Introduction to Mathematical Modeling
Difference Equations, Differential Equations, & Linear Algebra

(The First Course of a Two-Semester Sequence)

Dr. Eric R. Sullivan
esullivan@carroll.edu

Department of Mathematics
Carroll College, Helena, MT

©050]

Content Last Updated: January 8, 2018



©OEric Sullivan. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. You may copy, distribute, display, remix, rework, and per-
form this copyrighted work, but only if you give credit to Eric Sullivan, and all deriva-
tive works based upon it must be published under the Creative Commons Attribution-
NonCommercial-Share Alike 4.0 United States License. Please attribute this work to Eric
Sullivan, Mathematics Faculty at Carroll College, esullivan@carroll.edu. To view a copy
of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, Cali-
fornia, 94105, USA.



https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

0 To the Student and the Instructor

2

3

0.1
0.2
0.3

An Inquiry Based Approach . . . ... ... ... oo oo
Online Texts and Other Resources . . . . . . . . . . . . . .. . ...
To the Instructor . . . . . . . . . . .

Fundamental Notions from Calculus

1.1
1.2

Sections from Active Calculus . . . . . . . . . . . ...
Modeling Explorations with Calculus . . . . . ... ... ... .. ... ...

An Introduction to Linear Algebra

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9
2.10
2.11
2.12

Why Linear Algebra? . . . ... .. ... ... . . . . . . . . .
Matrix Operations and Gaussian Elimination . . ... ... ... ... ...
Gaussian Elimination: A First Look At Solving Systems . . . .. ... ...
Systems of Linear Equations . . . . . ... ... ... ... ..........
Linear Combinations . . . . . .. ... ... ... ...
Inverses and Determinants . . . . . .. ... ... ... ... ..
261 Inverses. . . . . . . .. . ... e
2.6.2 Determinants . .. .. ... ... ... oo
Technology For Linear Algebra. . . . . . ... .................
The Magic CarpetRide . . . . . ... ... ... ... . ... ... ...
Span . . . .
Linear Independence, Linear Dependence, and Basis . . . . . ... ... ..
The Column and Null Spacesof aMatrix . . . . . ... ............
Modeling Explorations with Linear Algebra . . . ... ... ... ......
2.12.1 Input-Output Economies . . . . . . .. ... ... .. ... ......
2.12.2 TrafficNetworks . . . . . ... ... ... ... o o oo L.
2.12.3 Balancing Chemical Equations . . . ... ... ... ... ......

First Order Models

3.1
3.2
3.3
3.4
3.5
3.6

Birth, Death, and Immigration Exploration. . . . . ... ... .. ... ...
Models for Birth, Death, and Immigration . . ... ... ... ........
Difference Equations and Differential Equations . . . . . .. ... ... ...
Stability and Equilibria . . . . . ... ... oo
Euler’s Method: Numerical Solutions for Differential Equations . . . . . . .
Classifying Difference and Differential Equations . . . . .. ... ... ...

NN 01 (g

O



CONTENTS 3
3.7 Technique: Solving 1° Order Linear Homogeneous Equations . . . . . . . . 88
3.8 Technique: Solving 1° Order Linear Nonhomogeneous Equations . . . . . 90

3.8.1 Solution Technique: Separation of Variables . . . . . ... ... ... 90
3.8.2 Solution Technique: Undetermined Coefficients . . . . . .. ... .. 95
3.9 Modeling Explorations with Difference and Differential Equations . . . . . 102

4 Second Order Models 113
4.1 Modeling Oscillations . . . . . . ... ... ... ... . ... . ... 113
4.2 Homogeneous Linear 2"¥ Order Differential Equations . . . . ... ... .. 116
4.3 Forced Oscillations . . . . ... ... ... 123
4.4 Energy in Mass Spring Systems — A Lab Exploration . . ... ... ... .. 125
4.5 Modeling Explorations with 2" Order Differential Equations . . . . . . . . 129

5 Systems of Difference and Differential Equations 133
5.1 SpreadofDisease . .. ... ... ... . ... .. 133
5.2 SpreadingaJuicy Rumor . . . ... ... ... ... . oo 135
53 TheHINI Virus . . . . . . . . .ttt 138
5.4 Writing Systems of Difference Equations . . . . .. ... ... ... ..... 139
5.5 LinearSystems . . . . . . . ... ... e 144
5.6 The Eigenvalue / Eigenvector Problem . . ... .. ... ... ........ 146

5.6.1 Geometry of Eigenvectors and Eigenvalues . . . ... ... ... .. 147
5.6.2 The Eigenvalue Eigenvector Problem . . . . ... ... ... ... .. 150
5.6.3 Technology for the Eigenvalue Eigenvector Problem . ... ... .. 155
57 MarkovChains. . . . ... ... ... 157
5.8 Analysis of Linear Systems . . . . .. ... ... ... ... . . .00, 162
5.8.1 Homogeneous Systems of Linear Difference Equations . . . . . . .. 162
5.8.2 Analysis of Equilibrium Behavior . . . . . .. ... ... 0oL, 164
5.8.3 Non Homogeneous Systems of Linear Difference Equations . . . . . 166
5.9 Modeling Explorations with Systems . . . ... ... ... .......... 169

6 Infinite Series 174
6.1 Sections from Active Calculus . . . ... ... ... ... . . ... 174

Appendices 175

A MATLAB Basics 176
A.1 Vectorsand Matrices . . .. ... ... ... ... ... 176
A2 Looping . . . . . . . e 178

A21 ForLoops . .. ... . . . e 178
A.2.2 TheWhileLoop . . . ... ... ... . . ... . ... .. 179
A.3 Conditional Statements . . . . . . ... ... L 180
A3.1 IfStatements. . . . ... .. ... ... ... 180
A.3.2 Case-Switch Statements . . . . ... ... .. ... L. 181
A4 Functions . . . .. . ... L e 181
A5 Plotting . . . . . ... 182




CONTENTS

A.6 Animations




Chapter 0

To the Student and the Instructor

This document contains lecture notes, classroom activities, examples, and challenge prob-
lems specifically designed for a first semester of differential equations and linear algebra
taught with a focus on mathematical modeling. The content herein is written and main-
tained by Dr. Eric Sullivan of Carroll College. Problems were either created by Dr. Sul-
livan, the Carroll Mathematics Department faculty, part of NSF Project Mathquest, part
of the Active Calculus text, or come from other sources and are either cited directly or
cited in the IXTEX source code for the document (and are hence purposefully invisible to
the student).

0.1 An Inquiry Based Approach

Problem 0.1 (Setting The Stage). * Get in groups of size 3-4.
* Group members should introduce themselves.
* For each of the questions that follow I will ask you to:

1. Think about a possible answer on your own
2. Discuss your answers with the rest of the group
3. Share a summary of each group’s discussion

Questions:

Question #1: What are the goals of a university education?

Question #2: How does a person learn something new?

Question #3: What do you reasonably expect to remember from your courses in 20 years?
Question #4: What is the value of making mistakes in the learning process?

Question #5: How do we create a safe environment where risk taking is encouraged and
productive failure is valued?
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(The previous problem is inspired by Dana Ernst’s first day activity in IBL activity
titled: Setting the Stage.)

“Any creative endeavor is built in the ash heap of failure.”
—Michael Starbird

This material is written with an Inquiry-Based Learning (IBL) flavor. In that sense, this
document could be used as a stand-alone set of materials for the course but these notes
are not a traditional textbook containing all of the expected theorems, proofs, examples,
and exposition. The students are encouraged to work through problems and homework,
present their findings, and work together when appropriate. You will find that this doc-
ument contains collections of problems with only minimal interweaving exposition. It is
expected that you do every one of the problems and then use other more traditional texts
as a backup when you are stuck. Let me say that again: this is not the only set of material
for the course. Your brain, your peers, and the books linked in the next section are your
best resources when you are stuck.

To learn more about IBL go to http://www.inquirybasedlearning.org/about/. The
long and short of it is that the students in the class are the ones that are doing the work;
building models, proving theorems, writing code, working problems, leading discus-
sions, and pushing the pace. The instructor acts as a guide who only steps in to redirect
conversations or to provide necessary insight. If you are a student using this material you
have the following jobs:

1. Fight! You will have to fight hard to work through this material. The fight is exactly
what we’re after since it is ultimately what leads to innovative thinking.

2. Screw Up! More accurately, don’t be afraid to screw up. You should write code,
work problems, and prove theorems then be completely unafraid to scrap what
you’ve done and redo it from scratch. Learning this material is most definitely a
non-linear path.” Embrace this!

3. Collaborate! You should collaborate with your peers with the following caveats: (a)
When you are done collaborating you should go your separate ways. When you
write your solution you should have no written (or digital) record of your collabo-
ration. (b) The internet is not a collaborator. Use of the internet to help solve these
problems robs you of the most important part of this class; the chance for original
thought.

4. Enjoy! Part of the fun of IBL is that you get to experience what it is like to think like
a true mathematician / scientist. It takes hard work but ultimately this should be
fun!

*Pun intended: our goal, after all, is really to understand that linear algebra is the glue that holds mathe-
matics together.



http://danaernst.com/setting-the-stage/
http://www.inquirybasedlearning.org/about/
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0.2 Online Texts and Other Resources

If you are looking for online textbooks for linear algebra and differential equations I can
point you to a few. Some of the following online resources may be a good place to help you
when you’re stuck but they will definitely say things a bit differently. Use these resources
wisely.

* The book Differential Equations with Linear Algebra, An inquiry based approach to
learning is a nice collection of notes covering much of the material that we cover in
our class. The order is a bit different but the notes are well done.
content.byui.edu/file/664390b8-e9cc-43a4-9f3¢c-70362f8b9735/1/316-IBL%20(2013Spring).pdf

* The ODE Project by Thomas Juson is a nice online text that covers many (but not
all) of the topics that we cover in differential equations.
faculty.sfasu.edu/judsontw/ode/html/odeproject.html

* Elementary Differential Equations by William Trench. This book contains every-
thing(!) you would ever want to look up for ordinary differential equations. It is a
great resource to look up ODE techniques.
ramanujan.math.trinity.edu/wtrench/texts/TRENCH_DIFF_EQNS_I.PDF

* A First Course in Linear Algebra by Robert Beezer. This book is very thorough and
covers everything that we do in linear algebra and much more.
linear.ups.edu/fcla/index.html

* Linear Algebra Workbook by T] Hitchman. This is a workbook for Dr. Hitchman’s
class at U. Northern Iowa. Even though it is only a “workbook” it contains some
nice explanations and it has embedded executable code for some problems.
theronhitchman.github.io/linear-algebra/course-materials/workbook/LinAlgWorkbook.html

0.3 To the Instructor

If you are an instructor wishing to use these materials then I only ask that you adhere
to the Creative Commons license. You are welcome to use, distribute, and remix these
materials for your own purposes. Thanks for considering my materials for your course!

My typical use of these materials are to let the students tackle problems in small
groups during class time and to intervene when more explanation appears to be necessary
or if the students appear to be missing the deeper connections behind problems. The
course that [ have in mind for these materials is a first semester of differential equations
and linear algebra taught from the standpoint of mathematical modeling. As such, this is
not a complete collection of materials for either differential equations or linear algebra in
isolation. We discuss matrix operations, Gaussian elimination, the eigenvalue problem,
first order linear homogeneous and non-homogeneous differential equations, and second
order homogeneous differential equations. In the second course we will expand upon
these ideas and include more advanced topics.



https://content.byui.edu/file/664390b8-e9cc-43a4-9f3c-70362f8b9735/1/316-IBL%20(2013Spring).pdf
http://faculty.sfasu.edu/judsontw/ode/html/odeproject.html
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_DIFF_EQNS_I.PDF
http://linear.ups.edu/fcla/index.html
http://theronhitchman.github.io/linear-algebra/course-materials/workbook/LinAlgWorkbook.html
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Many of the theorems in the text come without a proof. If the theorem is followed by
the statement “prove the previous theorem” then I expect the students to have the skill to
prove that theorem and to do so with the help of their small group. However, this course
is not intended to be a proof-based mathematics course so several theorems are stated
without rigorous proof. If you are looking for a proof-based linear algebra or differential
equations course then I believe that these notes will not suffice. I have, however, tried
to give thought provoking problems throughout so that the students can engage with
the material at a level higher than just the mechanics of differential equations and linear
algebra. There are also several routine exercises throughout the notes that will allow
students to practice mechanical skills.

There is a toggle switch in the IXIEX code that allows you to turn on and off the solu-
tions to problems. The line of code
\def\ShowSoln{0}
is a switch that, when set to 0, turns the solutions off and when set to 1 turns the solutions
on. Just re-compile (pdflatex) the document to display the solutions. I typically do not
show the solutions to the students while they’re learning the material.




Chapter 1

Fundamental Notions from Calculus

Welcome to the mathematical modeling class. We’ll start the class with a brief review of
the most basic ideas and notions from calculus. If you have never taken a Calculus course
before then you should consider first taking a formal Calculus course before tackling this
class. We only need a few of the main ideas for this class so what you’ll find in this chapter

is necessarily brief.

1.1 Sections from Active Calculus

The Active Calculus Textbook is a wonderful online resource that stands in place of this
chapter. We will only discuss a few select sections and you can find the relevant links
below. If you need further reading to brush up on Calculus you should use the Active

Calculus text.

1.

2.

Active Calculus Section 1.1: How do we measure velocity?

Active Calculus Section 1.2: The notion of a limit

. Active Calculus Section 1.4 The Derivative Function

. Active Calculus Section 2.1: Elementary derivative rules

. Active Calculus Section 2.2: The sine and cosine functions

. Active Calculus Section 2.3: The product and quotient rules
. Active Calculus Section 2.4: The chain rule

. Active Calculus Section 4.3: The definite integral

Active Calculus Section 4.4: The Fundamental Theorem of Calculus


http://faculty.gvsu.edu/boelkinm/Home/AC/index.html
https://activecalculus.org/single/sec-1-1-vel.html
https://activecalculus.org/single/sec-1-2-lim.html
https://activecalculus.org/single/sec-1-4-derivative-fxn.html
https://activecalculus.org/single/sec-2-1-elem-rules.html
https://activecalculus.org/single/sec-2-2-sin-cos.html
https://activecalculus.org/single/sec-2-3-prod-quot.html
https://activecalculus.org/single/sec-2-5-chain.html
https://activecalculus.org/single/sec-4-3-definite-integral.html
https://activecalculus.org/single/sec-4-4-FTC.html
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1.2 Modeling Explorations with Calculus

What remains in this chapter of these notes are several laboratory exercises meant to sup-
port your review of Calculus and to introduce you to the basic notions of mathematical
modeling.

Problem 1.1. Water is being drained from a hole near the bottom of a cylindrical tank.
According to Torrecelli’s Law it can be shown that the rate at which the height / of the
water changes is proportional to the square root of the height. This can be written with
average rates of change as:

Ah
average rate of change of the height = s K-Vh (1.1)

where K is a constant that depends on gravity as well as the size of the hole and the shape
of the tank.

> Qutflow

(a) Using the video demonstration of Torrecelli’s Law found here:
https://www.youtube.com/watch?v=gsNdsuQ1ZCo&app=desktop
and, using the pause button to your advantage, create a table of time vs. the height
of the water in the container. Use as many data points as you feel necessary.

’ Time (sec) \ Height (cm) ‘

(b) Use your data to estimate the value of K in the experiment shown in the video. Be
sure to include a discussion of units of K and discuss which parts of this experiment
are being described by K?
(Hint: Given equation (1.1), what should a plot of V (on the x axis) vs ﬁ—}; (on the y
axis) look like? How would you find K from this plot?)

(c) Two more experiments were performed with different cylinders and different sized
drain holes. Find the values of K for each of these experiments, and from the data
make comparisons between the sizes of the cylinders and the sizes of the holes for
the three experiments.



https://www.youtube.com/watch?v=gsNdsuQ1ZCo&app=desktop
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Experiment #1 Experiment #2
Time (sec) | Height (cm) Time (sec) | Height (cm)

0 35 0 13
8 30 0.58 12
16 25 1.35 11
25 20 1.95 10
35.5 15 2.85 9
48.7 10 3.65 8
66.8 5 4.55 7
5.55 6

6.55 5

7.55 4

8.55 3

10.45 2

13.45 1

(d) Discussion: What would happen if this experiment were run on a different, non-
cylindrical, tank? Provide a detailed explanation.

A

Problem 1.2. A farmer with large land holdings has historically grown a wide variety of
crops. With the price of ethanol fuel rising, he decides that it would be prudent to devote
more and more of his acreage to producing corn. As he grows more and more corn, he
learns efficiencies that increase his yield per acre. In the present year, he used 7000 acres
of his land to grow corn, and that land had an average yield of 170 bushels per acre. At the
current time, he plans to increase his number of acres devoted to growing corn at a rate
of 600 acres/year, and he expects that right now his average yield is increasing at a rate
of 8 bushels per acre per year. Use this information to answer the following questions.

(a) Say that the present year is t = 0, that A(t) denotes the number of acres the farmer
devotes to growing corn in year ¢, Y(t) represents the average yield in year t (mea-
sured in bushels per acre), and C(t) is the total number of bushels of corn the farmer
produces. What is the formula for C(t) in terms of A(¢) and Y(¢)? Why?

(a) What is the value of C(0)? What does it measure?

(a) Write an expression for C’(t) in terms of A(t), A’(t), Y(t), and Y’(¢). Explain your
thinking.

(a) What is the value of C’(0)? What does it measure?
(a) Based on the given information and your work above, estimate the value of C(1).

(a) Assume that the annual yield decreases every year by 8 bushels per acre. Write
expressions for C(t) and C’(t), find the approximate time and number of bushels
when the total number of bushels is maximized, and discuss how the maximum
value would change if the farmer were able to control the rate at which the yield
decreased. Present your solution with thorough discussion and appropriate plots.
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A

Problem 1.3. Let f(v) be the gas consumption (in liters/km) of a car going at velocity v
(in km/hour). In other words, f(v) tells you how many liters of gas the car uses to go one
kilometer if it is traveling at v kilometers per hour. In addition, suppose that f(80) = 0.05
and £/(80) = 0.0004.

(a) Let g(v) be the distance the same car goes on one liter of gas at velocity v. What is
the relationship between f(v) and g(v)? Hence find ¢(80) and g’(80).

(b) Let h(v) be the gas consumption in liters per hour of a car going at velocity v. In
other words, h(v) tells you how many liters of gas the car uses in one hour if it is
going at velocity v. What is the algebraic relationship between h(v) and f(v)? Hence
find h(80) and h’(80).

(c) How would you explain the practical meaning of these function and derivative val-
ues to a driver who knows no calculus? Include units on each of the function and
derivative values you discuss in your response.

A

Problem 1.4. The velocity (m/s) of an object dropped from a helicopter 1000 meters high
is given in the table below. Use the velocity data to approximate the acceleration (m/s?)
and position (m) data for the object at each of the given times. Unfortunately the motion
sensor broke 3 seconds into the experiment. Extrapolate from the data to approximate
the velocity and acceleration when the object hit the ground. Obviously there is drag on
this object. Make an argument to estimate when an object with 10% more drag would hit
the ground.
In your writeup of this problem:

* Be sure to give enough detail about the decisions and assumptions that you made.
* Be sure to approximate the time that the object hit the ground in each instance.

* Be sure to thoroughly explain where calculus was (and wasn’t) used in your solution.
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| Time (sec) | Velocity (meters/sec) |

0.0 0

0.2 -1.96
0.4 -3.89
0.6 -5.70
0.8 -7.33
1.0 -8.76
1.2 -9.95
1.4 -10.92
1.6 -11.69
1.8 -12.29
2.0 -12.74
2.2 -13.08
2.4 -13.33
2.6 -13.52
2.8 —-13.65
3.0 -13.75

Problem 1.5. Consider the following letter:

11 Patinkin Way
First National Park of Drachma

Mathematics Students
Carroll College
Helena, MT, USA

Dear Calculus Students:

Things have finally quieted down around Drachma since the Prince was kicked out
of office. The good news is that I’ve managed to find a government job as the head of
the First National Park of Drachma. The bad news is that most of the Park consists of a
Fire Swamp (google fire swamp if you need to). When I went looking for help with our
long range planning, your enterprising and resourceful professor naturally referred me
to you.

We have two species that have me worried about the future of the Park: the indigenous
ROUS (rodents of unusual size) and the brown tree snake which entered the Park about
50 years ago as a stowaway on the Dread Pirate Roberts’ ship. Fortunately, ROUS’s eat
brown tree snakes. Unfortunately, brown tree snakes reproduce very rapidly.

My predecessor at the Park was a meticulous census taker, so I have records of ap-
proximate populations for each species for a 30 year period (see Table 1.1).

It looks like the populations are following some sort of pattern, but I'm not sure what
it is. My real problem is that when either population gets very large, I will need addi-
tional employees to make sure that both species stay within the park and don’t escape in
the neighboring farmland. This is where I need your expert help. Specifically, I need a
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| Year | Brown Tree Snakes | ROUS’s |

1982 15,300 415
1984 9,890 910
1986 2,860 950
1988 3,340 525
1990 9,340 250
1992 12,290 460
1994 9,050 830
1996 4,840 855
1998 5,130 545
2000 8,720 340
2002 10,490 500
2004 8,550 770
2006 6,030 790
2008 6,200 560
2010 8,350 410
2012 9,410 525

Table 1.1. Populations by year since 1982.

prediction for how large the populations will be in each of the next 20 years. I also need
an estimate of the rate at which each of the populations are changing with time*. When
the rates of change of the populations are largest the local witch doctors head into the
woods to raid the snake nests and ROUS borrows for potion ingredients.

I believe that the populations are fluctuating less and less, and may eventually stabi-
lize. I would like your expert opinion on whether or not the populations do stabilize, and
if they do, I need to know how long it will take and what the eventual populations will
be.

Once the populations stop fluctuating so drastically, we will be able to dramatically
improve access to the Park by offering summer camps, establishing permanent camp
grounds, and perhaps even adding a log ride. There are still some flame-retardant is-
sues to be worked out and the 6-fingered man is terribly afraid of the log ride idea. This
should all be possible when the ROUS population is fluctuating by less than 75 per year
and the brown tree snake population is fluctuating by less than 500 per year. I need your
expert recommendation on when this will occur.

[ have a meeting with the Budget Advisory Committee in 8 days to propose our budget
for the next two decades, so I would greatly appreciate your group’s report in 1 week.

Gratefully yours,
Amigo Flamboya

“I'm thinking that a plot with time on the x-axis and average rate of change on the y-axis might be very
informative
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Notes from your professor:
* Work in groups of 2 or 3, but don’t be afraid to bounce ideas off of other groups.

* To see the general trend of the populations, I would suggest plotting the points for
each population separately (maybe in Excel), with time on the horizontal axis and
population on the vertical axis. It may make things a bit easier if you let t = 0 be
1982.

* Hint: Once you plot the populations, what two major types of functions do you
see controlling the behavior? You can fit the function by estimating things like
the period (or frequency), the equilibrium value, and the function that controls the
amplitude.

* Be sure to respond to Amigo Flamboya with an appropriate technical report. He
understands mathematics quite well so don’t be afraid to include all necessary detail
(explanations, plots, functions, etc) in your report. Make sure that you answer every
question.




Chapter 2

An Introduction to Linear Algebra

2.1 Why Linear Algebra?

Of all the mathematical tools that an applied scientist has,
linear algebra is the most important.

When a student first encounters linear algebra it may seem like a stretch to call it
the most important mathematical tool. That is, until the student relizes that almost ev-
ery mathematical operator (such as differentiation, integration, reflection, rotation) and
mathematical process (such as finding a best fit line, solving a system of equations, or
even revealing the frequencies of a sound wave) are all based on the concepts from linear
algebra.

In this chapter we will take a brief tour of several of the large ideas from linear algebra
to give the reader a flavor of the richness and depth of the topic. In this section we
will present the three main problems from linear algebra to highlight the importance and
impact of the field. Before launching into these problems, the following problem will
give you an introduction to the organizational structure, called a matrix, as well as the
basic concept of matrix multiplication.

Problem 2.1. Advertisements tend to change people’s opinions about political issues.
Suppose that on a certain political issue there are 3 different popular opinions (A, B, and
C). A psychologist wants to study the shifts in people’s opinions after viewing advertise-
ments and hence gathers the data listed in the table below.

| Previous Opinion | New Opinion After Viewing Advertisement | Percent Making This Switch |

A A 50%
A B 20%
A C 30%
B A 10%
B B 70%
B C 20%
C A 5%

C B 5%

C C 90%

16
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(a) Create a visual representation of the psychologist’s data*.

(b) Create a tabular representation of the psychologist’s data.

‘ From A From B From C
To A
To B
To C

(c) If there are currently 1200 people in a population with opinion A, 500 people with
opinion B, and 800 with opinion C, then what would the psychologist’s data predict
about the numbers of people with each opinion after viewing the advertisements?

(d) The psychologist did the study twice, but in an unfortunate instance with a hot latte
she lost her record of the numbers of people in each category before watching the
advertisements. She knows that the end result was 1000 people with opinion A,
800 people with opinion B, and 700 people with opinion C. How many people were
originally in each category?

Systems of Linear Equations: Ax =b

Most people are familiar with systems of linear equations arising from problems in al-
gebra, business, calculus, and a plethora of other fields. What is often overlooked in
lower-level mathematics classes is that there is an immense amount of structure embed-
ded inside a system of equations just waiting to be exploited.

Problem 2.2. Consider a long metal rod that is being heated at one end and held at a con-
stant temperature at the other end. After some time the temperature profile throughout
the rod will reach a steady state (independent of time). One way to estimate the steady
state temperature of the rod is to partition the rod into several equally spaced points
(see Figure 2.1) and then to observe that the temperature at a point is the average of the
temperature of the point to the right and the point to the left.

(a) Write a system of equations associated with the steady state temperature profile
shown in Figure 2.1.

(b) Solve the system of equations from part (a) to find the steady state temperatures on
the rod. You should either use the substitution method or the elimination method
(which do you think will be more efficient? more organized?).

(c) Now let’s go back to the system of equations in part (a) and build a more organized
description of the problem. Rearrange the equations so that all of the variables are
on the left-hand side and all of the corresponding variables are aligned vertically.

“The type of visual representation that most people use here is called a graph in mathematics.
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This organization lends itself nicely to a matrix equation, where all of the coeffi-
cients are gathered into one matrix, the variables into a column vector, and the
right-hand sides of the equations in another column vector. Write the system of
equations from part (a) as a matrix equation. Explain how this structure lends
itself nicely to the elimination method.

matrix column right
of . of =|hand
coefficients) \variables side

T =100°CE [ ) [ ) [ ] [ ) T — 10°
OOCO 1 2 3 4 5 0°c

Figure 2.1. A metal rod partitioned into several discrete points.

Fundamental Matrix Behavior: Ax = \x

The second fundamental problem of linear algebra is to decompose a complicated system
of equations to a collection of elements that are easily visualized. This is known as the
eigenvector-eigenvalue problem. In the following activity we will set up a problem that,
without the tools of linear algebra, is very difficult to answer. We will return to this
example in future sections.

Problem 2.3. The female owls in a certain population can be classified as juvenile, subadult,
and adult. In a given year, the number of new juvenile females in year k + 1 is 0.33 times
the number of adult females in year k, 18% of last year’s juveniles become subadults, 71%
of last year’s subadults become adults, and only 94% of last year’s adults survive.

(a) Write a discrete dynamical system for the populations of juveniles ji, subadults s,
and adults a; where k is the year.

(b) Organize the discrete dyamical system into a matrix equation

column matrix column
of B of of
variables | coefficients variables

(time =k +1) (time = k) ) \(time = k)

(c) The owl population will change over time, but it is very important to determine
ahead of time if the owl popluation is in danger of going extinct. Use a spreadsheet
program to predict the future of the owl population. The initial populations are
not known.
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(d) What is the long term behavior of the female owl population? If you used your
spreadsheet model from part (c) to make this determination, then how do you
know that your answer doesn’t depend on your chosen intitial conditions?

Least Squares: ATAx = ATb

The final of the three big problems from linear algebra is that of least squares curve
fitting. Instead of least squares, often times this is referred to as the best fit line. Of course,
the word best is relative to how you measure the error. In the following activity you'll
set up a best fit line problem with linear algebra. The techniques to solve the problem
will not be covered in this text; this problem is presented here for completeness of the
introduction.

Problem 2.4. Research on study time vs. exam scores yields the following data points

| Time Studying | Exam Score (%) |

0 75
25 70
30 92
45 88
15 90
30 70

(a) We would like to find a linear equation of the form y = ax + b where x is the time
spent studying and p is the exam score. Write 6 equations where the two unknowns
are the parameters a and b.

(b) Organize your 6 equations into a matrix equation. The solution to this matrix
equation is beyond the scope of this chapter, but if we could solve® this problem
then we would know the slope and y-intercept that minimize the error between the
predictor line and the data. This is a wide reaching topic that will unfortunately
have to wait for a different course.

TEven the word solve here is arbitrary since there are more equations than there are unknowns!
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2.2 Matrix Operations and Gaussian Elimination

One of the first natural questions to ask when first encountering matrices is whether the
regular operations of addition, subtraction, multiplication, division, and exponentiation
make sense. In the cases of addition and subtraction the answer is simple: Yes! Addi-
tion and subtraction work in the simplest most natural way with matrices. The other
operations, on the other hand, need a bit more care but their definitions are robust and
immensely useful.

Problem 2.5. Consider the matrices

1 7 -3 3 -7 0
2 -3 5 B=|0 0 -2

2 0 1 2 4 5

A=

(a) Calculate A + B.
(b) Calculate A -B.
(c) Calculate 2A.

Matrix Arithmetic

In this subsection we’ll take a brief glimpse at each of the most fundamental matrix op-
erations as well as some of the foundational definitions for linear algebra.

Definition 2.6 (Matrix Arithmetic). Below are several definitions associated with ma-
trices.

Size of a Matrix: If A is a matrix with m rows and n columns then we say that A has
size (or dimensions) m x n.

Equality: Two matrices are equal if their corresponding entries are equal. Matrices
can only be equal if the sizes are equal.

Addition and Subtraction: Matrix addition and subtraction are done by regular ad-
dition and subtraction on the corresponding entries. Matrix addition and sub-
traction can only be performed on matrices of the same size.

Scalar Multiplication: If A is a matrix then cA is a scalar multiple of the matrix.
Multiplying a matrix by a scalar multiplies every entry by the scalar.

Transposition: If A is a matrix then AT is the transpose of the matrix found by in-
terchanging the rows and columns of A. If A is m x n then AT is nx m.
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The basic operations of addition, subtraction, scalar multiplication, and trasposition
all follow our natural intuition, and we’ll get a chance to play with them in the homework.
The operation of multiplication, on the other hand, takes a bit more care to define.

