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1 Introduction

In this first section we present a high level discussion on computational science, and
the need for compact models of phenomena observed in nature and industry. We
argue that much more complex problems can be addressed by making use of current
computing technology and advanced algorithms, but that there is a need for model
order reduction in order to cope with even more complex problems. We also go into
somewhat more detail about the question as to what model order reduction is.

1.1 Virtual Design Environments

Simulation or, more generally, computational science has become an important part
of todays technological world, and it is now generally accepted as the third disci-
pline, besides the classical disciplines of theory and (real) experiment. Physical (and
other) experiments lead to theories that can be validated by performing additional
experiments. Predictions based on the theory can be made by performing virtual ex-
periments, as illustrated by Figure 1.

Computer simulations are now performed routinely for many physical, chemical
and other processes, and virtual design environments have been set up for a variety
of problem classes in order to ease the work of designers and engineers. In this way,
new products can be designed faster, more reliably, and without having to make
costly prototypes.

The ever increasing demand for realistic simulations of complex products places
a heavy burden on the shoulders of mathematicians and, more generally, researchers
working in the area of computational science and engineering (CSE). Realistic sim-
ulations imply that the errors of the virtual models should be small, and that different
aspects of the product must be taken into account. The former implies that care must
be taken in the numerical treatment and that, for example, a relatively fine adap-
tively determined mesh is necessary in the simulations. The latter explains the trend
in coupled simulations, for example combined mechanical and thermal behaviour, or
combined mechanical and electromagnetic behaviour.
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Fig. 1. Simulation is the third discipline.

Fig. 2. Moore’s law.

An important factor in enabling the complex simulations carried out today is the
increase in computational power. Computers and chips are getting faster, Moores law
predicting that the speed will double every 18 months (see Figure 2).

This increase in computational power appears to go hand-in-hand with devel-
opments in numerical algorithms. Iterative solution techniques for linear systems
are mainly responsible for this speed-up in algorithms, as is shown in Figure 3.
Important contributions in this area are the conjugate gradient method (Hestenes and
Stiefel [22]), preconditioned conjugate gradient methods (ICCG [25], biCGstab [34])
and multigrid methods (Brandt [4] and [5]).

The combined speed-up achieved by computer chips and algorithms is enormous,
and has enabled computational science to make big steps forward. Many problems
that people did not dream of solving two decades ago are now solved routinely.
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Fig. 3. Numerical version of Moore’s law.

1.2 Compact Model Descriptions

The developments described in the previous section also have a counter side. The
increased power of computers and algorithms reduces the need to develop smart,
sophisticated solution methods that make use of properties of the underlying systems.
For example, whereas in the 1960s and 1970s one often had to construct special basis
functions to solve certain problems, this can be avoided nowadays by using brute
force methods using grids that are refined in the right places.

The question arises whether we could use the knowledge generated by these very
accurate, but time-consuming, simulations to generate the special basis functions that
would have constituted the scientific approach a few decades ago. This is a promising
idea, as many phenomena are described very well by a few dominant modes.

Example: electromagnetic behaviour of interconnect structures in chips
To give an example, consider the electromagnetic behaviour of interconnect structures in a
computer chip, depicted in Figure 4. Such a chip consists of millions of devices, such as
transistors, that need to be connected to each other for correct functioning of the chip. The
individual devices are contained in the semiconductor material, their contacts being located
in a two dimensional domain. Clearly, to connect these contacts in the way designers have
prescribed, a three dimensional structure of wires is needed. This is the so-called intercon-
nect structure of the chip, which nowadays consists of 7-10 layers in which metal wires are
running, with so-called vias between the wires located in different metal layers.

In previous generations of chips, these interconnect structures occupied a relatively large
area, and contained less wires, so that the distance between wires was large enough to justify
discarding mutual influence. In recent years, however, chips have shrunk, and the number of
devices has grown enormously. This means that for modern interconnect structures one needs
to take into account mutual influence of wires, as this can lead to serious delay phenom-
ena and other spurious effects. The problem is complicated even further by the use of higher
frequencies.
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Fig. 4. Interconnect structure.

Clearly, the modelling of the mutual electromagnetic influence of interconnect wires is a
gradual process. A decade ago, one did not have to take this influence into account, and could
consider the wires as individual entities. Nowadays, resistive and capacitive effects are clearly
noticeable, and will become more significant over the years. Because of the gradual character
of this phenomenon, one can imagine that it is not necessary to include all minute detail
of an electromagnetic simulation of interconnect structures. Such a simulation could easily
involve millions of nodes, because of the complicated geometric structure. The simulation will
probably reveal that crosstalk and signal integrity problems are quite localized, at a few places
in the structure where wires are too close together.

