’s also very important to keep your virtualization
software up to date on security patches.
Sometimes they’re a pain to download and install.

If you notice anything suspicious in the lab
environment when performing your analysis,
restore the physical system from a backup copy,
and keep a close eye on the environment.

10

Infect the lab system. RegShot
helps detect changes.

Compare logs save as:

& PlainTXT " HTML document Windows Live

Messenger...

¥ Scan dir1[;dir2;...;dir nn]:
[(:\1

Output path:
C:\DOCUME~1{ADMINI~1 ..

Add comment into the log:

S

C:\WINDOWS\msnsettings.dat
C:\pas.Txt

Interact with malware a bit, e.g. try to login to it.

Copyright 2009-2010 Lenny Zeltser

Let’s see this approach in action. Let’s say you have
a suspicious executable that you’d like to analyze.
You bring it into your lab, possible via a removable
USB disk and place it on the desktop of the virtual
machine you’re about to infect. Now what?

First, take a snapshot of the state of the machine’s
file system and the registry. This will allow you to
quickly see what major changes have occurred on
the system after you infect it.

| like the free tool called RegShot for this purpose
(http://sourceforge.net/projects/regshot). To use
it, enable the “Scan dirl” option, and in the
corresponding window type “C:\”. This will allow
the tool to scan the registry and the full C: drive.

Click “1st shot”. After RegShot takes the first
snapshot, launch the malicious executable. Interact
with it a bit (e.g., try logging into it). Then kill the
process, if you can. Next, click the “2" shot”
button in RegShot, and click the “Compare”
button. You’ll see a report that describes the major
changes to the system’s state. In this case, we see
that two files were added to the system.

11

http://sourceforge.net/projects/regshot

Examine the new files.

[P pas.txt - Notepad
File Edt Format View Help

W, . com
username: abc@example.com
Password: pass

Nnooo

I msnsettings. dat - Notepad
WWW.L . com File Edit Format WView Help

Please type in an error message
C:\Program Files\MSN Messenger\msnmsgr.exe
0

Copyright 2009-2010 Lenny Zeltser

The two files that appeared on the system after we
infected it are pas.txt and msnsettings.dat. Take a
look at them using notepad.

It looks like pas.txt has captured the logon
credentials we used when logging into the
malicious executable. That makes sense, because
we received reports that this executable is a trojan
copy of Windows Live Messenger.

The msnsettings.dat file looks like a configuration
file of some sort.

12

Process Monitor observes malware
as it infects the system.

&) Process Monitor - Sysinternals: www.sysinternals.com

File Edt Event Fiter Tools Options Help

sl ABE | SAS A5 B IE

Seq Time... Process Name PID Operation Path Result ~
4779 3.07:3.. &% Windows Live 2212 CreateFile C:AWINDOWS SUCCESS
4781 30 indows Live 2212 QueryDirecton C:AWINDOWS \msnsettings. dat NO SUCH FILE
4782 9.07:3 Windows Live 2212 Closefile CAWINDOWS SUCCESS
4784 3.07:3
4794 9.07:3
4795 9.07:3
4797 39.07:3
4813 307:3. &4

File Edt Event Fiter Tools Options Help

FH ABE CAD | #AF | (KB |JW

< Seq.. Time.. Process Name PID Operation Path Resut

Showing 4,432 of 20,220 events 20106 3:08:0... &5 Windows Live 2212 Createfile CAWINDOWS\system32\MSIMTF.dil SUCCESS
20108 9.08:0... & Windows Live 2212 QueryStandardinfo... CAWINDOWS\system32\MSIMTF.dil SUCCESS
20112 9.08:0... & Windows Live 2212 CloseFile C:AWINDOWS\system32\MSIMTF.dil SUCCESS

20115 3080.. &3Windows Live .. 2212 CreateFie) SUCCESS
20116 3080.. &3Windows Live .. 2212 CloseFile A SUCCESS
20118 $080.. &3Windows Live... 2212 WiteFie Ci\pas.a SUCCESS
20119 3080.. &Windows Live .. 2212 CloseFile CiApas.ta SUCCESS

< >

v

Showing 4,432 of 20,220 events (21%) Backed by page file

Copyright 2009-2010 Lenny Zeltser

Another free tool that can help us understand how
the malicious program interacted with the file
system and the registry is Process Monitor
(http://technet.microsoft.com/en-
us/sysinternals/bb896645.aspx).

To use Process Monitor, run it while infecting the
system. | typically launch the tool right after taking
the first RegShot snapshot. Remember to pause
capture in Process Monitor before taking the
second RegShot snapshot.

