

Position in Philips

A short introduction

10,000 m² infrastructure

test & prototyping facilities, cleanrooms, labs

of 4.5/5

Certified for

Simple mission: to accelerate your innovation

Our **key areas** of expertise

Medical devices & equipment

High-precision equipment

Connected digital products & systems

MEMS devices & micro-assembly

Manufacturing processes & systems

Design for reliability solutions

Industry consulting

Environment & safety

MEMS & Micro Devices

Process Development and Manufacturing

ISO (SO) (SO) (14001)

MEMS & thin film products

2650 m² Cleanroom FTE: ~70

High Tech Campus, Eindhoven

Micro (Device) assembly & complex PCBA

2500 m²
Factory +
Cleanroom
FTE: ~60

Strijp-S, Eindhoven

Our position in the market

Filling and bridging the gap

Filling: many MEMS applications stay below 5 wafers/year Bridging: transfer to larger foundries for much higher volumes

Our business model

- Our customers seek sustainable competitive advantage through custom-made components at limited investments and costs
- We provide process development and manufacturing services

- Manufacturing services
 - Fixed price basis; specifications, quality, quantities, supply conditions
- Confidential information
 - Well protected via NDA's and GTC's
- Intellectual Property
 - Ownership, field of use, licenses

Photonic area's of current interest

Top 10 as established by PhotonicsNL and PhotonDelta:

- 1. Photovoltaics
- 2. Integrated photonics
- 3. Photonic detection
- 4. Photon generation technologies (lasers and light sources)
- 5. Optical materials (incl. thin films and coatings)
- 6. Optical sensors
- 7. Imaging technologies
- 8. Optomechatronics
- Quantum (sensors and metrology)
- 10. Optical fibers

Optical elements for photonics

Customers

Leading companies in the domain of integrating optical functions into photonic devices

Challenge

Process development and manufacturing of optical elements for applications ranging from infra-red (IR) through extreme ultra-violet (EUV)

Key Results

Many concepts proven, some taken into production and market

Business benefit

Integrated optical elements increase value of photonic devices

- Optical coatings (anti-reflection, mirrors, filters)
- Gratings for
 - light outcoupling from solid state lasers
 - (F)IR sensors like spectrometers
- Spectral filters based on nm thick membranes
- Photonic crystals (various metals and dimensions)
- Silicon waveguides
- Alignment markers on various substrates
- Silicon Fresnel lenses (IR)
- Silicon and GaAs based microlenses (IR, UV)

Substrate-Conformal Imprint Lithography (SCIL)

Advanced lithography for unique process flows

Customer

Leading OEM in solar equipment market

Challenge

Develop SCIL-based process flow and manufacture custom-designed substrates with structured noble metal with feature size below 200nm

Key Results

Regular flow of nano-patterned wafers according to customer specification

Business benefit

Boost in efficiency of R&D of process and equipment development

Soft rubber stamp and imprint

Nano templates with Au dots (200nm)

Nano wires made by customer

Examples: laser prototyping/masters

From μ -fluidics to sieves to non-imaging optics

Example: Greyscale Resist Ablation

Electronic/Photonic Micro assembly

Customers

Leading companies, ventures and start-ups in the domain of integrating optical functions into devices.

Challenge

Prototyping, Process development and Manufacturing of sub-assemblies for applications ranging from medical in-body devices to IR heater modules.

Key Results

Many concepts proven, some taken into production and market

Business benefit

Integrated optical elements increase value of photonic devices

Examples

- Probes for spectral sensing
- Shape sensing devices
- IR Heater Modules
- Sensors for particle detection
- Optical Interrogator Modules
- Illumination Devices

Examples of Assembly Services

Prototyping and manufacturing for Photonic Device (Sub-)Assemblies:

- Optical Sensors
- Illumination Modules

Pleased to meet you

Certified for

ISO **13485**

creative out-of-the-box solutions for the 'seemingly' impossible on different substrates and various shapes using over 100 state-of-the-art tools many back-end & integration services speeding up your time to market

for medical applications, we develop your process and manufacture under ISO 13485

MEMS & Micro Devices services

MEMS foundry services

MEMS proofof-concept >

Thin film processing >

MEMS process development >

MEMS back-end services >

MEMS manufacturing >

Micro devices facility services

Industrial PCBA prototyping >

Assembly of high-end PCBA's >

Interconnect architecture & prototyping >

Foundry facts

- 2650 m² state-of-the-art cleanroom of class 100 – 10.000
- Large set of 150mm and 200mm high-end tools
- Flexibility to work with materials ranging from Ag to Zn, including 'CMOS-forbidden' materials, alloys, dielectrics and polymers like Parylene
- Flexibility to work with substrates:
 Si, III/V, glass, square and round,
 up to 8"