Another point of view may be to consider the problem as an input-output model, where a
time-dependent input signal is sent through the interconnect structure, and a resulting time-
dependent output signal is registered. Again, to calculate the output resulting from the given
input is a time-consuming exercise due to the excessive number of nodes necessary for this
simulation, in the spatial and time domain. However, it is expected to be possible to delete
superfluous detail, and calculate a very good approximation to the output in a much more
efficient way.

The foregoing example clearly shows that it may not be necessary to calculate
all details, and nevertheless obtain a good understanding of the phenomena taking
place. There may be many reasons why such detail is not needed. There may be
physical reasons that can be formulated beforehand, and therefore incorporated into
the model before starting calculations. A very nice example is that of simulating
the blood flow in the human body, as described in many publications by the group
of Alfio Quarteroni (see [30], but also work of others). In his work, the blood flow
in the body is split into different parts. In very small arteries, it is assumed that
the flow is one dimensional. In somewhat larger arteries, two dimensional models
are used, whereas in the heart, a three dimensional model is used as these effects
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are very important and must be modelled in full detail. This approach does enable
a simulation of the blood flow in the entire human body; clearly, such simulations
would not be feasible if three dimensional models would be used throughout. This
approach, which is also observed in different application areas, is also termed op-
erational model order reduction. It uses physical (or other) insight to reduce the
complexity of models.

Another example of operational model order reduction is the simulation of elec-
tromagnetic effects in special situations. As is well known, electromagnetic effects
can be fully described by a system of Maxwell equations. Despite the power of
current computers and algorithms, solving the Maxwell equations in 3-dimensional
space and time is still an extremely demanding problem, so that simplifications are
being made whenever possible. An assumption that is made quite often is that of
quasi-statics, which holds whenever the frequencies playing a role are low to moder-
ate. In this case, simpler models can be used, and techniques for solving these models
have been developed (see [32]).

In special situations, the knowledge about the problem and solutions can be so
detailed, that a further reduction of model complexity can be achieved. A promi-
nent and very successful example is the compact modelling [19] of semiconductor
devices. Integrated circuits nowadays consist of millions of semiconductor devices,
such as resistors, capacitors, inductors, diodes and transistors. For resistors, capac-
itors and inductors, simple linear models are available, but diodes and especially
transistors are much more complicated. Their behaviour is not easily described, but
can be calculated accurately using software dedicated to semiconductor device sim-
ulation. However, it is impossible to perform a full simulation of the entire electronic
circuit, by using the results of the device simulation software for each of the millions
of transistors. This would imply coupling of the circuit simulation software to the
device simulation software. Bearing in mind that device simulations are often quite
time consuming (it is an extremely nonlinear problem, described by a system of three
partial differential equations), this is an impossible task.

The solution to the aforementioned problem is to use accurate compact mod-
els for each of the transistors. Such models look quite complicated, and can easily
occupy a number of pages of description, but consist of a set of algebraic relations
that can be evaluated very quickly. The compact models are constructed using a large
amount of measurements and simulations, and, above all, using much human insight.
The models often depend on as many as 40-50 parameters, so that they are widely
applicable for many different types and geometries of transistors. The most promi-
nent model nowadays is the Penn-State-Philips (PSP) model for MOS transistors (see
Figure 5), being chosen as the world standard in 2007 [15]. It is very accurate, in-
cluding also derivatives up to several orders. Similar developments can be observed
at Berkeley [6], where the BSIM suite of models is constructed.

Using these so-called compact models, it is possible to perform simulations of
integrated circuits containing millions of components, both for steady-state and time-
dependent situations. Compact modelling, therefore, plays an extremely important
role in enabling such demanding simulations. The big advantage of this approach is
that the compact models are formulated in a way that is very appealing to designers,
as they are formulated in terms of components they are very familiar with.
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Fig. 5. MOS transistor.

Unfortunately, in many cases, it is not possible to a priori simplify the model de-
scribing the behaviour. In such cases, a procedure must be used, in which we rely on
the automatic identification of potential simplifications. Designing such algorithms
is, in essence, the task of the field of model order reduction. In the remainder of this
chapter, we will describe it in more detail.

