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Mixed membership models have emerged over the past 20 years as a flexible cluster-like modeling
tool for unsupervised analyses of high-dimensional multivariate data where the assumption that an
observational unit belongs to a single cluster, or principal component, is violated. Instead, one as-
sumes that every unit partially belongs to all clusters, according to an individual membership vector.
Mixed membership models were introduced essentially independently in a number of different sta-
tistical application settings: (1) survey data (Berkman et al., 1989; Erosheva, 2002; Erosheva et al.,
2007), (2) population genetics (Pritchard et al., 2000b; Rosenberg et al., 2002), (3) text analysis
(Blei et al., 2003; Erosheva et al., 2004; Airoldi et al., 2010), and then later on in (4) image pro-
cessing and annotation (Barnard et al., 2003; Fei-Fei and Perona, 2005), and (5) molecular biology
(Segal et al., 2005; Airoldi et al., 2006; 2007; 2013).

1.1 Historical Developments
This volume chronicles recent developments in the area of mixed membership modeling. Mixed
membership models are used to characterize complex multivariate data such as those arising in
studies of genetic build-up of biological organisms, patterns in disease and disability manifestations,
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combinations of topics covered by text documents, political ideology or electorate voting patterns,
or heterogeneous relationships in networks. Early applications of mixed membership modeling
included the admixture model in genetics (Pritchard et al., 2000a), the Grade of Membership model
in medical classification studies (Manton et al., 1994b), and the latent Dirichlet allocation model in
machine learning (Blei et al., 2003).

In contrast to the finite mixture or parametric clustering models (McLachlan and Peel, 2000),
mixed membership models assume that individuals or observational units may only partly belong
to population mixture categories, referred to in various fields as topics, extreme profiles, pure or
ideal types, states, or subpopulations. The degree of membership then is a vector of continuous
non-negative latent variables that add up to 1 (in mixture models, membership is a binary indicator).
The original idea for a mixed membership type of modeling goes back to at least the 1970s when the
Grade of Membership (GoM) model was developed by mathematician Max Woodbury to allow for
“fuzzy” classifications in medical diagnosis problems (Woodbury et al., 1978). The model had not
received a lot of attention from statisticians in the early years, and was later characterized by seem-
ingly controversial statements regarding the nature of the compositional data implied by the GoM
model (Haberman, 1995). It was not until the early 2000s, with the widespread use of Bayesian
methods and a better explanation of the duality between the discrete and continuous nature of latent
structure in the GoM model, that a new Bayesian approach to the GoM model had been developed
(Erosheva, 2003). The almost simultaneous and independent development of the admixture model
in genetics (Pritchard et al., 2000a) and the latent Dirichlet allocation (LDA) model in computer
science (Blei et al., 2003) also relied on the use of Bayesian estimation or approximate Bayesian
estimation techniques, as in the case of LDA. This class of mixed membership models (Erosheva,
2002) unifies the LDA, GoM, and admixture models in a common framework and provides ways to
construct other individual-level mixture models by varying assumptions on the population, sampling
unit and latent variable levels, and the sampling scheme.

The word mixed in the name mixed membership comes from the alternative latent class specifi-
cation of the models where each attribute is generated according to its distribution in a certain basis
category (Erosheva et al., 2007). For example, each word in an article corresponds to a particular
topic, whereas the article’s composition as a whole corresponds to the author’s intention to cover
a selection of topics. Thus, the multivariate collection of outcomes for each sampling unit is com-
posed of a mix of attributes that originate from the basis categories, e.g., words within a document
that are generated from topics covered by that document. In the case of discrete data, the latent
topic indicators for each word do not necessarily have to be the latent variables in the model. An
alternative data-generating process that results in the same likelihood can be based on the latent de-
grees of membership controlling the proportions of attributes originating from each basis category
(Erosheva, 2005). For this reason, mixed membership models have been occasionally referred to as
partial membership models (e.g., Erosheva, 2004); however, that name has not gained widespread
use and the name mixed membership remains the most commonly used descriptor (Erosheva and
Fienberg, 2005).