Process Monitor records API calls it observes on
the system that deal with file system and registry
access. It shows the details of how programs
create, delete, read or modify the local
environment. In the screen shot on this slide, you
see attempts by our malware specimen to create
pas.txt file and to locate the msnsettings.dat file.

Process Monitor’s log is very comprehensive.
However, it is also very noisy. | use RegShot to
make sure that | don’t miss anything critical, while
| rely on Process Monitor to present a
comprehensive perspective on the specimen’s
interactions with the file system and the registry.

13

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

Now you know to look for additional
files on the victim’s actual system.

I msnsettings.dat - Notepad Q
File Edt Format View Help
Eest PN

0
-1
-1
0
0

-1

Please type in an error message
c:\Program Files\MSN Messenger\msnmsgr.exe
1

Several settings on
the victim’s system

gsmtpl85.google. com
mastercleanex@gmail.com

ocoo

c:/ v

differ from the lab’s.

Copyright 2009-2010 Lenny Zeltser

Reverse-engineering malware can help you
become better at incident response and forensic
analysis. In our scenario, we have already
discovered that Windows Live Messenger trojan
makes use of the msnsettings.dat file. Now you
know to look for it on the compromised system,
even if you didn’t initially realize that this file was
important.

Once you have a copy of msnsettings.dat, you can
open it to see whether it reveals additional details
about the program. On this slide, I’'ve highlighted
several lines from that file.

One is a string “test,” which we may be able to use
later when trying to understand how the trojan
processes the msnsettings.dat file. Another line,
“gsmtp185.google.com” specifies an SMTP mail
server; this suggests that our specimen has the
ability to send email. The file also includes an
email address, “mastercleanex@gmail.com”. This
may be the recipient of the information that the
trojan might attempt to send out. Of course, these
are just theories at this point. We'll need to
confirm or deny them during subsequent analysis
steps.

14

CaptureBAT offers another
perspective on the behavior.

C:\>capturebat -c -n

Option: Capturing network packets

Option: Collecting modified files

Loaded kernel driver: CaptureProcessMonitor
Loaded kernel driver: CaptureRegistryMonitor
Loaded filter driver: CaptureFileMonitor

process: created C:\WINDOWS\explorer.exe -> ... Windows Live Messenger.exe
file: Write ...Windows Live Messenger.exe -> C:\WINDOWS\msnsettings.dat
file: Write ...Windows Live Messenger.exe -> C:\pas.txt

The records were cleaned up to fit the slide.

Copyright 2009-2010 Lenny Zeltser

It helps to have several tools to observe the
malicious program’s interactions with its
environment. Another very useful and free tool I'd
like to tell you about is CaptureBAT
(http://www.honeynet.org/node/315).

CaptureBAT is similar to Process Monitor in that it
records local processes’ interactions with their
environment. CaptureBAT’s logs tend to be less
noisy than those created by Process Monitor. This
is because CaptureBAT comes with filters that
eliminate the majority of standard, non-malicious
activities from the logs. You can customize these
filters to your liking, as they are text files located in
the directory where you install CaptureBAT.

If you launch CaptureBAT with the “-c” parameter,
it will capture any files deleted in the background,
allowing you to look at and restore even those files
that the Windows Recycle Bin cannot capture.

Launching CaptureBAT with the “-n” parameter
tells the tool to capture network traffic, like a
sniffer would, saving the result into a local .cap file.

As you can see on this slide, CaptureBAT confirmed
our earlier findings about the malware specimen.

15

http://www.honeynet.org/node/315

Place the new file into the lab. Now
the sniffer (Wireshark) shows DNS.

No. Time . Source Destination Protocol Info
1 0.000000 00:0c:29:ca:2a:f2 ff:ff:ff:ff:ff:ff ArP who has 192.168.11.1297 Tell 192.168
2 0.038277 00:0c:29:15:71:el 00:0c:29:ca:2a:f2 ARP 192.168.11.129 is at 00:0c:29:15:71:e:
966 9 68.11 8) 68.11 9 query A gsmtpl85.google.com

dard

Frame 3 (79 bytes on wire, 79 bytes captured)
Ethernet II, Src: 00:0c:29:ca:2a:f2 (00:0c:29:ca:2a:f2), Dst: 00:0c:29:15:71:el (00:0c:29:15:71:¢
Internet Protocol, Src: 192.168.11.128 (192.168.11.128), Dst: 192.168.11.129 (192.168.11.129)
User Datagram Protocol, src Port: blackjack (1025), bst port: domain (53)
- pomain Name System (query)
Transaction ID: Oxlbad
Flags: 0x0100 (Standard query)
Questions: 1
Answer RRs: 0
Authority RRs: 0O
Additional RRs: 0
= Queries

B gsmtpl85.google.com: type A, class IN

The hostname suggests SMTP, but use DNS resolution to confirm.

