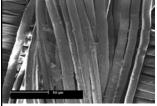
Chapter Outline: Polymer Structures

- > Hydrocarbon and Polymer Molecules
- ➤ Chemistry of Polymer Molecules
- ➤ Molecular Weight and Shape
- ➤ Molecular Structure and Configurations
- ➤ Copolymers
- ➤ Polymer Crystals

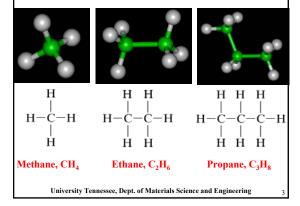

Optional reading: none

University Tennessee, Dept. of Materials Science and Engineering

Introduction to Materials Science, Chapter 15, Polymer Structures

Polymers: Introduction

- Polymer a large molecule consisting of (at least five) repeated chemical units ('mers') joined together, like beads on a string. Polymers usually contain many more than five monomers, and some may contain hundreds or thousands of monomers in each chain.
- Polymers may be natural, such as cellulose or DNA, or synthetic, such as nylon or polyethylene.


Silk fiber is produced by silk worms in a cocoon, to protect the silkworm while it metamorphoses in a moth.

Many of the most important current research problems involve polymers. Living organisms are mainly composed of polymerized amino acids (proteins) nucleic acids (RNA and DNA), and other *biopolymers*. The most powerful computers our brains - are mostly just a complex polymer material soaking in salty water! We are just making first small steps towards understanding of biological systems.

Hydrocarbon molecules (I)

- > Most polymers are organic, and formed from hydrocarbon molecules
- ➤ Each C atom has four e that participate in bonds, each H atom has one bonding e

Examples of **saturated** (all bonds are single ones) hydrocarbon molecules:

Introduction to Materials Science, Chapter 15, Polymer Structures

Hydrocarbon molecules (II)

Double and triple bonds can exist between C atoms (sharing of two or three electron pairs). These bonds are called **unsaturated bonds**. Unsaturated molecules are more reactive

 $Ethylene, C_2H_4 \qquad Acetylene, C_2H_2$

Isomers are molecules that contain the same atoms but in a different arrangement. An example is butane and isobutane:

Hydrocarbon molecules (III)

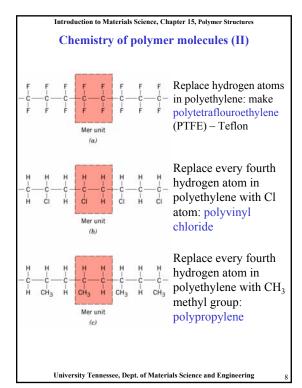
Family	Characteristic Unit R—OH	Representative Compound	
Alcohols		Н Н—С—ОН Н	Methyl alcohol
Ethers	R-O-R'	$\begin{array}{ccc} H & H \\ H-C-O-C-H \\ \downarrow & \downarrow \\ H & H \end{array}$	Dimethyl ether
Acids	R-COH	H—C—C—OH	Acetic acid
Aldehydes	R C=O	Hc=o	Formaldehyde
Aromatic hydrocarbons	R	OH	Phenol

Many other organic groups can be involved in polymer molecules. In table above, R represents a radical, an organic group of atoms that remain as a unit and maintain their identity during chemical reactions (e.g. CH_3 , C_2H_5 , C_6H_5)

Introduction to Materials Science, Chapter 15, Polymer Structures

Polymer molecules

- ➤ Polymer molecules are very large: macromolecules
- > Most polymers consist of long and flexible chains with a string of C atoms as a backbone.
- ➤ Side-bonding of C atoms to H atoms or radicals
- > Double bonds are possible in both chain and side bonds
- A repeat unit in a polymer chain ("unit cell") is a mer
- ➤ A single mer is called a monomer


Chemistry of polymer molecules (I)

- \triangleright Ethylene (C₂H₄) is a gas at room temp and pressure
- > Ethylene transforms to polyethylene (solid) by forming active mers through reactions with an initiator or catalytic radical (R·)
- ➤ (·) denotes unpaired electron (active site)

Polymerization:

- 1. Initiation reaction: $R \cdot + C = C \longrightarrow R C C$
- 2. Rapid propagation ~1000 mer units in 1-10 ms:

Termination: When two active chain ends meet each other or active chain ends meet with initiator or other species with single active bond:

Chemistry of polymer molecules (III)

- > When all the mers are the same, the molecule is called a homopolymer
- When there is more than one type of mer present, the molecule is a copolymer
- Mer units that have 2 active bonds to connect with other mers are called bifunctional
- Mer units that have 3 active bonds to connect with other mers are called trifunctional. They form threedimensional molecular network structures.