1.2 A General Formulation for Mixed Membership Models
The general mixed membership model relies on four levels of assumptions: population, subject, la-
tent variable, and sampling scheme. Population level assumptions describe the general structure of
the population that is common to all subjects. Subject level assumptions specify the distribution of
observed responses given individual membership scores. Membership scores are usually unknown
and hence can also be viewed as latent variables. The next assumption specifies whether the mem-
bership scores are treated as unknown fixed quantities or as random quantities in the model. Finally,



Introduction to Mixed Membership Models and Methods 5

the last level of assumptions specifies the number of distinct observed characteristics (attributes) and
the number of replications for each characteristic. We describe each set of assumptions formally in
turn.

Population Level

Assume there are K original or basis subpopulations in the populations of interest. For each sub-
population k, denote by f(xj |θkj) the probability distribution for response variable j, where θkj
is a vector of parameters. Assume that within a subpopulation, responses to observed variables are
independent.

Subject Level

For each subject, membership vector λ = (λ1, . . . , λK) provides the degrees of a subject’s mem-
bership in each of the subpopulations. The probability distribution of observed responses xj for
each subject is fully defined by the conditional probability Pr(xj |λ) =

∑
k λkf(xj |θkj), and the

assumption that response variables xj are independent, conditional on membership scores. In addi-
tion, given the membership scores, observed responses from different subjects are independent.

Latent Variable Level

With respect to the latent variables, one could either assume that they are fixed unknown constants
or that they are random realizations from some underlying distribution.

1. If the membership scores λ are fixed but unknown, the conditional probability of observing xj ,
given the parameters θ and membership scores, is

Pr(xj |λ;θ) =

K∑
k=1

λkf(xj |θkj). (1.1)

2. If membership scores λ are realizations of latent variables from some distribution Dα, parame-
terized by vector α, then the probability of observing xj given the parameters is:

Pr(xj |α,θ) =

∫ ( K∑
k=1

λkf(xj |θkj)
)
dDα(λ). (1.2)

Sampling Scheme

Suppose R independent replications of J distinct characteristics are observed for one subject,
{x(r)

1 , . . . , x
(r)
J }Rr=1. Then, if the membership scores are treated as realizations from distribution

Dα, the conditional probability is

Pr

(
{x(r)

1 , . . . , x
(r)
J }Rr=1|α,θ

)
=

∫ ( J∏
j=1

R∏
r=1

K∑
k=1

λkf(x
(r)
j |θkj)

)
dDα(λ). (1.3)

When the latent variables are treated as unknown constants, the conditional probability for observ-
ing R replications of J variables can be derived analogously. In general, the number of observed
characteristics J need not be the same across subjects, and the number of replications R need not
be the same across observed characteristics.

One can obtain a number of mixed membership models using this general set up by specifying
different choices of J and R, and different latent variable assumptions. For instance, the Grade
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of Membership model of Manton et al. (1994b) assumes polytomous responses are observed to
J survey questions without replications and uses the fixed-effects assumption for the membership
scores. Potthoff et al. (2000) employ a variation of the Grade of Membership model by treating
the membership scores as Dirichlet random variables; the authors refer to the resulting model as a
Dirichlet generalization of latent class models. In genetics, Pritchard et al. (2000a) use a clustering
model with admixture, which they labeled as structure. For diploid individuals the clustering model
assumes that R = 2 replications (genotypes) are observed at J distinct locations (loci), treating the
proportions of a subject’s genome that originated from each of the basis subpopulations as random
Dirichlet realizations. Variations of mixed membership models for text documents called proba-
bilistic latent semantic analysis (Hofmann, 2001) and latent Dirichlet allocation (Blei et al., 2003)
both assume that a single characteristic (word) is observed a number of times for each document,
but the former model considers the membership scores as fixed unknown constants, whereas the
latter treats them as random Dirichlet realizations.

The mixed membership model framework presented above unifies several specialized models
that have been developed independently in the social sciences, genetics, and text mining applica-
tions.