Copyright 2009-2010 Lenny Zeltser

You can load the .cap file created by CaptureBAT
into a full-feature network sniffer, such as
Wireshark (http://www.wireshark.org). If you don’t
like using CaptureBAT, you could also use
Wireshark to capture traffic direct off the
laboratory network.

As you can see on this slide, the sniffer shows that
the infected system has issued a DNS query,
attempting to resolve the hostname
“gsmtp185.google.com”. The “smtp” in the
hostname suggests that the malware specimen is
looking for a mail server to connect to, reinforcing
our earlier theory of how the trojan might use this
hostname.

16

http://www.wireshark.org/

Redirect network traffic via
Fake DNS or the hosts file.

= Fake DNS

%%188 1 BBWB;GGGB%S??SSD § 1
74 7 31 gg 35 06 67 6F oF 67 6C 65 U3 63 6F 6D (tal%.qoovle.coﬂ}

No.. Time Source Destination Protocol Info
1 0.000000 192.168.11.128 192.168.11.129 TCP 1078 > 25 [SYN] Seq=0 Win=64240 L
0.00560 9 68.11 R R 68.11] 8 078 eq

Confirmed SMTP
attempt.

Close

Redirect all DNS Queries to IP:

Copyright 2009-2010 Lenny Zeltser

To confirm how the specimen wishes to use
“gsmtp185.google.com”, allow the trojan to
resolve this hostname. Once it can resolve it, it will
presumably attempt connecting to it, and you will
be able to use a network sniffer to see what
service the specimen is trying to access.

To set up name resolution, insert an entry for the
hostname into the “hosts” file on the infected
system. A faster alternative is to use a tool called
Fake DNS, available as part of the Malcode Analysis
Pack toolkit from iDefense at the following URL:
http://labs.idefense.com/software/malcode.php#
more malcode+analysis+pack

Fake DNS is a DNS server that you can configure to
answer any DNS query with a single IP address of
your choice. Which IP address should you use? |
suggest picking an IP address of some system in
your lab on which you can run the service that
malware may look for. This will redirect the
connection to the host where you’d set up the
listener, allowing the connection to be completed
so you can learn about its purpose.

In our example, captured on this slide, the network
sniffer confirmed that the infected system is
attempting to connect to TCP port 25 on
“gsmtp185.google.com”.

17

http://labs.idefense.com/software/malcode.php
http://labs.idefense.com/software/malcode.php

Mailpot acts as the SMTP server
and intercepts the message.

P 1134481251.1xt - Notepad
File Edit Format View Help

received From: 127.0.0.1
TO:<mastercleanex@gmail. com>
0 s FROM:<yourpassword@password. com>

“4 Mailpot Active: Listening on: 25

Lcom> 1134481251 bt

0 P DEBUGMODE RAW DATA FOLLOWS

EHLO Tlabbox

RSET

MAIL FROM:<yourpassword@password.com>
RCPT TO:<mastercleanex@gmail.com>
DATA

From: yourpassword@password. com
Subject: username: abc@examp‘\e com
To: mastercleanex@gmail.

pate: sat, 7 Mar‘ 2009 22: 20 15 -0500
X~ Prwr‘ﬂ:y

X-Library: Indy 9.00.10

<

Password: pass
Log Dir = C:\malpot Listen Port = Server Banner || -

Now that you know malware is looking for an
SMTP server, you can provide that service to it
within your lab. An easy way to do this is to use the
Mailpot tool, which is part of the previously-
mentioned Malcode Analysis Pack available at:
http://labs.idefense.com/software/malcode.php#

more malcode+analysis+pack

Copyright 2009-2010 Lenny Zeltser

Mailpot pretends to be an mail server, happily
accepting SMTP messages from clients, but not
sending them out. Instead, it stores the messages
locally for your review.

To use Mailpot, run it on the host to which you
have redirected the SMTP server’s hostname using
FakeDNS, as shown on the previous slide.

Now you can see the contents of the message that
the trojan is mailing to the attacker. As highlighted
on this slide, the message includes the victim’s
Messenger username and password.

18

http://labs.idefense.com/software/malcode.php
http://labs.idefense.com/software/malcode.php

Mold the environment based on the
observations to evoke new behavior.