More information:

www.innovationservices.philips.com/mems

What our customers value

- The **flexibility** in working together
- Our **responsiveness** to change requests
- Our ability to provide
 creative out-of-the-box
 solutions for the 'seemingly
 impossible' a capability
 developed from working with
 Philips Research for 40 years
- Manufacturing MEMS devices under **ISO 13485** and 9001

We can do it all with one partner >
Océ-Technologies

Building a competitive light sensor >

Very flexible to meet specific requirements > Sol Voltaics

Enormous diversity of skill set >
Philips Health Systems

Proud to serve...

More information at https://www.innovationservices.philips.com/looking-expertise/mems-micro-devices/

MEMS Foundry facts

- Cleanroom 2650 m², class 100 10000
- Industrial 200 mm production equipment
 - Large installed base 100+ systems
- Flexibility to work with materials ranging from Ag to Zn, W and Ru, including 'CMOS-forbidden' materials, alloys, dielectrics, and polymers like SU8, BCB, Polyimide, Parylene
- Flexibility to work with a variety of substrates:
 - Si, III/V, glass; up to 8"
- Installed capacity is ~25 k 150mm wafers/year
- 2 shift operation
- Yearly investments in new capabilities
- Quality systems: ISO9001, ISO13485, ISO14001

MEMS Foundry facts

Summary of capabilities (#1/2)

- Etching
 - Dry
 - SPTS cluster tools including Bosch process
 - Ion Beam Etcher
 - Wet
 - Variety of etch baths and chemicals
- Deposition
 - Evaporation
 - PECVD: oxide, nitride, Si
 - Sputtering
 - LPCVD: Si, TEOS, Nitride
 - ALD: Al2O3, SiO2, HfO2
 - Parylene coating
 - Laminator

MEMS Foundry facts

Summary of capabilities (#2/2)

- Lithography
 - Mask aligner (including SCIL)
 - I-line stepper
- Wafer bonding
 - Adhesive bonding
 - Fusion bonding
 - Anodic bonding
 - Thermo-compression bonding
- CMP
- Metrology
 - Optical
 - Surface profiler
 - Defectivity inspection
 - SEM
 - Reflectometry, Ellipsometry
 - Automated probe station

Process development

Phase Gated Approach

MPD: Manufacturing Process Development

DoE

Progress review

pFMEA

Process control, defects, yield, capex investment

Capex investment

Defectivity

Yield

MES: vehicle for quality

Example of SPC implementation in MES

- Full traceability on every wafer in the cleanroom
- Full traceability on all measurements
- Waiver implemented for oos measurements

Value	Unit of measure	Low Limit	High Limit
3.32	μm	-20	20
3.32	μm	-20	20
-532.194	m	-4000	4000
-532.194	m	-4000	4000
-1.37	μm	-20	20

Example of Data collection and traceability

Complete data collection for 1 wafer!

Main equipment and capacity

+/- 5MEUR yearly investments for the MEMS Foundry

Equipment	Number of tools	Wafers size (inch)	# wafers/tool/hr
Dry Etching (SPTS- APS/ICP/Pegasus)	2	6 and 8	1-25
Litho (ASML stepper)	2	6 and 8	10-40
Exposure (EVG track)	2	6 and 8	10-25
Coat-Develop (Novellus)	2	6 and 8	10 - 50
PVD (Veeco 5 chambers)	2	6 and 8	10-30
Resist strip (Trymax)	1	6 and 8	25- 50
LPCVD (Tempress)	1	6 and 8	25-50
ALD (ASM)	1	6 or 8	1 - 25

Recent investments

Wafer sorter/reader

Wafer stepper

Inspection system

PCM tester

Upcoming investments

4 chamber wafer bonder

Wet Bench

©2018 Philips Innovation Services | Confidential

Polyimide track

SEM

Quality organization

- Certified ISO9001:2015, ISO14001, ISO13485:2003
- Covering (~8FTE)
 - Quality Assurance
 - Development Quality
 - Manufacturing Quality
 - Supplier Quality
- Quality Management System (MSIS) and Training Program
- Quality Review Board
- Change Control Board
- Internal and Customer Audits
- KPIs (COPQ, Customer Complaints, Supplier Quality)