1.3 Advantages of Mixed Membership Models in Applied Statistics

Mixed membership models have had a significant impact on applied statistics. Over the past decade,
the data that statisticians analyze have become more diverse and structured, and with this complexity
comes the opportunity to model individual data points as belonging to multiple groups. Indeed, for
many modern datasets—such as large-scale text documents and complex networks—we believe
that there is rarely a case for the simpler models. Statisticians need mixed membership models or
alternatives to them, and this is the reason to study them.

The main areas to which mixed membership models have been applied are reflected in the
contents of this volume.

Document Collections

Mixed membership models are widely applied to document collections (Blei et al., 2003; Blei,
2012). In document collections, the mixed membership assumptions naturally capture the hetero-
geneity of language, where documents each exhibit multiple themes and to different degree. When
modeling documents as data, each document is a collection of words from a vocabulary. (These
are grouped as categorical data.) Mixed membership models allow each document to exhibit multi-
ple components, where each component is a distribution over words. Conditioned on a collection,
inspecting the posterior of the components reveals the “topics” inherent in the documents, i.e., the
significant patterns of words associated under a single theme. For this reason, mixed membership
models of text are often called topic models.

Mixed membership models for text have been extended in a myriad of ways and developed for
many text-based applications. As examples, they have been developed into time series (Blei and
Lafferty, 2006), into further hierarchicalized models of word contagion (Doyle and Elkan, 2009),
into Bayesian nonparametric variants (Teh et al., 2006), and into models of interconnected docu-
ments (Chang and Blei, 2009). In some ways, mixed membership models of text have become a
benchmark for new innovations in mixed membership modeling.
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Network Data

Another central application of mixed membership models is for the analysis of network data. A net-
work consists of a population of units and their relationships, represented via a graph with a set of
nodes and edges between them. Networks arise naturally in sociological settings, co-author analysis,
and a variety of biological problems. A classical latent-variable model of networks is the stochas-
tic blockmodel (Wang and Wong, 1987), which assumes that each node belongs to a community,
and that its assigned community mediates its connection to other nodes. While these assumptions
may have been appropriate for small scale network analysis, modern networks are heterogenous.
Nodes belong to multiple communities, and each node’s connections reflect its particular signature
of community memberships. This is a natural setting for mixed membership models.

Airoldi et al. (2008) developed the mixed membership extension of the stochastic blockmodel.
Each node possesses an associated membership vector containing community proportions; each
edge (present or absent) is associated with a community assignment drawn from the corresponding
nodes’ proportions. Note that modeling networks is fundamentally different from modeling docu-
ments because the observations are by definition intertwined. (We typically assume that documents,
in contrast, are conditionally independent.) Mixed membership network models remain an active
area of research. Further innovations include modeling dynamic networks (Ho et al., 2011) and
including node attributes in modeling (Kim and Leskovec, 2011; Azari and Airoldi, 2012; Azizi
et al., 2014). More broadly, networks are a type of dyadic data—data with entries indexed by a row
and column—for which we can conceive more general mixed membership models (Mackey et al.,
2010).

Social and Health Sciences Applications

The earliest mixed membership model, the Grade of Membership model (GoM) was developed by
the statistician Max Woodbury (Woodbury et al., 1978), in the context of a medical classification
problem where subsets of symptoms were observed on each patient. The goal was to identify and
characterize sub-patterns of illness in a particular disease such as depression (Davidson et al., 1989),
schizophrenia (Manton et al., 1994a), and Alzheimer’s (Corder and Woodbury, 1993). GoM model
analysis has been applied extensively to disability survey data—to analyze patters in binary indi-
cators of basic and instrumental activities of daily living—in a frequentist (Berkman et al., 1989;
Manton et al., 1991) and Bayesian framework (Erosheva et al., 2007). Mixed membership method-
ologies have been extended to longitudinal settings to capture heterogeneous pathways of disability
and cognitive trajectories at the later portion of life (this volume: Manrique-Vallier, 2014 and Lecci,
2014). In political science, researchers have used mixed membership models to analyze politically-
oriented beliefs, values, and attitudes from survey data (this volume: Gross and Manrique-Vallier,
2014) and have developed mixed membership models for rank data to analyze votes in Irish elec-
tions (Gormley and Murphy, 2009). Other applications of mixed membership models include as-
sessing the risk of privacy violations in databases (Manrique-Vallier and Reiter, 2012), and even
reconstructing the contents of a city based on sparse archeological evidence (Mimno, 2011).