* Add services gradually, as you learn what the
specimen wants.

* If you give too much at once, you lose cause-
effect insights.

* Repeat until no interesting discoveries.

Copyright 2009-2010 Lenny Zeltser

How can we generalize the behavioral analysis
process we’ve been following? As you observe a
characteristic of the specimen, you typically notice
an element of the environment that the program is
looking for, yet does not possess in your lab. For
instance, the executable may be attempting to
resolve a host name. To evoke new characteristics,
you provide to the specimen the service it needs,
thus allowing it to perform further actions to fulfill
each its true potential.

With every service you add to the environment,
you learn more about the specimen. Note that if
you change too many environmental
characteristics at the same time, you malware may
perform too many new actions. This will speed up
your analysis at the expense of knowing exactly
what change was responsible for which observed
characteristic.

When do you stop molding the laboratory
environment to match the specimen’s expectations
and dependencies? When you there are no more
changes to introduce into the lab to evoke
previously-unseen behavioral characteristics.
That’s typically the point when you will want to
start the next phase of the reverse-engineering
process: code analysis.

19

Code analysis expands and reinforces
behavioral findings.

* Tools of the trade: disassembler and debugger.
* Examine the specimen’s assembly code.

* Step through the most interesting parts of the
code.

Copyright 2009-2010 Lenny Zeltser

Behavioral analysis can be insightful and relatively
fast. However, it will rarely tell you everything you
need to know about malware of moderate and
advanced complexity. That’s where code analysis
can be of help. It can help reinforce your
behavioral findings, and can shine light on
additional properties of the specimen that you
may not have discovered behaviorally.

Code analysis can be tricky and time-consuming,
because in the world of malware you almost never
have the luxury of seeing the source code of the
program you’re analysis. Instead, you need to
reverse-engineer the compiled executable’s
functionality by examining its code at the assembly
level. A debugger and a disassembler can help you
in this task. A disassembler converts the
specimen’s instructions from their binary form into
the human-readable assembly form. A debugger
lets you step through the most interesting parts of
the code, interacting with it and observing the
effects of its instructions to understand their
purpose.

20

Looking at strings is a often a good
start. In this example, use OllyDbg.

E3 Text strings referenced in Windows_:CODE

6EES HOU EDX hlmdous 0849?304
MOU EDX, Windows_.B884973F8
gl MOU EDX, Windows_.004973F0
F4E| MOU EDX,Windows_.084973F0
D MOU EDX, Windows_.004973FC
MOV EDX, Windows_.88497424

96F SR HOU EDX‘lollndous . 00497458

ase type_in an error m
Program Files\MSN Hess

Looks like default

Name (label) in current module CtrH+N
e = Name in all modules
Copy » Command Ctri+F
Binary » Sequence of commands Ctri+s
Assemble Space Constant
Label s Binary string Ctri+8
Comment H
Breakpoint
Hit trace
Run trace

Allintermodular calls

All commands

All sequences

All constants

Al switches

All referenced text strings

Goto
Follow in Dump
View call tree Chri+K

User-defined label
User-defined comment
Find references to >

msnsettings.dat content.

Copyright 2009-2010 Lenny Zeltser

OllyDbg is among my favorite tools for performing
code analysis. It’s free, very powerful, and includes
both a disassembler and a debugger. You can
download OllyDbg from:

http://www.ollydbg.de/

A good way to start analyzing the specimen’s code
often involves looking at the strings embedded in
its executable. To do this with OllyDbg, first load
the malicious executable into OllyDbg via File >
Open. Then, right-click on the code you will see in
the disassembler window, and select Search for >
All referenced text strings.

OllyDbg will then bring up a new window that will
show the strings it discovered, as you can see on
this slide. Notice that we have seen some of these
strings during behavioral analysis! Some of them
look like contents of the default msnsettings.dat
file that our specimen creates when infecting the
system.

21

http://www.ollydbg.de/

OllyDbg shows how the program
uses the string.