Polyethylene (bifunctional)

Phenol-formaldehyde (trifunctional)

University Tennessee, Dept. of Materials Science and Engineering

Introduction to Materials Science, Chapter 15, Polymer Structures

Molecular weight (I)

- > Final molecular weight (chain length) is controlled by relative rates of initiation, propagation, termination steps of polymerization
- > Formation of macromolecules during polymerization results in distribution of chain lengths and molecular weights
- > The average molecular weight can be obtained by averaging the masses with the fraction of times they appear (number-average molecular weight) or with the mass fraction of the molecules (weight-average molecular weight).

number-average:

$$\overline{\mathbf{M}}_{\mathrm{n}} = \sum \mathbf{x}_{\mathrm{i}} \mathbf{M}_{\mathrm{i}}$$

weight-average:

$$\overline{\mathbf{M}}_{\mathrm{w}} = \sum \mathbf{w}_{\mathrm{i}} \mathbf{M}_{\mathrm{i}}$$

Number-average, \overline{M}_n

M_i is the mean molecular weight of range i w, is weight fraction of chains of length i x_i is number fraction of chains of length i University Tennessee, Dept. of Materials Science and Engineering

Molecular weight (II)

Alternative way to express average polymer chain size is degree of polymerization - the average number of mer units in a chain:

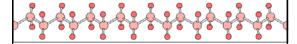
number-average:

weight-average:

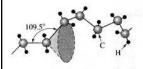
$$n_{n} = \frac{\overline{M}_{n}}{\overline{m}}$$

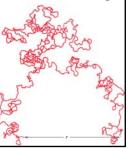
$$n_{\rm w} = \frac{M_{\rm w}}{\overline{m}}$$

 $\overline{\mathbf{m}}$ is the mer molecular weight

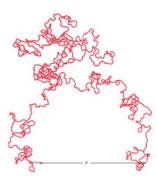

- Melting / softening temperatures increase with molecular weight (up to ~ 100,000 g/mol)
- At room temperature, short chain polymers (molar weight ~ 100 g/mol) are liquids or gases, intermediate length polymers (~ 1000 g/mol) are waxy solids, solid polymers have molecular weights of 10⁴ - 10⁷ g/mol

University Tennessee, Dept. of Materials Science and Engineering


11


Introduction to Materials Science, Chapter 15, Polymer Structures

Molecular shape


- ➤ The angle between the singly bonded carbon atoms is ~109° - carbon atoms form a zigzag pattern in a polymer molecule.
- ➤ Moreover, while maintaining the 109° angle between bonds polymer chains can rotate around single C-C bonds (double and triple bonds are very rigid).
- ➤ Random kinks and coils lead to entanglement, like in the spaghetti structure:

Molecular shape

- ➤ Molecular chains may thus bend, coil and kink
- ➤ Neighboring chains may intertwine and entangle
- > Large elastic extensions of rubbers correspond to unraveling of these coiled chains
- ➤ Mechanical / thermal characteristics depend on the ability of chain segments to rotate

University Tennessee, Dept. of Materials Science and Engineering

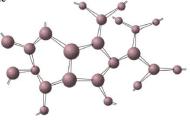
Introduction to Materials Science, Chapter 15, Polymer Structures

Molecular structure

The physical characteristics of polymer material depend not only on molecular weight and shape, but also on molecular structure:

1 Linear polymers: Van der Waals bonding between chains. Examples: polyethylene, nylon.

2 Branched polymers: Chain packing efficiency is reduced compared to linear polymers - lower density



Molecular structure

3 Cross-linked polymers: Chains are connected by covalent bonds. Often achieved by adding atoms or molecules that form covalent links between chains. Many rubbers have this structure.