Population Genetics

In computational biology, mixed membership models have had a tremendous impact, most notably
following the structure model of Pritchard et al. (2000a). In this setting, we observe a collection of
human genomes in which each is a collection of alleles (A,G,C,T) measured at different locations.
The model assumes that there are ancestral populations, groups of original humans that share a
unique genetic signature, which migrated around the world and mixed. The observed genomes—
the data we are analyzing—reflect the results of that mixing. Each genome exhibits the populations
with different proportions, and each population is characterized by its allele probabilities across
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genome locations. Posterior inference of the proportions and populations reveals the latent genetic
structure of modern humans.

This kind of analysis has been used in two ways. First, as for networks and text, it is useful for
exploring genetic patterns and forming hypotheses about our genetic history. Second, it is important
for correcting analyses that seek to find associations between genes and traits. Patterns in ancestral
populations, though not observed, are a confounder to making such associations; inferences from
mixed membership models are useful in accounting for them. In this volume Shringarpure and Xing
(2014) discuss some interesting variants on the original Pritchard et al. (2000a).

1.4 Theoretical Issues with Mixed Membership Models
The early examples of original mixed membership models described above were developed for dis-
crete data, involving multivariate binary data, multinomial data, and ranks, and researchers using
them considered responses to survey questions, counts of words in a document, sequences of geno-
types, presence or absence of interactions between units, etc. Even though the general formulation
of mixed membership models allows for combining outcomes of different types in a single omnibus
model (Erosheva, 2002), the theoretical properties of mixed membership models applied to contin-
uous data and data of mixed outcomes and applications of mixed membership for such problems is
quite limited, e.g., see the discussion in Heller et al. (2008) and the the analysis of gene expression
data by Rogers et al. (2005).

Extending mixed membership models to continuous data and data of mixed types is nontriv-
ial. In this volume Galyardt (2014) demonstrates that the two interpretations—mixed attributes
(the ‘switching’ interpretation) and partial memberships (the ‘between’ interpretation)—which are
typically assumed as equivalent interpretations of mixed membership models, can not be taken for
granted in the presence of continuous data. In fact, the ‘between’ interpretation no longer applies.
Gruhl and Erosheva (2014) consider a broader class of individual-level mixture models and com-
pare two members of this class—the mixed membership and the partial membership model (Heller
et al., 2008)—for analyzing continuously-valued data. In essence, given individual-specific weights
reflecting membership, mixed membership models assume that data are generated from individual-
specific distributions that are weighted arithmetic averages of the subpopulation distributions, and
partial membership models assume that individual-specific data are generated from a weighted ge-
ometric average of the subpopulation distributions. They explain that multivariate data my not
provide researchers with a clear signal about the preferred type of individual-level mixture model.
However, in this volume, analyzing a player statistics dataset from the National Basketball Associ-
ation, Gruhl and Erosheva (2014) argue that the use of partial membership in that specific context
is more appropriate. Partial membership models also happen to be more computationally conve-
nient. Galyardt (2014) and Gruhl and Erosheva (2014) raise a number of issues for future work with
individual-level mixture models for continuous data; some of these issues bear a clear connection
to the large body of statistical literature on mixture models in general and on mixtures of normals
in particular (McLachlan and Peel, 2000).