Before giving a full description of matrix multiplication let us define some very com-
mon notation for matrices. The size of the matrix is stated by the number of rows then
the number of columns. This lends itself to a system of double indices for keeping track
of the entries in a matrix. For the matrix A of size m x n we denote the individual entry in
row i and column j as ajj. In the entire matrix, this becomes

a1 412 413 0 Aqp

dzy 4dzp 4z - dpy
A= . . . ;

An1 Am2 Am3 - Amn

So, for example, as; is the entry in row 3 column 7. More concretely, in the matrix,

A= (?7) 411 _42), the size is 2 x 3 and the entry in row 2 column 1 is a,; = 3.

Definition 2.7. If A is an m x n matrix and B is an n x p matrix then the product of A
and Bis C = AB.

* The size of AB is m x p. The number of columns in A must be the same as the
number of rows of B.

* The entry in row i and column j of C = AB is
Cij = ailblj + ai2b2]' qFecoqr ai”bnj.

It is very important to note that in general AB = BA.

Example 2.8. Consider the matrices A and B defined as

5 -2
A:(; 3 _13) and B=|-1 0 |.
1 3

Find AB and BA if they exist.
Solution: First note that A is a 2 x 3 matrix and B is a 3 x 2 matrix. Hence, AB will be
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2x2 and BA will be 3x 3. ¢
5 -2
AB:; (2) _13) -1 0
1 3
1-5+2-(=1)+(=3)-1 1-(-2)+2-0+(-3)-3
2.540-(-1)+-1-1  2:(-2)+0-0+1-3
{0 -11
11 -1

To be very clear about the process, the —11 in row 1 column 2 of the answer came from
multiplying the corresponding entries of row 1 of matrix A by column 2 of matrix B
and finding the sum of the products.

13201

5:14(=2)-2 5-24(=2)-0 5-(=3)+(-2)-1
=[(-1)-1+0-2 (-1):2+0-0 (-1)-(-3)+0-1
1-1+3-2  1-2+43-0  1-(=3)+3-1

5 -2
BA=|-1 0](1 2 _3)

1 10 -17
=[-1 -2 3
7 2 0

If you read this example without picking up your pencil and trying the example then you may want
to pause and rethink your decisions. Mathematics is not a spectator’s sport!
1
31
-2

(a) Determine which products are possible: AB, AC, Ax, BA, CA, xA, BC, Bx, CB, Cx.
For each of the products that is possible, find the size of the result.

Problem 2.9. Consider the matrices

2 1 0 -1
A:(2 -1 4), B[O 3], c[3 2

, and x=
3 01 4 -1 -2 1

(b) Write the product AB and the product BA. Does AB = BA?
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2.3 Gaussian Elimination: A First Look At Solving Sys-
tems

A truly beautiful application of matrices, and the first real application of linear algebra,
is the technique of solving systems of linear equations. The technique that we’ll describe
in the next several activities and examples is used to solve systems of equations in a
very organized fashion. Most students are familiar with the elimination method from high
school algebra, and the technique of Gaussian Elimination described herein is simply a
more organized way to perform the exact same technique. You’ll find that systems of
linear equations arise naturally in all sorts of applications so we include this as one of the
essential tools for mathematical modeling.

Example 2.10. Consider the following system of equations.

—X1tXp—X3= 1
3x, + 2X3 =-8 (21)
X3:2

Solve the system algebraically and reorganize the system using the powerful and
beautiful structure of matrices *

Solution: Any technique for solving systems will suffice. This particular system is set
up to reveal a solution quickly. Indeed, it is obvious that x3 = 2. Using this fact, the
second equation can be rewritten and solved as

3X2 arF 2(2) =-8 - 3X2 =-12 - Xy = —4.
Now that we have both x, and x5 the first equation can be rewritten as solved as
—X1 + (—4:) = (2) =1 - —X1 = 7 - X1 = -7

Now we’ll leverage the organizational power of matrices:
The system of equations can be written in matrix form as

11 -1)\(x;) (1
[ 0 3 2 ][x2] = [8] (2.2)
0 0 1 X3 2

X1
Multiplying the 3 x 3 matrix on the left-hand side by the 3 x 1 vector [xz] reveals
2
that the matrix equation in (2.2) is indeed the same as the system of equations in
(2.1). This important observation illustrated that we can take any system of linear
equations and write it in such a way.
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The matrix equation can be further reorganized into an augmented system:

-1 1 -1|1
0 3 2 |-8
0 0 1] 2

This is simply an organizational technique and we use it because the names of the
variables are arbitrary and irrelevant to the solution. The first line of the augmented
system can be read as —x; + x, — x3 = 1 where the variables are inferred and only
inserted when necessary. The last line of the augmented system can be read as 0x; +
0x, + x5 = 2, so this clearly reveals that x5 = 2.

“If you haven’t notice, the author loves matrices!

Problem 2.11. In this activity we wish to solve the system of equations.

—-X1+Xp)—X3=-6
X1+X3:15
2X1-Xz+X3:9

We will do so in a very structured and organized fashion to illustrate the Gaussian Elimi-
nation technique for solving systems.

(a) First write the system as a matrix equation.

== e

(b) Now write the system as an augmented system

| |

* multiply one row by a scalar quantity

(c) Using the operations:

* add a multiple of one row to another row

* interchange two rows
we wish to transform the augmented system you wrote in part (b) to something of
the form
1 0 0~
[ 0 1 0]~ ]
0 0 1|~

Discuss with your partners why the above operations are mathematically valid.
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(d) Work with your partners to discuss the first and most logical operation to do that
will move you toward that direction.

(e) Use the operations outlined in part (c) to solve the system. Pay particular attention
to the order in which you perform the row reduction.

Definition 2.12. The Gaussian Elimination technique (also called row reduction) is
an algorithm used to perform the elimination method on a system of linear equations
of virtually any size.

1. Write the system of equations in augmented form.

2. Perform row operations to get to a triangular system of equations. The row
operations allowed are:
* Multiply a row by any nonzero number.
* Add a multiple of one row to another.
* Interchange two rows.

3. Once the system is written in triangular form, either back substitute to solve
the system or continue performing row operations to arrive at the form

10 0 - 0|x
01 0 - 0
00 . - 0|
00 0 - 1|

At which point, read the answer from the augmented form.

Next we will show a fully worked example of Gaussian Elimination in action to give
some hints to the thought process that goes on behind the scenes.

Example 2.13. Solve the system of equations

X1+ 0xp + 3x3+ 2x4 = -20

0x1 +xp —4x3—4x4 =32
2x1 —3xp+16x5+16x4 =—-120

0x; —xy +4x3+9x4 =27




CHAPTER 2. AN INTRODUCTION TO LINEAR ALGEBRA 26

Solution: If we first write this as an augmented matrix we get

0 3 2| -20
1 -4 -4 32
-3 16 16| -120
-1 4 9| =27

o N O =

Next we start performing row operations with the goal of creating a triangular sys-
tem. The observant reader will notice that, while this system of equations can be
solved with any (non-graphical) technique from high school algebra, the Gaussian
Elimination technique is far more organized.

Add (-2) times row 1 to row 3. Put the answer in row 3.

0 3 2 ]-20
1 -4 -4 32
-3 10 12 |-80
-1 4 9 |-27

—2R1 +R3
—>

S O O =

Add (3) times row 2 to row 3. Put the answer in row 3.

1 0 3 2 |-20
0 1 -4 -4 32
0 0 -2 0| 16
0 -1 4 9 |-27

3R2+R3
—>

Add (1) times row 2 to row 4. Put the answer in row 4.

10 3 2 |-20
(Uglh 01 -4 -4 32

0 0 -2 0] 16

00 0 5 5

Divide row 3 by (-2) and put the answer in row 3.

1 0 3 2/]-20
R3/_(—)2) 01 -4 4| 32

00 1 0| -8

00 0 5 5

Divide row 4 by 5 to arrive at a triangular form.

1 0 3 2 |-20
% 01 -4 -4 32

00 1 0| -8

00 0 1 1
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Now that this is in triangular form you can back substitute or simply continue per-
forming row operations. We will choose to perform the row operations to determine
the solution.

1 0 3 2]-20 1 00 0] 2
4R3+RL4)R4+R2 01 00| 4 (—3)R3+RL(;2)R4+R1 01 0O0]| 4

0 01 0| -8 0 01 0|-8

0 00 1] 1 0 00 1|1

After all of this simplification, the final solution is

X1=2,x=4,x3=-8,x4=1

The process of performing Gaussian Elimination may take a lot of paper, but once you
get the hang of the process it is far more organized than any other technique for solving
systems of linear equations.

Technique 2.14 (Practical Tips for Gaussian Elimination). You should use the follow-
ing tips for doing Gaussian Elimination.

* First try to get a 1 in the upper left-hand corner of the augmented matrix.

* Next, use the new first row to eliminate all of the non-zero entries in the first
column. By the time you’re done with this you should have a column with a 1
on top and zeros below.

* Next geta 1 in row 2 column 2.

* Use your new second row to eliminate all of the non-zero entries in the second
column.

* Proceed in a similar fashion until you have reached the final row.

Problem 2.15. Write the following system in augmented form and use Gaussian Elimi-
nation to solve for x;, x,, and x3.

X1 —2X2 + X3 = 0
2X2 —8X3 =8
—4X1 + 5X2 + 9X3 =-9
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2.4 Systems of Linear Equations

In this section we further explore the notion of solving a linear system of equations. To
begin our study consider the following Preview Activity.

Problem 2.16. Solve each of the three systems of two equations and two unknowns. One
of the systems has infinitely many solutions, one of the systems has exactly one solu-
tion, and one of the systems has no solutions. In each case, use augmented matrices and
Gaussian Elimination to solve the system.

(a) Solve the system

X1 — 2X2 =4
—2X1 +4X2 =5

(b) Solve the system

X1 — 2X2 =4
—2x1 +4x, = -8

(c) Solve the system

X1—2X2:4
2x1+4x2:5

Systems, Matrix Equations, and Vector Equations

A system of linear equations can always be written in several different ways. The most
familiar of which is the collection of equations themselves. The three other ways to write
a system of equations are the matrix form, the vector form, and the augmented matrix
form.

Consider the system of m linear equations with n unknowns

a1 Xy tapXx, +-t+aux, = bl
ar1X1 +dxpXy+ -+ aryX, = bz
az1X1 taszrXy + - +az,xX, = b3

A1 X1+ AyoXy + -+ AyypX, = by, (2.3)
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Definition 2.17. The matrix form of the system of equations (2.3) is

a1 412 - Adip (X1 b
dzy Apzp - Aoy || X2 b,
az; azp - az, ||x3|=|0b3
Anl Am2 " Aun)\Xn bm

In symbols, this is denoted Ax = b.

Definition 2.18. The vector form of the system of equations (2.3) is

ary ain a3 A1n by
as1 a2 az3 A2n b,
x| 431 |+ x| 432 |+ x3| 433 [+---x,| 43n | = b3
Al A2 A3 Ayan bm

In symbols, this is denoted x;a; + x,a; + xzaz +---+x,a, =b.

Definition 2.19. The augmented form of the system of equation (2.3) is

ayy ayp a3z - ay, | by
ay1 A3y Q33 -+ A3y | b3
az1 A4szy Az -+ Az, | bz
Anl Am2 Am3 " Gy bm

In symbols this is denoted (Alb).

Solution Sets to Systems of Equations

It is not guaranteed that a system of equations will have a solution. Moreover, if there

is

a solution it is not guaranteed that the solution will be unique. Theorem 2.20 gives the
conditions for which a system of linear equations will have no solutions, infinitely many

solutions, or exactly one solution.

Theorem 2.20. 1. A system of linear equations has no solutions if after it is row
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reduced it has a row of the form
(0 0 - 0 | #)

where the number * is nonzero. This row in the reduced matrix is equivalent to
saying that 0 = %; which is never true.

2. A system of linear equations has one unique solution if at the end of the row
reduction one can determine every variable.

3. A system of linear equations has infinitely many solutions if at the end of the
row reduction there are variables that you cannot determine uniquely.

Problem 2.21.  (a) Consider the following augmented matrices in reduced row eche-
lon form. Determine the number of solutions. If there is one unique solution then
find it.

(i)
1 0|3
1 0] 2
0 1|-5

(i)
1 0|3
1 0] 2
0 0 0|-5

(iii)

1 0 1|3
01 0|2
0 0 0(0

(b) Determine the value of / such that the matrix is the augmented matrix of a linear
system with infinitely many solutions

3 -4 4
9 h |12
A

In Activity 2.21, problem (a) part (iii) has infinitely many solutions. In order to find
a complete description of those solutions we can rewrite the problem in terms of the
variables to get

X1 +x3=3
X2:2.

It is obvious from this description that x; is fixed at 2, but the values of x; and x; depend
on each other. In cases like this we choose one variable to be a parameter and express the
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other variable in terms of that parameter. In this case, we let x3 = t and we can write the
first equation as
X1 = 3t

Since t can take on any real value we finally write the solution as
x1=3-t and x,=2 where x3=t and -oco0<f<c0.

Written as a vector, the solution is

G

In two and three dimensions there are nice geometric interpretations for these types
of solutions.

Example 2.22. Consider the following three systems of equations and their row re-
duced forms. Describe their solution sets geometrically.

1 -1|3 1 0|1

System #1: ) 1 O)—>---—>(0 1_2)
System #2: L _13)—>~--—>((1) _012)
3\ . (1 13

-3 0 0|0

Solution: Figure 2.2 shows the graphical interpretation for each system. Clearly if
there is a unique solution then there is one unique point where the lines cross. If
there are no solutions then the lines are parallel. In the case where there are infinitely

many solutions (system #3) we see that we can write x, = x; —3. Letting x; = t we have
x, =t — 3. This is clearly the line with y-intercept —3 and slope 1.

System #3:

Example 2.23. Solve the system of equations. If there are infinitely many solution,
express them as a parameterization.

—4X1 + Xy = 0
—12X1 ar 3X2 =0

Solution: First we write the system of equations as an augmented system. Then we
row reduce as much as possible.

~4 1[0 \3RirRe (—4 10
-12 3|0 0 00
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System #1: One Solution System #2: No Solution
x—Xl—X2:3 x—xl—x2:3
21 —2X1+X2:O 27 ——X1+X2:0

V

3 -2 1 1 2.3 -3

System #3: Infinitely Many Solutions

_— Xl—X2:3
2 -=- —X1+X2:—3

Figure 2.2. Three possible solution sets in two spatial dimensions

In this particularly simple example, this means that —4x; + 1x, = 0. Written another
way, X, = 4x.

If we write x; = t then the solution is x; = ¢, x, = 4f for — o0 <t < co. If, on the
other hand, we write x, = t then the solution is x, = t, x; = /4 for — oo < t < 0.

In vector form, this solution can be written as

)=
(o) (1):
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Example 2.24. Solve the system of equations Ax = b where

3 5 -4 7
-3 -2 4 and b=|-1]1.

6 1 -8 —4

A=

Solution: Writing the augmented matrix (Alb) and doing several steps of row reduc-
tion gives

3 5 —4|7 1 0 -%|-1
-3 -2 4 |-1|—>|01 0]2
6 1 -8|-4 00 00

This implies that x, =2 and x; = -1+ %t for some parameter t.
Written in vector form, the solution is

)2

Example 2.25. Solve the system of equations

— O Wi

4x1+xy +5x3+7x4=0
8X1 +X2—5X3+4X4:0

Solution: Written in augmented form and row reduced we see that
41 5 7|0 R 4 1 5 7 10 R 4 0 -10 -11 |0
8 1 -5 410 0 -1 -15 -1810 01 15 18 |0

In this case there are two variables that cannot be solve for: x3 and x4. These are now
both parameters. If x3 = s and x4 = ¢ then

_10s+11¢

X1 = 1 and x,=-15s—18t where x3=s and x4=t.

In vector form, this solution can be written as

X) _ -15 -18
x| | 1 S+ 0 L.
X4 0 1

Problem 2.26. Each of the following systems has been row reduced as much as possible. If
there is a unique solution to the system then find it. If there are infinitely many solutions
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then express them as a vector equation. If there are no solutions then indicate the reason.

1 200]3
001 0|-2 (2.4)
0000
1200
001 0|-2 (2.5)
0000
10 2
01 -1|-2 (2.6)
00 0
10 2
01 0/|-2 (2.7)
0000
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2.5 Linear Combinations

One of the most beautiful parts of linear algebra is the richness of the structure of ma-
trices. As we showed earlier, every system of linear equations can be written several dif-
ferent ways (as a system, as a matrix equation, as a vector equation, or as an augmented
system). In this subsection we’ll look in particular at the vector equation. Hiding below
a vector equation is one of the most fundamental ideas behind all of linear algebra: the
linear combination.

Definition 2.27. Let vy, v,,..., v, be vectors in n-dimensional space and let ¢y, ¢, ..., ¢,
be scalar quantities. The vector u defined by
U=Civy+CVp+CpVy
is called a linear combination of the vectors vy, vy,..., v, with weights ¢, ¢5,..., ¢,.
In the system of equations
2%, +3x,=5 (2.8)

4X1 - 6X2 = 6,

we can rephrase the underlying question as: find the weights which solve the vector equation

W)l 10

Notice that this is simply stating that a system of equations is nothing more than a linear
combination with unknown weights!
There is also a nice graphical interpretation of linear combination (2.10): How many

(i) plus how many (—36) do we need to create (2)? Solving for x; and x, (using Gaussian

elimination) we find that x; = 2 and x, = 1/3. Hence, (2) = 2(?1) + (1/3)(_36) as seen in

Figure 2.3.

Problem 2.28. Open the GeoGebra applet http://tube.geogebra.org/student/m1254137
in a browser window.

(a) Move the vectors u and v to

L —]

We would like to determine all of the combinations possible forming the vector
W=Ciu+cCpv.

Use the sliders in the GeoGebra applet to answer the following questions:



http://tube.geogebra.org/student/m1254137
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/_\
I )

S [T

TN

3| —(1\

(3)
J

\-6
Figure 2.3. A graphical example of a linear combination.

(i) Describe all of the possible vectors w if ¢c; = 0.
(ii) Describe all of the possible vectors w if ¢, = 0.
(iii) Which vector results if ¢; = ¢, = 0?
(iv) Is it possible to find ¢y and ¢, such that w = (62)? If so, what are ¢; and ¢,. If
not, why not?

(b) Move u and v so they are parallel. Form the vector w = c;u+c,v and describe all of
the possible values of the vector w.

(c) Find ¢y and ¢, both algebraically and graphically so that

[af=e ()i}
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(d) Express the vector w= (_54) as a linear comination of u = (

-1

) anav-|

1
-6

)
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2.6 Inverses and Determinants

Division is always a bit of a touchy subject. In the real numbers division is well defined
except when the denominator is zero. The same story is true in the rational numbers: a
fraction divided by a fraction is another fraction so long as the divisor is not zero. What
if we wanted to stay only in the integers? Can we divide two integers and get another
integer? Of course you can always divide by 1, but in most other cases division will move
you into the rational numbers. Hence, division on the integers doesn’t really make sense.

Similarly, if we try to define division on matrices we run into trouble. What does it
mean to divide by a matrix? In general, that phrase is meaningless! Let’s expand our view
a bit.

When considering the operation of addition, we call 0 the additive identity and we
call (—a) the additive inverse of a since a + (—a) = 0. When considering multiplication, we
call 1 the multiplicative identity and 1/a is the multiplicative inverse of a (when a = 0)
since a - % =1.

Problem 2.29. Consider the matrix
1 2
()

(a) Find a matrix B such that A+ B=A and B+ A = A.
(b) Find a matrix [ suchthat[-A=Aand A-I = A.
(c) Find a matrix C suchthat C-A=ITand A-C =1.
A

One way to tackle the third part of the preceding problem is let let C be a matrix filled
with unknowns and then to build the associated system of equations. More specifically,

if we let
a b
c=(c 4

and then observe that the equation AC = I becomes

3 =06 0)

After multiplying the left-hand side we get the equation

a+2c b+2d \ (1 0
—4a+3c -4b+3d) \0 1)

The mathematician would say that the integers are not closed under division.
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This results in a system of four equations with four unknowns:

a+2c =1
b+2d =0
—4a+3c =0
—4b+3d =1
which can be solved using Gaussian Elimination (row reduction):
1 0 2 0]1 1 0 0 0] 3/11
0 1020} 010 0} -2/11
-4 0 3 0|0 0 01 0] 411
0 -4 0 3|1 0 0 0 1] 1/11

Hence,
1 (3 -2
C—ﬁ(4 1)-

You should fill in all of the missing row reduction to verify this answer. Also, to check
this answer you should multiply AC and CA to be sure that you get the identity matrix
with both multiplications.

Definition 2.30. In matrices we define the following:

The additive identity of an m x n matrix is

0 e 0
0 0 :
Opmixn = .
0 0 0

The additive inverse of an m x n matrix A is (—A) since A+ (-A)=(-A)+ A =0.

The multiplicative identity of an n x n matrix A is the matrix

10 0 -~ 0

1 0 - 0

I=10 O :
0 0 0 1

The multiplicative inverse of an n x n matrix A is an n x n matrix C such that
AC=CA=1.

The zero matrix act’s like the zero integer; adding the zero matrix doesn’t change the sum.
Similarly, the identity matrix (with ones down the main diagonal and zeros elsewhere)
acts like the integer 1; when multiplying by the identity matrix the product doesn’t
change.
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2.6.1 Inverses

The following activity defines the matrix inverse for a 2 x 2 matrix. The reader should
carefully work this problem and take careful note of the result since it shows the general
process for finding inverses.

Problem 2.31. Consider the matrix A = (; Z) We would like to find the inverse of A so

that when we multiply the inverse by A we get the identity I.

(a) Let’s first try a na ive inverse. Let

g (12 13
172 174)

Find the products AB and BA and verify that AB# [ and BA = I.

10

We really want to find the matrix B such that AB=BA =1 = (0 1

). The following
parts of this activity will guide you toward that goal.
(b) Create an augmented matrix (A|I).

(c) Use elementary row operations to reduce the matrix in part (a) to an augmented
matrix of the form (I |%).

(d) Check that the matrix on the right-hand side of your answer in part (b) is actually
the inverse of A.

(e) Now consider the matrix A = (? Z) Repeat parts (a) and (b) to find the inverse

of a general 2 x 2 matrix. You should have a factor of adlfcb in your matrix. The
denominator of this fraction is called the determinant of the matrix A.

A

The previous problem illustrated the method for finding the inverse of a matrix:

Technique 2.32 (Process for finding A~! if it exists). The following is the technique
for find the inverse of a matrix (if it exists).

1. augment the matrix with the identity, then

2. row reduce to get the identity on the left-hand side of the augmented matrix.

Example 2.33. Let’s find the inverse of the matrix from the preview activity using

. 2). We want to find A~! such that AA~! = and

this method instead. Let A = (_4 5

AlA=T.
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Solution: Using the equation AA~! = I and knowing that we are seeking A~! we can
write the augmented system (A|I) and row reduce until we get (I |A‘1):

1 2[1 0
(A“)‘(—z; 3]0 1)
INERERRN
0 114 1
NI
0 1]4/11 1/11
1 0[3/11 =211\ (),
“lo 1|a11 1 )—(”A )

Hence, the inverse of Ais A~! = 11—1 (i _12)

Example 2.34. In part (e) of the previous activity you also worked to find the inverse

Z) If you did all of your work correctly you will

1 d -b
Al = : :
ad —bc (—C a )
Let’s use this formula to verify (for a third time) the inverse of the matrix from the
preview.

for the generic 2 x 2 matrix A = (?

have found that

Solution: Since A = ( 1

4 3) we can apply the 2 x 2 inverse formula to get

A1 = 1 (3 —2\_1(3 -2
T (1)(3)-(2)(—4) \4 1)‘H4 1

The reader should be cautious here. The formula that you derived for 2 x 2 matrices only
makes sense for that size. The only true method for finding the inverse (with the tools we
have) is to augment your matrix with the identity and to row reduce.

One other trouble comes when it is impossible to get the identity matrix to appear
on the right. When this happens it is an indication that the matrix does not have a mul-
tiplicative inverse. In the following activity you will practice this technique on a few
matrices.

Problem 2.35. Find the inverse for each of the following matrices if it exists. If it does
not exist then determine why not.
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®) (5 ?)
1 2 -1
(c) |-4 -7 3]
-2 -6 4
1 00
d) |1 1 o]
1 11

2.6.2 Determinants

Finding a matrix inverse is often a tedious task. As it turns out, there is a very handy
number associated with a square matrix that one can use to determine if a matrix is in-
b
d
then the matrix cannot have an inverse. This is not a peculiarity of 2 x 2 matrices! The
value ad — bd is called the determinant of the 2 x 2 matrix.

What we need is a way to define the determinant of a square matrix of any size.
In order to do so it is easiest to observe how the formula works by following a pattern

rather than reading the technical definition. The next problem will walk you through the
process.

. . . . . . . |[a
vertibleS. As we saw previously, if the quantity ad — bc is zero in the 2 x 2 matrix c

Problem 2.36. Follow these instructions to see how to find a determinant of a square
matrix.

(a) Find the determinant of the 2 x 2 matrix (_42 _11) using the fact that

a b a b
det(A)—det(C d)_ - d ‘—ad—bc.
(b) Now consider the matrix
1 5 3
A=(2 4 -1}
0 -2 0

(i) Cross out row 1 and column 1. Call the resulting 2 x 2 matrix Aj;.
(ii) Cross out row 1 and column 2. Call the resulting 2 x 2 matrix A,.

(iii) Cross out row 1 and column 3. Call the resulting 2 x 2 matrix Aq3.

SThis is actually one of many tests that you can be used to determine if a matrix is invertible. A discussion
of such techniques will wait until you know a bit more linear algebra.
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(iv) The determinant of A is
det(A) =1- det(AH) -5 det(Alz) +3- det(A13).
Perform this computation.

(c) Find the determinant of the matrix

A=

2 3 -4
4 0 5|
51 6

(d) Fillin the blanks below to set up the determinant calculation for the following 4 x4

matrix.
2 3 57
0O 3 2 9
A= 3 -2 61
2 0 0 4
det(A)zZ-___—3-___+5-___—7-___

(e) In your notes, write a few sentences describing the process for finding determi-
nants of square matrices.

Example 2.37. In this example we will work through the determinant of the 3 x 3

matrix
1 0 3
A=10 2 -5

0 0 3

Solution: Let’s expand along the first row:

Also notice in this example that the entire lower triangle of the matrix is filled with
zeros. When this is the case you may observe the nice pattern that the determinant is
actually just the product of the entries on the main diagonal (you should prove that
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this is true). Hence, in this problem we know that det(A) =1-2-3 = 6. Be careful! If
you don’t have an entire triangle of zeros then this little trick will not work.

Problem 2.38. Find the determinant of the following matrices. Is there anything special
that you can say about these matrices? Do you notice any ways to make the determinant
computation faster on these matrices?

1 3
a=(g 3]
1 3
5=(5 o)
2 3 2
C=|4 7 3
1 0 5
2 3 2
D=10 0 3
1 0 5
2 3 2
E=10 7 3
0 0 5
A
Problem 2.39. Find the value of k so that the matrix A is not invertible.
2 4
a=(5 4
A
Problem 2.40. Given the matrix
2—x 1
B= ( 4 2- x)
find all of the values of x that are solutions to the equation det(B) = 0. A

The following Theorem states several properties of determinants. While these are all
very useful in their own right, we will not take the time here to expand upon their proofs.

Theorem 2.41 (Important Properties of Determinants). Let A be a square matrix.
1. The determinant of the identity matrix is 1.
2. The n x n matrix A is invertible if and only if det(A) = 0
3. det(AT) = det(A).

4. det(AB) = det(A)det(B)
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5. det(A™!) = 1/det(A)
6. If Ais an nx n matrix and c is a real number then det(cA) = ¢" det(A)

7. If a multiple of one row of A is added to another row to produce matrix B then
det(A) = det(B).

8. If two rows are interchanged in matrix A to produce matrix B then det(B) =
—det(A).

9. If one row of A is multiplied by k to product matrix B then det(B) = kdet(A).

10. The absolute value of the determinant of a matrix A is the volume of the par-
allelepiped formed by the column vectors of A. (In 2D this means that the
determinant is the area of the associated parallelogram.)

In Theorem 2.41, every property listed has significant impact on the computation of
determinants and inverses. The final activity in this section illustrated the time savings
and possible pitfalls that can occur.

Problem 2.42. In this activity we’ll explore a few properties of the determinant.

(a) How do det(A) and det(A~!) relate to each other? Hint: we know that AA™! =1.

(b) Determine if the matrix B is invertible without trying to calculate the inverse.

2 4 -3
B=|0 0 7

00 3

(c) If the entries in a 10 x 10 matrix A are known to within a 5% error, what is the
maximum error in the determinant computation?
Hint: Let ¢ = 1.05. What is det(cA)?

A

The last problem in the previous problem should serve as a warning! When doing a
determinant computation on a computer there is natural roundoff error due to the fact
that any number stored in a computer can only be stored with finite bits. Hence, every
determinant computation on a large matrix should be immediately suspect! For this rea-
son, it is often preferred to avoid the use of the determinant if at all possible when dealing
with large matrices.

Problem 2.43. If A = (i Z) and det(A) = 8 then what is det(B) where B = (3“6 3bd) A

a b . a b
Problem 2.44. If A = (c d) and det(A) = 8 then what is det(B) where B = (2a +c 2b+ d)
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Problem 2.45. True or False: The determinant of A is the same as the determinant of the
row reduced form of A. Explain your answer. A

The last statement of Theorem 2.41 give a bit of a deeper insight to the geometry
of determinants and why invertible matrices must have a non-zero determinant. Think
about a 2 x 2 matrix with non-zero determinant. Under matrix multiplication by this
matrix, a shape with non-zero area will be transformed to another shape with non-zero
area. Hence, if we were to reverse the mapping then we have all of the vectors accounted
for and can reverse the transformation. If, on the other hand, a matrix has a determinant
of zero then a shape with non-zero area will be transformed into a shape with zero area.
Naturally, in this case, many vectors will be mapped on top of each other and any hope of
reversing the transformation is lost — hence the fact that a matrix with a zero determinant
is not invertible.

For example, if we consider the matrix A = (2 1), the determinant is det(A) = 4 -

1 2

1 =3 = 0 and we know that A~! exists. To see the action on the vectors u; = (

1
0) and

(1) see Figure 2.4. Notice that before the multiplication by A the parallelogram
(square) formed by u; and u, is 1 (since the determinant of the identity is 1). After the
multiplication by A the original square is stretched into the parallelogram on the right of
Figure 2.4 and with some geometry we can see that the area of the parallelogram is 3. If
we were to imagine reversing the transformation, morphing the red parallelogram back
into the blue square, we can see visually how each vector in the plane gets stretched and
rotated — hence giving a good meaning to reversing the transformation and giving us a

visual sense that the inverse of A exists.
1

. . 2 . . .