[CPU - main thread, module Windows_

. FF?S FC PUSH DWORD PTR SS:[(EBP-4]]
. 68 BA734900 | PUSH Windows_.008497380
BC | RSCII "msnsettings.dat”

. 68 PUSH Windows_.8849738C
. 8085 F4FEFFFF|LER EQX.DIAIORB PTR SS: [(EBP-18C]
. BA 93000000 | MOU EDX

DBOOFEFF | CALL Windows_.008484CB0
EFFFF HOU ERX.DIIIORD PTR SS [(EBP-10C]
2SF7FF ndows_. 88409471
2 NOU ERX.DUORB PTR_DS: [499C838]
209 304 RSCII "hello”™

28304500
RFEFF

200 | Hou ERX, B00R0"PTR b2 t49RR4C
MOU EDX,Windows._.004973E4
cau. um%s . 0340498

4984
IRO_PTR_DS: [499FAS]
lndous 8849?38C (R‘SCII "msnsett ings.dat”)

Hen du Iascn |

Copyright 2009-2010 Lenny Zeltser

The reason we may be interested in looking at the
embedded strings is because the string listing
might include a reference to a malicious
characteristic or a behavioral trait that we would
like to understand. In this case, consider the
screenshot on this slide. We got here by
highlighting one of the instances of
“msnsettings.dat” strings, as shown on the
previous slide, and pressing Enter. Now, OllyDbg
shows us how the program makes use of this
string.

If we wanted to pursue this path of analysis
further, we could now set a breakpoint on this
command, run the trojan in the debugger, and see
what it does. We're not going to investigate this
particular aspect of the malicious program,
because | want to show you another, more
interesting technique.

22

What'’s the purpose of the “test” string
in the victim’s msnsettings.dat file?

* Run the specimen in
O“yDbg. tFi:StEdt Format View Help
Q
* Look in memory for 2
“ ” 0
test”. .
Please type in an error message
C:\Program Files\MSN Messenger\msnmsgr.exe
* Set an access ';js-mtm:&goog'le.mm ’ ’
. mastercleanex@gmail. com
breakpoint. o
[+]

C:f

Copyright 2009-2010 Lenny Zeltser

You may recall that the version of msnsetting.dat
on the victim’s system was slightly different from
the version that the trojan created on our
laboratory system when we first ran it. Specifically,
in our case, the file contained the string “hello”,
while the victim’s version had the string “test”
instead. What’s that about?

The string “test” is not visible anywhere within the
body of the malicious executable when it’s not
running. That’s probably because the trojan loads
this string from msnsettings.dat during run time.
To understand how the trojan uses the string
“test,” we will search for it in the memory of the
running trojan.

Once we locate the string in the trojan’s memory,
we will set an access breakpoint there. A
breakpoint is a condition that tells the debugger
when to pause the normal execution of the
debugged program. Once the execution is paused,
the debugger will give us a chance to review the
debugged program’s run time environment to
understand what it is doing. This is probably the
most useful feature of a debugger in the context of
reverse-engineering malware.

23

Alt+M brings up the memory map.
Search for via Ctrl+B; Ctrl+L repeats.

:
ASCI Itest
UNICODE |
HEX +04 |'M 65 73 74
[Entie block 2
[V Case sensitive Cancel

B £ Memory map

00330000 00004

s Set memory breakpoint on access
2650000 20081600 Set memory breakpoint on write

2etaccess L.

Copyright 2009-2010 Lenny Zeltser

To make use of this technique, load the malicious
program into OllyDbg, then run it. Once the trojan
is running, press Alt+M to bring up the memory
map in OllyDbg. This shows the listing of the
memory segments mapped and used by the
currently-debugged executable. To search the
executable’s memory for a particular string, press
Ctrl+B in OllyDbg; then, enter your string. In this
case, we’ll enter “test” in the ASCII field of the
dialog box. Then press Enter.

It is possible that your string will be located in
several memory areas. The one you're interested
in won’t necessarily be the fist one. To repeat your
search, click on the memory map window, then
press Ctrl+L. (Don’t forget to click on the memory
map window!)

In the case of our example, we’ll need to perform
the initial search via Ctrl+B. This will find us an
instance of “test” that is not promising. We will
repeat the search by pressing Ctrl+L once.

24

A memory access breakpoint will tell
us when the specimen uses the string.

Binary 99| aeet
Memory, on ccess

Search for » Memory, on write

Follow DWORD in Disassembler ardviace. & access R

Folow DWORD n Dump Hardware‘ on write »

Go to address Cr+G g

Hardware, on execution

PE88he8q8887088RISB8538808882H8 28R 888
<
F

2IWIISMIIY
peemadsnss

Copyright 2009-2010 Lenny Zeltser

Now that we’ve located the string “test” in the
trojan’s memory, we can set a breakpoint there. In
this case we’ll be setting a memory access
breakpoint, so that OllyDbg pauses the program’s
execution whenever it attempts to access this
particular memory area. Effectively, this will allow
us to catch the trojan while it is attempting to use
the “test” string; we will then be able to see how it
makes use of the string.