1.4.1 General Issues Inherent to Mixtures

While applications for mixed membership models especially in the form of extensions of topic
models for text are widespread, these models suffer from a number of theoretical difficulties they
inherit from mixture models. A lack of understanding of such issues may impact the validity of
empirical analyses based on mixed membership models. Below we list a few key issues, borrowing
material from a blog post on the topic by Wasserman (2012).
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These issues are best illustrated in the context of a simple mixture model. Consider a finite
mixture of Gaussians,

p(x;ψ) =

k∑
j=1

wj φ(x;µj ,Σj),

where φ(x;µj ,Σj) denotes a Gaussian density with mean vector µj and covariance matrix Σj .
The weights w1, . . . , wk are non-negative and sum to 1. The entire set of parameters is ψ =
(µ1, . . . , µk,Σ1, . . . ,Σk, w1, . . . , wk). One can also consider k, the number of components, to
be another parameter.

Now lets consider some of the weird things that can happen.

Infinite Likelihood. The likelihood function (for the Gaussian mixture) is infinite at some points
in the parameter space. This is not necessarily bad, since the infinities are at the boundary and one
can use the largest (finite) maximum in the interior as an estimator. But the infinities can cause
numerical problems.

Multi-modality of the Likelihood. In fact, the likelihood has many modes (Richards and Buot,
2006). Finding the global (but not infinite) mode is a difficult. The EM algorithm only finds local
modes. In this sense, the MLE is not really a well-defined estimator because it cannot be found. In
the machine learning literature, there have been a number of papers trying to establish estimators
for mixture models that can be found in polynomial time. For example, see Kalai et al. (2012).

Multi-modality of the Density. One may naı̈vely think that a mixture of k Gaussians would have
k modes. But, in fact, it can have less than k or more than k. See Carreira-Perpinan and Williams
(2003) and Edelsbrunner, Fasy, Rote (2012).

Non-identifiability. Recall that a model {p(x; θ) : θ ∈ Θ} is identifiable if

θ1 6= θ2 implies p(x; θ1) 6= p(x; θ2).

Mixture models are non-identifiable in two different ways. First, there is non-identifiability due to
permutation of labels. This is a nuisance, and there are strategies to deal with it (Stephens, 2000).
A bigger issue is local non-identifiability. Suppose that

p(x; η, µ1, µ2) = (1− η)φ(x;µ1, 1) + ηφ(x;µ2, 1).

When µ1 = µ2 = µ, we have that p(x; η, µ1, µ2) = φ(x;µ). The parameter η has disappeared.
Similarly, when η = 1, the parameter µ2 disappears. This means that there are subspaces of the
parameter space where the family is not identifiable. The result is that all the usual theory about the
distribution of the MLE, the distribution of the likelihood ratio statistic, the properties of BIC, and
so on, becomes very complicated.

Irregularity. Mixture models do not satisfy the usual regularity conditions that make parametric
models easy to deal with. Consider the following example from Chen (1995). Let

p(x; θ) =
2

3
φ(x;−θ, 1) +

1

3
φ(x; 2θ, 1).

Then I(0) = 0 where I(θ) is the Fisher information. Moreover, no estimator of θ can converge
faster than n−1/4. Compare this to a Normal family φ(x; θ, 1) where the Fisher information is
I(θ) = n and the maximum likelihood estimator converges at rate n−1/2.

Non-intuitive Group Membership. Mixtures are often used for finding clusters. Suppose that

p(x) = (1− η)φ(x;µ1, σ
2
1) + ηφ(x;µ2, σ

2
2)
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with µ1 < µ2. Let Z = 1, 2 denote the two components. We can compute P (Z = 1|X = x)
and P (Z = 2|X = x) explicitly. We can then assign an x to the first component if
P (Z = 1|X = x) > P (Z = 2|X = x). It is easy to check that, with certain choices of σ1, σ2,
all large values of x get assigned to component 1 (i.e., the leftmost component). Technically this is
correct, yet it seems to be an unintended consequence of the model.

Improper Posteriors. Suppose we have a sample from the simple mixture

p(x;µ) =
1

2
φ(x; 0, 1) +

1

2
φ(x;µ, 1).