Now consider the matrix A = 1 o5/ The determinant of this matrix is clearly zero,
and geometrically in Figure 2.5 we see that the square gets squished into a single line
segment with zero area. In fact, both of the vectors u; and u, are mapped to exactly the
same line segment and figuring out how to reverse these actions for every vector in the
plane is impossible — hence giving us a sense that if the determinant is zero then the

inverse of the matrix A must not exist.

U, =
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The vectors u; = ((1)) and u, = (?) Auy = (i) and Au, = (;)

3% 31

-1+ . —

Figure 2.4. A 2D mapping from region with non-zero area to a region non-zero area.

1 0 2 1
The vectors u; = (O) and u; = (1) Aup = (1) and Auy = (0.5)
3¢ 31
2 2
15 " 1
1l -1

Figure 2.5. A 2D mapping from a region non-zero area to a region with zero area.

2.7 Technology For Linear Algebra

There are many technological tools designed to efficiently perform linear algebra opera-
tions. At this stage in many student’s academic careers they are very familiar with the TI
calculators (TI-89, TI-Nspire, TI-Voyage 200, etc). The computer software MatLab is also
very prevalent in many colleges and industries as well as Maple, Mathematica, Sage, MS
Excel, and many many others. The following is a very brief guide to using the TI Calcula-
tor and MatLab for common operations. If the reader wants more information about how
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to use these tools they are only an internet search away.

1 2 3
4 5 6|

7 8 9

Entering matrices: Consider the matrix A =

MatLab: A matrix is written in square brackets with columns separated by commas
and rows separated by semicolons.

A=1[1,2,3;4,5,6;7,8, 9]

TI Calculator: A matrix is written with curly brackets around the entire matrix
and curly brackets around each row. The rows and entries are separated by
commas.

{{1,2,3},{4,5,6},{7,8,9}} > A

The right arrow is the STO button. Storing the matrix as a letter will allow you
to do computations with the matrix.

Arithmetic: Addition, subtraction, and multiplication all work as expected in both pieces
of software.

Transpose: The transpose switches the rows and columns.

MatLab: The apostrophe is the transpose operator in MatLab. For example, B = AT
in MatLab is

B=1([1,2,3;4,5,6,;7,8,29]

TI Calculator: After entering your matrix and storing it as a variable, the addi-
tional matrix operations are found under the MATH — Matrix menu. The MATH
menu is 2ND — 5.

Reduced Row Echelon Form: Both pieces of software will perform elementary row op-
erations with the rref command.

Solving Systems in MatLab: The rref command will give the reduced form of the ma-
trix, but to solve a system, MatLab has a very powerful system solver: the \. As an
example, consider the matrix equation

1 2 3 X1 -3
4 5 6 ||xx|=]| 2| symbolically: Ax=b

7 8 —2)\x; 7

A=1[1,2,3;4,5,6;7,8,-2];
b=1[-3;2;7];
x = A\b
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2.8 The Magic Carpet Ride

Problem 2.46 (The Magic Carpet Ride 1). You are a young traveler leaving home for the
first time. Your parents want to help you on your journey, so just before your departure
they give you two gifts. Specifically, they give you two forms of transportation: a hover
board and a magic carpet. Your parents inform you that both the hover board and the
magic carpet have restrictions in how they operate:

* If you traveled “forward” on the hover board for one hour it wold move along a
diagonal path that would result in a displacement of 3 miles East and 1 mile North
of the starting location. Mathematically, the hover board’s motion is restricted to

the vector v; = (i’)

e If you traveled “forward” on the magic carpet for one hour it wold move along a
diagonal path that would result in a displacement of 1 mile East and 2 miles North
of the starting location. Mathematically, the magic carpet’s motion is restricted to

the vector v, = (;)

Your Uncle Euler suggests that your first adventure should be to go visit the wise man,
Old Man Gauss. Uncle Euler tells you that Old Man Gauss lives in a cabin that is 107
miles East and 64 miles North of your home. Can you use the hover board and the magic
carpet to get to Old Man Gauss’ cabin? Be able to defend your answer. A

Problem 2.47 (Magic Carpet Ride 2). Old Man Gauss wants to move to a cabin in a dif-
ferent location. You are not sure whether Gauss is just trying to test your wits at finding
him or if he actually wants to hide somewhere that you can’t visit him.

Are there some locations that he can hide and you cannot reach him with using the
hover board and the magic carpet? Describe the places that you can reach using a combi-
nation of the hover board and the magic carpet and those you cannot. Be able to support
your answers. A

Problem 2.48 (Magic Carpet Ride 3). Suppose now that you get a third mode of transpo-
ration: a jet pack!. In this new scenario assume that your three modes of transportation
work as follows:

1
* The hover board’s motion is restricted to the vector v; = [1 ]

1

4
* The magic carpet’s motion is restricted to the vector v, = [1 ]
6

6
* The jet pack’s motion is restricted to the vector v3 = [3]
8
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You are allowed to use each mode of transportation EXACTLY ONCE (in the forward or
backward direction) for a fixed amount of time (¢; on vy, ¢; on v,, and ¢3 on v3). Find the
amounts of time on each mode of transportation (cy,c,, and c3 respectively) need t to go
on a journey that starts and ends at home (0,0,0) OR explain why it is not possible to do
sO. A

Problem 2.49 (Magic Carpet Ride 4). Modify the jet pack’s restriction so that it is not
possible to ride each mode of transportation exactly once and end up back at home. A
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2.9 Span

The importance of linear algebra cannot be under stated. Indeed, most every mathe-
matician will agree that linear algebra is the most important mathematical subject that a
mathematical scientist can possibly learn. Let’s say that again

Linear algebra is the most important mathematical subject a student can
learn!

As such, this section and the next few are dedicated to a few of the fundamental
theoretical ideas behind linear algebra. The presentation in these section is restricted to
matrices and vectors but we’ll soon see that the ideas presented herein are applicable in
a very wide variety of areas.

Now let’s formalize a few of the ideas that we explored in the Magic Carpet Ride
problems.

Definition 2.50. The span of a collection of vectors {uy,u,,...,u,} is the set
{Clul + Uy + - CpUy G S R}

This is the set of all linear combinations of the vectors uy,...,u,,.

Problem 2.51. In this activity we will explore the concept of span. The formal defi-
nition will be delayed slightly. Instead we will use technology in this activity to build
intuition. Open the GeoGebra applet http://tube.geogebra.org/student/m1254137 in a
browser window and use the applet to help answer the following questions.

Loosly speaking, the span of a set of vectors is the collection of all vectors that can be
formed by taking linear combinations.

(a) Ifu= (;) and v = (_21) then the span of u and v is the set of all vectors of the form

ciu+cyv. Use the applet to geometrically describe span({u, v}).
. 1 -3 .
(b) Describe the span of u= (2) and v = (—6) geometrically.

(c) Is the zero vector always part of the span of a collection of vectors? Explain?

(d) What must be true (geometrically) about two 2-dimensional vectors if their span
is the entire two-dimensional plane?

(e) What must be true (geometrically) about two 2-dimensional vectors if their span
is a line in the two-dimensional plane?

A

Now we’ll officially define the span of a collection of vectors. In order to do that we’ll
define a few symbols that are very useful in mathematics.
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Definition 2.52. The space R" is the set of order n-tuples with real entries. For exam-
ple, R? is the set of all ordered pairs R? = {(x,) such that x and y are real numbers}
that make up 2D space (you’re probably used to this set from prior math classes). The
set R3 is the set of ordered triples R® = {(x,7,z) such that x,y and z are real numbers}
that make up 3D space.

1 0
Example 2.53. What is the span of the vectors v; = [ 2 ] and v, = (—1 in R3? In other

il 3

L

Is the vector u = [1] in the span of v; and v;?
3

Solution: The span is the collection of all linear combinations of the two vectors.

Therefore, any vector w that is in the span is a linear combination of v; and v;:

1 0
W= Cq 2 +C) -1].
-1 3

Since there are only two vectors in this three-dimensional space the span will be a
plane in R3 (shown in Figure 2.6). To test if u is in span({vy,v,}) we need to see if
there are constants c¢; and ¢, such that ¢;vq + cpv, = u. Setting this up as a system of
equations we see that we want to solve

AHEHIH

for c; and c,. This vector equation can be rewritten as an augmented system and row

reduced as follows:
1 0 2 1 0 2
2 -1|-1|—>---=]10 1| 5 |
-1 3 3 0 0|-10

Given that the system of equations does not have a unique solution we see that u is
not in the span of v; and v,.

words, what is

Problem 2.54. In each of the following, determine if w is in the span of the other vectors.
If it is then express w as a linear combination of the other vectors.
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span(vy,vy)

Figure 2.6. The span of v; and v, in R3.

(@) vq = (_21 ), vy = (f), andw = (2) (Use the applet http://tube.geogebra.org/student/m1254137

to visualize this problem)

1 0 5 2
(b) vy = [2], vy = [1],v3 = [6], and w = [1]
0 2 8 6
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2.10 Linear Independence, Linear Dependence, and Basis

The span of the vectors u = (1,0)” and v = (0,1)7 is the entire two dimensional plane R?.
This means that if we have a vector in R?, say x = (3,5)T then we know that it can be
written as a linear combination of the vectors u and v:

B)=2lo) )

The vector x = (3,5)T can be built from the vectors u and v so, in some sense, x depends
on u and v. We would say that the set of vectors {u, v, x} is linearly dependent since one of
the vectors in the set can be built from linear combinations of the others. The set {u, v}
is called linearly independent since none of the vectors in the set can be built from linear
combinations of the other vectors in the set.

Definition 2.55. A collection of vectors {vy,vy,...,v,} in R" is called linearly inde-
pendent if the vector equation

C1Vq +C2V2+"'vap =0

has only the trivial solution ¢; = 0,¢, =0,...,c, = 0.

p

Definition 2.56. A collection of vectors {vy,vy,...,v,} is called linearly dependent if
it is not linearly independent.

Example 2.57. Determine whether or not the vectors vy, v,, and v3 are linearly inde-

pendent or dependent.
1 3 4
V1 = 2 Vo = -2 V3 = 1
3 0 1

Solution: To determine if vq,v,, and v; are linearly independent or not we need to
consider the equation
C1Vq1 +CyVvp +C3Vy = 0.

If the solution to this equation is that ¢; = ¢, = ¢3 = 0 then the vectors will be linearly
independent. Otherwise they will be linearly dependent. This can be viewed as a
question about the solutions to the following system of equations (which we will
write in several different ways):

afelel=f-
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which is the same as
c1+3cr+4c; =0
2C1 —2C2+C3 =0
3C1 +C3 =

0

0

0
Row reducing the augmented form gives us

1 0 0/0
01 0]0 |
0 010

Hence, we can see that the solution to the system of equations is ¢; = ¢, = ¢3 = 0. This
implies that vy, v,, and v; are linearly independent.

which is the same as the augmented matrix

1 3 4
2 -2 1
3 1

0

Now let’s look at one more example.

Example 2.58. Determine whether or not the vectors vy, v,, and vj are linearly inde-

pendent or dependent.
1 3 4
Vi = 2 Vo = -2 V3 = 0
3 0 3

Solution: We’ll start by writing the system of equations c;v; + cpv, + c3vz = 0 in
multiple ways just as we did before.

0

0

0

1 3 4 0 C1+3C2+4C3 =0 1 3 4
c1|2]+c|-2|+c3|0|=|0f or 2¢c1 —2¢y =0 or 2 -2 0
3 0 3 0 3cq1 + 3c3 =0 3 0 3

Row reducing the augmented form gives us

1 0 1|0
01 1]0 |
0 0 00

Now we can see that there are infinitely many solutions to the equation c;vy +cpv, +
c3v3 = 0 and so the vectors vy, v,, and vj are linearly dependent.
Moreover, we can see that ¢; +¢3 = 0 and ¢, +c3 = 0. We can rewrite these equations

55
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as ¢y = —c3 and ¢, = —c3, and therefore ¢y, c; and c3 must satisfy the equation

C1 -1
c|=|-1|t, for teR.
C3 1

The fact that there are infinitely many solutions to the system of equations further il-
lustrates the idea that the vectors vy, v, and vj are linearly dependent: the coefficients
of ¢y and ¢, depend on the value for c;.

Problem 2.59. Use the definitions of linearly independent and linearly dependent to an-
swer the following questions.

(a) Are the vectors vq = ((1)) and v, = ((1)) linearly independent or dependent? Explain.

(b) Are the vectors v; = (;) and v, = (2) linearly independent or dependent? Explain.

1

(c) Are the vectorsv; = [ 0 ],v2 =
-3
or dependent? Explain.

3 -2 2
1 ],v3 = [1], and vy = [1] linearly independent
-4 1 1

(d) If nonzero vectors v, and v, in R? only span a line in R? are they linearly indepen-
dent or linearly dependent?

(e) If nonzero vectors vy, v, and v3 in R3 span all of R3 are they linearly independent
or linearly dependent?

A

Loosely speaking, linear independence means that no vector in the collection can be
built from the other vectors in the collection. Linearly dependence, on the other hand,
means that at least one vector can be built from the other vectors in the collection. The
real beauty of linearly independent sets is that they can serve as very simple descriptors

of a much larger set. For example, the vectors ((1)) and ((1)) are linearly independent (as
seen in the previous activity) and the span of these two simple vectors is all of R2. These
two facts together mean that ((1)) and ((1)) are the simplest building blocks for the entire

xy-plane; there is no unneeded information and there is enough to build every point. In
some sense, these two vectors are the DNA of the xy-plane.

There are many other linearly independent spanning sets for R? but the amazing fact
is that they all have exactly 2 vectors in them. Similarly, all of the linearly independent
spanning sets of R3 will all contain exactly 3 vectors. In fact, this is where our intuitive
notion of dimensionality comes from; the number of vectors in the linearly independent
spanning set.
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Definition 2.60. If the set of vectors B = {by,b,,...,b,} spans a space V then B is said
to be a basis of V if it is linearly independent. In other words, a basis is a linearly
independent spanning set.

1 -1
27\ 1
Solution: We first need to show that B is linearly independent. This means that we
need to show that the equation c¢;b; + c,b; = 0 has only the trivial solution ¢; = ¢, = 0.
Indeed,

Example 2.61. Show that B = is a basis for R2,

Hence, B is a linearly independent set.
To show that B spans R? we need to show that any vector (;) can be built as a

linear combination of the vectors in B. Indeed,
1 N -1\ (x
C1 2 CH 1 = y
. I =1\[c1\| _(x
2 1)\ \w
:>(1 -1 x)_) _)(1 o = )
2%+
2 11y 0 1|=~
X+y _—2x+y

and ¢, = 7

:clz

Hence, given any point in the xy-plane we can find ¢; and ¢, that will build the point
as a linear combination of vectors in B. Therefore, B is a basis for R2.

Example 2.62. Is B = {(;),(i)} a basis for R??
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Solution: No. The reader should verify that the two vectors in B are linearly depen-
dent so they cannot possible span all of R,

Problem 2.63.  (a) Find a basis for the set of vectors in R? on the line y = 3x.

(b) Find a basis for the space spanned by the vectors vy,...,vs.

1 0 2 2 3

0 1 -2 -1 -1
1Sl 2T 2 YaT sl V4T |0 V5T |-s)

3 3 0 3 9

(Use technology to complete this exercise to save a bit of time)

4 1 7
(c) Letvq = [—3], Vy = [ 9 ], and v3 = 11], and also let H = span({vy, vy, v3}). It can be
7 -2 6

verified that 4v; + 5v, — 3v; = 0. Use this information to find a basis for H. (There

is more than one answer)
A

Problem 2.64. Mark each statement as True or False. Justify each answer.

(a) A single vector by itself is linearly dependent.

(b) If H = span({by,...,b,}) then {by,...,b,} is a basis for H.

(c) The columns of an invertible n x n matrix form a basis for R".
(d) A basis is a spanning set that is as large as possible.

(e) Any linearly independent set in a space V is a basis for V.

(f) If a finite set S of nonzero vectors spans a space V, then some subset of S is a basis
for V.

(g) A basisis a linearly independent set that is as large as possible.
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2.11 The Column and Null Spaces of a Matrix

For any matrix there are several fundamental spaces that fully describe the actions that a
matrix can have on a vector. The two that we focus on here are the column space and the
null space.

Definition 2.65. The column space of a matrix A is the space that is spanned by the
columns of the matrix.

Definition 2.66. The null space of an m x n matrix A, written Nul(A), is the set of all
solutions of the homogeneous equation Ax = 0.

Example 2.67. Find the null and column spaces of the matrix
1 -3 -2
A= (—5 9 1 )
5

and determine if u = [ 3 ] belongs to the null space of A.
—2

Solution: The column space of A is the space spanned by the columns of A. We need

to determine if the three columns are linearly independent. Row reduction shows us

that
1 -3 -2 10
(—5 9 1 )_””H(o 1 )
so the third column vector depends on the other two. Hence, there are two linearly
independent vectors that form a basis for the column space. Since each vector is in
R? we see that the column space is all of R?.

The null space of A is the set of solutions to Ax = 0. We have already row reduced
the homogeneous system so we know that x; = —5/2x3 and x, = —3/2x3. Hence, if

x3 =t then
—5/2t —-5/2
X = [—3/2t =|-3/2|t

t 1

[S][CSN] 6]

where t is any real number.
5
Clearly, if we take t = -2 then x = [ 3 ] showing that u is in the null space of A.
-2
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Another (simpler) way to see that u is in the null space of A is to observe that

el 37 ) (%))

Problem 2.68. Find the null and column spaces for the matrix

-2 4 -2 -4
A=l2 -6 -3 1
-3 8 2 -3

The matrix A is 3 x 4. Be sure to specify where the null and column spaces
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2.12 Modeling Explorations with Linear Algebra

In 1973, Wassily Leontief was awarded the Nobel prize for his work in economics. Part of
his work was to apply the basic concepts of linear algebra to model supply and demand
within simple economies. His theory, called the Leontief Input Output model, serves as
a simplified model to predict production.

Problem 2.69. Suppose that an economy is divided into three sectors: manufacturing,
agriculture, and services. Let x be a 3 x 1 vector (called the production vector) that lists the
outputs of each sector for one year. At the same time, let d be a 3 x 1 vector (called the
demand vector) that lists any external demands on the goods and services from the non
productive part of the economy (consumer demand, government consumption, exports,
etc.)

As the three sectors produce goods to meet consumer demand, the producers them-
selves create additional intermediate demand for goods they need as inputs for their own
production. For example, the agriculture sector will use equipment made by the manu-
facturing sector. The basic question Leontief asked is “is there a production level x such
that the amounts produced will exactly balance the total demand for the production?” In
other words, find x so that

amount produced = intermediate demand + external demand.

X Cx d

Here we take C to be a matrix defining unit consumptions of the various sectors (see the
table).

Inputs per Unit of Output
Purchased From: Manufacturing Agriculture Services

Manufacturing 0.50 0.40 0.20
Agriculture 0.20 0.30 0.10
Services 0.10 0.10 0.30

In the table, the columns read as follows:

* To produce 1 unit, manufacturing needs 0.50 units from other parts of manufactur-
ing, 0.20 units from agriculture, and 0.10 units from services.

* To produce 1 unit, agriculture needs 0.40 units from manufacturing, 0.30 units from
other parts of agriculture, and 0.10 units from services.

* To produce 1 unit, services need 0.20 units from manufacturing, 0.10 units from
agriculture, and 0.30 units from other services.

Suppose that the external demand is 50 units for manufacturing, 30 units for agricul-
ture, and 20 units for services.
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140
x=| 20
50

then what is the sum of the intermediate demand and the external demand? Did
the economy under or over produce in each of the sectors?

(a) If the production is

(b) We want to find the production x that gives a perfectly balance economy: x = Cx+d.
How do we solve this matrix equation?

A

2.12.1 Input-Output Economies

In the previous problem we explored situations where a simple economy over or under
produces. Theoretically, a perfectly functioning economy has no surplus or shortage.
We would like to explore Leontief’s original question and determine if there is a perfect
production level that will yield no surplus or shortage.

The matrix equation associated with the Leontif Input Output model is

x=Cx+d. (2.11)

The trouble is that the production level, x, shows up on both sides of the matrix equation.
To overcome this fact we do a few simple steps of matrix arithmetic to equation (2.11):

x=Cx+d = x-Cx=d = (([-C)x=d = x:(I—C)_ld. (2.12)

The right-hand equation of (2.12) shows that there is a ready-made formula that allows
us to solve for the production level.

Example 2.70. Solve for the optimal production level using the internal and external
demands from Problem 2.69.

Solution: We want to find the production level x given that the consumption matrix
C and the demand vector d are

0.5 0.4 0.2 50
C= [0.2 0.3 0.1] and d= [30].
0.1 0.1 0.3 20
From equation (2.12) we need to solve the equation (I — C)x = d by evaluating x =
(I-C)ld.
It is impractical to actually compute the inverse?, so instead we can create an
augmented matrix (I — C|d) and use row reduction.

0.5 -0.4 -0.250 1 0 0]2259
(I-Cld)=| -0.2 0.7 -01[30|—>---—>| 0 1 01185 |.
00 1

-0.1 -0.1 0.7 |20 77.8
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Hence, in this economy, manufacturing must produce approximately 226 units, agri-
culture must produce approximately 119 units, and services must produce approx-
imately 78 units. This will lead to a balanced economy where this is no surplus or
shortage.

“In the vast majority of linear algebra applications the inverse is never computed.

Problem 2.71. The consumption matrix C below is based on input-output data for the
U.S. economy in 1958, with data for 81 sectors grouped into 7 larger sectors:

1. nonmetal household and personal products,
2. final metal products (such as motor vehicles),
3. basic metal products and mining,

4. basic nonmetal products and agriculture,

5. energy,

6. services, and

7. entertainment and miscellaneous products.

0.1588 0.0064 0.0025 0.0304 0.0014 0.0083 0.1594 74000
0.0057 0.2645 0.0436 0.0099 0.0083 0.0201 0.3414 56000
0.0264 0.1506 0.3557 0.0139 0.0142 0.0070 0.0236 10500
C=10.3299 0.0565 0.0495 0.3636 0.0204 0.0483 0.0649|, d=| 25000
0.0089 0.0081 0.0333 0.0295 0.3412 0.0237 0.0020 17500
0.1190 0.0901 0.0996 0.1260 0.1722 0.2368 0.3369 196000
0.0063 0.0126 0.0196 0.0098 0.0064 0.0132 0.0012 5000

(a) Use technology to find the production levels needed to satisfy the final demand d.

(b) The demand in 1964 was

T
d:(99640 75548 14444 33501 23527 263985 6526)

Find the production levels needed to satisfy this demand.

(c) In the six years between 1958 and 1964 the demand changed drastically in several
categories leading to changes in the production levels. Use the data in this problem
to extrapolate to current demands and production levels. Give several reasons why
your extrapolation will ultimately give poor estimates.
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2.12.2 Traffic Networks

A traffic network can be viewed as a collection of lines (streets) and intersections. When
modeling a large street network, the influx from certain suburbs and other cities is gener-
ally well known. To estimate the number of cars on given streets, traffic engineers often
put counters at the intersections. This allow them to calculate flow given that

flow into an intersection = flow out of an intersection.

This simple conservation law creates a system of equations for all of the streets that can be
solved to find the flow on each individual street.

Problem 2.72. Consider the collection of one-way streets in a downtown area.

X3 100
300 400
C X4 D
v %) X5
200 500
A X1 B
500 50

(a) Fill in the table for each intersection. The first line has been done to get you started.

Intersection Flow In  Flow Out
200+ 500 X1+ X

TOw>

(b) Write the equation
total flow into the network = total flow out of the network.

This equation describes the fact that the network is not closed but the number of
cars in the network must be conserved (just like conservation of mass or momen-
tum from physics).
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(c) Use parts (a) and (b) to write a system of equations. Solve the system to determine
the traffic flow at xq, x5, ..., xs.

(d) Sensitivity Analysis: There are 7 different given values in this network. What is
the percent change in each of the variables xy, ..., x5 if each of the given values were
to increase or decrease by 10%? Use a table like the one below to help organize the
results, and use your results to write a short report to the traffic division.

Hint: Test each value one at a time.

Percent Change
Old Value | New Value || x; \ X \ X3 \ X4 \ X5
100 110
100 90
400 440
400 360
500 550
500 450
50 55
50 45
500 550
500 450
200 220
200 180
300 330
300 270

A

Problem 2.73. Your boss at the trucking company wants you to solve the following traffic
flow problem. In this problem, the lettered nodes are distribution centers for your truck-
ing company and the numbers and variables along the arcs are the truck flows in a given
year. Remember that for each distribution center

yearly flow into the distribution center = yearly flow out of the distribution center.

For example, at node H we must have xpy = x5 + xgpr + 600.
Hint: write an equation for each node and then rearragne into an augmented system of
equations.

Your goal is to find the roads with the maximum truck volume and to perform a sensi-
tivity analysis on the known information in the problem (i.e. if each known value were to
change by as much as 10%, how much would the maximum road volume change). Give
advice to your boss based on your analysis keeping in mind that the highway department
would ultimately like to minimize the maximum truck volume on the roads.
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2.12.3 Balancing Chemical Equations

The final application that we will discuss here is that of balancing chemical equations.
Consider the chemical reaction: Nitrogen Dioxide plus water yields Nitrous acid and
Nitric acid.
aNO, +bH,O — cHNO, +dHN O3

The coefficients a,b,c, and d are unknown positive integers. The reaction must be bal-
anced; that is, the number of atoms of each element must the same before and after the
reaction. Because the number of atoms must remain the same we end up with the follow-
ing system of equations:

Oxygen: 2a+b=2c+3d
Nitrogen: a=c+d
Hydrogen: 2b=c+d

Rearranging this into an augmented system gives the homogeneous system
21 -2 =30
1 0 -1 -1]0
02 -1 -1(0
Performing row reductions on this system gives
21 -2 =30 1 0 -1 -1]0 10 -1 -1]0
1 0-1-1/0f—»f01 0 -1/0|—>]01 0 -1/0
-110 0 2 0 0 0

0 2 -1 -1 -1
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In this chemical equation we see that d, the coefficient of Nitric acid, is a free variable.
Mathematically this means that we can freely choose d to be any value we like, but scien-
tifically we choose the smallest positive integer: d = 1. Hence

a=2, b=1, ¢=1, and d=1
so the balanced chemical equation becomes
2NO2+H20 —)HNO2+HNO3

Problem 2.74. Find the lower case values that balance each of the chemical equations.

(a) Aluminum oxide and carbon react to create elemental aluminum and carbon diox-
ide:
aAleg, +bC — cAl + dC02

(b) Limestone, CaCOj, netralizes the acid, H;O, in acid rain by following the equation

aH3O + bCaCO3 - CHzo +dCa+ €COQ.

(c) Boron sulfide reacts violently with water for form boric acid and hydrogen sulfide
gas (the smell of rotten eggs).

aB253 + szO - CH3BO3 + deS




Chapter 3
First Order Models

3.1 Birth, Death, and Immigration Exploration

Supplies

1 partner, 1 cup, 1 handfull or bag of M&M'’s, and 1 computer with access to Moodle and
Excel.

Scenarios

The M&M'’s in this activity represent a very fragile species with a high death rate. To
determine which M&M’s survive and which die in a given year we will shake the M&M'’s
and pour them on the table. The M&M'’s that land with the M up unfortunately die. The
remaining M&M’s survive for another year.

Scenario #1 (Deaths) Count the number of M&M'’s in your cup and track the number of
M&M'’s remaining until the species goes extinct. Add your data to the Google Sheet
linked from Moodle.

Scenario #2 (Deaths and Immigration): In this scenario, every M&M that lands M-up
will die, but at the end of the year there are 5 new M&M'’s added to the population
due to immigration. Track the number of M&M'’s remaining until you believe that
the population has reached a steady state. Add your data to the second tab of the
Google Sheet linked from Moodle.

Scenario #3 (Births, Deaths, and Immigration): In this final scenario, every M&M that
lands M-up will die, and at the end of the year there are 5 new M&M’s added to the
population due to immigration. After the immigration occurs, 10% of the remaining
M&M'’s give birth to new M&M’s. Add these births to the population. Track the
number of M&M'’s (after the death, immigration, and the births) until you think the
population has reached a steady state. input your data into the Google Sheet, and
move to the next year.

68
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Mathematical Modeling

Our goal is to find a function that models each scenario. Copy your data sets from the
Google Sheet to your own machines and try to determine the type of function that best
models this scenario. When you write your functions, use the variable # for the time.

Remember, we are trying to find a mathematical function that best models the sce-
nario. That does not necessarily mean that you should be doing any data fitting! Instead,
you should try two methods:

1. Can you find an algebraic function that appears to fit your data?

M(n) =

2. Or, can you write an expression for how the population changes? In other words,

number of new M&M’s at year n =
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3.2 Models for Birth, Death, and Immigration

Problem 3.1. In the birth, death, and immigration exploration you should have generated
data with your class for the three scenarios. Go back to the Google Sheet with all of the
data, copy your group’s data to Excel and make the following plots:

* A plot with population on the horizontal axis and average rate of change of the
population for the birth model on the vertical axis. You will need to calculate the
average rate of change in Excel first.

* A plot with population on the horizontal axis and average rate of change of the pop-
ulation for the birth & death model on the vertical axis. You will need to calculate
the average rate of change in Excel first.

* A plot with population on the horizontal axis and average rate of change of the
population for the birth, death, & death model on the vertical axis. You will need to
calculate the average rate of change in Excel first.

A

Problem 3.2. All of the plots that you made in the previous problem should appear to
follow a linear trend. Use Excel to fit a line to each of these plots. Use your results from
Excel to fill in the following blanks.

Death Model: g =

At

} ) AP
Death & Immigration Model: A7 =

. ) ) AP
Birth, Death, & Immigration Model: A7 =

(a) Explain why the slope of each of these linear functions is negative.

(b) Explain what the “y-intercept” means in the context of each model.

In the Birth model you should have found a model similar to

AP
— =-0.5P,
At

but notice that in our exploration of the problem with the M&M'’s we were taking At to
be 1. Hence we can rewrite our model more simply as

AP =-0.5P.

When we’re dealing with discrete time steps as in this problem we often use the notation
P, to talk about the population at time ¢ = n and P, to talk about the population at time
t =n+ 1. With this new notation the model becomes

P,.,-P,=-0.5P,

and this is known as a difference equation since the left-hand side of the equation gives
the difference between two time steps.
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Problem 3.3. Write a difference equation model for the Death & Immigration model and
for the Birth, Death, & Immigration model.

Death Model: P,.; -P,=-0.5P,
Death & Immigration Model: P, — P, =
Birth, Death, & Immigration Model: P,,; — P, =

A

In a difference equation model it is often convenient to solve for P,,; and rewrite
as P,,; = P, —0.5P, (in the death model). This clearly simplifies to P,,; = 0.5P,, and
furthermore this allows for an easy implementation into a spreadsheet program.