To set the brakpoint, highlight the exact characters
of the string “test”, then right-click and click
“Breakpoint” > “Memory, on access”.

The trojan will continue to run. Now we can either
wait for it to try using the sting, or attempt
interacting with the program to try to cause it to
use the string.

We can try interacting with the trojan by typing
some text into its first field, the one labeled “E-
mail address”. If you type any character there after
setting our memory breakpoint, you will
immediately trigger the breakpoint, as you can see
on the next slide.

25

As you can see on the left side of this slide, | entered a
Interact with the program to try character into the field. | picked a letter at random:

; ; . “g”. Right away, OllyDbg comes to the foreground,
trlggermg the breakpomt' because we just triggered an attempt by the trojan to
[cPU - main thread, module Windows_

: somehow use the string “test”. You can now interact
B 1 g with the code, looking at its environment, and even
running it as slowly as one instruction at a time.

. 38FD
B Modify ECX

.
‘| Hexadecima 00000067

CHP_CH, BH

3| sioned 16 . . . :
| JT— i To execute one instruction, press F8. To examine the
| o o faw oo o e . , .
| g o | P e O run-time environment of the program, look at its
= — T P registersin the top right corner of the OllyDbg window.
[Address [Hew ounp [ascrr | . . T .
: :) rrrer R O O ol A register is a specialized location on the CPU that can
X] o | store data and that is very fast.

“t” in EBX is compared to “g” in ECX.
What’s going on in this part of the code? Don’t worry

if you don’t understand much of the assembly code
you see there: this is just an introduction to malware
analysis, so I'll walk you through the most important
parts. OllyDbg has highlighted the instruction that will
be executed next by the program, “CMP CL, BL”. This
compares contents of two registers, CL and BL. CL
points to the lowest byte of ECX; BL points to the
lowest byte of EBX, so it’s an efficient way of
comparing parts of ECX and EBX registers.

Double-click the registers to see their contents. ECX

contains the character we entered, “g”. EBX contains
the string that our input is being compared to, “test”

)
Copyright 2009-2010 Lenny Zeltser (it's stored backwards).

Repeat the experiment. Enter “t”
to pass the first test, then “a”.

[cPU - main thread, module Windows_

Registers (FP
AX FFFFFFFE
CX 00006174
EDX 90800001
EBX 74736574 MSCTF. 74736574
ESP 9912FS4C

e

|||||
it O(FFFFFF]

it @(FFFFFF

3 32bit O(FFFFFF]

it QKFFFFES

74736574 A

“ n “u_n

e” in EBX is compared to “a” in ECX.

Cancel fressoees bl
Unsigned 1953719668 PP
RAddress |Hex du ASCII
aian e Char |t s e t S
AL oK | Cancel |

Copyright 2009-2010 Lenny Zeltser

Press F9 to continue executing the trojan. Delete
the “g” character you’ve entered previously. This
time, let the program match the first character of
the “test” string, and see how it compares the
second character. To do this, enter “ta” in the “E-
mail address” box. If you keep triggering the
breakpoint, press F9 to continue. You want to
pause right after you’ve had a chance to type “ta”.

Press F8 to execute one instruction after you've
triggered the breakpoint, just like you did
previously. This time, if you look at contents of ECX
and EBX registers, you'll notice that the trojan is
comparing the character “a” that we entered to
the character “e” that it seems to expect. That’s
because the CH register points to the second
lowest byte of ECX; the BH register points to the
second lowest byte of EBX.

27

Status: Online

Remember Me

Remember my Password

Sign me in automatically

Looks like the specimen is comparing
contents of the email field to “test”.

Enter “test” in the field to see
what happens (outside the
debugger).

Copyright 2009-2010 Lenny Zeltser

So, the trojan seems to be looking for the string
“test” in the “E-mail address” field. Exit the
debugger, launch the trojan by itself, and enter
“test” to see what happens.

28

It seems that entering “test”
activates configuration screens.

Created By

Man || Other

Password to show these options: test
Once Sign in is clicked do:
O Teminate the application
© Teminate the applicationa and run the real msn
(5 Show an error Message

Once Eror Message is Closed

© Do Nothing

© Terminate the application

(O Teminate the application and un the real msn
Othes Dptions

[] Defau Eror Message

My error meszage:

Msn Path:

#3 Password show options

Created By

Main Other
Send Password to emait
Send Password to Email

Smtp host: | 9smip185.google.com
Emad mastercleanex@gmai com

Shortcuts
[[] Create Shottcut to this program on the deskiop

[[] Delete Shorcut on terminate
[] Create real shortcut on teminste

Save Settings
Save Password i

Delauk Path: C:/

CEX

Filename: pas.tdt

Copyright 2009-2010 Lenny Zeltser

Voila! When you enter “test”, the trojan brings you
to a brand new screen that seems to allow you to
configure the trojan’s operation. As you can see on
this slide, the configuration options let you define
the passphrase to activate this string, the address
where the trojan will send captured logon
credentials, etc.