Then any improper prior on µ yields an improper posterior for µ regardless of how large the sample
size is. Also, Wasserman (2012) shows that the only priors that yield posteriors in close agreement
to frequentist methods are data-dependent priors.

These issues are often exacerbated in more complex mixed membership models. They should
be taken seriously. In most applications, however, available additional information can be used to
mitigate, and sometimes resolve, the problems listed above. The papers we have collected in this
volume provide good examples, and explain why we do not share Wasserman’s negative assessment:
“that mixtures, like tequila, are inherently evil and should be avoided at all costs.”

References
Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). Mixed membership stochastic

blockmodels. Journal of Machine Learning Research 9: 1981–2014.

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2006). Mixed membership stochastic
block models for relational data with application to protein-protein interactions. In Proceedings
of the International Biometrics Society Annual Meeting.

Airoldi, E. M., Erosheva, E. A., Fienberg, S. E., Joutard, C., Love, T., and Shringarpure, S. (2010).
Reconceptualizing the classification of PNAS articles. Proceedings of the National Academy of
Sciences 107: 20899–20904.

Airoldi, E. M., Fienberg, S. E., and Xing, E. P. (2007). Mixed membership analysis of genome-wide
expression studies. Unpublished manuscript.

Airoldi, E. M., Wang, X., and Lin, X. (2013). Multi-way blockmodels for analyzing coordinated
high-dimensional responses. Annals of Applied Statistics 7: 2431–2457.

Azari, H. and Airoldi, E. M. (2012). Graphlet decomposition of a weighted network. Journal of
Machine Learning Research : 54–63.

Azizi, E., Airoldi, E. M., and Galagan, J. E. (2014). Learning modular structures from network data
and node variables. Journal of Machine Learning Research, W&CP. In press.

Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D. M., and Jordan, M. I. (2003). Matching
words and pictures. Journal of Machine Learning Research 3: 1107–1135.

Berkman, L., Singer, B. H., and Manton, K. G. (1989). Black/white differences in health status and
mortality among the elderly. Demography 26: 661–678.

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM 55: 77–84.



Introduction to Mixed Membership Models and Methods 11

Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning (ICML ’06). New York, NY, USA: 113–120.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine
Learning Research 3: 993–1022.

Carreira-Perpinan, M. A. and Williams, C. K. I. (2003). On the number of modes of a Gaussian
mixture. In Scale Space Methods in Computer Vision, Proceedings of the 4th International Con-
ference on Scale Space. Springer, 625–640.

Chang, J. and Blei, D. M. (2009). Relational topic models for document networks. In Proceedings
of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS 2009).
Journal of Machine Learning Research – Proceedings Track 5, 81–88.

Chen, J. (1995). Optimal rate of convergence for finite mixture models. Annals of Statistics 23:
221–233.

Corder, E. H. and Woodbury, M. A. (1993). Genetic heterogeneity in Alzheimer’s disease: A Grade
of Membership analysis. Genetic Epidemiology 10: 495–499.

Davidson, J. R., Woodbury, M. A., Zisook, S., and Giller, E. L., Jr. (1989). Classification of depres-
sion by Grade of Membership: A confirmation study. Psychological Medicine 19: 987–998.

Doyle, G. and Elkan, C. (2009). Accounting for burstiness in topic models. In Proceedings of the
26th International Conference on Machine Learning (ICML ’09). New York, NY, USA: ACM,
281–288.

Edelsbrunner, H., Fasy, B. T., and Rote, G. (2012). Add isotropic Gaussian kernels at own risk:
More and more resiliant modes in higher dimensions. In Proceedings of the ACM Symposium on
Computational Geometry (SoCG 2012). New York, NY, USA: ACM, 91–100.

Erosheva, E. A. (2002). Grade of Membership and Latent Structure Models with Application to Dis-
ability Survey Data. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

Erosheva, E. A. (2003). Bayesian estimation of the Grade of Membership model. In Bernardo, J.,
Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., and West, M. (eds), Bayesian
Statistics 7. New York, NY: Oxford University Press, 501–510.