Problem 3.4. Using a spreadsheet program like Excel, implement the difference equation
models to build a table and graph that predicts the population at any discrete time. A

Problem 3.5. In the M&M exploration we were treating time as if it occurred only in dis-
crete steps. What is wrong with this assumption? Specifically, if the M&M’s are supposed
to represent a population then what is wrong with using discrete time in our model? A

Let’s return to the models in Problem 3.2 and now consider that time really shouldn’t
be taken in discrete steps. Instead, time really happens on a continuous scale and, as
such, taking At = 1 doesn’t really make sense. If we take At — 0 the average rate of

change AP/At becomes the derivative ‘Z—It). For example, in the Birth model % = -0.5P

becomes %—1; =—0.5P as At — 0. This new model is called a differential equation.

Problem 3.6. Write a differential equation modeling the Death & Immigration and the
Birth, Death, & Immigration scenarios.

Death Model: 6;—1; =-0.5P
) ) dP
Death & Immigration Model: T
) ) ) dPpP
Birth, Death, & Immigration Model: a7 =

A

The differential equation models are most likely more realistic if we are thinking of
the M&M exploration as modeling population. Populations just simply don’t change all
at once; they change continuously in time.

For the Death model
dP

— =-0.5P
dt
we can still use Excel to create a visual model of the solution to the differential equation.
Recall that
apP _AP

dt At
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and if we take At to be really small then the approximation isn’t too bad. Hence, the

differential equation ili—ltj = —0.5P can be approximated by

E ~—0.5P for At small,
At

and using the notation of difference equations we can rewrite as

Pn+1 _Pn
—— ~—-0.5P,.
At "

Now if we solve for P,,; we can get an equation that can be implemented in a spreadsheet
program:
P,., ~P,—At(0.5P,).

Problem 3.7. Use a spreadsheet program to get a graphical approximation to the Death
model

dap

— =-0.5P.

dt
Compare your results to the data and to the solution to the difference equation that you
built in Problem 3.4. A

Problem 3.8. Now use a spreadsheet program to build approximations to the differential
equations for the Death & Immigration and Birth, Death, & Immigration models that you
built in Problem 3.6. Compare your graphical solutions to the graphical solutions of the
discrete time models and to the data. A
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3.3 Difference Equations and Differential Equations

In Calculus, change is measured over infinitesimally small increments. Unfortunately,
this is not always appropriate. For example, if a bank compounds the interest on a sav-
ings account every month then it may not make sense to examine the value of the account
during the middle of the month; it will be the same as after the interest was last com-
puted. On the other hand, if the temperature of a cup of coffee is being modeled over
time then it makes sense to talk about the temperature at any given instant in time. Time
in the bank account example is taken in discrete steps (one per month), while time in the
coffee example is continuous.

Definition 3.9. A discrete time model is a mathematical model where time is mea-
sured in individual steps that can be enumerated. The model either does not make
sense at intermediate steps or is considered constant.

Definition 3.10. A continuous time model is a mathematical model where time can
take any non-negative real number quantity. In continuous time models it makes
sense to discuss the meaning of the model at any non-negative value of time.

Problem 3.11. In the following scenarios decide whether you should use a discrete time
model or a continuous time model.

(a) Water draining from a tank drains at a rate proportional to the square root of the
height of the water.

(b) The rate of change of the money in an interest-bearing savings account is propor-
tional to the amount of money that is in the account.

(c) The Department of Fish, Wildlife, and Parks proposes a restocking plan where they
restock the mountain lakes in Montana once per year.

(d) The displacement of a spring-mass oscillator is proportional to the acceleration of
the mass.

A

As we’ve already seen in the M&M exploration, it was easier to model the change in the
population that it was to guess the algebraic function that modeled the populations. The
two primary types of mathematical models that model change are difference equations
and differential equations.

Definition 3.12. A difference equation is a discrete-time model that relates discrete
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rates of change.

(new value) — (old value) = (change in value). (3.1)

Definition 3.13. A differential equation is a continuous-time model that relates in-
stantaneous rates of change.

Problem 3.14. When money is placed into a bank savings account, the bank pays interest
into the account once a month, thereby increasing the value of the account, provided no
money is withdrawn!

Consider a bank account that has been opened with an initial deposit of $4,500 and
which receives monthly interest equal to 1.1% of the account value. The account is to be
held for two years before any withdrawals are made.

(a) should we be modeling this situation with discrete time or continuous time?

(b) For the given initial deposit and interest rate, how much money would the bank
add to the savings account after one month?

(c) How much money would the savings account be worth after 1 month?
(d) What is the value of the savings account after one and a half months?

(e) How much money would there be in the savings account at the beginning of the
second month?

(f) How much interest does the bank add to the account at the end of the second
month?

(g) How much money is in the savings account after two months?

(h) In words, describe how the money in your savings account changes from one
month to the next.

(i) Use everything that you just did to write a difference equation modeling the amount
of money in the bank account.

App1—Ap =

(j) Use a spreadsheet program to build a numerical and graphical solution to the dif-
ference equation.

A

Example 3.15. Consider the savings account situation from Problem 3.14 but include
a deduction of $100 per month. Find a difference equation and find a numerical
solution to model this situation over a two-year horizon.
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The difference equation is

new amount in account —old amount in account = interest —withdrawal

A1 a, 0.011a, 100

More simply: a,,1 = a,,+0.011a, — 100. Or, after some algebra, a,,; =1.011a, —100.
A numerical solution is simply a table of values (see this video) but is much simpler
to visualize as a plot (see this video and this video).

] Month \ Amount

0 [ $4500.00

1| $4449.50

2 | $4398.44

3 | $4346.83

4 | $4294.64

5 | $4241.88

6 | $4188.54 5,000 4

7 | $4134.62

8 | $4080.10 4500 9.,

9 |$4024.98 *e.,

10 | $3969.25 4,000 | *e.,

11 | $3912.92 eu,

12 $3855.96 3,500 | .°..

13 | $3798.37 ‘e,
14 | $3740.16 .
15 | $3681.30 30007

16 | $3621.79 Months
17 | $3561.63 ‘ | | |

18 | $3500.81 > 20

19 | $3439.32

20 | $3377.15

21 | $3314.30

22 | $3250.76

23 | $3186.52

24 | $3121.57

Example 3.16. A student has a college loan of $A with an interest rate of r% APR
compounded monthly. She pays $p per month. Model the amount that the student
owes on the loan with a discrete dynamical system, examine the behavior of the sys-
tem based on different values of the parameter, and give a graph of several numerical
solutions.

This situation calls for a discrete dynamical system because the interest and pay-
ments are made in discrete time steps. Let a,, be a sequence that represents the
amount owed on the loan after n months. The initial loan amount, $A4, is the ini-



https://www.youtube.com/watch?v=kVx7bZTP9L4
https://www.youtube.com/watch?v=k3bwXAeQsKo
https://www.youtube.com/watch?v=g6OGCmvxCHQ
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tial condition, so
apg = A.

The interest is compounded monthly, so each month the new interest is r/12% of the
amount owed in the previous month.

) r
new Interest = Ea”'

The payments are subtracted from the amount owed. Hence, the mathematical model
for the amount owed on the loan is

Ap41 —ay = 3% —p , where ap=A
——— —_—— ~———

change in monthly balance payment initial condition

amount accumulated from interest

More simply,
’
Ap41 = A, + T3% P where ag=A.

Even simpler yet (after a little algebra)

Apeq = (1 + é)an -p.
This is a mathematical model for any such situation, and there are many unknown
parameters. The fact that you don’t know the parameters is what makes the problem
interesting!

To discuss the parameters one must think like a scientist; vary one parameter
at a time and try to cover all of the possible bases. Let us first consider a loan of
A =$5000 at 15% APR. Figure 3.1 shows numerical solutions for several different
payments. Clearly if the payment is larger then the amount of time to pay off the loan
decreases. Next let us discuss a different situation. Assume that the initial loan is still
$5000 but now assume that the payments are fixed at $200 and we don’t know the
rate. Figure 3.2 shows several numerical solutions to the discrete dynamical system
at various rates.

Again, there aren’t any real surprises here; as the rate goes down the time to pay
off the loan goes down. In order to fully explore the parameter space of a discrete
dynamical system (i.e. difference plus initial conditions) it is easy to implement the
model in Excel and to use absolute cell references for the parameters.

Problem 3.17. For each of the following situations, create a mathematical model using a
difference equation or a differential equation.

(a) The population of a town grows at an annual rate of 1.25%.
(b) A radioactive sample losses 5.6% of its mass every day.

(c) You have a bank account that earns 4% interest every year. At the same time, you
withdraw money continually from the account at the rate of $1000 per year.
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Figure 3.1. Numerical solutions to a,. = a, + {54, — p with a; = 5000 and r = 0.1 and
different values of p
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Figure 3.2. Numerical solutions to a,.1 = a, + {34, — p with a5 = 5000 and p = $200 and
different values of r

(d)

(e)

(f)

A cup of hot chocolate is sitting in a 70° room. The temperature of the hot choco-
late cools by 10% of the difference between the hot chocolate’s temperature and
the room temperature every minute.

A can of cold soda is sitting in a 70° room. The temperature of the soda warms
at the rate of 10% of the difference between the soda’s temperature and the room’s
temperature every minute.

Suppose that there are 400 college students living in a dormitory and that one or
more students has a severe case of the flu. Assume some interaction between those
infected and those not infected is required to pass the flue. Assume that a student
is either infected or susceptible (no immunities). Further assume the number of
new infected students each hour is proportional to the product of the infected and
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the susceptible students. Create a mathematical model for the number of infected
students over the course of a day.

Hint: If there are 400 students in the dorm, then the number of susceptible stu-
dents is 400 minus the number of infected students.

A town has a large reservoir of water that currently contains 450,000 gallons. Each
week during the spring W gallons are used by the town, while M gallons flow in
from snow melt. If % of the water evaporates each week, formulate a mathemati-
cal model for the amount of water in the reservoir and explore the parameter space
with the help of Excel.

Estimates of parameters are as follows: Last year the average water usage during
the spring was W = 50,000 gallons and the average intake from snow melt was
M = 62,500 gallons. During the spring the water is estimated to evaporate at
approximately 1%.
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3.4 Stability and Equilibria

Problem 3.18. Consider the differential equation

A =-0.5A+0.1.

dt
This model comes from a drug dosing problem where your body removes 50% of the
drug every hour and an IV drip administers 0.1mg of drug each hour. The value of A is
the number of milligrams of drug in the body at time ¢. If done correctly, the amount of
drug in your system will stabilize at a constant level. What is that level? Be sure to fully

explain your thinking. A
Problem 3.19. Consider the difference equation
Ay —A,=-0.2A,+100.

This model comes from a car sales problem where 20% of the cars on the lot are sold in a
given month and 100 new cars are delivered each month. If you’ve done things correctly
as the manager of the lot, the number of cars will stabilize at a certain amount. How
many cars is this? Be sure to fully explain your thinking. A

Problem 3.20. For each of the two previous problems make a plot with “change” on
the vertical axis and “amount” on the horizontal axis. Each of these should be a linear
function just like what we saw in the Birth, Death, and Immigration models. What is the
meaning of the “x intercept” on each of these plots? A

Problem 3.21. Return to the Birth, Death and Immigration models. You already made a
plot with “change” on the vertical axis and “population” on the horizontal axis. Find the
point where the linear functions intersect the horizontal axis and interpret these points
in the context of the problem. A

Definition 3.22 (Equilibrium Point). An equilibrium point in a difference or differ-
ential equation is the point where the change is 0.

Example 3.23. Consider the differential equation % = —%(y —4). If we set the change

to zero then we find that

1

0=-=
2

(Veg—4) = Yeg=4

The equilibrium is at y = 4. Furthermore, if we have a y value a bit less than 4 we
see that dy/dt is positive so y will be going up. Also, if we have a y value that is a bit
more than 4 then dy/dt is negative so y will be going down (see Figure 3.3). We call
this type of equilibrium point stable.
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Figure 3.3. A plot of % vs v (top) and a phase line diagram (bottom) for % = —%(y —4)

Example 3.24. Consider the differential equation % = 2(y — 4). If we set the change
to zero then we find that

1
0= E(yeq—él) = Yy =4

The equilibrium is at y = 4. Furthermore, if we have a y value a bit less than 4 we see
that dy/dt is negative so y will be going down. Also, if we have a y value that is a bit
more than 4 then dy/dt is positive so y will be going up (see Figure 3.4). We call this
type of equilibrium point unstable.

Problem 3.25. Find and classify the equilibrium points for each of the following differ-
ence or differential equations.

dy
(a) - =y(1-y)
(b) Apy1—A,=2A,+6
(€) Xpp1 =%y =-3x,-2

dP
S~ _05P+2
(d) = =-05P+

A

Problem 3.26. Find and classify the equilibrium point for the difference equations mod-
eling the three Birth, Death, and Immigration problems. A
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Figure 3.4. A plot of % vs v (top) and a phase line diagram (bottom) for % = —%(y —4)

3.5 Euler’s Method: Numerical Solutions for Differential
Equations

One of the fastest ways to get an approximate solution to a difference or a differential
equation is to use technology. You have already used technology such as MS Excel to
build numerical solutions to difference equations, but what about differential equations?
Let’s look at the two in parallel. Consider the difference and differential equations

difference equation: a,,,; —a, = -0.5a,+ 0.1, and (3.2)
d
differential equation: d_}t) =-0.5y +0.1. (3.3)

We can turn the differential equation (3.3) into a difference equation by recalling from
Calculus that

dy Ay

dt = At
Taking Ay =v,,.1 — vy, we arrive at an approximate form of the differential equation (3.3)
Ynel ZIn 0.5y, +0.1. (3.4)

At
In (3.4) we can then rearrange algebraically to get
Vi1 = Yy + At (=0.5y,, +0.1). (3.5)

All we have done at this point is to approximate the derivative %

Problem 3.27. In MS Excel we are going to solve the difference equation (3.2) alongside
the differential equation (3.3). For both we will use the initial condition a5 = y(0) = 1.
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Notice that these two equations model the same behavior with the difference being that
the difference equation models in discrete time and the differential equations models in
continuous time.

(a) In MS Excel label column A “Discrete Time” and label column B “Difference Equa-
tion”. Fill in the times starting at 0 and increasing by 1 in column A. Put the initial
condition in cell B2 and build the difference equation starting in cell B3. See the left
side of Table 3.1.

(b) In the same Excel worksheet label column D “Continuous Time” and label column
E “Differential Equation”. Put in “0” for the initial time, choose a time step, and fill
in column D with times progressing by that time step. Put the initial condition in
cell E2 and build the approximation to the differential equation (3.5) starting at cell
E3. See the right side of Table 3.1.

(c) Fill both numerical solutions so that they end at the same time (the continuous time
model will obviously be 10 times longer if you use At = 0.1).

(d) Make a plot showing both solutions on top of each other.

A
A B C D E
1 | Discrete Time | Difference Equation Continuous Time Differential Equation
2 0 1 0 1
3 1 =B2-0.5+B2+0. 1 0.1 —E2+(0.1)%(-0.5%E2+0.2)
4 2 0.2
5

Table 3.1. Excel setup for a difference equation (left) and differential equation (right).

You should have noticed in the previous problem that the solutions to the difference
and differential equations are slightly different than each other. This is no surprise since
we are taking time steps of “1” in the difference equation and we are taking much finer
time steps in the differential equation. Note further that the only way to make the ap-
proximate solution to the differential equation accurately portray the actual dynamics of
the differential equation we would need to take At — 0. Doing so is clearly infeasible on
a computer since we would need infinite memory to do so. We settle, instead, for taking
At to be small (0.1 or 0.01 or smaller).

Definition 3.28 (Euler’s Method). To numerically approximate the solutions to the
differential equation

dy _
T =f(t,y)
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we approximate the derivative with

d_y ~ Vn+l = Yn
dt At

and use the difference equation
Ynt1 = Y+ ALf (8, 90)

to build an approximate solution.

Remember that the only reasonable choice for At is to make it very small. The trade off to
choosing At small is that it will take more computer memory to approximate the problem.

A way to think about Euler’s method is that at a given point, the slope is approximated
by the value of the right-hand side of the differential equation and then we step forward
At units in time following that slope. Figure 3.5 shows a depiction of the idea. Notice
in the figure that in regions of high curvature Euler’s method will overshoot the exact
solution to the differential equation. However, taking At — 0 theoretically gives the exact
solution at the trade off of needing infinite computational resources.

3 y —— Exact solution
--- Bulerwithh=1
e Euler with h = 0.5

Figure 3.5. A depiction of Euler’s method with step size h =1 (red) and h = 0.5 (blue).

In Figure 3.6 we see a graphical depiction of how Euler’s method works on the dif-
ferential equation y” = y with At = 1 and y(0) = 1. The exact solution to the differential
equation is y(f) = ¢! and at t = 1 the solution is (1) = ¢! ~ 2.718 and is shown in red in
the figure. We can see that for large step sizes Euler’s method will drastically miss the
true dynamics of the differential equation.

In Excel the process of building an Euler solver is relatively simple. In MATLAB it takes
a bit more work the very first time, but trust me, the work will pay off in the long run!
Think carefully about the computer resources necessary to truly capture the dynamics
of a differential equation with Euler’s method: very small step size and lots of computer
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Euler

02 04 06 08 1

Figure 3.6. Graphical depiction of Euler’s method. Here we use the simple differential
equation y’ = y with y(0) = 0.5 and At = 1. The exact solution is shown in red.

memory. In Excel this means lots of dragging with the mouse which is slow, cumbersome,
and annoying. Let’s build the same problem in MATLAB.

Problem 3.29 (Euler’s Method in MATLAB). Open MATLAB and create a new script. The
code given below sets up and plots the numerical solution to the problem

dy

— =-0.5p+0.1.

dt -
Explain what each line of code does using comments. Some of the lines of code are likely

new to you so I suggest you either use the help command or you do some basic experi-
mentation.

clear; clc; clf;

tmin=0; % define the minimum time

tmax=5; % define the maximum time

dt = 0.1; % what is this line doing?

IC = 1; % define the initial condition for the problem
t=tmin : dt : tmax; % what does this line do?

y=zeros (size(t)); % what does this line do?

y(l) = IC; % what does this line do?

for n=1l:length(t)-1 % what does this line do?

y(n+tl) = y(n) + dtx(=0.5+y(n)+0.1);

T L T S O L N

—
o

end
plot(t,y, 'b"), grid on, xlabel('time'), ylabel('y(t)")
title('Euler Approximation')

_ =
(S SR
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Problem 3.30. Experiment with different values of At in your MATLAB code. I hope that
you realize that this code is now FAR more flexible than using Excel even though it takes
a bit more thought to set up at the beginning. A

Problem 3.31. Modify your Euler’s method MATLAB code to get an approximate solution
to the differential equation

y'=—y'(1 —%)+0.1t where p(0) =2

A

Problem 3.32. Modify your Euler’s method MATLAB code to get an approximate solution
to the differential equation
2
Y = —y(l _ %) +sin(t)
for several different initial conditions. Save your plot in an appropriate place with appro-
priate labels and title. A

Problem 3.33. Solve both of the problems below with MATLAB. For the difference equa-
tion your code should be absolutely identical to that of Euler’s method with the exception
that At = 1. Put the plots on top of each other so you can easily see the differences and
similarities.

a1 —a, = O.25an(1 - %)

dy v
- = 0.25y(1 10).

A

Problem 3.34. Go back to every difference and differential equation that we have build
thus far in this chapter and solve it with both Excel and with MATLAB. A

Save all of the code from both Excel and MATLAB. We will be using numerical approx-
imations to solve both difference and differential equations throughout the remainder of
this course. You will need to be able to build the Euler code in MATLAB without looking
back at old code so take some time in the next few days and practice writing this code.




CHAPTER 3. FIRST ORDER MODELS 86

3.6 Classifying Difference and Differential Equations

In order to properly analyze difference equations it is useful to develop a classification
system for all difference and differential equations. The following definitions describe
several broad classes of difference and differential equations that will be studied in detail.
These classifications are not merely just names, but they give a hint to the behavior of the
system and the solution techniques.

Definition 3.35 (Linear Difference Equations). In a linear difference equation, the
terms that involve sequence variables (4, or a,) involve no products, no powers, nor
functions of sequences variables such as exponentials, logarithmic, or trigonometric.

Definition 3.36 (Linear Differential Equations). In a linear differential equation, the
terms that involve output function y(¢) involve no products, no powers, nor nonlinear
functions of y(t) such as exponentials, logarithmic, or trigonometric.

Definition 3.37 (Nonlinear Difference and Differential Equations). A difference or
differential equation is called non linear if it is not linear.

Definition 3.38 (Homogeneous Difference and Differential Equations). A difference
or differential equation is called homogeneous if the only terms that appear in the
relationship are ones which involve the output variable (e.g. a, or a,,, in difference
equations or y(t) in differential equations).

Definition 3.39 (Nonhomogeneous Equations). A difference or differential equation
is called nonhomogeneous if it is not homogeneous.

Example 3.40. Classify each of the following first order models.

dy

37 =Y (3.6)
bn+1_bn:b% (3.7)
Xp41 — X, = 0.5x,, + sin(n) (3.8)

dx ,

i xsin(t) (3.9)

Solution:
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* Equation (3.6) is a first order nonlinear homogeneous differential equation. It
is first order because it only contains first derivatives. It is nonlinear because of
the square on the y on the right-hand side. It is homogeneous because there is
nothing else being added to the y term on the right-hand side.

* Equation (3.7) is a first order nonlinear homogeneous difference equation. It is
first order because it only contains a difference between b,,; and b,,. It is non-
linear because of the square on the b, on the right-hand side. It is homogeneous
because there is nothing else being added to the b, term on the right-hand side.

* Equation (3.8) is a first order linear non-homogeneous difference equation. It is
first order because it only contains a difference between x,,,; and x,,. It is linear
because the only thing happening to the x,, on the right-hand side is multiplica-
tion by a scalar. It is non-homogeneous since there is a sin(n) term added to the
right-hand side.

* Equation (3.9) is a first order linear homogeneous (non-autonomous) differen-
tial equation. This equation is linear because it only contains the first derivative.
It is linear since no non-linear functions act on the x on the right-hand side. This
equation is called “non-autonomous” since there is a “t” on the right-hand side
— that is, the rate depends not only on x but also on .

Problem 3.41. Classify the following using the words
 “difference equation” or “differential equation”
* “linear” or “nonlinear”
* “homogeneous” or “non-homogeneous”

If an equation is nonhomogeneous then give the type of function for the nonhomogeneity.
For example, the equation a,,; —a, = 0.5a, + 10 is a linear nonhomogeneous difference
equation with a constant nonhomogeneity.

Ape1—a, =3a, + n® (3.10)
P,.,-P,=5P, (3.11)
P’(t) =5P(t) (3.12)
b'(t)=(b(t)*+1 (3.13)
bn+1 _bn :(bn)2+1 (3-14)
Apt+2 = Anlp1 (3.15)
f'(t) = J%th (3.16)
Apyn = Aye1 +3a, (3.17)
v'(t) = 3y(t) + t* (3.18)
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3.7 Technique: Solving 19 Order Linear Homogeneous Equa-
tions

In this section we will solve the most basic difference and differential equations.

a,.1 —a, =ra, with initial condition a (3.19)
v’(t)=ry(t) with initial condition (0) = vj. (3.20)

The reader should note that (3.19) is a linear homogeneous difference equation and (3.20)
is a linear homogeneous differential equation. These solution techniques will be the basis
for all future solution techniques so take careful note of the techniques ... we’ll use them
a lot!!

Problem 3.42. We wish to solve the difference equation a,,,; —a,, = ra, with initial con-
dition ag. Fill in the blanks in the following table to arrive at an analytic solution to this
difference equation.

| a
0 ap
1 a) = ap
2 a) = a) = ap
3 as = ap, = ap
4 ag = as = ap
k| a= ag

A

Your work in the previous problem has just provided sufficient evidence to believe
following theorem.

Theorem 3.43. If a,,,| —a, = ra, with initial condition a, then the analytic solution to
the discrete dynamical system is
a = - ay. (3.21)

Problem 3.44. Returning now to the original difference equation from this chapter, find
the solution to the difference equation

P,.;-P,=-0.5P,

with initial condition Py = 50. Use Excel to make a plot of the analytic solution along with
a numerical solution. A

Now let’s solve equation (3.20). To do this we’ll need to make a simple observation
about calculus.
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Problem 3.45. There are two functions that have the property that they are equal to their
derivative. Both of these equations solve the differential equation y’(¢) = y(¢). The first

solution is the function y(t) = 0 since %(O) = 0. What is the other solution function? A

Now let’s solve almost the exact same differential equation: y’(t) = ry(t).

Problem 3.46. Based on your answer to the previous problem, what is the solution to the
differential equation y’(t) = ry(t)? A

You should notice that in both the difference equation, 4,1 —a, = ra,, and the dif-
ferential equation, y(t) = ry(t), the solution turns out to be exponential. The only big
difference is the base of the exponential.

Theorem 3.47. The solution to the differential equation y’(¢) = ry(t) with initial con-
dition p(0) =y is
y(t) =

Problem 3.48. Solve the following first order homogeneous difference and differential
equations.

A1 —a, =3a, with ayg=7
v(t)=3p(t) with p(0)=7

b,.1-b,=-0.3b, with by=7
x'(t) =-0.3x(t) with x(0)=2

A

Problem 3.49. Write a mathematical model associated with each of the previous equa-
tions. A
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3.8 Technique: Solving 1°" Order Linear Nonhomogeneous
Equations

We now turn to finding analytic solutions to the difference equations and differential
equation that we’ve encountered thus far. We will start with a technique, called separa-
tion of variables, that only applies to differential equations since in differential equation
we can leverage the ideas of calculus. We will then look at a powerful technique called the
method of undetermined coefficients that works for both differential equations and differ-
ence equations. With practice you’ll get the hang of which one to use in which instances.

3.8.1 Solution Technique: Separation of Variables

Problem 3.50. Consider the differential equation

dy
I Y
with the initial condition y(0) = 1.
(a) Putting the differential equation into words:

the derivative of some unknown function is equal to the function itself.
what is the function?

(b) Allow me to abuse some notation:
If you multiply both sides by dt and divide both sides by y we end up with

Y _ .
y

Integrate both sides and solve for y. Don’t forget the arbitrary constants resulting
from indefinite integrals.

(c) Compare your answers to parts (b) and (c).
A

Problem 3.51. In part (b) of the previous problem we said that we were “abusing nota-
tion”. What does that mean? What notation is being abused? A

Technique 3.52 (Separation of Variables). To solve a differential equation of the form

d
= = f(y)-g(x)

Separate and integrate by treating the “dy/dt” as a fraction®

dy
) f glx)dx
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Notice that the right-hand side of the differential equation factors perfectly hence
separating the variables into the functions f and g.

“Technically speaking the “dy/dt” is not a fraction it is a shorthand notation for a limit. More techni-
cally there is some sneaky chain rule happening behind the scenes here ... can you find it.

Problem 3.53. With your partner, write a differential equation that can be solved via
separation of variables. Once you have your equation trade with a different group and
solve their equation. A

Example 3.54. Solve the differential equation

% =0.5y with y(0)=7

using the method of separation of variables.
Solution: Notice that this differential equation is separable since we can separate the
functions of y and the functions of ¢

d_y =0.5dt.
y

Integrating both sides of this equation we get

J%dy:JO.Sdt — In(y)+C; =0.5t+C,.

Notice that if we subtraction the constant C; from both sides we actually just get a
new arbitrary constant on the right-hand side. For this reason it is customary to only
write one of the two constants when showing the work for this method

In(y) = 0.5t + C.
Exponentiating both sides of this equation gives
y(t) = e051C
and we can now recognize that this is the same, algebraically, as

y(t) — 60'5t€C.
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Furthermore, €€ is just another constant so we write the general solution as
p(t) = Ce®",

To get the value of C we substitute ¢ = 0 into the equation to get 7 = Ce? which implies
that C = 7 and the solution is
y(t) = 7¢">".

Example 3.55. Solve the differential equation

d
E%:3y+12 with  (0) =2

using separation of variables.
Solution: We're first going to factor the right-hand side of the differential equation
so that the integration that we run in to is not so hard.

dy
E = 3(}}4‘4)

Separating and integrating gives

Jﬁdy:f?wit — In(y+4)=3t+C.

Exponentiating both sides and repeating the same type of algebra as in the previous
example we get
y+4=_Ce.

Finally, we can subtract 4 from both sides of the equation to get the general solution
y(t) = Ce’' - 4.
Using the initial condition we see that
2=C-4 = C(C=6

which implies that

p(t) = 6> — 4.

Problem 3.56. A drug is eliminated from the body via natural metabolism. Assume that
there is an initial amount of A; drug in the body. Which of the following is the best
differential equation model for the drug removal? Once you have the model solve it with
the appropriate technique.
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3. A'=—kA(1-42-)
4. A’ = —kAt
A

Problem 3.57. An ideal ice cube that is exactly cube shaped (perfect squares on all sides)
melts in your drink. A differential equation that models the melting of the ice is

av

— =kS(t

T (t)

where S(t) is a function describing the surface area of the ice cube.
(a) Explain why this differential equation is physically reasonable.

(b) Write down the geometric formulas for the volume and the surface area of a cube in
terms of the length of the side, x:

Vix) = S(x) =

(c) Solve the surface area function for x as a function of S.
(d) Substitute your answer from part (c) into the x in the volume equation in part (b).

(e) Rewrite the differential equation

av
— =kS
dt
in terms of V using your answer from part (d).
(f) Solve the differential equation resulting from part (e) using separation of variables.
A

Problem 3.58. Suppose that a cup of coffee is initially at a temperature of 105° F and is
placed in a 75° F room. Newton’s law of cooling says that
dT
— =-k(T-75
T ( )

where k is a constant related to the insulation properties of the coffee mug.

(a) Suppose you measure that the coffee is cooling at one degree per minute at the time
the coffee is brought into the room. Use the differential equation to determine the
value of the constant k.

(b) Find all solutions to this differential equation.

(c) What happens to all of the solutions as t — co? Explain how this agrees with your
intuition.
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(d) What is the temperature of the cup of coffee after 20 minutes?

(e) How long does it take for the coffee to cool to 80°F?
A

Problem 3.59. In a dog, an intravenous dose of 30 mg of pentobarbital sodium per kilo-
gram of body weight will usually produce surgical anesthesia. Also in the dog, pento-
barbital has a biological halflife of about 4.5 hours, due almost entirely to metabolism.
You anesthetize a 14-kg dog with the above dose of pentobarbital. Two hours later the
anesthesia is obviously beginning to lighten and you want to restore the original depth of
anesthesia. How many milligrams of pentobarbital sodium should you inject? Write and
solve a differential equation to answer this question. A

Problem 3.60. In a local pine forest the Pine Beetle is killing the trees at a rate propor-
tional to the number of available trees in the forest. A conservation group is attempting
to curb the problem by planting 5 live trees per week. Write a differential equation de-
scribing this scenario, classify the differential equation, and determine if it can be solved
with separation of variables. A

Problem 3.61. Solve each of the following differential equations. If an initial condition
is given then use it to find any unknown constants. (Some of these may require advanced
integration techniques)

E—(2—t)y:2—t
ld_y:tz—%}
t dt
dy
—Z =2p+2, =2
i v(0)
dy

We’ll wrap up this subsection with a few more examples.