4 Network polymers: 3D networks made from trifunctional mers. Examples: epoxies, phenol-formaldehyde

University Tennessee, Dept. of Materials Science and Engineering

Introduction to Materials Science, Chapter 15, Polymer Structures

Isomerism

Isomerism: Hydrocarbon compounds with same composition may have different atomic compositions. Physical properties may depend on **isomeric state** (e.g. boiling temperature of normal butane is -0.5 °C, of isobutane - 12.3 °C)

Butane $\rightarrow C_4H_{10} \leftarrow Isobutane$

Two types of isomerism are possible: stereoisomerism and geometrical isomerism

University Tennessee, Dept. of Materials Science and Engineering

16

Stereoisomerism

Stereoisomerism: atoms are linked together in the same order, but can have different spatial arrangement

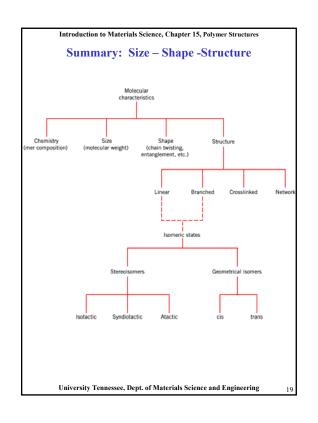
1 Isotactic configuration: all side groups R are on the same side of the chain.

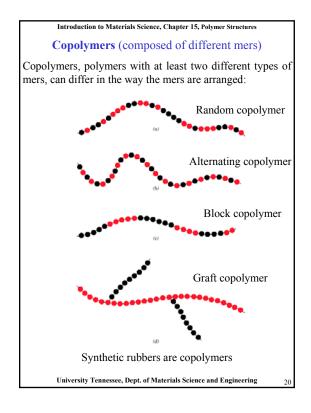
2 Syndiotactic configuration: side groups R alternate sides of the chain.

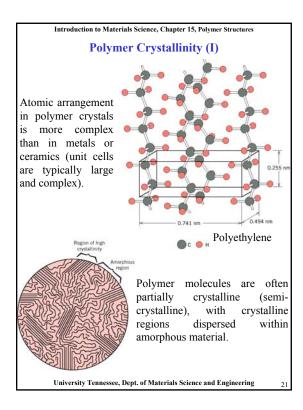
3 Atactic configuration: random orientations of groups R along the chain.

University Tennessee, Dept. of Materials Science and Engineering

17


Introduction to Materials Science, Chapter 15, Polymer Structures


Geometrical isomerism


Geometrical isomerism: consider two carbon atoms bonded by a double bond in a chain. H atom or radical R bonded to these two atoms can be on the same side of the chain (cis structure) or on opposite sides of the chain (trans structure).

Cis-polyisoprene

Trans-polyisoprene

Polymer Crystallinity (II)

Degree of crystallinity is determined by:

- Rate of cooling during solidification: time is necessary for chains to move and align into a crystal structure
- Mer complexity: crystallization less likely in complex structures, simple polymers, such as polyethylene, crystallize relatively easily
- Chain configuration: linear polymers crystallize relatively easily, branches inhibit crystallization, network polymers almost completely amorphous, crosslinked polymers can be both crystalline and amorphous
- Isomerism: isotactic, syndiotactic polymers crystallize relatively easily - geometrical regularity allows chains to fit together, atactic difficult to crystallize
- Copolymerism: easier to crystallize if mer arrangements are more regular - alternating, block can crystallize more easily as compared to random and graft

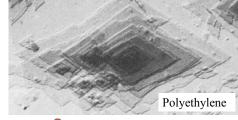
More crystallinity: higher density, more strength, higher resistance to dissolution and softening by heating

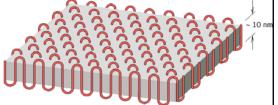
Polymer Crystallinity (III)

Crystalline polymers are denser than amorphous polymers, so the degree of crystallinity can be obtained from the measurement of density:

% crystallin ity =
$$\frac{\rho_c(\rho_s - \rho_a)}{\rho_s(\rho_c - \rho_a)} \times 100$$

- $\rho_c\text{:}$ Density of perfect crystalline polymer
- $\rho_{\text{a}}\text{:}$ Density of completely amorphous polymer
- $\rho_s \!\!:\! Density of partially crystalline polymer that we are analyzing$

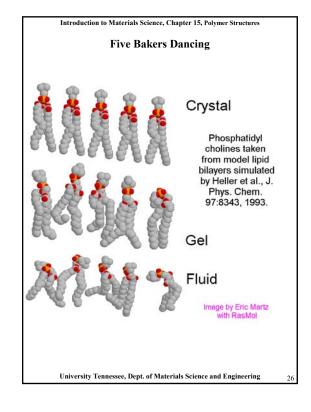

University Tennessee, Dept. of Materials Science and Engineering

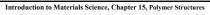

23

Introduction to Materials Science, Chapter 15, Polymer Structures

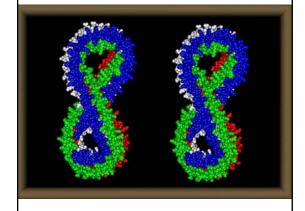
Polymer Crystals

Thin crystalline platelets grown from solution - chains fold back and forth: chain-folded model


The average chain length is much greater than the thickness of the crystallite


University Tennessee, Dept. of Materials Science and Engineering

24


Introduction to Materials Science, Chapter 15, Polymer Structures Polymer Crystals Spherulites: Aggregates of lamellar crystallites ~ 10 nm thick, separated by amorphous material. Aggregates approximately spherical in shape. Lamellar chain-folded crystallite The molecule The molecule The molecule

spherulite structure of polyethylene

Number Eighty Eight

HUMAN APOLIPOPROTEIN A-I.

Biopolymers can be complex... and nice

University Tennessee, Dept. of Materials Science and Engineering

27

Introduction to Materials Science, Chapter 15, Polymer Structures

His bark is worse than his bite

CHAPERONE/STRUCTURAL PROTEIN

Authors: D. Choudhury, A. Thompson, A. Thompson, V. Stojanoff, S. Langerman, J. Pinkner, S. J. Hultgren, S. Knight

University Tennessee, Dept. of Materials Science and Engineering

28

Summary

Make sure you understand language and concepts:

- ➤ Alternating copolymer ➤ Mer
- ➤ Atactic configuration ➤ Molecular chemistry
- ➤ Bifunctional mer ➤ Molecular structure
- ➤ Block copolymer ➤ Molecular weight
- ➤ Branched polymer ➤ Monomer
- ➤ Chain-folded model ➤ Network polymer
- ➤ Cis (structure) ➤ Polymer
- ➤ Copolymer
 ➤ Polymer crystallinity
- ➤ Crosslinked polymer ➤ Random copolymer
- ➤ Crystallite ➤ Saturated
- ➤ Degree of polymerization ➤ Spherulite
- ➤ Graft copolymer ➤ Stereoisomerism
- ➤ Homopolymer ➤ Syndiotactic configuration
- ➤ Isomerism ➤ Trans (structure)
- ➤ Isotactic configuration ➤ Trifunctional mer
- ➤ Linear polymer ➤ Unsaturated
- ➤ Macromolecule

University Tennessee, Dept. of Materials Science and Engineering

29

Introduction to Materials Science, Chapter 15, Polymer Structures

Reading for next class:

Chapter 16: Characteristics, Applications, and Processing of Polymers

- ➤ Mechanical properties
 - Stress-Strain Behavior
 - Deformation of Semicrystalline Polymers
- ➤ Crystallization, Melting, Glass Transition
- > Thermoplastic and Thermosetting Polymers
- ➤ Viscoelasticity
- ➤ Deformation and Elastomers
- ➤ Fracture of Polymers
- ➤ Polymerization
- ➤ Elastomers

Optional reading: 16.10, 16.12-16.14, 16.16-16.18