Erosheva, E. A. (2004). Partial membership models with application to disability survey data. In
Statistical Data Mining and Knowledge Discovery. Chapman & Hall/CRC, 117–134.

Erosheva, E. A. (2005). Comparing latent structures of the Grade of Membership, Rasch, and latent
class models. Psychometrika 70: 619–628.

Erosheva, E. A. and Fienberg, S. E. (2005). Bayesian mixed membership models for soft clustering
and classification. In Weihs, C. and Gaul, W. (eds), Classification – The Ubiquitous Challenge.
Springer, 11–26.

Erosheva, E. A., Fienberg, S. E., and Joutard, C. (2007). Describing disability through individual-
level mixture models for multivariate binary Data. Annals of Applied Statistics 1: 502–537.

Erosheva, E. A., Fienberg, S. E., and Lafferty, J. D. (2004). Mixed-membership models of scientific
publications. Proceedings of the National Academy of Sciences 97: 11885–11892.

Galyardt, A. (2014). Interpreting mixed membership: Implications of Erosheva’s representation
theorem. In Airoldi, E. M., Blei, D. M., Erosheva, E. A., and Fienberg, S. E. (eds), Handbook of
Mixed Membership Models and Its Applications. Chapman & Hall/CRC.



12 Handbook of Mixed Membership Models and Its Applications

Gormley, I. C. and Murphy, T. B. (2009). A Grade of Membership model for rank data. Bayesian
Analysis 4: 265–296.

Gruhl, J. and Erosheva, E. A. (2014). A tale of two (types of) memberships. In Airoldi, E. M., Blei,
D. M., Erosheva, E. A., and Fienberg, S. E. (eds), Handbook of Mixed Membership Models and
Its Applications. Chapman & Hall/CRC.

Haberman, S. J. (1995). Book review of ‘Statistical Applications Using Fuzzy Sets’, by Kenneth G.
Manton, Max A. Woodbury, and Larry S. Corder. Journal of the American Statistical Association
90(431): 1131–1133.

Heller, K. A., Williamson, S., and Ghahramani, Z. (2008). Statistical models for partial membership.
In Proceedings of the 25th International Conference on Machine Learning (ICML ’08). New York,
NY, USA: ACM, 392–399.

Ho, Q., Song, L., and Xing, E. P. (2011). Evolving cluster mixed-membership blockmodel for time-
evolving networks. In Proceedings of the 14th International Conference on Artifical Intelligence
and Statistics (AISTATS 2011). Palo Alto, CA, USA: AAAI.

Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analyis. Machine
Learning 42: 177–196.

Kalai, A., Moitra, A., and Valiant, G. (2012). Disentangling Gaussians. Communications of the
ACM 55: 113–120.

Kim, M. and Leskovec, J. (2011). Modeling social networks with node attributes using the multi-
plicative attribute graph model. arXiv preprint, arXiv:1106.5053.

Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for learning natural scene cate-
gories. In Proceedings of the 10th IEEE Computer Vision and Pattern Recognition (CVPR 2005).
San Diego, CA, USA: IEEE Computer Society, 524–531.

Gross, J. H. and Manrique-Vallier, D. (2014). A mixed membership approach to political ideology.
In Airoldi, E. M., Blei, D. M., Erosheva, E. A., and Fienberg, S. E. (eds), Handbook of Mixed
Membership Models and Its Applications. Chapman & Hall/CRC.

Lecci, F. (2014). An analysis of development of dementia through the Extended Trajectory Grade
of Membership model. In Airoldi, E. M., Blei, D. M., Erosheva, E. A., and Fienberg, S. E. (eds),
Handbook of Mixed Membership Models and Its Applications. Chapman & Hall/CRC.

Mackey, L., Weiss, D. and Jordan, M. I. (2010). Mixed membership matrix factorization. In
Fürnkranz, J. and Joachims, T. (eds), Proceedings of the 27th International Conference on Ma-
chine Learning (ICML ’10). Omnipress, 711–718.