Example 3.62. Solve the differential equation

d :
d_}t}:ty_z with p(1)=5

using separation of variables.
Solution: We can separate variables, integrate, and do some algebra to get

de—y:J% — ln(y):—%+C —  p(t)=Ce

Using the condition y(1) = 5 we see that 5 = Ce™! which implies that C = 5e and the
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solution to the differential equation is

y(t) =5¢" ",

Example 3.63. Solve the differential equation

dy _ 2ty
dt  t2+1

using separation of variables.
Solution: If we separate the variables and integrate we see that

fd—y:f 2 3 — Infy)=In@E+1)+C.
v t2+1

The right-hand integral used the idea of u-substitution (you should stop now and
work out the u-substitution by hand). Exponentiating both sides gives

y(t) = eln(t2+1)+C _ Celn(t2+1) _ C(t2 +1).

For more problems related to separation of variables see Active Calculus Section 7.3.

3.8.2 Solution Technique: Undetermined Coefficients

Now let’s focus on a solution technique that works for both difference and differential
equations. When faced with a separable differential equation you’ll find that separation
of variables will always be easier. However, not all differential equations are separable!
For example, the differential equation y’ = 0.5y + t cannot be separated. Furthermore,
separation of variables makes no sense on difference equations since there are no deriva-
tives.

You can think of this new method, the method of undetermined coefficients, as mathe-
matical detective work. We're going to guess the form of the solution and then follow our
noses to find the missing coefficients — hence the name undetermined coefficients.

Technique 3.64 (Undetermined Coefficients). The method of undetermined coefficients
is roughly outlined as:

1. find a solution for the homogeneous equation,
2. conjecture a particular solution for the non-homogeneous equation,

3. use the initial condition to find a relationship between some of the coefficients,
and



https://activecalculus.org/single/sec-7-4-separable.html
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4. use the particular solution in the equation to find the remaining coefficients.

We'll highlight this technique with a sample problem. Work through all of these steps
to get the idea of how to use undetermined coefficients.

Problem 3.65. Solve the following first order linear non-homogeneous differential equa-
tion by following the steps outlined.
d
d_}t) ~ 02y+3 with y(0)=5
(a) First solve the homogeneous part of the equation: y” = —0.2y. Don’t use the initial
condition yet.

yhom(t) =

(b) Next conjecture that a particular solution has the same functional form as the non-
homogeneity. In this case the non-homogeneity is a constant function so we guess
that the particular function is a generic constant function

yparticular(t) =C.

(c) The full analytic solution to the differential equation is the sum of the homogeneous
and particular solutions: y(t) = Ypom(t) + Ypars(t). Note that this is only the case for
linear difference or differential equations.

y(t) =

(d) Substitute the particular solution into the differential equation and see what equa-
tion comes out

(e) Substitute the initial condition into the analytic solution and see what equation
comes out

(f) Determine the final solution
A

Problem 3.66. Leave all of your work from the previous problem somewhere you can
see it. We’re now going to solve a difference equation of the exact same form using the
method of undetermined coefficients.

Solve the difference equation

a,41 —a, =—-0.2a,+3 with ay=5.

(a) First solve the homogeneous part of the equation: a,,; —a, = —0.2a,. Don’t use the
initial condition yet.

Apom =
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(b) Next conjecture that a particular solution has the same functional form as the non-
homogeneity. In this case the non-homogeneity is a constant function so we guess
that the particular function is a generic constant function

Aparticular = C.

(c) The full analytic solution to the differential equation is the sum of the homogeneous
and particular solutions: a, = ayg, + aperr- Note that this is only the case for linear
difference or differential equations.

a, =

(d) Substitute the particular solution into the difference equation and see what equation
comes out

(e) Substitute the initial condition into the analytic solution and see what equation
comes out

(f) Determine the final solution
A

Problem 3.67. Time for a compare and contrast. Put the solutions to both of the previous
two problems somewhere you can see both of them. Compare and contrast the steps.
Once you’ve convinced yourself that there is essentially no difference in the technique
for either difference or differential equations, plot both equations on the same coordinate
plane and discuss the similarities and differences. Where did the differences come from?
A

Technique 3.68 (Undetermined Coefficients). To solve a non-homogenous linear dif-
ference or differential equation:

1. Solve the associated homogeneous equation.

2. Conjecture a particular solution that has the same functional form as the non-
homogeneity.

3. Build the full analytic solution as a linear combination of the homogeneous and
particular solutions.

4. Substitute the particular solution into the difference or differential equation.
5. Substitute the initial condition(s) into the analytic solution.

6. Use the equations that you found in steps 4 and 5 to find the constants.
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L J

Problem 3.69. For each of the following linear non-homogeneous difference or differen-
tial equations write the homogeneous solution and the particular solution.

(@) p'=3y+4  Ypom(t) = and Yp.(t) =

(b) ay41—a,=3a,+4 Ahom = and ap,,; =

(€) p'=3yp+4t  Yhom(t) = and Yyqri(f) =

(d) a,41 —a, =3a,+4t Apom = and a,4.¢ =

() v/ =3y+4sin(t)  Yyoult) = and Yyqp(t) =

(f) a,41 —a, = 3a, + 4sin(n) Ahom = and a,4; =
(8) ¥ =3y+4e"  ypom(t) = and Yy (t) =

(h) a, .1 —a, =3a,+4e™" Ahom = and a,q =

A

Problem 3.70. Solve all of the differential equations in the previous problem using either
separation of variables (if possible) or undetermined coefficients. For each one use y(0) =
2. A

Example 3.71. Solve the difference equation a,.,; —a, =a, — 1 with ag = 5.
Solution: Notice that this is a linear non-homogeneous difference equation so we can
use the method of undetermined coefficients.

1. The homogeneous difference equation is a,,; —a, = a4, so we know that the
general homogeneous solution is ay,,, = Cy - 2".

2. The non-homogeneity is constant so we guess that the particular solution will
be constant: a,,,; = Cy.

3. The analytic solution takes the form a, = Cy- 2" + C;.
4. Putting the initial condition into the analytic solution gives 5 = Cy + C;.

5. Putting the particular solution into the original difference equation gives C; —
C; = C; — 1 which implies that C; = 1. Together with the information from the
previous step we also now know that C, = 4.

6. The analytic solution to the difference equationis a,, =4-2" + 1.
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Example 3.72. Solve the differential equation y’ =y — 1 with y(0) = 5.

Solution: We know that the steps from the previous example will be exactly the same
with the exception of the homogeneous solution. Therefore we know that the general
solution is y(t) = Cpe’ + Cy, the value of C; is C; = 1, and the value of Cy is Cy = 4.
Therefore the analytic solution to this differential equation is y(t) = 4e’ + 1.

Example 3.73. Solve the differential equation y’ = 2y + 7t with y(0) = 3.
Solution: We will use the method of undetermined coefficients.

1.

The homogeneous differential equation is y” = 2y and the associated solution is
Vhom(t) = Ce?.

. The non-homogeneity is linear so we assume that the particular solution is a

linear function. The most general form of a linear function is: 9,,.+(t) = C1t+Cy.

. The full general solution is

y(t) = Coezt ar C1t+ Cz.

. Putting the initial condition into the analytic solution gives

3:C0+C1'0+C2.

Putting the particular solution into the differential equation gives
Cl = 2(C1t+ Cz) + 7t.

We can rewrite this as
0t + C] = 2C1t+2C2 +7t,

and now we match coefficients to get

0= 2C1 +7
and
Cl = 2C2
From this we see that C; = -7/2 and C, = —7/4. Furthermore, we can use the

result from the previous step to get Cy =3-C, =3+7/4=19/4.

The solution is
=0 7,7
= —e° — —ft — —,
y 4 2" "1

Problem 3.74. Solve the difference equation a,,, —a, = 2a,, + 7n with a, = 3. A
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Example 3.75. Solve the differential equation y’(t) = %y + cos(t) with y(0) = 1.
Solution: We will use the method of undetermined coefficients.

1.

2.

The homogeneous equation is 3" = 1 and the solution is Py, (t) = Coe™’>.

The non-homogeneity is a trigonometric function so we use a linear combina-
tion of both sine and cosine for the particular solution:

Ypart(t) = Cy cos(t) + Cysin(t).

. The full general solution is

p(t) = Coe'’ + Cy cos(t) + Cy sin(t).

Putting the initial condition into the analytic solution gives

1=C0+C1+0C2 21:C0+C1.

. Putting the particular solution into the differential equation gives

—C;sin(t) + C, cos(t) = = (C; cos(t) + C, sin(t)) + cos(t).

W =

At this point we do some fun algebra. The “equal sign” must be true for all t so
we can match the like terms and write two equations. For the coefficients of the
sine functions we must have

1
—C; = =C,.
1 E 2

for the coefficients of the cosine functions we must have

1
C,==-C;+1.
2=3%1

. We now have three equations with three unknowns. I’ll write them very care-

fully so we can switch to matrices and solve using Gaussian Elimination easily.
1C0+1C1 +OC2 =0
1
0C0+1C1 +§C2 =0

1
0C0+ gcl —1C2 =-1
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Switching to matrix notation we have the augmented system and resulting row
reduction

1 1 00 1 0 -1/3 |0 1 0 0 3/10
0 1 130 [(—»]0 1 1/3 0O [-] 01 0]-3/10 |.
0 1/3 -1 |-1 0 0 -10/9|-1 0 0 1| 9/10

7. The analytic solution is

3 3 9
Eem ~10 cos(t)+ 10 sin(t).
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3.9 Modeling Explorations with Difference and Differen-
tial Equations

Problem 3.76. A whiffle ball is dropped from a height with no initial velocity. From
Newton’s laws of motion we know that the sum of the forces on the wiffle ball, ) F, is
given by the product of the mass and the acceleration: ) F = ma. The two primary forces
are gravity and drag so

ma = Fgmvity + Fdrag-

The force due to gravity is Fg, i1y = mg and the force due to drag is proportional to the

square of the velocity: Fy,,, = kv?. Also note that acceleration is the derivative of velocity.
Therefore the differential equation modeling this scenario is

mv’ = mg — kv?

which can be rearranged to

Y 2

V=g v
The data given in the table below give the distance (in feet) measured from the drop point
as a function of time (in seconds). Use the data and the differential equation to find the
ratio of the drag coefficient to the mass, k/m (this is best done with technology). Then use
the differential equation and your value of k/m to determine the terminal velocity of the
whiffle ball.
Note that 1 meter =~ 3.28f eet.

| Time (sec) | Distance (feet) |

0 0
0.32601 1.6154
0.72587 8.073
0.86624 11.3219
0.97305 14.232
1.18558 20.0783
1.28771 23.4167
1.41354 27.3056
1.61894 34.1013
1.76001 39.3958

A

Problem 3.77. In the Great Lakes region, rivers flowing into the lakes carry a great deal
of pollution in the form of small pieces of plastic averaging 1 millimeter in diameter. In
order to understand how the amount of plastic in Lake Michigan is changing, construct
a model for how this type pollution has built up in the lake. We’ll walk through the
process.

You’ll need the following basic facts:

e The volume of the lake is 5 x 10!2 cubic meters.
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* Water flows into the lake at a rate of 5 x 10'? cubic meters per year. It flows out of
the lake at the same rate.

* Each cubic meter flowing into the lake contains roughly 3 x 10~% cubic meters of
plastic pollution.

(a) Let’s denote the amount of pollution in the lake by P(t) where P is measured in
cubic meters of plastic and t is in years. We want to build a differential equation for
the amount of pollution:

P
6;—t = Rate that Pollution Enters — Rate that Pollution Exits

* What is the rate that pollution is entering the lake? This will be a number.

* What is the rate that pollution is exiting the lake? This will be a function of P
since we don’t know how much pollution is in each cubic meter of water in the
lake.

(b) Write the differential equation.

(c) Find and classify all equilibrium points for the differential equation. What do the
equilibrium points mean in context?

(d) Solve the differential equation using an appropriate technique assuming that P(0) =
0 (what does this initial condition mean?).

(e) Make a plot of your solution.

Problem 3.78. For each of the following situations,
* write a first order nonhomogeneous linear differential equation,
* find the general solution to the differential equation,
* use the given information to find all of the constants and parameters,

* Identify any equilibrium solutions and determine whether they’re stable or unsta-
ble,

* make a conjecture for a physically realistic initial condition,
* solve the differential equation,
* build an Euler approximation of the differential equation in MATLAB, and

* finally plot the analytic solution and the Euler approximation on the same coordi-
nate axes.
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Once you’ve done all of these mathematical tasks write a detailed technical paper outlin-
ing your solutions to all of the scenarios.

(a) A patient is hooked to an IV which infuses 3mg of morphine per hour. The patient’s
body absorbs the morphine at a rate proportional to the amount in the bloodstream.
Let M(t) be the amount of morphine in the patient’s bloodstream and let k be the
constant of proportionality. Assume that the patient starts with no morphine in
their blood stream and 1 hour later they have 2mg of morphine in their blood-
stream.

(b) When a skydiver jumps from a plane, gravity causes her downward velocity to in-
crease at a rate of ¢ ~ 9.8 meters per second per second. At the same time, wind
resistance causes her downward velocity to decrease at a rate proportional to the
square of the velocity. Let v(t) be the velocity of the skydiver. If there is no initial
downward velocity then v(0) = 0. Assume that 1 second after the jump the sky diver
is traveling 8m/s.

(c) Suppose that you have a water tank that holds 100 gallons of water. A briny solu-
tion, which contains 20 grams of salt per gallon, enters the take at a rate of 3 gallons
per minute. At the same time, the solution is well mixed, and water is pumped out
of the tank at the rate of 3 gallons per minute (obviously the water level in the tank
remains constant). Let S(¢) denote the number of grams of salt in the tank at minute
t.

Problem 3.79. Watch the following YouTube videos

* This video describes how to use Excel for calculating a sequence from a discrete
dynamical system.
https://youtu.be/kVx7bZTP9L4

* This video shows how to graph a discrete dynamical system in Excel.
https://youtu.be/k3bwXAeQsKo

* This video shows a bit more about plotting multiple simumlations of a discrete
dynamical system with Excel. https://youtu.be/g60GCmvxCHQ

A

Now consider the following problems related to discrete dynamical systems. For each
problem you need to fully explore the situation by examining all of the possible parame-
ters and hypothetical situations. A good mathematical modeler will consider every pos-
sible case and then present their arguments in a thorough, logical, and complete way.

Problem 3.80. A classmate in MA141 has a credit card that charges 1.25% interest per
month. Suppose he can only afford to pay $75 per month, and he does not make any other
charges on this credit card. Your classmate has already racked up $1,200 on the card and
he seems pretty freaked out about this debt! After all, it is very early in the school year!



https://youtu.be/kVx7bZTP9L4
https://youtu.be/k3bwXAeQsKo
https://youtu.be/g6OGCmvxCHQ
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Model the amount owed on the credit card using a discrete dynamical system (DDS).
Use your DDS model to give your classmate advice about how to handle credit cards.
Use appropriate mathematics and graphics to make your arguments. Scare tactics are
absolutely allowed (and encouraged)!

Some good points might be (but are certainly not limited to):

e If he makes the $75 payments each month, when will he pay off the card and what
will the last payment be? Furthermore, how much will he have paid for this debt?

e If the initial debt was doubled what would happen?

* Is there an initial debt where his $75 payments will only pay the interest (this is
called an equilibrium state)? What happens if he has more on the card that this
amount? What about less? Would you classify this equilibrium as stable or unstable?

* What happens if he changes his payments?

* ...there are many other scenarios that you should explore. Write up your arguments
in a way that will better educate your classmate. Be sure to include all relevant
mathematics and graphics with thorough explanations.

A

Problem 3.81. Presume that there is a population of about 150 moose in the Bob Marshall
Wilderness in northwest Montana (often called “The Bob” ...if you've never been up
there, you absolutely must go!). The Fish, Wildlife, and Parks department in Montana
estimates that in each year about 25 moose permanently migrate out of The Bob to other
places like Glacier National Park, Canada, or further west into the Flathead Wilderness.
They also estimate that about 0.5% of the population die off due to old age and other
natural causes. Finally, they estimate that new moose calves are born equal to about 9%
of the total population in The Bob.

Write a discrete dynamical system for the yearly moose population, model it in Excel,
and then consider the fact that every parameter given in the paragraph above is subject
to variability. Perform a sensitivity analysis on your model by allowing the parameters to
vary by as much as 10%, and use your results to write an informative paragraph to the
Fish, Wildlife, and Parks department of Montana about the moose population in The Bob.

A

Problem 3.82. How long does it take an ant to build a tunnel? That seems like a reason-
able question. If you ever had an ant colony purchased by a well-meaning aunt for you in
grade school you may have watched ants building industriously and you just might have
an idea on this. To answer the question we might need some narrowing of scope, some
simplification, and certainly some identification of terms and variables before we can get
a nice answer. Let us identify some variables and then together make some assumptions
which will lead to a mathematical model.

* Let x be the length of the tunnel in feet that an ant builds.
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* Let T(x) be the time in hours it takes the ant to build the tunnel of length x.

* We can get some idea of our situation by making a sketch.

1. If we are going to create a model for the time T as a function of the length of the
tunnel x should we use a difference equation or a differential equation? Explain.

2. Maybe we can circumvent building a difference or differential equation by simply
writing down an algebraic equation for T(x).

(a) Write down several candidate functions for T(x) and give one or two state-
ments in each’s defense and one or two statements against each.

(b) You may not have gotten very far with part (a), so how about we try some
graphical intuition. Make several sketches of T(x) (tunnel length (x) on the
x-axis and total time (T) on the y-axis). Give one or two statements in each’s
defense and one or two statements against each.

3. Hopefully you see that attempting to jump right on top of T(x) can be hard. So,
instead of going after T(x) directly let us examine

(a) List some assumptions which reflect the reality of such a situation and might
make the model simple in a first attempt.

(b) Modeling change is often times much simpler than trying to create an algebraic
model from scratch. For the present tunnel-building situation, T (x + h) — T (x)
models the amount of time it might take an ant to extend a tunnel from distance
x to distance x + h.

Below are several possible mathematical models for equation T(x + h) — T(x).
Defend or reject each and offer your reasons. Perhaps modify one or two and
make it better. When trying to reject a model consider some trivial cases and
see if it makes sense, e.g., h = 0 or x = 0 or either h or x very large.

i) T(x+h)—T(x)=x+h.

ii) T(x+h)-T(x)=x—h.

111

) T(x+h)-T(x)
) T(x+h)—T(x)
iv) T(x+h)-T(x) =
) T(x+h)-T(x)
) T(x+h)—T(x)

—

\%

vi) T(x+h)-T(x)=c.

4. At this point you are ready to write your own equation.

T(x+h)—T(x)=

(a) List the variables and parameters with all of their units. Also list any assump-
tion on which your equation depends.

(b) Convert your model difference equation to a differential equation with appro-
priate initial conditions.
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(c) Solve the differential equation you create in (d) for T(x). Hint: What initial
condition T(0) will you use?

(d) Use your solution from (c) to determine how much longer it takes to build a
tunnel which is twice as long as an original tunnel of length L. What would
some of your original function models you set forth in 2(a) have told you here?

5. Suppose we had two ants digging from either side of our sand hill along the same

straight line. How would this alter the total time for digging the tunnel?

Of course, we can apply these same principles of our model to real tunnel building
for engineers. If we were considering #5 as related to engineering construction of
a long tunnel of length L, outline some of the issues we should be aware of when
having two crews (one from each end of the tunnel) working on the tunnel.

A

Problem 3.83. Consider a situation in which we are studying Helicobacter Pyloria; an
antiobiotic resistant organism that gives people an upset stomach. Assume that there are
50 Helicobacter Pyloria initially in a Petri dish. We lose 35% of the population each hour
due to “forces of death,” but through a one way hatch, 2 microorganisms per hour can
enter our Petri dish in the first hour, 4 microorganisms per hour can enter our Petri dish
in the second hour, 6 microorganisms per hour can enter our Petri dish in the third hour,
8 in the fourth hour, etc.

1.

Model this situation with (a) a discrete difference equation model and (b) a contin-
uous differential equation model.

State all of your assumptions used in the model building process.

. Is there an equilibrium for your model? If so, what it is? If not, why not?

Solve each of your models numerically. Use Excel for both the difference and dif-
ferential equation models. You will need to use Euler’s method for the differential
equation model (choose a small time step!). Create the plots for the first 12 hours of
the experiment.

Compare your models and comment on differences and similarities.

stress doest
cuse ulcers

V&dof

hellcObacter prlorl
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6. Your models should take the form

Difference Equation: Ape1—ay =t-a,+m-n+b

Difference Equation (after simplifying): ayy1 =1 +r)-a,+m-n+b
d

Differential Equation: d_}t) =r-y+m-t+b

What are the values of r, m, and b for this modeling scenario?

7. We would like to find an analytic solution for each of these models, but we haven’t
encountered these types of difference or differential equations yet. One technique is
to guess the form of the solution and then use the difference equation or differential
equation along with the intial conditions to find the coefficients.

The guesses for this model are:

* Difference Equation:
a, = Cl(l +1’)n + C2t+ C3

* Differential Equation:
y(t) = Clert + Czt + C3

Work with your team to find C;, C,, and Cj for each of the two models.
8. Finally, plot the analytic solutions along side your numerical solutions.
A

Problem 3.84. A lake in northern Montana is dominated by Arctic Grayling (henceforth
called “species A”) but the Department of Fish, Wildlife, and Parks is planning to slowly
introduce Bull Trout (“species B”). The lake is popular with sport fishermen who remove
both species of fish from the lake regularly.

The Department of Fish, Wildlife, and Parks has carefully estimated the number of
fish taken by sport fishing each week, and they have decided to keep the fish population
as constant as possible by replacing the fish lost by an equal number of Arctic Grayling
and Bull Trout. For example, if there are N = 50 fish in the lake at the beginning of the
week and fishermen remove M = 10 fish during that week, then the fish and wildlife peo-
ple will restock the lake with 5 Arctic Grayling and 5 Bull Trout. Hence the population of
the lake will remain N = 50 fish at the end of each week, assuming no new fish are born.
Both fish species swim freely throughout the lake and both are targeted by similar bait
used by sport fisherman.

In your lake you will use N = and M =

In summary:

e The week starts with N = fish.

* The fish swim freely around the lake.
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* M= fish are removed from the lake at random during the week.
* M= fish are restocked at the end of the week. M/2 = of
those fish are Arctic Grayling and M/2 = of those fish are Bull Trout.

1. Conjecture:

(a) What do you think will happen to the populations of species A and B over a
long period of time?

(b) Isit possible that species A will be eliminated from the lake with the restocking
plan? Explain.

2. Simulate:

(a) Use pennies to represent your N fish and decide with your partner(s) which
coin face represents which species. Start your lake with 100% species A.

(b) Decide with your partner(s) how to simulate the swimming of fish, the fisher-
men, and the Department of Fish, Wildlife, and Parks’ restocking plan. Simu-
late roughly 15 weeks of the fish population representing species A and B with
coins. Be sure to let the fish swim thoroughly around the lake and keep track
of the proportions made up by species A and B.

Week # || Number in population || Proportion of population
species A | species B species A species B
1 0

| Wi = O

3. Model:

(a) Propose a verbal model for the rate of change of species B in the lake.

rate at which species B changes =

(b) Explicitly state any assumptions that you are using in your verbal model.

(c) Introduce mathematical notation for your proposed model and write your ver-
bal model mathematically. Be sure to include any necessary condition(s).

model:

condition(s):

4. Analyze:
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(a) According to your model, what is the long term effect on the fish population in
the lake? Use your model to justify your answer algebraically and graphically.

(b) Solve your mathematical model (either numerically or analytically) and com-
pare with your data.

(c) (extension) Suppose now that the Department of Fish, Wildlife, and Parks does
not attempt to keep the population in the lake constant. That is, suppose that
fishing reduces the population by M; fish each week and the Department of
Fish, Wildlife, and Parks restocks M, fish each week. Fully explore this sce-
nario.

Problem 3.85. Niedjatu Elpmeyout
MT Environmental Law Partners
101 Park St.
Helena, MT 59625

O.D.E. Consulting
1601 N. Benton Ave.
Helena, MT 59625

Dear sir or madam:

I have been assigned a case here at my law offices defending a client who got himself into
a quite a sticky situation (or rather, a slippery one). My firm would like to secure your
services to help us understand the physical aspects and data surrounding the event. In
order to protect our client’s anonymity, we will request your discretion in sharing this
information with the press.

Our client allegedly caused an oil spill over some open water while transporting some
cargo. There seems to be some dispute with respect to the amount of oil spilled, and the
EPA (those tree-huggers!) has assigned massive fines, which we dispute. While we con-
cede that there was a small amount of oil spilled, we contend that the amount is really
not nearly as much as they claim. In fact, our client actually improved the local economy
by hiring local workers to assist with containing and cleaning the oil. They should be
thanking our client, really. But I digress.

Here’s where we need your help. We know that as soon as the resulting oil slick was de-
tected, the Coast Guard wanted to document the size of the oil slick. From time to time,
but irregularly, a helicopter was dispatched to photograph the oil slick. On each trip, it
arrived over the slick, the pilot took a picture, waited 10 minutes, took another, and then
headed home. On each of seven trips the size (in area) of the slick was measured from
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both photographs, as below.

Area of oil slick (in miles):
] Initial Obs. \ 10 min. later ‘

1.047 1.139
2.005 2.087
3.348 3.413
5.719 5.765
7.273 7.304
8.410 8.426
9.117 9.127

We would like to request the following information from you.
* Build a model for the growth of the oil slick at time t.

* Predict the size of the oil slick, say at t = 10, t = 20, and ¢ = 120 minutes from the
start of the oil spill.

* Plot your model of the size of the oil slick as a function of time.
 Find the time at which the oil slick was 8 square miles.

¢ Determine the time of each of the observations.

Please help us help our client (who, despite what you might have heard in the news, was
definitely not under the influence of an illegal substance—not at the time of the incident,
anyway). We will have to present your argument in court, so please fully explain your
work in a clear and concise fashion.

Your company was suggested by one Professor Sullivan of Carroll College, whose services
we have used before. He has promised to be available to you, but cannot himself commit
to this work because he is teaching some talented and motivated students techniques in
mathematical modeling this semester.

Looking forward to seeing your results soon.

Sincerely,

Niedjatu Elpmeyout
MT Environmental Law Partners A
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Problem 3.86. A beaker of warm water is placed in a room with an ambient tempera-
ture of 72°F. The data for this experiment can be found in the Newton.x1sx Excel file on
Moodle.

1. Below are 5 proposed differential equation models for the temperature of the water
in the beaker.

% =a (3.22)
il—z; =a+bt (3.23)
% - BfCt (3-24)
o = k(T T, (3.25)
Z—f = kT (3.26)
Z—f = Aekt (3.27)

Spend a few minutes critiquing each of these models. For each model that seems
unreasonable, be sure to give a brief explanation.

2. Choose the most appropriate model from the above list (only 1 of them is the right
one!) and do the following:

(a) Find any equilibrium points and determine their stability

(b) solve the differential equation using an appropriate technique. Your answer
will have some unknown parameters.

3. Use the Solver in Excel to find the value(s) of the parameter(s) in your model so that
your model best fits the data.

4. How would the data (and your solution) change if the beaker had been insulated?

A




Chapter 4
Second Order Models

4.1 Modeling Oscillations

To begin our study of linear second-order differential equations we consider a very simple
physical system: a mass hanging from a spring that is oscillating in time. Figure 4.1 shows
the basic setup for the situation. In Figure 4.1 the mass is oscillating up and down in the
y direction.

Figure 4.1. A mass and spring oscillating system.

Problem 4.1. Consider the mass and spring system in Figure 4.1 Assuming that the mo-
tion is always in the vertical direction, the displacement of the mass at time ¢ is y(¢), the
instantaneous velocity of the mass at the time t is y’(t), and the acceleration is y”(t). New-
ton’s second law: “mass times acceleration equals the sum of the forces” can be used to
write

my” =F,+Fy+ f(t) (4.1)
where m is the mass of the object, F, is the restoring force due to the spring, F; is the force

due to the damping in the system, and f(¢) represents any external forces on the system.

113
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(a)

(c)

Hooke’s Law states that the restoring force of the spring is proportional to its dis-
placement. Use the statement of Hooke’s law to propose an expression for the
restoring force F,. The constant of proportionality is called the spring constant.
Keep in mind that the restoring force works opposite the displacement so be sure
to get the sign correct.

The damping force F; is assumed to be proportional to the velocity and acts in
the direction opposite the direction of motion. Use this statement to propose an
expression for the damping force F;. The constant of proportionality is called
the damping constant. Keep in mind that the damping force works opposite the
velocity so be sure to get the sign correct.

If f(t) is any external force acting on the system then we can finally write a differ-
ential equation describing the motion of the mass and spring system. Write this
system and give a full description of each of the coefficients.

(d) What are the units of the coefficients given that the units of force are Newtons and
1 Newton = 1kg2- m.
s

A

In previous problem we saw a system of the form
my” = —ky - by’ + f(1). (4.2)

This equation can be rearranged to

my” +by’ +ky = f(t). (4.3)

The dynamics of this equation are both very interesting and complex. To get started
consider the next problem.

Problem 4.2. Go to the GeoGebra applet
http://www.geogebratube.org/student/m217165
This applet is designed to allow you to explore the mass spring system

(a)

my” + by’ +ky = f(t)

We will start with an un-driven mass spring system where the forcing function is
zero. In each of the following cases, sketch a plot of the typical behavior seen.

1. Pick several m, b, and k values that generate an over damped system. An over
damped system has the feature that b2 — 4mk > 0. What physical situation
would this scenario model?



http://www.geogebratube.org/student/m217165
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2. Pick several m, b, and k values that generate a critically damped system. A
critically damped system has the feature that b> — 4mk = 0. What physical
situation would this scenario model?

3. Pick several m, b, and k values that generate an under damped system. An un-
der damped system has the feature that b? —4mk < 0. What physical situation
would this scenario model?

(b) Now experiment with a forced spring mass system. Get a feel for what different
forcing terms do to control the behavior of the system.
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4.2 Homogeneous Linear 2" Order Differential Equations

To begin our study of linear second order equations we need to first examine the homo-
geneous equation

my” + by’ +ky =0 (4.4)
where m, b, k are real numbers and m # 0. Taking a clue from the method of undetermined
coefficients we can guess the type of solution to be some sort of exponential function:

rt

Guess: y(t) =e".