1.3 Model Order Reduction

There are several definitions of model order reduction, and it depends on the con-
text which one is preferred. Originally, MOR was developed in the area of systems
and control theory, which studies properties of dynamical systems in application for
reducing their complexity, while preserving their input-output behavior as much as
possible. The field has also been taken up by numerical mathematicians, especially
after the publication of methods such as PVL [9]. Nowadays, model order reduction
is a flourishing field of research, both in systems and control theory and in numer-
ical analysis. This has a very healthy effect on MOR as a whole, bringing together
different techniques and different points of view, pushing the field forward rapidly.

So what is model order reduction about? As was mentioned in the foregoing
sections, we need to deal with the simplification of dynamical models that may con-
tain many equations and/or variables (105 − 109). Such simplification is needed in
order to perform simulations within an acceptable amount of time and limited stor-
age capacity, but with reliable outcome. In some cases, we would even like to have
on-line predictions of the behaviour with acceptable computational speed, in order
to be able to perform optimizations of processes and products.

Model Order Reduction tries to quickly capture the essential features of a struc-
ture. This means that in an early stage of the process, the most basic properties of
the original model must already be present in the smaller approximation. At a certain
moment the process of reduction is stopped. At that point all necessary properties of
the original model must be captured with sufficient precision. All of this has to be
done automatically.



Introduction to MOR 9

Fig. 6. Graphical illustration of model order reduction.

Figure 6 illustrates the concept in a graphical easy-to-understand way, demon-
strating that sometimes very little information is needed to describe a model. This
example with pictures of the Stanford Bunny shows that, even with only a few facets,
the rabbit can still be recognized as such (Graphics credits: Harvard University, Mi-
crosoft Research). Although this example was constructed for an entirely different
purpose, and does not contain any reference to the way model order reduction is per-
formed mathematically, it can be used to explain (even to lay persons) what model
order reduction is about.

In the history of mathematics we see the desire to approximate a complicated
function with a simpler formulation already very early. In the year 1807 Fourier
(1768-1830) published the idea to approximate a function with a few trigonometric
terms. In linear algebra the first step in the direction of model order reduction came
from Lanczos (1893-1974). He looked for a way to reduce a matrix in tridiagonal
form [64, 65]. W.E. Arnoldi realized that a smaller matrix could be a good approxi-
mation of the original matrix [2]. He is less well-known, although his ideas are used
by many numerical mathematicians. The ideas of Lanczos and Arnoldi were already
based on the fact that a computer was available to do the computations. The ques-
tion, therefore, was how the process of finding a smaller approximation could be
automated.

The fundamental methods in the area of Model Order Reduction were published
in the eighties and nineties of the last century. In 1981 Moore [71] published the
method of Truncated Balanced Realization, in 1984 Glover published his famous
paper on the Hankel-norm reduction [38]. In 1987 the Proper Orthogonal Decom-
position method was proposed by Sirovich [94]. All these methods were developed
in the field of systems and control theory. In 1990 the first method related to Krylov
subspaces was born, in Asymptotic Waveform Evaluation [80]. However, the focus
of this paper was more on finding Padé approximations rather than Krylov spaces.
Then, in 1993, Freund and Feldmann proposed Padé Via Lanczos [28] and showed
the relation between the Padé approximation and Krylov spaces. In 1995 another fun-
damental method was published. The authors of [73] introduced PRIMA, a method
based on the ideas of Arnoldi, instead of those of Lanczos. This method will be
considered in detail in Section 3.3, together with the Laguerre-SVD method [61].

In more recent years much research has been done in the area of the Model Order
Reduction. Consequently a large variety of methods is available. Some are tailored
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to specific applications, others are more general. In the second and third part of this
book, many of these new developments are being discussed. In the remainder of
this chapter, we will discuss some basic methods and properties, as this is essential
knowledge required for the remainder of the book.

1.4 Dynamical Systems

To place model reduction in a mathematical context, we need to realize that many
models developed in computational science consist of a system of partial and/or or-
dinary differential equations, supplemented with boundary conditions. Important ex-
amples are the Navier-Stokes equations in computational fluid dynamics (CFD), and
the Maxwell equations in electromagnetics (EM). When partial differential equa-
tions are used to describe the behaviour, one often encounters the situation that the
independent variables are space and time. Thus, after (semi-)discretising in space, a
system of ordinary differential equations is obtained in time. Therefore, we limit the
discussion to ODE’s and consider the following explicit finite-dimensional dynami-
cal system (following Antoulas, see [2]):

dx
dt

= f(x,u)

y = g(x,u).