29

Analysis wrap-up. What do we know?

Captures Windows Live credentials.

Saves them to C:\pas.txt.

Transmits them via email to
mastercleanex@gmail.com.

Configurable via “test,” per
C:\WINDOWS\msnsettings.dat.

Copyright 2009-2010 Lenny Zeltser

It’s time to wrap up our analysis. What have we
learned about the trojan through the steps |
demonstrated? We established that the malware
specimen captures the victim’s Windows Live
credentials entered into the trojan version of
Windows Live Messenger. It saves the username
and password to a local file, and then sends it to
the attacker via Gmail. We also identified a file,
msnsettings.dat, which the trojan uses to store its
configuration. The attacker can customize the
configuration by typing “test” into the “E-mail
address” field of the trojan; this keyword is based
on the previously-saved contents of
msnsettings.dat.

30

What'’s the point?

* Assess the scope and severity of the incident
associated with malware

* Reinforce anti-malware defenses

* Expand the breadth and depth of a forensic
investigation involving malware

* Windows and web malware is particularly
relevant

Copyright 2009-2010 Lenny Zeltser

Great, we learned a bunch of details about a
malware sample. What’s the point? My goal was
not to teach you about this particular trojan’s
capabilities. Instead, | wanted to use it as the
context for introducing you to the key concepts
behind reverse-engineering malicious software.

The results of malware analysis are very useful for
security, systems, and network professionals. The
findings can help during incident response and
forensic investigation. They can also help you fine-
tune your defensive mechanisms, and help you
create intrusion detection signatures for locating
the specimen across your enterprise.

31

We employed several techniques to
understanding key characteristics.

Observing behavior

* Interacting with the specimen

Molding the lab environment

Starting code analysis with strings

L

Setting memory access breakpoints

Download these slides and the sample at
http://tinyurl.com/malcast

Copyright 2009-2010 Lenny Zeltser

The general malware analysis approach, which |
described in this presentation, included behavioral and
code analysis phases.

We began by observing the specimen’s behavior in an
isolated lab using several monitoring tools. We used
our observations to determine how to interact with
the trojan, which produced additional results. We
were able to evoke additional malicious characteristics
by gradually molding the laboratory environment to
match the world within which the specimen expected
to operate.

Armed with an initial understanding of the program’s
capabilities, we employed code analysis to further
understand the program’s characteristics. We began
this phase by looking how the program uses
interesting strings, and employed memory access
breakpoints to identify areas of the code worth
examining further.

The best way to reinforce the techniques | discussed
here is to try the analysis on your own. This document
includes links to the tools | used. You can also
download a copy of the trojan on the website that
hosts this presentation and the corresponding
webcast: http://tinyurl.com/malcast. The full version
of the URL is: http://zeltser.com/reverse-
malware/malware-analysis-webcast.html.

32

http://tinyurl.com/malcast
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html

The reverse-engineering cheat
sheet summarizes the approach.

http://tinyurl.com/reverse-malware-sheet

Reverse-Engineering Cheat Sheet

By Lenny Zeltser § Learn to Turn Malware Inside-Out
http:/ /www.zeltser.com/reverse-malware

1. Setupa controlied, isolated laboratory in
which to examine the malware specimen.
Perform behavioral analysis to examine the
specimen’s interactions with its environment.

. Perform static code analysis to further

understand the specimen’sinner-workings.
4. Perform dynamic code analysis to understand
the more difficult aspects of the code.

. If necessary, unpack the specimen.

@

Repeatsteps 2,3, and 4 (order may vary) until

analysis objectivesare met.

7. Documentfindings and clean-upthe
laboratory for future analysis.

Be ready to revert to good state via dd, VMware

snapshots, CoreRestore, Ghost, SteadyState, etc.

Show names window Shiftsfs
Display function’s flow chart F12
Display graph of function calls ctrl+Fi2
Gotoprogram's entry point ctrlse
Gotospecific address s
Rename avariable or function n
Show listing of names ctrlel
Display listing of segments. Ctrlss
Show cross-references select function name
toselected function » ctelex
Show stack of current function Ctrlsk
Stepinto instruction F7
Step over instruction 8
Execute till next breakpoint Fa
Execute till next return ctrlsfa
Show previous/next executed instruction - / +

Return to previous view .