Under this guess we can observe that y’(t) = re’ and y”(t) = r?¢"" to rewrite equation (4.4)
as
mre’ + bre" + ke = 0.

After some algebra we see that
e”-(mr2+br+k) =0. (4.5)

The exponential function is never zero when r is a real number so equation (4.5) only
has a solution if mr? + br + k = 0. The left-hand side of this equation is called the charac-
teristic polynomial of the differential equation.

Definition 4.3. If my” + by’ + ky = 0 then the characteristic polynomial associated with
the differential equation is

p(r) = mr? +br +k. (4.6)

Since equation (4.6) is a quadratic equation the solutions can be found via the quadratic

formula
_ —b+ Vb2 — 4mk

r =
2m

There are typically two solutions, r; and r,, to the quadratic equation (or two repeated
roots), and using the guess that y(t) = ¢'" we can write the solutions to (4.4) as

y(t) = Cl erlt + Czerzt.

Recall from high school algebra that it is is possible that there are imaginary solutions
or repeated solutions to a quadratic equation like p(r). In these cases we take a slightly
different form of the solution. To classify the solutions to the differential equation (4.4)
recall that the discriminant of the quadratic function is D = b? — 4mk, and this corre-
sponds to the possibilities listed in the following theorem.
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Theorem 4.4. If my” + by’ + ky = 0 then a typical solution takes the form y(t) = e"*
and the characteristic polynomial is p(r) = mr? + br + k. There are three cases for the
solutions that each depend on the discriminant D = b? — 4mk of the characteristic
polynomial.

’ Discriminant: b% — 4mk \ Roots of p(r) \ General Solution ‘
b?> —4mk >0 2 Roots: 1| # 1, y(t) = Cre + Cye™!
b”>—4mk =0 Single root: r y(t) = Cre + Cyte™
b?> —4mk <0 Complex roots: a + i | y(t) = Cre* cos(Bt) + Coe*" sin(pt)

In each case of Theorem 4.4 we see that there are two unknown constants. In order
to find both constants there need to be 2 conditions: an initial displacement y(0) and
an initial velocity p’(0). The following examples show the typical solutions of various
homogeneous linear second order differential equations.

Example 4.5. Consider the second order linear homogeneous differential equation
v” +4y’+ 3y = 0. Find the general solution to this differential equation.
Solution: If we tie this example to the mass and spring system we have a mass of
m = 1kg, a damping force of b = 4kg/s, and a spring constant of k = 3N/m. The
damping force is rather high in comparison to the restoring force so it is expected that
the spring mass system will lose oscillations rather quickly.

The discriminant is D = b? — 4ac = 16 — 4(1)(3) = 4 so the two roots of the charac-
teristic polynomial are

—4+\/Z_
5 =

_4_\/12

-1 and r, = 5

-3

r =
and by Theorem 4.4 we see that the general solution to y”" + 4y’ + 3y =0 is
y(t)=Cre '+ Cre™™

This is an infinite collection of possible solutions that depend on two constants C;
and C,. In order to have a single solution we must specify an initial condition y(0)
and an initial velocity y’(0).

Figure 4.3 shows several solutions to the differential equation y” + 4y’ + 3y = 0
with various initial displacements and initial velocities. With a damping force of
b = 4kg/s this “mass and spring system” is working in an environment where the
motion is damped rather quickly. Imagine that we are running the experiment in
honey!




CHAPTER 4. SECOND ORDER MODELS 118

Figure 4.2. Several solutions to y” + 4y’ + 3y = 0 shown in example 4.6.

Example 4.6. Consider the second order linear homogeneous differential equation
v”+ 1y’ + 1y = 0. Find the general solution to this differential equation.
Solution: If we tie this example to the mass and spring system we have a mass of
m = 1kg, a damping force of b = 1kg/s, and a spring constant of k = 1IN/m. In this
case the spring constant (the restoring force) and the damping force will play against
each other to create a damped oscillator.

The discriminant is D = b? — 4ac = 1 — 4(1)(1) = —3. Since the discriminant is
negative we will have the sine and cosine solution on the third line of the table in
Theorem 4.4.

-1+V=3 1 V3, -1-v=3 1 3.
n=———=——=+—i and rn=——"—=—-——i.
2 2 2 2 2 2
If we define @ =-1/2and 8 = —‘/75 we get the general solution to y” +y+1 =0 as

(t) = C1e* cos(Bt) + Cre*" sin(Bt)

V3

— y(t) = Cre V* cos (?t) +Cye /2 sin(Tt).

Since there are two constants this is an infinite collection of solutions that depend on
the initial displacement y(0) and the initial velocity y’(0). Figure 4.3 shows several
solutions.

Example 4.7. Consider the second order linear homogeneous differential equation
y” + 6y’ + 9y = 0. Find the general solution to this differential equation.
Solution: The discriminant is D = b? — 4ac = 6°> — 4(1)(9) = 36 — 36 = 0. This is the
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Figure 4.3. Several solutions to y” +y’+y = 0 shown in example 4.6. Notice that this
equation models an underdamped oscillator where some oscillations occur.

second case in the table in Theorem 4.4; a repeated root

_ —6+0

=-3.
2

The solution is therefore
y(t) =C e 3t + Cyte™3,

As in the previous two examples there are infinitely many solutions that depend on
the initial condition y(0) and initial velocity y’(0). Figure 4.4 shows several solutions.

------ y( )=2andy(0)
-9
y() —2andy

Figure 4.4. Several solutions to y” + 69" + 9y = 0 shown in example 4.7. This is a model
for a critically damped oscillator where no oscillations can occur..

The mass spring system can be written as my” + by’ + ky = 0 when there is no external
forcing. This has the same form as the second order linear homogeneous differential




CHAPTER 4. SECOND ORDER MODELS 120

equation in Theorem 4.4. In the mass spring system, the discriminant is
D =b* - 4(m)(k)

and we can classify all such systems with the following definitions.

Definition 4.8. e D=b?>-4mk>0 The system is over damped
e D=b?>-4mk=0 The system is critically damped

e D=b?>-4mk<0 The system is under damped

Theorem 4.9. For the homogeneous mass spring oscillator equation
my” + by’ +ky =0
with m, k, b > 0 there are four primary solution types.

Un-Damped (b = 0):
y(t) = C; cos(wt) + C, sin(wt)

where w = \/g is called the natural frequency of the oscillator.
Under Damped (two complex roots):
y(t) = " (C; cos(wt) + Cysin(wt))
wherer=a+tiw
Over Damped (two real roots):

y(t) = Cie"f + Cye™!

Critically Damped (one repeated real root):

y(t) = Cie"" + Cyte"

Problem 4.10. Use the equation derived in this chapter to change the descriptions of the
mass spring systems to a second order linear homogeneous differential equation. Then
solve the equation with the aid of Theorem 4.4 and the given descriptions of the ini-
tial displacement and initial velocity. State whether each situation is an over- or under-
damped oscillator.

(a) An object with a mass of m = 1kg is suspended from a spring with a spring constant
k = 4N/m. The system is submerged in a liquid causing it to have a large damping
constant b = 5kg/s. The object is lifted up 1meter and let go with no initial velocity.
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(b) An object with a mass of m = 1kg is suspended from a spring with a spring constant
k = 10N/m. The system is submerged in a liquid causing it to have a large damping
constant b = 2kg/s. The object is pulled down 1meter and given an initial velocity
of Im/s.

(c) An object with a mass of m = 10kg is suspended on a spring with spring constant
k = 20N/m. The damping coefficient is b = 30kg/s. The mass is initially held at
equilibrium and is given an initial velocity of 2m/s in the downward direction.

A

Problem 4.11. For each of the following, use the applet https://www.geogebra.org/m/S4ktuMbX
to show the dynamics of situation before you find the analytic solution.

1. Consider a mass-spring system with mass m = 1kg and restoring force k = 4N/m.
Let »(0) =1 and y’(0) = 0. Find the position function p(t).

2. Consider a mass-spring system with mass m = 1kg and restoring force k = 4N/m.
Let »(0) = 0 and y’(0) = 1. Find the position function p(¢).

3. Consider a mass-spring system with mass m = 9kg and restoring force k = 1N/m.
Let »(0) = 3 and p’(0) = 0. Find the position function y(t).

4. Consider a mass-spring system with mass m = 2kg and restoring force k = 18 N/m.
Let y(0) =1 and p’(0) = —1. Find the position function y(t).

5. Consider the motion of a brick with a mass of m = 6kg that is hung from the end of
a spring. When the brick is at rest, the weight of the brick stretches the spring by
0.1m, so that the force of gravity down is equal to the force of the spring pulling up.

(a) The weight the force of gravity on the brick, is equal to the brick’s mass multi-
plied by g, the acceleration of gravity. Use g = 9.8 meters per second squared
to calculate what the spring constant k must be.

(b) Set up a differential equation for the motion of the brick.

(c) The spring is then stretched 0.11 m away from equilibrium and released. To
describe the motion, set up a differential equation with initial conditions.



https://www.geogebra.org/m/S4ktuMbX
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Problem 4.12. Recall that in a spring-mass system Newton’s second law gives:
my” =F,+F,
where
* m is the mass,
 F, is the restoring force (which is proportional to the displacement), and
» F, is the damping force (which is proprotion to the velocity).

Hence, the motion is governed by the equation

my// — _ky _ byl
and after some algebra we get
my” +by’ +ky=0

1. Consider spring-mass system with mass m = 1kg, damping force b = 3kg/s, and
restoring force k = 2N/m. If y(0) = 1 and y’(0) = 0 then find the function modeling
the position: y(f).

2. Consider spring-mass system with mass m = 1kg, damping force b = 2kg/s, and
restoring force k = 1 N/m. If y(0) = 0 and y’(0) = 1 then find the function modeling
the position: y(f).

3. Consider spring-mass system with mass m = 2kg, damping force b = 4kg/s, and
restoring force k = 4 N/m. If y(0) = 1 and p’(0) = 0 then find the function modeling
the position: y(t).

A

Problem 4.13. Classify each of the scenarios from the previous two problems as “un-
damped”, “under damped”, “critically damped”, or “over damped”. A
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4.3 Forced Oscillations

In the previous Section we encountered the mass spring system
my” +by’ +ky=0

where m is the mass of the object, b is the damping term, and k is the restoring force
called the spring constant. In the present situation we will consider what happens with
the right-hand side is not zero, but instead if there is an external force acting driving (or
working in opposition to) the oscillations. The following Preview Activity will get you
started.

Problem 4.14. For a nonhomogeneous linear differential equation, the general solution
takes the form

y(t) = yu(t) +9p(1)

where y;,(t) is the homogeneous solution and y,(f) is the particular solution given the non-
homogeneity. For each of the following second order linear nonhomogeneous differential
equations, write the homogeneous solution and a possible particular solution.

(a) " +5y"+ 6y =sin(2t)
(b) v’ +4y=¢!

(c) v"+6y'+9y =2+t

Resonance

Consider an undamped mass spring system forced by an oscillating term with amplitude
R and a frequency w.
my” + ky = Rsin(wt).

The homogeneous solution can be found by solving my” + ky = 0 and the particular solu-
tion will take the form of a sinusoidal function with frequency w. The natural frequency
of the homogeneous equation is w, = Vk/m by Theorem 4.4. When the natural frequency
of the homogeneous solution and the natural frequency of the forcing term match we get
the phenomenon called resonance.

The following activity will walk you through solving problems with resonance.

Problem 4.15. Consider differential equation y”’ + 4y = sin(2¢). This can be viewed as a
mass spring system with a restoring force of k = 4, no damping force b = 0 and a forcing
term f(t) = sin(2t).

(a) Use the ideas from the previous Section to write a general solution to the homoge-
neous equation y”' + 4y = 0.
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(b) Conjecture the form of the particular solution y,(¢) that matches the form of the
nonhomogeneity. In this case the homogeneous solution and the particular so-
lution have exactly the same form. The fix for this is to multiply the particular
solution by t. Write the particular solution.

(c) Write the solution as the sum of the homogeneous and particular solutions y(t) =

(1) + Py (1).

(d) Use the initial conditions y(0) = 0 and p’(0) = 0 and the differential equation to
find all of the coefficients. State how these initial conditions relate to the mass
spring system.

(e) Plot the solution for 0 <t < 10 and explain the behavior you see in relation to the
mass spring system.

(f) If the differential equation were changed to y” + 3y = sin(2t) (same forcing term
but different spring constant), what would you expect from the behavior of the
model?
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4.4 Energy in Mass Spring Systems — A Lab Exploration

Background

Consider a simple mass-spring system depicted in Figure 4.5 where m is the mass of an
object suspended by a spring. Given some initial energy or displacement in the vertical
direction the mass will oscillate vertically. Using Newton’s second law of motion we note
immediately that the sum of the forces acting on the mass will be balanced by the product
of the mass and the acceleration:

ma = ZF . (4.7)

There are three primary forces driving the oscillations in the mass-spring system:
* the restoring force due to the spring: F,,
 the damping force working against the motion of the mass: F;, and

* any external forces that may depend on time: f(t).

Figure 4.5. A mass-spring oscillating system connected to a rigid body
above with mass m. The coordinate system uses y = 0 as the rest posi-
tion of the mass with y > 0 indicating positions above equilibrium and
y < 0 indicating position below equilibrium.

For an ideal linear spring, Hooke’s Law states that the restoring force is proportional
to the displacement of the mass from equilibrium: F, = —ky(t). The proportionality con-
stant k is called the spring constant. In simple terms, Hooke’s Law states that if the mass-
spring system has been stretched a long way from equilibrium then the restoring force
will be large. If, however, the mass-spring system has been stretched only a short way
from equilibrium then the restoring force will be small. The negative sign indicates that
the force will pull in the opposite direction of the position and, hence, back toward equi-
librium. Since force is measured in Newtons, the spring constant k has units of Newtons
per meter.

For an ideal linear spring, the force due to drag will oppose the motion in a manner
that is approximately proportional to the velocity of the mass: F; = —by’(t). That is to say,
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if the mass is moving quickly then the force due to drag will be large and if the mass is
moving slowly then the force due to drag will be small. The damping constant has units
of Newtons per meter per second.

External forces, f(t), are any other forces that act on the system. Examples of such
forces would be the presence of a magnetic field, the presence of upward or downward
air currents, a periodic forcing term such as pushes or pulls on the mass or spring, etc.

Using Newton'’s second law (4.7) we can write the balanced forces as

ma=F,+F;+ f(t) (4.8)

Substituting the restoring force, the damping force, and a = y” into (4.8) gives the linear
second-order differential equation

my” (t) = —ky(t) = by’ (t) + £ (t). (4.9)

Rearranging (4.9) algebraically gives the standard form for a linear second-order non-
homogeneous differential equation:

my” +by’ +ky = f(t). (4.10)

It should be noted that the forms of F, and F,; used to build (4.10) are idealizations. If the
spring is stretched too far, if the speeds are too high, or if the materials used are atypical
in some way then different forms of the restoring and damping forces may be necessary.

In this problem we investigate how the mass-spring system (4.10) can be described in
terms of potential and kinetic energy. We begin with a few definitions:

* Kinetic Energy, the energy of motion, is defined as

_ mass X velocity? 1

Ekinetic(t) = 7 Em[y,(t)]z

* Potential Energy in a mass-spring system, also called the elastic potential, is defined

as

_ spring constant x position? 1

Epotential(t) - 7 = Ek[y(t)]z

* The Total Energy in a mechanical system is the sum of the kinetic energy and the
potential energy.

Etotal(t) = Ekineric(t) + Epotential(t)

The units of energy are Newton-Meters or Joules. In terms of a mass-spring system,
kinetic energy is the energy that the mass has due to its motion. If the mass is at rest then
the kinetic energy is zero. Also, if the mass has reached a maximum displacement (and
is just about to turn around and move in the opposite direction) the kinetic energy will
be zero. The potential energy in a mass-spring system is the energy that the mass has
relative to its equilibrium position. If the mass is at equilibrium then it has no potential
energy but if the mass is far from equilibrium it will have a large amount of potential

energy.
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Student Tasks:

The following tasks ask you to explore the mass-spring system by examining the total
energy of the system. The tasks are necessarily open ended meaning that each group
could (and should) get different answers for each task. You should use the MATLAB file
provided on the Moodle page for this exploration. At the end of the explorations you will
write your results in a formal lab report.

1. Make a conjecture: In what cases (related to m, b, k, and f(t)) do you think that
the total energy will be constant? Give a few sentences to support your claim and
then create plots of position, potential energy, kinetic energy, and total energy to
graphically verify your conjecture.

2. More conjectures: In what cases (related to m, b, k, and f(t)) do you think that the
total energy will be decreasing, increasing, or oscillating in a mass-spring system?
Give a few sentences to support your claims.

3. Exploration: Fully explore how the energy behaves in the mass-spring system. To
make your exploration somewhat easier let’s assume the following:

mass = m = 1kg, initial position =y(0) =0m, initial velocity = y’(0) = 1m/sec.

This way you only have the damping constant b, the restoring constant k, and the
forcing function f(¢) to experiment with. The given initial conditions will start the
mass at equilibrium and given it an initial upward velocity.

Use the background information presented earlier in this document to conjecture
and test combinations of b, k, and f(t) that result in the following situations. You
must find the situations listed, and the last item in the following list gives you a
chance to look for situations that are not listed.

(a) Find a combination of parameters where the total energy drops slowly to zero.

(b) Find a combination of parameters where the total energy drops very quickly to
zero.

(c) Find a combination of parameters where the total energy oscillates but never
reaches zero and does not increase for all time.

(d) Find a combination of parameters where the total energy increases for all time.

(e) Find a combination of parameters where the total energy changes initially but
eventually finds a nonzero equilibrium.

(f) Find a combination of parameters where the system exhibits resonance (where
the unforced frequency matches the frequency of the forcing term).

(g) Find a combination of parameters where the total energy oscillates with two
frequencies: a slow frequency and a faster frequency (hint: get the resonant
system first and then change the frequency of the forcing term).

(h) Now go find several other combinations of parameters that give behaviors dif-
ferent than the ones listed above.
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4. Summary: Summarize all of your findings into a well-formated lab report clearly
showing the mathematical and graphical representations all of the cases used in
your experimentations. Your initial conjectures (from problems 1 and 2) may have
been incorrect so take this chance to clarify what you’ve found. Your summary must
include general descriptions of the following four general scenarios.

(
(

a) The total energy remains constant.
b

)

) The total energy drops to zero.

(c) The total energy increases without bound.
)

(d) The total energy oscillates.
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4.5 Modeling Explorations with 2" Order Differential Equa-
tions

Problem 4.16. A large water tower holds 3 million gallons of water, which has a mass
of about 11 million kilograms. When the wind blows, this causes the steel structure to
sway back and forth due to the force. An engineer studying the tower observes that a
steady wind at a speed of 35 mph exerts a force of 1.45 million Newtons on the tower,
causing it to lean 0.27 meters away from equilibrium. The engineer begins by assuming
that the restoring force is proportional to the displacement F = —kx, so that the motion of
the system can be modeled by the differential equation ma = —kx. Here m is the mass of
the tower, a is the tower’s acceleration, k is the spring constant, and x is the displacement
of the tower away from its equilibrium position.

(a) What is the spring constant of the steel structure? (Be sure to use the right units!)

(b) What is the angular frequency w at which the tower will tend to oscillate? (Note
that angular frequency is measured in radians per second.)

(c) Write down the general solution to the differential equation. (This is the version
with the two arbitrary constants that we will have to figure out from the initial
conditions.)

(d) Suppose that the tower is sitting comfortably in equilibrium when a sudden brief
gust of wind gives the tower a velocity of +0.24 meters per second. What function
will describe how the position of the tower changes after this?

(e) Make a plot of this function.

(f) What is the maximum displacement away from equilibrium that the water tower
goes? (Use your graph as an aid, but use your function from (d) to get the exact
value.)

(g) Reading from your graph, what is the period of oscillation? That is, how much time
does it take the tower to go through one complete back-and-forth cycle?

(h) How would your plot be different if there had been a stronger gust of wind? What
would be the same and what would be different?

(i) What function describes the velocity of the tower?
(j) Make a plot of velocity versus time in.

(k) What is the maximum speed that the water tower attains? (Speed is the absolute
value of velocity.) Again, use both your graph and your velocity function.

(1) Where is the water tower when it is moving the fastest?
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(m) Compare your plot of position versus time with your plot of velocity versus time.
You will find that first the velocity reaches a positive peak, then position follows,
then velocity reaches a negative peak, then position follows, etc. Why is this? Ex-
plain in terms of the motion of the physical object.

(n) What function describes the acceleration of the tower?

(o) Make a plot of acceleration versus time.

(p) What is the greatest acceleration experienced by the tower?
(q) Where is the tower when it is accelerating the most?

(r) Another way to analyze motion is to create a phase plot, which puts velocity on the
y-axis and position on the x-axis. Create a plot like this.

(s) This is a strange looking plot! What point on this plot represents our initial condi-
tion?

(t) What is going on when the tower is at a point on the far left side of this curve?

(u) Would the motion of the water tower cause this curve to be traversed in a clockwise
or a counterclockwise direction? Explain your thinking.

(v) Suppose that a month later, the tower is holding 21.5 million kilograms of water,
when it experiences a gust of wind that again gives it a speed of 0.24 m/s. What
function will describe the displacement of the tower?

(w) Make a plot of the resulting position as a function of time.

(x) Now what is the period of oscillation? (Estimate from graph and confirm with po-
sition function.)

(y) The steel framework will experience catastrophic structural failure if it sways more
than 1.2 meters. What is the maximum speed that a gust of wind can give the tower
while it’s holding 21.5 million kg of water before this causes unpleasant results?

(z) Another engineer studies a similar tower in the neighboring town, finding that
while this contains only 9.5 million kilograms of water, it tends to sway back and
forth with an angular frequency of = 0.55 rad/s. What must be the spring constant
of the structure holding up this water tower?

A

Problem 4.17. If we construct an electrical circuit with a capacitor and an inductor in
series we find that the amount of charge on the capacitor Q(t) (with charge measured in
Coulombs) can be modeled by the following differential equation:

d’Q Q
[—= 4+ = _
dt? * C 0,
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where C is the capacitance of the capacitor as measured in Farads, and L is the induc-
tance of the inductor as measured in Henrys, and the second derivative has units of
Coulombs/second?.

(a) If we have C = 2 x 107°F and L = 2 Henrys, what is the general solution to this
differential equation?

(b) Your answer to the first question should include the constant “500.” What units
does this number have? This is called the natural frequency of the circuit.

(c) What is the period of these oscillations?

(d) Suppose we begin with 8 nanocoulombs of charge on the capacitor and no current
flowing through the circuit (Q’(t) = 0). What solution function corresponds to this
set of initial conditions?

(e) Create a graph showing how the charge on the capacitor varies over time. Your
graph should begin at t = 0 and should show only a few periods of oscillation.

(f) How much charge is on the capacitor at t = 10 milliseconds?

(g) New scenario: Suppose we begin with no charge on the capacitor, but charge flowing
through the circuit at a rate of 25 millicoulombs per second. (This is the same as 25
milliamps.) What solution function corresponds to this set of initial conditions?

(h) In this scenario: What is the maximum amount of charge on the capacitor? Give
your answer in microcoulombs.

(i) Create a graph showing how the charge on the capacitor varies over time. Your
graph should begin at t = 0 and should show only a few periods of oscillation.

(j) Now, suppose we begin with 10 microcoulombs of charge on the capacitor and
10 milliamps of charge flowing through the circuit. What solution function cor-
responds to this set of initial conditions?

(k) What is the maximum amount of charge on the capacitor?

(1) If we add an antenna to this circuit, then the voltage from the antenna V/(¢) will be
added to the differential equation like this:

’Q Q
L—+—==V(t).

2 C (*)
Find a function that will serve as a particular solution to this differential equation
with an antenna signal of

(m) What is the maximum amount of charge on the capacitor produced by this particu-
lar solution?
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(n) What is the period of oscillation found in your particular solution? State your an-
swer in milliseconds.

(o) Create a graph showing how the charge on the capacitor varies over time. Your
grap g & 1%
graph should begin at t = 0 and should show only a few periods of oscillation.

(p) A radio uses a circuit like this in order to amplify one frequency, the frequency of
the station that you want to listen to, while ignoring the frequencies of the other
stations. The circuit has a variable capacitor and when the natural frequency of the
circuit matches the antenna frequency that you want amplified, then the circuit pro-
duces a behavior called resonance. If the inductor remains constant at L = 2 Henrys,
then what capacitance C do we need in order for the circuit to have resonance with
an antenna signal at a frequency of 600 radians per second?




Chapter 5

Systems of Difference and Differential
Equations

Thus far we have only discussed difference and differential equations that involved a sin-
gle unkonwn. Unfortunately the world is much more complicated than that! It is more
common to have several variables interacting with each other in a model, and that is
the type of problem that we’ll attack in this chapter. The first three sections are dedi-
cated to one modeling problem each. The subsequent sections focus on linear systems of
equations and some extremely powerful linear algebra tools that we use to analyze such
systems.

5.1 Spread of Disease

Problem 5.1. We're going to try a social experiment.
(a) Everyone in the class get a random number between 1 and 5.

(b) I'm sorry, but if your random number is “1” then you just got infected with the
horribly contagious disease ODEbola. Raise your hand if you are infected.

(c) For the next 15 seconds everyone needs to walk aimlessly around the classroom
(move the tables out of the way and don’t be afraid to bump into each other). This
step is supposed to simulate homogeneous mixing so ... mix homogeneously!

(d) At the end of the 15 seconds stop and stand still. Reach your arms out. If someone
within arm’s reach is infected with ODEbola then you now are too! Raise your hand
if you are infected.

(e) Repeat steps (c) and (d) again. At the end of every step 10% of the infected people
that are infected will recover and are removed from the experiment. Keep track of
the number of people that are infected and recovered at each step. Run the experi-
ment for several iterations

133
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Problem 5.2. Watch the video https://youtu.be/NSNWDUXN2p4 to see a simulation
where a 150 person population has an outbreak and the virus is spread via close proxim-
ity contact. Notice, in particular, the homogeneous mixing. A

Problem 5.3. In the previous problems there were three distinct populations: Susceptible
(S), Infected and contagious (I), and Recovered (R).

(a) Does this problem call for difference equations or differential equations? Why?

(b) The three populations depend on each other? That is, at any given time step do we
need to know all three populations to propagate forward in time or does it suffice
to only know one of them?

(c) Write a system of difference or differential equations for the experiment that we ran
and remember to keep in mind that we were homogeneously mixing the population
the entire time. Think very carefully about how a susceptible person is actually

infected.
Susceptible Population: = with  S(0) =
Infective Population: = with  I(0) =
Recovered Population: = with R(0) =

A model equation would read

rate at which pop is changing = an expression for how the pop is changing

Problem 5.4. Consider the system from the previous problem.
(a) Is the system linear or nonlinear? Why?

(b) What is the expected long-term behavior of this system? Why?



https://youtu.be/NSNWDUXN2p4
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5.2 Spreading a Juicy Rumor

A particularly juicy rumor has cropped up on your college campus. The goal of this
activity is to model the spread of the rumor through the student body by classifying
students into three compartments:

» people who have heard the rumor and spread it to other people (H),
* people who are ignorant of the rumor (I), and
* people who have heard the rumor but refuse to spread it (R).

Problem 5.5. Assume that in a population of 2000 student there is 1 person who knows
the rumor initially so Hy = 1. This means that Iy = 1999 and R, = 0. Using the plots
below, make several conjectures about how the three sub-populations change over time.

Heard the Rumor vs. Time (H,,) Not Heard the Rumor vs. Time (/) Refuses to Spread the Rumor vs. Time (r,)

2,000 : : : 2,000 : : : 2,000
21,500 21,500 21,500
= = =
= 1,000 = 1,000 = 1,000
3 3 i
5 ¢ S
& 500 & 500 & 500

| | | 0 | | | 0 | | |
0 5 10 15 20 0 5 10 15 20 5 10 15 20
Time (days) Time (days) Time (days)

Problem 5.6. The three sub-populations clearly trade individuals as the rumor spreads.
Since this is a closed system we can treat this as a compartment model where each state (H,
I, and R) is connected to the other states based on how the transfer occurs.

There are several ways to organize the model. Use Table 5.1, Table 5.2, the graphical
representation (Figure 5.1), and partially complete difference equations to complete the
mathematical model. Some of the model has been completed for you to, but note that
only one possibility is presented (feel free to change it later). The biggest challenge here
is making conjectures about the way in which the transfers happens.

A
| NewPop. [=| OIldPop. |+ ] Influx From | -| OutputTo |
Heard (new) | =| Heard (old) | + | Influx from Ignorant | — | Output to Refuse
Ignorant (new) | = | Ignorant (old) | + -
Refuse (new) | = | Refuse (old) | + -

Table 5.1. Table to organize transfer between compartments. Fill in the blanks.
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From
Heard Ignorant Refuse
Heard - proportional to H,, - I,
To Ignorant -
Refuse | proportional to H,, -

Table 5.2. Organization table for how the populations might transfer people. Fill in the
blanks.

Ignorant Refuse

Figure 5.1. A graphical representation of how the sub-populations trade people. Fill in
the blanks.

Hn+1 _Hn =
Iy -1, =
Ry —R, =

Problem 5.7. Now we get to think about the modeling process:
* We have a mathematical model.
* Explicitly state your assumptions and simplifications.
* Determine how you might estimate each parameter in the model.

* Solve the mathematical model numerically using Excel (based on your estimated
parameters) and compare with your classmates.

* Analyze the results and see if they seem reasonable.

* Tweak the model to loosen assumptions or to more accurately model reality. This
can include:

- allowing people to forget the rumor;
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- changing the way the rumor transfers;
- adding more compartments; or

- many other possibilities.
e Iterate this process until you think that the model approximates reality.
A

Problem 5.8. The data found HERE contains the proportion of the population that has
heard the rumor at each given time step. Use Excel’s solver along with your numerical
model to estimate the parameters in your model. Your end result should be a plot of all
three population proportions. One modeling step that may simplify things is that we
have a closed population so we know that the sum of the three proportions must be 1 -
hence eliminating one of the populations from the model. A



https://docs.google.com/spreadsheets/d/1jS6w4gFmxFmgaSzDaD90vDOpN2N3-DdadTxkd9pvaMI/edit?usp=sharing

CHAPTER 5. SYSTEMS OF DIFFERENCE AND DIFFERENTIAL EQUATIONS 138

5.3 The H1N1 Virus

The HINT1 Virus (commonly known as Bird Flu) hit your college back in 2010. HINT1 is
a particularly interesting virus since a infected person stays infectious for exactly 7 days
after the initial infection. After that time the person may still be ill but is recovering and
is no longer infectious.

Problem 5.9. Consider a closed population of 1500 students, faculty, and staff at a small
college campus. On a particular day in 2010, 1 person was diagnosed with HIN1. We’ll
assume that person was on the second day of their infectious period. An announcement
went out to everyone on campus to come to the health center the moment they started
feeling symptoms. Three days later, two new people showed up at the health center with
symptoms.