Here, u is the input of the system, y the output, and x the so-called state variable.
The dynamical system can thus be viewed as an input-output system, as displayed in
Figure 7.

The complexity of the system is characterized by the number of its state vari-
ables, i.e. the dimension n of the state space vector x. It should be noted that similar
dynamical systems can also be defined in terms of differential algebraic equations,
in which case the first set of equations in (1) is replaced by F(dx

dt ,x,u) = 0.
Model order reduction can now be viewed as the task of reducing the dimension

of the state space vector, while preserving the character of the input-output relations.
In other words, we should find a dynamical system of the form

dx̂
dt

= f̂(x̂,u),

y = ĝ(x̂,u),

⎩
⎨
⎧

Σ :…

⎩
⎨
⎧

Σ :

u1(t)

u2(t)

um(t)

…

y1(t)

y2(t)

ym(t)
y(t) = g(x(t),u(t))

f (x(t),x(t),u (t)) = 0

Fig. 7. Input-output system
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where the dimension of x̂ is much smaller than n. In order to provide a good ap-
proximation of the original input-output system, a number of conditions should be
satisfied:

• the approximation error is small,
• preservation of properties of the original system, such as stability and passivity

(see Sections 2.4-2.6),
• the reduction procedure should be computationally efficient.

A special case is encountered if the functions f and g are linear, in which case
the system reads

dx
dt

= Ax +Bu,

y = CT x +Du.

Here, the matrices A,B,C,D can be time-dependent, in which case we have
a linear time-varying (LTV) system, or time-independent, in which case we speak
about a linear time-invariant (LTI) system. For linear dynamical systems, model or-
der reduction is equivalent to reducing the matrix A, but retaining the number of
columns of B and C.

1.5 Approximation by Projection

Although we will discuss in more detail ways of approximating input-output systems
later in this chapter, there is a unifying feature of the approximation methods that is
worthwhile discussing briefly: projection. Methods based on this concept truncate
the solution of the original system in an appropriate basis. To illustrate the concept,
consider a basis transformation T that maps the original n-dimensional state space
vector x into a vector that we denote by

x̄ =
(

x̂
x̃

)
,

where x̂ is k-dimensional. The basis transformation T can then be written as

T =
(
W ∗

T ∗
2

)
,

and its inverse as
T−1 = (V T1).

Since W ∗V = Ik, we conclude that

Π = VW ∗

is an oblique projection along the kernel of W ∗ onto the k-dimensional subspace that
is spanned by the columns of the matrix V .
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If we substitute the projection into the dynamical system (1), the first part of the
set of equations obtained is

dx̂
dt

= W ∗f̂(V x̂ + T1x̃,u),

y = ĝ(V x̂ + T1x̃,u).

Note that this is an exact expression. The approximation occurs when we would
delete the terms involving x̃, in which case we obtain the reduced system

dx̂
dt

= W ∗f̂(V x̂,u),

y = ĝ(V x̂,u).

For this to produce a good approximation to the original system, the neglected
term T1x̃ must be sufficiently small. This has implications for the choice of the pro-
jection Π . In the following sections, various ways of constructing this projection are
discussed.

2 Transfer Function, Stability and Passivity

Before discussing methods that have been developed in the area of model order
reduction, it is necessary to shed light on several concepts that are being used fre-
quently in the field. Often, model order reduction does not address the reduction
of the entire problem or solution, but merely a number of characteristic functions
that are important for designers and engineers. In addition, it is important to con-
sider a number of specific aspects of the underlying problem, and preserve these
when reducing. Therefore, this section is dedicated to a discussion of these important
concepts.

2.1 Transfer Function

In order to illustrate the various concepts related to model order reduction of input-
output systems as described in the previous section, we consider the linear time-
invariant system

dx
dt

= Ax +Bu,

y = CT x.

The general solution of this problem is

x(t) = exp (A(t− t0))x0 +
∫ t

t0

exp (A(t− τ))Bu(τ)dτ. (1)
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A common way to solve the differential equation is by transforming it from the time
domain to the frequency domain, by means of a Laplace transform defined as

L(f)(s) ≡
∫ ∞

0

f(t) exp (−st)dt.