Totry unpacking quickly, infect the systemand
dump from memory via LordPE or OllyDump.
Formore surgical unpacking, locate the Original
Entry Point (OEP) after the unpacker executes.

If cannot unpack cleanly, examine the packed
specimen via dynamic code analysis while it runs.
Whenunpacking in OllyDbg, try SFX (bytewise) and
OllyDump's "Find OEP by Section Hop".

Conceal OllyDbg via HideOD and OllyAdvanced.
AJMP or CALL to EAX may indicate the OEP,
possibly preceded by POPA or POPAD.

Look outfor tricky jumps via SEH, RET, CALL etc.
If the packer uses SEH, anticipate OEP by tracking
stack areas used1o store the packers” handlers.
Decode protected databy examining results of the
decoding function via dynamic code analysis
Correct PE header problems with XPELister,
LordPE, ImpREC, PEID, etc.

Toget closer to OEP, try breaking on unpacker's

Monitor local (Process Manitor, Process Explorer] Showmemory map Al calls to LoadLibraryA of GetProcAddress.
and network (Wireshark, tcpdump) interactions. Follow expression inview crrles Common xB6 Registers and Uses
Detect major local changes {RegShot, Autoruns). Insert comment EAX Addition, multiplication, function results
Redirect network traffic (hosts file, DNS, Honeyd). Follow jump or call in view Enter ECx Counter
boulicrion of 2 "

Copyright 2009-2010 Lenny Zeltser

To help you master malware reverse-engineering
skills, | created a one-page cheat sheet, which you
can download and customize freely. It’s available at
http://tinyurl.com/reverse-malware-sheet. The full
version of the URL is:
http://zeltser.com/reverse-malware/reverse-
malware-cheat-sheet.html.

You may also find my other security cheat sheets
useful. You'll find them at:
http://zeltser.com/cheat-sheets.

33

http://tinyurl.com/reverse-malware-sheet
http://tinyurl.com/reverse-malware-sheet
http://tinyurl.com/reverse-malware-sheet
http://tinyurl.com/reverse-malware-sheet
http://tinyurl.com/reverse-malware-sheet
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/cheat-sheets
http://zeltser.com/cheat-sheets
http://zeltser.com/cheat-sheets

The full REM course to teaches how to
turn malware inside-out.

* At SANS conferences and on-line
* The latest details at LearnREM.com
* 10% discount code: COINS-LZ

“Directly applicable to day-to-day activities at work.

Hands on learning reinforced with applicable, up to
date, informative slides.”

Copyright 2009-2010 Lenny Zeltser

My hope is that you’ll find this topic as fascinating
as | do. If you'd like to learn more about how to
reverse-engineer malware, consider taking the
course, which | teach at SANS Institute. It’s called
Reverse-Engineering Malware: Malware Analysis
Tools and Techniques, and you can read all about it
at: http://LearnREM.com.

The REM course teaches how to understand key
characteristics of malware that runs on or targets
Microsoft Windows systems. This includes both
executable files compiled to run natively on
Windows, as well as browser-based malware, such
as malicious JavaScript or Flash files.

If you decide to sign up, you’re welcome to use my
10% discount code: COINS-LZ.

34

http://learnrem.com/

Lenny Zeltser

LEARN

H F M www.zeltser.com
fLIVE twitter.com/lennyzeltser

lenny@zeltser.com

Copyright 2009-2010 Lenny Zeltser

If you have any questions about malware analysis,
please get in touch with me—/I’ll be glad to hear
from you! If you're interested in malware, you
might like the updates | post on Twitter--you can
find me there at http://twitter.com/lennyzeltser.

35

http://twitter.com/lennyzeltser

About The Author:

Lenny Zeltser leads the security consulting practice at Savvis. He is
also a board of directors member at SANS Technology Institute, a
SANS faculty member, and an incident handler at the Internet Storm
Center. Lenny frequently speaks on information security and related
business topics at conferences and private events, writes articles, and
has co-authored several books.

Lenny is one of the few individuals in the world who have earned the
highly-regarded GIAC Security Expert (GSE) designation. He also holds
the CISSP certification. Lenny has an MBA degree from MIT Sloan and
a computer science degree from the University of Pennsylvania. For
more information about his projects, see www.zeltser.com.

Copyright 2009-2010 Lenny Zeltser

36

http://www.zeltser.com/