Using the rather small amount of data given in the paragraph above, create a model
for spread of the HIN1 virus through the campus. Consider modeling the population as
9 different compartments:

1. Susceptible,

2. Infectious Day 1,

3. Infectious Day 2,

4. Infectious Day 3,

5. Infectious Day 4,

6. Infectious Day 5,

7. Infectious Day 6,

8. Infectious Day 7, and
9. Recovered.

Use Excel’s Solver to find any parameters in your model. Model first with a system of
difference equations, then discuss with your partners whether you think it would be sci-
entifically and mathematically more appropriate to use a system of differential equations
instead. A
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5.4 Writing Systems of Difference Equations

In order to get a great feel for setting up systems of difference equations this section will
present several examples and activities to simply get your hands dirty. The idea being
that it takes some practice reading these problems and identifying the key components.
Each example will include some sensitivity discussion as well as a peak at the numerical
solutions. Analytical solutions are possible for some classes of systems but we will delay
this discussion until later.

Example 5.10. In the Bob Marshall Wilderness of Montana, black bears and grizzly
bears compete with each other for food. Suppose that in the absence of any compe-
tition or hunting, the black bear population will grow by 10% per year, while the
grizzly bear population will grow by 4%. Each year the competition between the two
types of bears leads to the death of a certain number of each type of bear (due to fight-
ing and food shortages). The number of black bears that die is equal to the product of
the black and grizzly bear populations multiplied by 0.0003. The number of grizzly
bears that die is equal to the product of the black and grizzly populations multiplied
by 0.0001. Assume that there are 1500 black bears and 730 grizzly bears currently
present in the Bob Marshall Wilderness.

(a) Write and numerically solve a pair of difference equations to model the bear
populations.

(b) Modify the model from part (a) to include the unfortunate fact that poachers
kill 30 black bears and 10 grizzly bears per year.

Solution:
Let B, represent the population of black bears at year n and G,, represent the popu-
lation of grizzly bears at year n.

First let us consider the black bear population.

* The population of black bears increases by 10% per year
* The population of black bears decreases from competition
With these two key features in mind the model for the black bear population is
B,.1=B,+0.10-B,—-0.0003B,,G,,.
Next let us consider the grizzly bear population.
* The population of grizzly bears increases by 4% per year

* The population of grizzly bears decreases from competition
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With these two key features in mind the model for the bear population is
G, =G, +0.04-G, —0.0001B,G,.

Obviously these two equations depend on each other because of the competition
terms. Systems that display this property are called coupled. Putting the equations
together in one place and simplifying the algebra we see that the coupled system of
difference equations is

B,., =1.10-B,—0.0003-B, G,
G, =1.04-G, —0.0001-B, -G,

A numerical solution of this model will result in three plots: bear population vs.
time, grizzly population vs. time, and bear population vs. grizzly population. The
last of these is called the phase plot for the system. Figure 5.2 shows the popula-
tion dynamics for the individual bear populations. The right-hand plot in Figure 5.2
shows the phase plot for the two bear populations. To read the phase plot start at the
initial condition and follow the trajectory of the points through the phase space.

If poaching is considered then the model becomes

B,.,=1.10-B,-0.0003-B, -G, — 30
G, =1.04-G,-0.0001-B,-G,—10

Figure 5.3 shows the new population dynamics when poaching occurs.

In the non-poaching scenario it appears that the black bear population is on the
rise (over 3000 bears) and the grizzly bear population is driven to extinction. In the
poaching scenario it appears that the black bear population reaches 600 bears after
36 years and the grizzly bears are driven to extinction within the wilderness area.
Comparing the phase plots (the right-hand figures of Figure 5.2 and 5.3) we see very
different dynamics with the addition of poaching.
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Figure 5.2. Phase plane showing the bear population dynamics
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Phase Plot
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Figure 5.3. Phase plane showing the bear population dynamics

Example 5.11. Suppose that the past voting results of congressional elections at a
certain voting precinct are represented by the three sequences D, (Democrats), R,
(Republicans), and T,, (Tea Party). The voting behaviors of people change according
to the following observations:

’ Last Year’s Vote \ Prediction of This Year’s Vote \ Percent Making This Switch ‘

Democrat Democrat 70%
Democrat Republican 20%
Democrat Tea Party 10%
Republican Republican 50%
Republican Democrat 20%
Republican Tea Party 30%
Tea Party Tea Party 50%
Tea Party Democrat 20%
Tea Party Republican 30%

For example, the second line of the table means that 20% of people that voted demo-
cratic last time will vote republican this time. Model this scenario with a system of
difference equations. Presume that there are 3,000 people in the precinct that are ini-
tially split equally among the voting categories. Is the dynamical system stable over
many years of voting supposing that the transition percentages stay the same?
Solution:

The dynamical system needs only to keep track of how many people are in a particu-
lar group. Therefore the dynamical system is

D,., =0.7D, +0.2R, + 0.1T,,
R,.; = 0.2D, + 0.5R,, + 0.3T,
T,.1 =0.1D, +0.3R,, + 0.5T,

Written in a more convenient matrix notation, this three dimensional linear system
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can be written as

D,.;\ (0.7 0.2 0.1\ (D,
R, |=102 05 03[R,
T,..) lo1 03 o5) (T,

Obviously this is a three dimensional dynamical system so visualization of the numer-
ical solution is challenging. There are naturally 6 two-dimensional plots that come
out of the numerical solution: D,, vs n, R,, vs n, T,, vs n, D,, vs R,,, D,, vs T,;, and R,, vs
T,,- This can also be visualized in a three dimensional phase plot of D, vs R,, vs T,, (we
leave this to the curious reader). For simplicity we only present the three time plots
here. It is clear from Figure 5.4 that over the next 20 years the political parties will
stabilize at equilibrium values and the Democratic party will eventually win. Given
the obvious volatile nature of political parties, the flawed assumption in this model
is that the transition percentages will stay fixed over the next several years.

Democrats vs Time Republicans vs Time Tea Party vs Time
1,500 1,500 1,500
° o000 ®0 0000 0O0OOCOSOIDS
1,000 1;000 ®evseec e 0 000000000 000 17000
Dy, R,l ’1."”'00000.0...0..00...
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n n n
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Figure 5.4. Numerical visualization of the voting problem. The equilibrium state appears
tobe D,, — 1200, R,, — 975, and T,, — 825; hence giving the democrats a clear advantage.

Problem 5.12. Bull trout and rainbow trout are prevalent fish species in Montana’s rivers.
They have very similar feeding, migrating, and spawning habits, and as such they are in
competition for the same food sources. Suppose that in the absence of the other species
in the Blackfoot River, both species would exhibit unconstrained growth. Since the effect
of the presence of the competitor diminishes the growth rate of the other species, we will
consider that this decrease in growth is proportional to the product of the size of the two
competing species. Bull trout are protected in Montana so no fish can be legally taken
from the river. Rainbow trout, on the other hand, are a popular sport fish and roughly
155 rainbows are taken from the river each year by fishermen. Establish a model for this
interaction of the two species of fish in the Blackfoot River. Let n be the number of years
and evaluate the model over a 30 year span. Based on this information should fishing for
bull trout be allowed?
Use the following data for the competing trout:

* Assume equal initial populations of 2500 fish for each species.
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* In the absence of competition, the bull trout population increases by approximately
10% per year at small populations and follow a logistic growth pattern otherwise
with a carrying capacity of 8000 fish.

* In the absence of competition, the rainbow trout population increases by approx-
imately 23% per year per year at small populations and follow a logistic growth
pattern otherwise with a carrying capacity of 8000 fish.

* The constant of proportionality decreasing the bull trout population is estimated to
be approximately 0.0001.

* The constant of proportionality decreasing the rainbow trout population is esti-
mated to approximately 0.0001

A

Problem 5.13. In a distant country, people have only two types of breakfast cereal to eat:
Corn Flakes and Raisin Bran. The people in this country are very loyal to their cereal and
eat their one type of cereal every morning. Every year 200 new people join the ranks of
Corn Flakes eaters, and 650 new people become Raisin Bran eaters every year. Of course
sometimes people get sick of eating Corn Flakes all the time, and they switch to Raisin
Bran. Each year about 5% of Corn Flakes eaters switch to Raisin Bran. Write and solve
a system of difference equations to represent the number of people eating each type of
cereal after n years.

The following system of difference equations models the populations of two types of
animals, A and B.

A1 =0.84, +0.000354,B,
B, = 1.14B, — 0.00055A,,B,,.

In the absence of animal B what is the rate of change of animal A? In the absence of animal
A what is the rate of change of animal B? How does the presence of animal A affect
the population of animal B? How does the presence of animal B affect the population
of animal A. How do these animals interact with each other? Answer these questions
first without solving the system numerically. Check your answers against the numerical
solution.

A
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5.5 Linear Systems

The previous sections had us building models for systems of difference or differential
equations. In this section (and for the remainder of this chapter) will will focus on a
particular type of system — a linear system of difference or differential equations. As you
may have guessed from the name, we will be leveraging Linear Algebra to do the analysis
on these systems. Before we get to that let’s at least build a few linear systems.

Problem 5.14. The little town of Pudunk is filled with people who cannot make up their
minds whether to vote Democratic or Republican at the upcoming election. Each day,
30% of the Republicans switch to the Democratic line, while 50% of the Democratic vot-
ers decide to go with the Republicans. Assume that the population of 1000 people is
initial split 50/50.

Dy —Dy = D, + Ry,
Ryy1 =Ry = D, + Ry

(a) Write the system of difference equations algebraically
(b) Write the system of difference equations using matrices

(c) Use Excel to find a numerical solutions for the system (discuss stability if applica-
ble)

A

Problem 5.15. Deep in the redwood forest of California, dusky-footed wood rats provide
up to 80% of the diet for the spotten owl, the main predator of the wood rat. Assume that
initially there are 1000 rats and 10 owls.

* In the absence of wood rats, the owl population would decay by 50% each year.

e Ifrats are plentiful then the change in owl population from year to year will increase
by 40% of the total rat population.

* In the absence of owls, the population of the rats will grow by 10% per year.
* The owls hunt the rats, so if owls are present the rate population will change by,

let’s say, 10.4% per year.

Opi1 -0y = O+
Ry —Ry = O, + Ry

)
=

(a) Write the system of difference equations algebraically

(b) Write the system of difference equations using matrices
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(c) Use Excel to find a numerical solutions for the system (discuss stability if applica-
ble)

A

Problem 5.16. The female owls in a certain population can be classified as juvenile,
subadult, and adult. Assume that right now there are 10 juveniles, 30 sub-adults, and
20 adults in a small owl population. In a given year,

 the number of new juvenile females in year n + 1 is 0.33 times the number of adult
females in year n,
* 18% of least year’s juveniles becomes subadults,

* 71% of last year’s subadults become adults,

* and 94% of last year’s adults survive.

(a) Write the system of difference equations algebraically
(b) Write the system of difference equations using matrices

(c) Use Excel to find a numerical solutions for the system (discuss stability if applica-
ble)

A

Problem 5.17. Two cell phone service providers, Alpha and Beta, are constantly compet-
ing for the largest market share. Each month 5% of Alpha customers switch their service
to Beta, and each month 7% of Beta customers switch their service to Alpha. The total
number of customers served by the two companies stays fixed.

(a) Write the system of difference equations algebraically
(b) Write the system of difference equations using matrices

(c) Use Excel to find a numerical solutions for the system (discuss stability if applica-
ble)

A

You should now have noticed that every one of the systems we’ve built thus far in
this section can be rewritten in the form x,,; = Ax,. This form is almost exactly what
we experienced from difference equations in previous chapters. In fact, we know how to
find the solution to the difference equation a,,; = ra, with initial condition a,. Perhaps
knowing how to solve the problem in one variable can give us hints about how to solve
the more general linear system.

Problem 5.18. Work with your partner to remember how to solve the difference equation
a,,1 = ra, with initial condition a. A

Problem 5.19. In modeling exercises in this section we wrote the system of difference
equations as a matrix equation in the form: x,,,; = Ax,,. Using the same logic as with the
previous problem, what is the analytic solution to the system of difference equations? A

Wouldn't it be nice if we had a way to easily raise a matrix to a power ...
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5.6 The Eigenvalue / Eigenvector Problem

To answer the question posed at the end of the previous section we now turn our attention
to the second fundamental question of linear algebra: Ax = Ax. We are going to jump
right in to the key definitions and we’ll spend the remainder of this section exploring
these definitions. The following two sections of the book give details about where these
ideas arise in application.

Definition 5.20. Let A be an n x n square matrix
* An eigenvector of the matrix A is a nonzero n x 1 vector x such that Ax = Ax.
* The scalar A is called the eigenvalue of A associated with the eigenvector x.

Note that an eigenvector MUST be nonzero, but the eigenvalue MAY be zero.

In simple language, If x is an eigenvector of A then Ax only scales x. The result of Ax will
be a vector parallel to x, so no rotations (other than 180°) result.

Problem 5.21. Consider the matrix A = (:Z z)

(a) Isx = (i) an eigenvector for A? If so, what is the associated eigenvalue? If not, why

not?

(b) Isu = ) an eigenvector for A? If so, what is the associated eigenvalue? If not,

-2
why not?

(c) Isv = (i) an eigenvector for A? If so, what is the associated eigenvalue? If not, why

not?
d) Isy = " 7| an eigenvector for A? If so, what is the associated eigenvalue? If not,
1 8 g
why not?

(e) The plot below shows the four vectors considered in parts (a) - (d) of this problem.
Sketch Ax, Au, Av, and Ay on the same coordinate plane, indicate which vectors
are eigenvectors, and indicate the eigenvalues geometrically.
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W

A

A

Problem 5.22. Use the GeoGebra applet http://www.geogebratube.org/student/m334841

to explore the following questions.

(a) Approximate the eigenvalue-eigenvector pairs for the matrix
(b) Approximate the eigenvalue-eigenvector pairs for the matrix

(c) Approximate the eigenvalue-eigenvector pairs for the matrix

5.6.1 Geometry of Eigenvectors and Eigenvalues

0 2
1 -1f
1 2
0 -3/

0.25 0.1
0.75 0.9f)

In the introduction to this section we saw that an eigenvector of a matrix is only scaled
by the matrix. This simple geometric fact leads us to the fact that if you know all of the
eigenvalue / eigenvector information about a matrix, you can determine its full behavior

on any vector. This leads us to the following theorem.

Theorem 5.23. Let A be an n x n matrix with eigenvectors vy, v,,...,v, and associated
eigenvalues Ay, A,,..., A,,. If uis an n-dimensional vector and we can write u as a linear



http://www.geogebratube.org/student/m334841
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combination of the eigenvectors
uUu=cCcyVvy +CaVvyp+---CyVy,
then we know the action of A on u

Au = A(clvl +CHVy + "'Cnvn) = clAlvl +C2/\2V2 aF "'Cn/\nvn.

The following example illustrates this idea.

0 1 2
Example 5.24. Let v; = [3], vy = [3], and vz = [ 0 ] be eigenvectors of the matrix A

1 0 —1
3
with corresponding eigenvalues Ay = -2, A, = -1, and A3 = 0. If u =|-3| then what
1
is Au?
Solution:

Since we know all of the information about the eigenvectors, if we can write u as a
linear combination of the eigenvectors then we can easily determine Au.

We need to find ¢y, ¢y, and c3 such that u = ¢;vy +cpv;, + c3v3. This is a system of
equation, and we can write the matrix form of this system as

01 2)\(q 3
-3 3 0 |lea|=]-3].
1 0 -1)lc, 1

Augmenting this system and row reducing gives

0O 1 2|3 1 0 02
-3 3 0|-3|—>--—] 01 0|1
1 0 -1]| 1 0 0 1|1
Therefore,
u=2v;+1vy+1vgy
and

-1
Au = 2/\1V1 arF 1/\2V2 + 1/\3V3 = —4:V1 —Vy = [ 9 ]
—4

Notice that this was done with NO knowledge of A itself.

In the previous example it wasn’t necessary to find the matrix A. In some applica-
tions the eigenvalues and eigenvectors are well known but the matrix is actually needed.
The following example illustrates how to work backwards from eigen-information to the
matrix.
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Example 5.25. Assume that v, = (_2 ) and v, = ( 1 are the eigenvectors of a matrix

3 -1
A with eigenvalues Ay = 3 and A, = —2. What is the matrix A?
Solution:
We know that A is a 2 x 2 matrix so we can write A = (i Z) We know that Av; = 1;v;

and Av, = A,v;, and out of these equations we can write a system of four equations
with unknowns a4, b, ¢, and d.

2a-3b =6
2c-3d =-9

la-1b =-2
le-1d =2

AVl = /\1V1 — {
AV2 = /\2V2 = {

The augmented 4 x 4 system of equations is

2 -3 0 0|6 1 00 0]-12
0O 0 2 -3/-9 N 01 0 0]-10
1 -1 0 0 |-2 0 01 0] 15
O 0 1 -1]| 2 0O 0 0 1/ 13
Therefore,
-12 -10
a=(15 )

Another advantage to eigenvalue / eigenvector information is the ability to easily
examine powers of a matrix. This will be especially important when examining time-
dependent matrix systems where the exponent represents steps in time.

Theorem 5.26. If A is an n x n matrix, A is an eigenvalue of A and v is the associated
eigenvector, then
ARy = 2ky

Furthermore, If A has eigenvalues A, A,,..., A, and eigenvectors vy, v,,...,v, then
if u is an n-dimensional vector with u=cyvy + cyvy +---c,v,,, then

AkU =C1 /\Il{Vl ar C2/\§V2 A oc 'CnA]:an.

Example 5.27. Let A have eigenvalues Ay =4 and A, = 0.1 with eigenvectors v; = (_12)

and v, = (;) Explore the quantities Akv, and A*v, for various values of k.
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Solution:
From Theorem 5.26 we know that A¥v i= /\? Vi Therefore

P of 1 4k
eams ()

ARy, = (0.1)"(2) = (3 (O'I)k).

Similarly,

For larger and larger values of k, the entries of A¥v; grow exponentially and the values
of AFv, decay exponentially to zero.

Problem 5.28. Use the geometry and definitions of eigenvectors and eigenvalues to an-
swer the following questions.

(a) Given that v, = (_12) and v, = (_11) are the eigenvectors of the matrix A = (:; _15),

what are the corresponding eigenvalues?

(b) Find the 2 x 2 matrix A such that v; = (_11) and v, = (_14) are the eigenvectors of A

with eigenvalues 6 and 3 respectively.

(c) If vi = (_23) and v, = (? are the eigenvectors of a matrix A with corresponding

eigenvalues A; =2 and A, =5, then what is A(2v; + 5v;)?
2 5 . : : .
(d) Let vq = 3 and v, = 1 be the eigenvectors of a matrix A with corresponding

, what is Au? Hint: Find ¢; and ¢, such

eigenvalues Ay =2 and A, =5. If u= (107

that u = C1Vq1 +CyVy.
6 1 . . .
(e) If vy = (4) and v, = (_3) are the eigenvectors of A with eigenvalues A; = 3 and
Ay = %, find A%v; and A’v,.

(f) If vi = Z) and v, = (_13) are the eigenvectors of A with eigenvalues A; = 3 and

Ay = %, find limy_,, (Akvl) and limj_, (Akvz).

5.6.2 The Eigenvalue Eigenvector Problem

Given a matrix and a vector it is easy to determine if the vector is an eigenvector. If, on
the other hand, we try to extract the eigenvectors and eigenvalues from a given matrix the
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problem is a bit more interesting. We want to solve Ax = Ax for x, but the unknown is on
both sides of the equation. Doing a bit of (linear) algebra we can rearrange the equation
to get

Ax=Ax = Ax-Ix=0 = (A-A)x=0. (5.1)

The last equation of (5.1) says something very profound about the matrix A — AI when A
is an eigenvalue: this matrix must NOT have an inverse! From our properties of determi-
nants, this means that we must have

det(A—AI)=0.

This determinant will be an n*"-order polynomial equation in A.

Definition 5.29. The characteristic polynomial of a square matrix A is given by
p(A) =det(A-AI).

If A is n x n then
p(A)=c, A"+ cn_l/\”_l +--+prA+po.

We now have a way to find the eigenvalues of a matrix. The process is outlined in Theorem
5.30.

Theorem 5.30. Let A be an n x n matrix. To find the eigenvalues and eigenvectors of
A

1. Find the characteristic polynomial p(A) = det(A — AI).

2. Set the characteristic polynomial to zero to get the characteristic equation

det(A — AI) = 0.

3. Solve the characteristic equation for all values of A. These are the eigenvalues
of A.

4. For each eigenvalue A, find x such that (A — AI)x = 0. The nonzero solution to
this system of equations is the eigenvector of A associated with the eigenvalue
A

The observant reader should note that step 3 of the eigenvalue process is often very
difficult or simply impossible to do by hand. This is the step that makes the eigenvalue /
eigenvector problem so difficult! For a 2x2 matrix, the characteristic equation is quadratic
and there is a convenient formula to find the roots. For a 3 x 3 matrix the characteristic
polynomial is cubic. There is a formula to solve the general cubic similar to the quadratic
formula (due to Gerolamo Cardano in the early 1500’s), but it is quite cumbersome to use.
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For a 4 x 4 matrix the characteristic polynomial is quartic. Like the previous two cases,
there is a general formula (due to Lodovico Ferrari in the 1500’s) that solves the general
quartic. At this point, the reader may think that there are general formulas to solve most
polynomial equations. Unfortunately, that is simply false! In the 1800’s, Evariste Galois
showed that there can not be any such formula for the general quintic polynomial!* This
amazing fact has a huge impact on the search for eigenvalues: If you are dealing with
a 5 x 5 matrix there is not way to get a general solution to the resulting characteristic
equation, and a 5 x 5 matrix is very small!!
The preceding paragraph leads us to two conclusions:

1. To find the eigenvalues of a matrix by hand we need to be dealing with small matri-
ces.

2. To find the eigenvalues of a larger matrix, we need computational methods that will
allow us to approximate the roots of polynomials.

For now, we’ll stick with small examples just to get the hang of the algorithm. Let’s
examine a few examples of the eigenvector / eigenvalue problem. Work along with these
examples so that you understand every step.

Example 5.31. Find the eigenvalue eigenvector pairs for the matrix A = (g ;)

Solution:
The characteristic polynomial of A is

;mM:da«g Q—Acig»:da«z;A ZZQ):Q—AV—49

If we now set the characteristic polynomial to zero and solve we get

p(A)=0

— (2-1)?-49=0

— (2-1)?>=49

= 2-A=47

— -A=-2+7

— A=2+7

— A =9 and A,=-5.

Now we need to find the two associated eigenvectors.

For 1; = 9: We need to solve (A—AI)x = 0. First, A— ;I = ( 7), so augmenting

-7 7

“Galois’ discovery paved the way for an entire field of study called Abstract Algebra.
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this with the zero vector and row reducing gives
-7 710 1 -11]0
(A—)\1[|0)—( 7 _700 )—>( 0o o lo )
Therefore if x = (;Cl) then x; = x, and the simplest nonzero vector describing
2

this is x = (i ) The reader should verify that A (i) =9 (})

7 .

, SO augmentin
7 7 8 8
this with the zero vector and row reducing gives zero vector and row reducing

gives
(A—/\21|0):(; ;‘8)—>((1) (1)|8 )

For 1, = —5: We need to solve (A — A,I)x = 0. First, A— A, = (7

Therefore if x = il) then x; = —x, and the simplest nonzero vector describing
2
.. 1 . 1 1
this is x = (_1). The reader should verify that A(—l) = (—5)(_1)

The eigenvalue / eigenvector pairs for (i ;) are

/\1 :9With X1 :(1

. 1
1) and A, =-5with x, = (_1).

In the next example we illustrate a convenient shortcut when the matrix has triangular
structure.

0 5

Example 5.32. For A = , find the eigenvalues and eigenvectors.

3 -2
0 5

S O O U
S O N G

Solution:
Notice that the matrix A is upper triangular. This means that A— Al is upper triangu-
lar and the determinant is the product of the diagonal entries. Hence, the character-
istic polynomial is

p(A) =(5-A)(2=-1)B=A)(5-A1).

The resulting characteristic equation p(A) = 0 is very easy to solve giving A; = 5,
/\2 =2, and /\3 =3.

For 1, = 5: We form the homogeneous system (A—5I)x = 0, augment, and row reduce
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to get
0 5 0 510 01 000
0 -3 -3 6 0_)__._>00100
0O 0 -2 -2|0 0 0 0 10
0O 0 0 010 0 0000
X1
Hence, if x = ;CZ then x, = x3 = x4 = 0 and x; is free. Taking x; = 1 we get
3
X4
1
X = S.The reader should verify that A, :Sandx:(l,O,O,O)T is indeed an
0

eigenvalue /eigenvector pair for the matrix A.

For )1, = 2: We form the homogeneous system (A—2I)x = 0, augment, and row reduce

to get
350 5|0 1 200/0
00360 100100
00 1 -2/0 0 0010
00 0 310 0 0000
Therefore, x3 = x4 = 0, x, is free, and x| = —%xz. Picking x4 = 3 (for convenience)
-5
we see that x = ?) is the eigenvector associated with A, = 2.
0
For A3 = 3: We form the homogeneous system (A—3I)x = 0, augment, and row reduce
to get
2 5 0 510 1 0 -£ ofo
0 -1 -3 6/0) |01 3 0]0
0 0 0 -2]0 00 0 1|0
0O 0 0 210 00 0 00
Hence, x4 = 0, x5 is free, x, = —3x3, and x; = %xg,. Picking x3 = 2 (for conve-
15
nience) gives x = _2 .

0
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Therefore, the eigenvalue / eigenvector pairs are

1 -5 15

. 0 . 3 . -6

A1 =5 with x; = ol Ay =2 with x, = 0l and A3 =3 with x3 = )
0 0 0

Notice that in this problem the matrix was 4 x 4 but there are only three eigenvalue

/ eigenvector pairs. This occasionally occurs with repeated roots in the characteristic
polynomial.

Problem 5.33. Find the eigenvectors and eigenvalues for each of the following matrices.

(@) A:(—4 —1)

6 1
5 3
300
(c)C=]6 2 0
0 3 6
4 0 -1
(d) D=[0 4 -1
1 0 2

5.6.3 Technology for the Eigenvalue Eigenvector Problem

Linear algebra software is designed to handle the eigenvalue-eigenvector problem with
refined efficiency. Based on the length of the computations in this section it is clear that
some technological aid is necessary for many eigvalue-eigenvector computations. In this
final subsection we will illustrate how MatLab computes eigenvalues and eigenvectors.

Example 5.34. Consider the matrix

26 -18 6
A=]185 -11 5.5]|.
-26 22 -2

Use MatLab to find the eigenvalues and eigenvectors.
Solution:

The MatLab code is shown below. The function eig is the command that finds the
eigen-pairs.

A=26, -18 , 6 ;
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18.5 , -11 , 5.5 ;
-26 , 22 , -2];
[vectors , values] = eig(A)

The output to the MatLab command line is:

vectors =

0.5774 0.3906 0.4851
0.5774 0.1302 0.7276
-0.5774 -0.9113 0.4851

values =

2.0000 0 0

0 6.0000 0

0 0 5.0000

The eigenvalue and eigenvector pairs in the matrix are

1 3 2
/\1:2WithV1:[1], /\2:6WithV2:[1], and/\3:5withv3:[3].
-1 —7 2

Reading the values from the eigenvectors is a bit tricky. MatLab scales the vectors
so that the magnitude is 1 so to get integer values out of the eigenvectors (if that is
possible) it is a matter of looking at the relative weights of the values. For example, in
vy, the numbers are all the same so they might as well be 1. In v,, on the other hand,
taking the smallest value to be 1 we see that the middle value is three times as large
and the negative values is seven times as large.
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5.7 Markov Chains

Problem 5.35. The stock market can be divided into three behaviors:
* A bull market is a period of

generally rising prices.

* A bear market is a period of
generally declining prices.

* A stagnant market is a period
of generally no rise or decline 0.25
of prices.

The graph at right shows how the

markets evolve over time. For ex- 0.5 Stag
ample, a bull week is followed by a

bull week 90% of the time, a bear

week 7.5% of the time, and a stag-

nant week 2.5% of the time.

(a) Fill in the table below to create a transition matrix indicating how the market tran-

sitions over time.

0.025

| From Bull From Bear From Stagnant

To Bull
To Bear
To Stagnant

(b) Verify that the sum of every column is exactly 1. Why is this important?

(c) If we know that we are in a bull market this week, what is the probability of being
in each type of market next week? What if this week were a bear market? What
about a stagnant market?

Hint: This can be calculated by simple matrix multiplication.

(d) If we are in a bull market right now, what is the probability that we’ll be in a bull
market 10 weeks from now?

A

In Problem 5.35 we saw our first example of a stochastic matrix and a Markov chain.
The formal definitions are as follows.

Definition 5.36. * A probability vector is a vector with nonnegative entries that
add to 1.

* A stochastic matrix is a matrix whose columns are probability vectors.

* A Markov chain is a sequence of probability vectors x, X1, x,,... together with
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a stochastic matrix P such that
X1:PXO, Xzszl, X3:PX2,

Note that a Markov chain is most simply written as the first order linear differ-
ence equation

Xk+1=PXk fOI'kZO,l,Z,....

A Markov chain is a tool used in many fields to understand long-term probability in
a closed system. In Definition 5.36 we see that the Markov chain of probabilities can be
stated as a discrete dynamical system x;,; = Px;. Hence we can determine the probability
of being in any state at a given time by observing Table 5.3. This proves the following

ET Pxi |
0 X1 Pxy
1 X, | Pxq=P(Pxg)=P?x,
2 x5 | Pxy=P(P?xy) = P3x,
3 x4 | Px3=P(P3xq)=DP%x,
n—-11| x, Px

Table 5.3. Table showing the evolution of a Markov chain.

theorem.

Theorem 5.37. If P is a transition matrix for the first order discrete dynamical system
X,+1 = Px,, then the analytic solution to this system is

X, = P"xq

where x,, is the state vector at time n and x; is the initial state vector.

The example of the stock market in Problem 5.35 is only one simple example of a
closed system. From Theorem 5.37 we know that we can progress this model in time
by taking powers of the transition matrix P. We can take this example a bit further by
examining the eigenvalue structure of the transition matrix and observing what happens
to the eigen-structure under exponentiation of the transition matrix.