Manrique-Vallier, D. (2014). Mixed membership trajectory models. In Airoldi, E. M., Blei, D. M.,
Erosheva, E. A., and Fienberg, S. E. (eds), Handbook of Mixed Membership Models and Its
Applications. Chapman & Hall/CRC.

Manrique-Vallier, D. and Reiter, J. (2012). Estimating identification disclosure risk using mixed
membership models. Journal of the American Statistical Association 107: 1385–1394.

Manton, K. G., Stallard, E., and Woodbury, M. A. (1991). A multivariate event history model based
upon fuzzy states: Estimation from longitudinal surveys with informative nonresponse. Journal
of Official Statistics 7: 261–293.



Introduction to Mixed Membership Models and Methods 13

Manton, K. G., Woodbury, M. A., Anker, M., and Jablensky, A. (1994a). Symptom profiles of
psychiatric disorders based on graded disease classes: An illustration using data from the WHO
International Pilot Study of Schizophrenia. Psychological Medicine 24: 133–144.

Manton, K. G., Woodbury, M. A., and Tolley, H. D. (1994b). Statistical Applications Using Fuzzy
Sets. Wiley-Interscience.

McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and Statis-
tics. Wiley-Interscience, 1st edition.

Mimno, D. (2011). Reconstructing Pompeian households. In Proceedings of the 27th Conference on
Uncertainty in Artificial Intelligence (UAI 2011). Corvallis, OR, USA: AUAI Press, 506–513.

Potthoff, R. G., Manton, K. G., Woodbury, M. A., and Tolley, H. D. (2000). Dirichlet generalizations
of latent-class models. Journal of Classification 17: 315–353.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000a). Inference of population structure using
multilocus genotype data. Genetics 155: 945–959.

Pritchard, J. K., Stephens, M., Rosenberg, N. A., and Donnelly, P. (2000b). Association mapping in
structured populations. American Journal of Human Genetics 67: 170–181.

Richards, D. and Buot, M. -L. G. (2006). Counting and locating the solutions of polynomial systems
of maximum likelihood equations. I. Journal of Symbolic Computation 41: 234–244.

Rogers, S., Girolami, M., Campbell, C., and Breitling, R. (2005). The latent process decomposition
of cDNA microarray data sets. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics 2: 143–156.

Rosenberg, N. A., Pritchard, J. K., Weber, J. L., Cann, H. M., Kidd, K. K., Zhivotovsky, L. A., and
Feldman, M. W. (2002). Genetic structure of human populations. Science 298: 2381–2385.

Segal, E., Pe’er, D., Regev, A., Koller, D., and Friedman, N. (2005). Learning module networks.
Journal of Machine Learning Research 6: 503–556.

Shringarpure, S. and Xing, E. P. (2014). Population stratification with mixed membership models.
In Airoldi, E. M., Blei, D. M., Erosheva, E. A., and Fienberg, S. E. (eds), Handbook of Mixed
Membership Models and Its Applications. Chapman & Hall/CRC.

Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of
components—An alternative to reversible jump methods. Annals of Statistics 2: 40–74.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet processes.
Journal of the American Statistical Association 101: 1566–1581.

Wang, Y. and Wong, G. (1987). Stochastic block models for directed graphs. Journal of the Ameri-
can Statistical Association 82: 8–19.

Wasserman, L. (2000). Asymptotic inference for mixture models by using data-dependent priors.
Journal of the Royal Statistical Society: Series B 62(1): 159–180.

Wasserman, L. (2012). Mixture models: The twilight zone of statistics. Blog post,
http://normaldeviate.wordpress.com/2012/08/04/mixture-models-the-twilight-zone-of-statistics/.
Accessed on December 12, 2013.

Woodbury, M. A., Clive, J., and Garson A., Jr. (1978). Mathematical typology: A Grade of Mem-
bership technique for obtaining disease definition. Computers and Biomedical Research 11: 277–
298.



14 Handbook of Mixed Membership Models and Its Applications