Example 5.38. Examine the eigen-structure of the transition matrix from Problem
5.35 and use it to predict the long-term behavior of the stock market system.
Solution:
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The transition matrix of interest is

0.075 0.80 0.25

0.90 0.15 0.25
= .
0.025 0.05 0.50

where the first column is the probability vector for bull market, the second column
is the probability vector for the bear market, and the third column is the probabil-
ity vector for the stagnant market. Using linear algebra technology, the eigenvalue-
eigenvector pairs are

0.89 0.74 —-0,28
Ay =1withvy =]0.44|, A, ~0.74with v, ~|-0.67|, and A3~0.46 with v3=[-0/53].
0.09 -0.06 0.80

Let’s assume that x is a given initial state. We can write x as a linear combination
of the eigenvectors of P
Xg =C1Vq1 +CpVvyt+C3V3,

and now if we use Theorems 5.37 and 5.26 we know that
Xy = PnXO = Pn (clvl +CHVvy + C3V3) = /\TVI A Cz/v;VZ + C3/\3V3.

Since A; = 1 we know that A} =1 for all n. On the other hand, both A, and A;
are less than 1 so as we consider longer time spans the coefficients of v, and v3 drop
exponentially to zero! This proves something amazing!!!!

Over a long time period, the only behavior that matters is that of v;!! Mathemati-

cally, this means that
0.89
lim (x,) =~ cy|0.44 .

e 0.09

Notice that we haven’t found the coefficient c¢;, but it turns out that we don’t have
to. We know that the vector should be a probability vector so the sum must be 1.
Therefore, c ~ 1/(0.88 + 0.44 + 0.09) and the long-term state vector is

L (0-89) (0.63
lim (x,,) ~ e 0.441~]0.31{.
e “*210.09) 10.06

In the long run, there is a 63% chance of ending up as a bull market, a 31% chance of
ending up as a bear market, and a 6% chance of ending up as a stagnant market.

The previous examples suggest proofs to the following theorems.

Theorem 5.39. If P is a stochastic matrix (column sums are all 1) then all of the
eigenvalues are positive and the largest eigenvalue is 1. Furthermore, there is only
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one eigenvector associated with the eigenvalue A = 1.

Theorem 5.40. Let P be a stochastic matrix in the Markov chain x;,; = Px,. Let v be
the eigenvector of P with eigenvalue A = 1. The long-term behavior of the Markov
chain is

1
lim (x,)=Cv where C= .
n—c0 sum(v)

For the remainder of this section we will consider several problems illustrating more
examples of Markov chains. In each activity, your goal is to find the steady state (long-
term) behavior of the system.

Problem 5.41. The five nodes in the graph below show rental car centers. At node 1 we
can read the graph as follows:

* acar has a 10% chance of being rented and then returned to node 1,
* a 20% chance of being rented and dropped off at node 3,

* a 40% chance of being rented and dropped off at node 2, and

* a 30% chance of being rented and dropped off at node 5.

The other nodes are read similarly.
0'1 0.2

OO

0.4 P53

0.5
0.1 0.2

0 0.
0%
0.3 0.4
Ot
0.5

0.1

P24

(a) Find py4, p31 and ps;.
(b) Write a stochastic transition matrix P for the transitions between nodes.

(c) Use Theorems 5.39 and 5.40 and linear algebra software to determine the long-
term behavior of this system. Based on your answer, how would you advise the
owner of the rental car agency?
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A

Problem 5.42. Alab ratis putin a maze with six rooms. At intervals of 1 minute, the rat is
given visual stimulation which causes it to move according to the following permutation
matrix.

From
Room1l Room 2 Room3 Room4 Room5 Room 6
To Room 1 0.33 0.25 0.0 0.33 0.0 0.0
To Room 2 0.33 0.25 0.25 0.0 0.25 0.0
To Room 3 0.0 0.25 0.25 0.0 0.0 0.5
To Room 4 0.34 0.0 0.0 0.33 0.25 0.0
To Room 5 0.0 0.25 0.0 0.34 0.25 0.25
To Room 6 0.0 0.0 0.5 0.0 0.25 0.25

(a) Draw the graph of this Markov chain.

(b) If the rat starts in room 1, what is the probability that it is in room 6 after two
moves? three moves? four moves?

(c) What is the long-term behavior of the Makov chain? Use Theorems 5.39 and 5.40
as well as linear algebra software to answer this question.

A

Problem 5.43. Advertisements tend to change people’s opinions about political issues.
Suppose that on a certain political issue there are 3 different popular opinions (A, B, and
C). A psychologist wants to study the shifts in people’s opinions after viewing advertise-
ments and hence gathers the data listed in the table below.

| Previous Opinion | New Opinion After Viewing Advertisement | Percent Making This Switch |
50%
20%
30%
10%
70%
20%
5%
5%
90%

O0OlE = = > > >
OmPO®mP>O®E>

C

During the weeks leading up to an election the advertisements are run continuously.
Let’s make the very simplistic assumption that every time someone views the advertise-
ments that their opinion shifts according to the table above. After several weeks of ad-
vertising, which is the popular opinion. A
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5.8 Analysis of Linear Systems

The concluding section of this chapter gives a thorough analysis of systems of linear dif-
ference equations. The Markov chains discussed in the previous section were but one
type of example possible. In coming subsections we will investigate questions of equilib-
ria and stability for linear systems.

5.8.1 Homogeneous Systems of Linear Difference Equations

If a system of difference equations is linear then the system can be written as x,,,; = Ax,,
where A is the matrix of coefficients, x,, is the past state vector, and x,,,1 is the new state
vector. Writing this as a matrix equation greatly reduces the amount of writing and adds
a layer of organization to the description of the system of difference equations.

In the previous section on Markov chains we examined a particular type of difference
equation where A is a stochastic matrix. This is a very special case, and in many instances
the transition matrix is not stochastic. Even so, we can still observe a very nice solution
to a homogeneous system of difference equations.

k| Xpe1 Axg

0 X1 AXO

1 X2 AXl = AZXO

2 x5 | Axy = A3xg

3 xq | Axz = A*x
n—-11] x, A'xg

Table 5.4. Tabular solution to a homogeneous system of linear difference equations.

This table proves the following theorem

Theorem 5.44. The solution to a homogeneous system of linear difference equation
Xpi1 = AXg 18
x,, = A"xg

where x( is the initial condition of the system.

As before, when exponentiating a matrix, the eigenvalues play the champion role!
Remember that if x( is written as a linear combination of the eigenvectors

Xg=C1Vy]+CpVvp+---CyVy
then
Ao =i Abv, + e Ay 40y A2y,

This is a huge time saver if the eigen-structure of the matrix is readily available. Fur-
thermore, realizing that the eigenvalues and eigenvectors play such a role proves the
following theorem.
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Theorem 5.45. If A is an n x n matrix with eigenvalues Ay, A,,..., A, and associated
eigenvectors vy, vy,...,Vv,, then the solution to the system of difference equations x;,; =
AXk is
_ k k k
Xk = Cl/\l vy + CZA2V2 qFooo cn/\nvn.

Example 5.46. Long ago, in a galaxy far, far away...there are two cell-phone com-
panies serving a town: the Evil Empire and the Rebel Alliance. The Evil Empire has
terrible service, so each week 25% of their customers switch to the Rebel Alliance and
2% give up their cell phone service entirely. The Rebel Alliance loses only 5% of their
customers to the Evil Empire every week due to the advertising. If there are currently
100 customers in the Evil Empire and 75 customers in the Rebel Alliance, what is the
long-term enrollment in the two plans?

Solution:

This is a system of difference equations that we can write as

ery1 = 0.73e; + 0.057%
Te+1 = 0.25¢; + 0.957y.

Written as a matrix equation we see that
_ Crs1) 0.73 0.05 (%
X1 = Axg = (rk+1) = (0.25 0.95)\r. |’

The solution to this system of equations depends on the eigenvalues of A. After
some computation we see that the eigenvalue / eigenvector pairs are 1y = 0.997 with

0.18 . ~0.73 _
Vi ® (0.98) and A, = 0.68 with v, = ( 0.68 ) Therefore, the general solution to the
system is

0.18 ~0.73
xj ~ c1 (0.997)F (0.98) T (0.68)"( 0.68 )

Using the initial condition x( = (17050) we see that

100 . 0.18 e -0.73
75 )~ 110.98) "2\ 0.68 |
This is a system of equations in ¢; and c,

0.18 —0.73\(c;\ (100
0.98 0.68 [\c,) ~\ 75
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After augmenting and row reducing we see that ¢c; ~ 146.5 and ¢, ~ —100.9. In Figure
5.5 one can see the very slow convergence to a steady state of 0 customers in both
plans.

i e Evil Empire *el.
fCustomersm,, +Rebel Alliance Rebel flliance ©
100 ' 100 ¢ o
®
50 50 ¢
[
” Evil Empire
50 100 150 200 20 40 60 80 100

Figure 5.5. Evil empire customers and Rebel Alliance customers over a 200 week time
period.

Problem 5.47. Find the general solution to the two problems from Section 5.5. A

5.8.2 Analysis of Equilibrium Behavior

The equilibrium solution of a difference equation occurs when the new term xj,; is equal
to the old term x;. If the system of difference equations is x;,; = Axy then to find the
equilibrium solution we need to solve x, = Ax,. The reader should recognize this as
either the hunt for the eigenvalue A = 1 and its associated eigenvector, or the zero vector.
Remember that not every matrix will have a unit eigenvalue and we don’t call the zero
vector an eigenvector. Even so, the zero vector will be an equilibrium point since it is the
trivial solution to x, = Ax,.

Theorem 5.48. To determine the stability of the origin in the discrete dynamical sys-
tem xi,1 = Axx we have several cases related to the two eigenvalues A; and A;:

1. If [A1] <1 and |A;| < 1 then the origin is stable.
2. If either |A{| > 1 or |A,| > 1 then the origin is unstable.
3. If Ay =1 and

* A, =1 then there is no equilibrium solution

* |A;| <1 then the origin is unstable and the equilibrium is a multiple of the
eigenvector associated with A, = 1.
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* A, = —1 then there may or may not be an equilibrium. If there is an equi-
librium then it is unstable.

Example 5.49. Consider the system of difference equations

Apy1 = 2a, = by,

buy1 =—4a, b,
ag = 1
bo = —6

Write the system as a matrix equation and write the solution as a linear combination
of the eigenvectors.

Solution:

The matrix form of the equation is

ape1\ _ [ 2 -1} (a, . (1
[ e A [ A
~—— ~——

Xp+1 A Xy

Recall that the analytic solution to this difference equation is
x,, = A"xg.

In order to efficiently evaluate the matrix power we find the eigenvalue-eigenvector
pairs. After some work, the eigenvalues and eigenvectors of the coefficient matrix A

1). Therefore

are A; = 3 with v; = (_11) and A, = -2 with v, = (4

Xy = Cl 3”(_11)+C2(—2)n(411)

Given that A; = 3 and A, = -2 we know that the equilibrium solution x = 0 will be
unstable.

It only remains to find the constants. The constants come from observing that
xg = Cyv1 + Cyvy. This is a system of equations, and in augmented form we see that

1 1|1\ _(1o]2)_ [a=2
-1 4|-6 0 1/[-1 ¢, =-1
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Therefore, the final solution to the discrete dynamical system is

. = (Z:) _9.3" (_11) ) (2 (411) _ (_223%1n__4(_(2_)1;)n)

This solution can easily be plotted with a graphing utility (we leave this to the reader).

Problem 5.50. For each of the problems below, find the general solution to the difference
equation and discuss the stability of the origin.

172 1/4

(a) A= (1/4 1/2) with xg = (i) The eigen-pairs for A are

i) and A, =0.25 with v, = (_11)

A1 =0.75 with vy = (

(b) A= (2 _31) with xg = (411) The eigen-pairs are

A1 =3 with vy = (_1) and A, =2withv, = (1)

1 0
7 0 5 9
(¢ A=[{ 0 5 0 |with xg =|-2|[. Hint: The eigen-pairs are
-4 0 -2 -8
5 -1 0
Ay =3withv; =[ 0|, Ay =2withv,=[0|, and A;=5withvy;=]|5}.
-4 1 0

5.8.3 Non Homogeneous Systems of Linear Difference Equations

Now that we have an intuitive sense of how complicated the dynamics of a linear homo-
geneous system can be, let’s dive into the least complicated non-homogeneous dynamical

system:
Xk+1 = AXp +b

An equilibrium solution to occurs when x,; = x§. In other words, we need to solve
X, = AX, +Db.
Unlike the homogeneous system, in this case we can use (linear) algebra to rearrange:

X, =Ax,+b = x,—-Ax,=b = (I-A)x,=b.
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On paper, the equilibrium vector is x, = (I — A)"'b. As discussed previously, inverting
a matrix is often not a great ideal so it may be necessary to lean on some linear algebra
technology to solve the system for x,. The eigenvalue structure of A tells you complete
information about the stability of the equilibrium point as it did in the homogeneous
case. In general, if b is not constant then the system will likely not have an equilibrium
point.

Theorem 5.51. Let x,,; = Ax, + b be a non-homogeneous system of linear difference
equations. If A has eigen-pairs Ay, vy, Ay, vy, ..., A, v and the initial condition xq
can be written as xg = Cyvq + Covy +--- + Crvg + X, then the general solution to the
non-homogeneous system of difference equations is

Xy = (C1ATVL + CoAJvy + - CeAfvi ) + X,

where x, is the equilibrium solution x, = (I — A)~!b.

Example 5.52. Consider the system of equation
o =[] 2 1 0.75 \(a, N 1
17 \b,)  \-0.5 -0.25/\b,] "\0/

Find the general solution to the system of equation with the initial condition xq = ( 2).

Solution:
The eigen-pairs for the matrix A are

/\1 =0.25 Wlth Vi = ( 1

) and A, =0.5with v, = (_32).

1). Hence,

Furthermore, the equilibrium point is x, = (I — A)~'b where b = (O

_(10/3
Xe = _4/3 .

Therefore, the general solution to the system of difference equations is

%, = C1(0.25)" (‘11) + c2(0.5)”(_32) ' (i%g)
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Since both eigenvalues are less than 1 and greater than zero the long term behavior
of the system will tend toward the equilibrium, so

" _(10/3
p X =\ _g/3)

In other words, x, is a stable equilibrium.

To solve the system of equation with the given initial condition we observe the
. 1 :
system of equations xg = Cyvy + Cpv; + ( , augment, and row reduce to find C; =

/
-4/3
16/3 and C, = 1. Therefore,

X, = (?)(0.25)”(‘11) + 1(0.5)”(_32) + (122)

Problem 5.53. For each of the problems below, find the general solution to the difference
equation and discuss the stability of any equilibrium points. Use linear algebra software
where appropriate.

(a) Consider the system of difference equations

anpe1\ _ (0.2 0.6\[a, -18 . apl (O
(bn+1)_(0.3 0.1)(bn)+(27) with (bo)‘(zs)

(b) Consider the system of difference equations

a0\ (0.1 0.1 0.3)\(a,) (-96 ap) (-226
by |=101 03 01||b,|+]| 24| with |[by|=| -45
c1) 03 01 0.1)\c,) \-120 o) =218
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5.9 Modeling Explorations with Systems

Problem 5.54 (Deer and Cougar Problem). We are going to build a difference equation
model that predicts the populations of cougars C and deer D (predators and prey) at year
t

1. The Mathematical Model:

(a) Deer Population: The change in deer population can be modeled as
D’(t) = (logistic population growth)—(deer removed by interactions with cougars)

* a generic logistic growth difference equation takes the form:

y’(t)=ky(1—%)

where k is the growth rate parameter and N is the carrying capacity of the
population.

* Assume that the carrying capacity for the deer is N = 4,500, and assume
that k ~ 0.3

* The rate at which the deer population is removed due to interactions with
cougars is proportional to the product of the deer and cougar populations.
Assume that the proporationality constant is —0.15.

* Write the differential equation for the deer population.

(b) Cougar Population: The change in cougar population can be modeled as
C’(t) = (natural death rate) + (gain due to abundance of food source)

* Assume that the natural death rate for the cougar population is propor-
tional to the current number of cougars. Let the proportionality constant
be —0.30.

* Assume that the gain in population is proportional to the product of the
deer and cougar populations with proportionality constant 0.00015.

* Write the difference equation for the cougar population.

(c) The Model: The two difference equations that you’'ve written along with the
initial conditions Dy = 500 and Cy = 2 are now your mathematical model!
Summarize them in one place in your lab.

2. Model Description: Describe some features of this model by answering the follow-
ing questions. (please restate the questions in your lab writeup)
(a) Which animal is the predator and which is the prey?
(b) What is the significance of the + sign in the equation for cougars?

(c) What is the significance of the — sign in the equation for deer?
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(d) In the absence of deer, does the cougar population increase or decrease? At
what rate?

(e) In the absence of cougars, does the deer population increase or decrease? At
what rate?

(f) How many deer does each cougar consume when there are 1000 deer vs when
there are 2000 deer?

3. Numerical Solution: Construct a numerical solution to this system of difference
equations. Recall that a numerical solution for a differential equation model will use
Euler’s method. This time you’ll need to build both equations simultaneously. Your
numerical approximation will give you both the deer population and the cougar
population. For a system of differential equations there are three appropriate plots
that you need to generate.

Deer vs Time: Plot the number of deer on the y axis and time (¢) on the x axis.

Cougars vs Time: Plot the number of cougars on the y axis and time (f) on the x
axis.

Deer vs Cougars: Plot the number of deer on the y axis and the number of cougars
on the x axis (or visa versa). This is called the phase plot.

Write a paragraph describing the behavior of the deer and cougar populations over
the course of 100 years. Identify each of the key features' of the population dynam-
ics.

4. Analysis:

(a) There are several assumptions in this model, but in particular we have assumed
that the cougar population will only go up via direct interactions with prey
(deer). Change the death rate term in the cougar population to a plausible
model that depends on the current number of cougars. Repeat the numerical
solutions for several possible parameters.

(b) Is either model (the original or the new from part (a)) sensitive to initial con-
ditions? Vary each initial condition slightly and discuss how the dynamical
system behaves. Support your disucssion with appropriate plots or tables.

(c) There are interaction terms in each equation of the model (the terms involving
both C and D). How sensitive is the model to the interaction rate 0.15? Vary
this interaction term slightly and discuss the behavior of the dynamical system.
Support your discussion with appropriate plots or tables.

(d) Attack several other assumptions built into this model, make the appropriate
changes to the model, and determine what the impact is on the resulting pop-
ulations.

1LKey features would include maximums, minimums, regions of increase or decrease, extinction, overpopu-
lation, equilibrium, etc.
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5. Write an Executive Summary describing what you did in this lab. This is meant to
be a reference to you when you need to re-use the ideas (both mathematical and
computational) from this lab. Your executive summary should be immediately un-
der the title on the front page of the lab. It should be no more than a paragraph or
two, and it should make for easy reference later.

A

Problem 5.55 (The Bedridden Boys Problem). A boarding school is a relatively closed
community in which all students live on campus, teachers tend to live on or near campus,
and students do not regularly interact with people not in the boarding school community.
The data set in Table 5.5 gives data for an influenza outbreak at a boarding school in Eng-
land during which there were no fatalities. There were 763 boys at the English boarding
school from which the data was obtained. This is only one instance of the types of in-
fluenza outbreaks that occur every year at boarding schools and on college campuses.
Create a mathematical model for the number of infected people in a closed commu-
nity (such as a dorm or boarding school) as a function of time. Assume there is 1 person
initially infected.
What makes this situation interesting:

* People don’t generally show symptoms right away after they are exposed to a virus.

* Some people may have been previously exposed to the virus and are therefore im-
mune.

* In a closed community it may or may not be possible to implement a quarantine.

* Some people will not admit themselves for medical care even though they are in-
fected. Hence, those people will likely not be counted in medical records for the
outbreak.

* ...and many others ...
Your Tasks:
(a) create, solve, and analyze a simple model (with as many assumptions as necessary),

(b) refine your model to either reduce the number of assumptions or to increase the
complexity (and hence make the model more realistic), and

(c) refine the model a second time to create an even more realistic model.

At each step your group must do a thorough analysis of the mathematical model. This in-
cludes a sensitivity analysis for any model parameters. The modeling process will require
your group to research the real problem to determine the assumptions and any necessary
terminology. Be sure to properly cite any sources used and to check the reliability of those
sources. A
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| Time (in days) | Number of Bedridden Boys |

1
3
25
72
222
282
256
233
189
123
70
25
11
4

—| = =] -
wNHO@OOﬂO\U‘IthJNP—‘O

Table 5.5. Bedridden Boys Data

Problem 5.56 (The Ibuprofen Problem). Ibuprofen, an analgesic pain reliever, is ingested
into the gastrointestinal tract by swallowing a pill of the substance or drinking a solution.
The drug then moves to the plasma or serum where it travels to sites to do its work of
pain relief. Create a mathematical model for the concentration of the Ibuprofen (in
pg/ml) in the plasma as a function of time. The data set in Table 5.6 gives one patient’s
Ibuprofen concentration over time with a 400 mg initial dose.

What makes this situation interesting:

* The Ibuprofen doesn’t actually move directly into the plasma.

* The units of the dose are milligrams (typically, 400mg) but the units of the concen-
tration are micro grams per milliliter.

* The volume of the gastrointestinal tract and the plasma are different.
* Every person’s body will metabolize Ibuprofen at different rates.
* As the effects of the drug wear off the patient usually takes more Ibuprofen.
* ...and many others ...
Your Tasks:
(a) create, solve, and analyze a simple model (with as many assumptions as necessary),

(b) refine your model to either reduce the number of assumptions or to increase the
complexity (and hence make the model more realistic), and

(c) refine the model a second time to create an even more realistic model.
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At each step your group must do a thorough analysis of the mathematical model. This in-
cludes a sensitivity analysis for any model parameters. The modeling process will require
your group to research the real problem to determine the assumptions and any necessary
terminology. Be sure to properly cite any sources used and to check the reliability of those
sources. A

’ Time (hours) \ Ibuprofen Concentration in Plasma (micro grams / ml) ‘

0 0
0.0833 12.5
0.167 26.5

0.25 33
0.33 37.4
0.5 36.2

1 33.2

1.5 30.2

2 23.9

3 16.3

4 11.7

6 5.82

8 3.09

Table 5.6. Ibuprofen Data




Chapter 6

Infinite Series

To wrap up this course we discuss an incredibly useful tool in mathematics: the infinite
series. It may come as a surprise, but it is entire possible to add infinitely many things
together and get a finite sum. For a deep exploration of this idea we return to the Active

Calculus Textbook.

6.1 Sections from Active Calculus

The Active Calculus Textbook is a wonderful online resource that stands in place of this
chapter. We will only discuss a few select sections and you can find the relevant links

below.

1.

2.

Active Calculus Section 8.1: Sequences

Active Calculus Section 8.2: Geometric Series

. Active Calculus Section 8.3: Series of Real Numbers
. Active Calculus Section 8.4: Alternating Series
. Active Calculus Section 8.5: Taylor Polynomials and Taylor Series

. Active Calculus Section 8.6: Power Series
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http://faculty.gvsu.edu/boelkinm/Home/AC/index.html
https://activecalculus.org/single/sec-8-1-sequences.html
https://activecalculus.org/single/sec-8-2-geometric.html
https://activecalculus.org/single/sec-8-3-series.html
https://activecalculus.org/single/sec-8-4-alternating.html
https://activecalculus.org/single/sec-8-5-taylor.html
https://activecalculus.org/single/sec-8-6-powerseries.html
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Appendix A
MATLAB Basics

In this appendix we’ll go through a few of the basics in MATLAB. This is by no means
meant to be an all-encompassing resource for MATLAB programming. A few more thor-
ough resources for MATLAB are listed here.

* https://www.mathworks.com/help/pdf_doc/matlab/matlab_prog.pdf
* https://www.mathworks.com/products/matlab/examples.html

* https://en.wikibooks.org/wiki/MATLAB_Programming

* http://gribblelab.org/scicomp/scicomp.pdf (this is a personal favorite)

In this appendix we’ll give examples of some of the more common coding practices
that the reader will run into while working through the exercises and problems in these
notes.

A.1 Vectors and Matrices

1
Example A.1. Write the Vectorsv:[Z] andw:(4 5 6 7) using MATLAB.
3
Solution:
1 v =1[1; 2 ; 3]
2 w=1[4,5, 6, 7]
3 w = 4:7 % this is shorthand for writing a sequence as a row vector
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https://www.mathworks.com/products/matlab/examples.html
https://en.wikibooks.org/wiki/MATLAB_Programming
http://gribblelab.org/scicomp/scicomp.pdf
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Example A.2. Consider the matrices and vectors

123 35 7
A=|4 5 6| B=|9 1 3| and b=(43—1)
7 8 0 5 7 11

 Calculate the product AB using regular matrix multiplication

Product A*B

Calculate the element-by-element multiplication of A and B

1 ElementWiseProduct = A .x B

Calculate the inverse of A

1 Ainv = A" (-1)
2 Ainv inverse (A) % alternative

Calculate the transpose of B

1 Atranspose = transpose (A)

[)

2 % or as an alternative:

[

3 Atranspose = A' % actually the conjugate transpose but if A is real

Solve the system of equations Ax =b

Example A.3. Code for a matrix of zeros

then ok
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1 2 = zeros(5,5) % 5 x 5 matrix of all zeros

Example A.4. Code for an identity matrix

[

1 Ident = eye(5,5) % 5 x 5 identity matrix

Example A.5. Code for random matrices.

* random matrix from a uniform distribution on [0, 1]

o)

1 R = rand(5,5) % random 5 x 5 matrix

e random matrix from the standard normal distribution

o)

1 R = randn(5,5) % random 5 x 5 matrix

Example A.6. A linearly spaced sequence

1 List = linspace(0,10,100)
2 % a list of 100 equally spaced numbers from O to 10

A.2 Looping

A loop is used when a process needs to be repeated several times.

A.2.1 For Loops

A for loop is code that repeats across a pre-defined sequence.

Example A.7. Write a loop that produces the squares of the first 10 integers.
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The output of this code will be

1
4
9
16
25
36
49
64
81
100

Example A.8. Plot the functions f(x) = sin(kx) for k =1,1.5,2,2.5,...,5 on the domain
x €[0,2m].

x = linspace (0,2xpi, 1000) ;
for k = 1:0.5:5
plot (x , sin(kxx) )
hold on
end

(& B S O N

A.2.2 The While Loop

A while loop is a process that only repeats while a conditional statement is true. Be
careful with while loops since it is possible to create a loop that runs forever.

Example A.9. Build the Fibonnaci sequence up until the last term is greater than
1000.

; % first term

; % second term

n = 3;

while F (end)<1000
F(n) = F(n=-1) + F(n-2);
n=n+1;

end

N g ok w N =

Example A.10. An example of a while loop that runs forever.
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2 while a>0
3 a=a+t+l;
4 end

Example A.11. An example of a while loop that runs forever but with a failsafe step
that stops the loop after 1000 steps.

1 a=1;

2 counter=1l;

3 while a>0

4 a=a+tl;

5 if counter >= 1000

6 break

7 end

8 counter = counter+l;
9 end

A.3 Conditional Statements

Conditional statements are used to check if something is true or false. The output of a
conditional statement is a boolean value; true (1) or false (0).

A.3.1 If Statements

Example A.12. Loop over the integers up to 100 and output only the multiples of
three.

for j = 1:100
if mod(j,3) == 0
J
end
end

[ S N

Example A.13. Check the signs of two function values and determine if they are
opposite.

1 £ = Q@(x) x 3% (x-3);
2 a = 2;

3 b = 4;

4+ 1if f(a)xf(b) < O
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fprintf ('The function values are opposite sign\n')
elseif f(a)+f(b) >0

fprintf ('The function values are the same sign\n')
ellsie

fprintf ('The function values are both zero\n')

© ® N o w

10 end

A.3.2 Case-Switch Statements

Example A.14. Evaluate over several cases.

n =3
switch n
case 1 $ if n ==
fprintf('n is 1\n"')
case 2 % if n ==
fprintf('n is 2\n'")

case 3 % if n ==
fprintf('n is 3\n'")

© % N o G e W N =

end

A.4 Functions

A mathematical function has a single output for every input, and in some sense a com-
puter function is the same: one single executed process for each collection of inputs.

Example A.15. Define the function f(x) = sin(x?) so that it can accept any type of
input (symbol, number, or list of numbers).

f = @Q(x) sin(x."2) % defines the function

f(3) % evaluates the function at x=3

x=linspace (0,pi,100);

f(x) % evaluates f at 100 points equally spaced from 0 to pi

=W N =

Example A.16. Write a computer function that accepts two numbers as inputs and
outputs the sum plus the product of the two numbers.
First write a file with the following contents.

1 function MyOutput = MyFunctionName (a,b)
2 MyOutput = a + b + axb;
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Be sure that the file name is the same as the function name.
Then you can call the function by name in a script or another function.

1 SumPlusProduct = MyFunctionName (3, 4)

which will output the number 19.

Example A.17. Write a function with three inputs that outputs the sum of the three.
The third input should be optional and the default should be set to 5.

1 function AwesomeOutput = SumOfThree (a,b, c)
2 if nargin < 3

3 c = 5;

4 end

5 AwesomeOutput = a+tb+c;

6 end

You can call this function with

1 SumOfThree (17, 23)

which will output 17 +25+5 = 47. Notice that the third input was left off and a 5 was
used in its place.

A.5 Plotting

In numerical analysis we are typically plotting numerically computed lists of numbers so
as such we will give a few examples of this type of plotting here. We will not, however,
give examples of symbolic plotting.

The plot command in MATLAB accepts a list of x values followed by a list of y values
then followed by color and symbol options.
plot (xlist , ylist , color options)

Example A.18. Plot the function f(x) = sin(x?) on the interval [0,27] with 1000
equally spaced points. Make the plot color blue.

1 X linspace (0, 2xpi, 1000) ;
2 £ = @(x) sin(x."2);
3 plot(x , £(x) , 'b'")

Alternatively
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1 x = linspace (0,2%pi,1000) ;
2y = sin(x."2);
3 plot(x, y, 'b")

Example A.19. Make a 2 x 2 array of 4 plots of f(x) = sin(kx?) for k = 1,2,3, 4.

x = linspace (0, 2xpi, 1000);
for k=1:4

subplot (2, 2, k)

plot(x , sin(kxx."2) , 'b'")
end

[ I S N

Example A.20. Plot f(x) = sin(kxz) fork=1,2,...,10 all on the same plot.

x = linspace (0,2xpi, 1000) ;
for k=1:10
plot (x, sin(kxx."2))
hold on % this holds the figure window open so you can write on top

(S O N

end

Example A.21. Plot the function f(x) = e*sin(x) and put a mark at the local max at
x =1/4.

1 x = linspace(0,2%pi,1000); % set up the domain
2 £ Q(x) exp(—x) .* sin(x);
3 plot(x,f(x),'b',pi/4,f(pi/4), 'ro")

A.6 Animations

Example A.22. Plot f(x) = sin(kx?) for k = 1 to k = 10 by small increments with a
short pause in between each step.

x = linspace (0, 2xpi, 1000);

for k=1:0.01:10 $ 1 to 10 by 0.01
plot (x, sin(kxx."2))
hold on % this holds the figure window open so you can write on top
drawnow % draws the plot

[ S N

f

it

it
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6 % the last line gives the illusion of animation
7 end
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