If we apply this transform to the system, assuming that x(0) = 0, the system is
transformed to a purely algebraic system of equations:

(In − sA)X = BU,

Y = CT X,

where the capital letters indicate the Laplace transforms of the respective lower case
quantities. This immediately leads to the following relation:

Y(s) = CT (In − sA)BX(s). (2)

Now define the transfer function H(s) as

H(s) = CT (In − sA)B. (3)

This transfer function represents the direct relation between input and output in the
frequency domain, and therefore the behavior of the system in frequency domain. For
example, in the case of electronic circuits this function may describe the transfer from
currents to voltages, and is then termed impedance. If the transfer is from voltages to
currents, then the transfer function corresponds to the admittance.

Note that if the system has more than one input or more than one output, then
B and C have more than one column. This makes H(s) a matrix function. The i, j
entry in H(s) then denotes the transfer from input i to output j.

2.2 Moments

The transfer function is a function in s, and can therefore be expanded into a moment
expansion around s = 0:

H(s) = M0 +M1s+M2s
2 + . . . ,

where M0, M1, M2, . . . are the moments of the transfer function. In electronics, M0

corresponds to the DC solution.In that case the inductors are considered as short
circuits, and capacitors as open circuits. The moment M1 then corresponds to the
so-called Elmore delay, which represents the time for a signal at the input port to
reach the output port. The Elmore delay is defined as

telm ≡
∫ ∞

0

th(t)dt,
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where h(t) is the impulse response function, which is the response of the system to
the Dirac delta input. The transfer function in the frequency domain is the Laplace
transform of the impulse response function:

H(s) =
∫ ∞

0

h(t) exp (−st)dt.

Expanding the exponential function in a power series, it is seen that the Elmore delay
indeed corresponds to the first order moment of the transfer function.

Of course, the transfer function can also be expanded around some non-zero s0.
We then obtain a similar expansion in terms of moments. This may be advantageous
in some cases, and truncation of that alternative moment expansion may lead to better
approximations.

2.3 Poles and Residues

The transfer function can also be expanded as follows:

H(s) =
n∑

j=1

Rj

s− pj
, (4)

where the pj are the poles, and Rj are the corresponding residues. The poles are
exactly the eigenvalues of the matrix −A−1. In fact, if the matrix E of eigenvectors
is non-singular, we can write

−A−1 = EΛE−1,

where the diagonal matrix Λ contains the eigenvalues λj . Substituting this into the
expression for the transfer function, we obtain:

H(s) = −CTE(I + sΛ)−1E−1A−1B.

Hence, if B and C contain only one column (which corresponds to the single input,
single output or SISO case), then

H(s) =
n∑

j=1

lTj rj

1 + sλj
,

where the lj and rj are the left and right eigenvectors, respectively.
We see that there is a one-to-one relation between the poles and the eigenvalues of

the system. If the original dynamical system originates from a differential algebraic
system, then a generalized eigenvalue problem needs to be solved. Since the poles
appear directly in the pole-residue formulation of the transfer function, there is also
a strong relation between the transfer function and the poles or, stated differently,
between the behavior of the system and the poles. If one approximates the system,
one should take care to approximate the most important poles. There are several
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methods that do this, which are discussed in later chapters of this book. In general,
we can say that, since the transfer function is usually plotted for imaginary points
s = ωi, the poles that have a small imaginary part dictate the behavior of the transfer
function for small values of the frequency ω. Consequently, the poles with a large
imaginary part are needed for a good approximation at higher frequencies. Therefore,
a successful reduction method aims at capturing the poles with small imaginary part
rather, and leaves out poles with a small residue.

2.4 Stability

Poles and eigenvalues of a system are strongly related to the stability of the system.
Stability is the property of a system that ensures that the output signal of a system is
limited (in the time domain).

Consider again the system (1). The system is stable if and only if, for all eigenval-
ues λj , we have that Re(λj) ≤ 0, and all eigenvalues with Re(λj) = 0 are simple.
In that case, the corresponding matrix A is termed stable.

There are several properties associated with stability. Clearly, if A is stable, then
also A−1 is stable. Stability of A also implies stability of AT and stability of A∗.
Finally, if the product of matrices AB is stable, then also BA can be shown to be
stable. It is also clear that, due to the relation between eigenvalues of A and poles of
the transfer function, stability can also be formulated in terms of the poles of H(s).

The more general linear dynamical system

Q
dx
dt

= Ax +Bu,

y = CT x,

is stable if and only if for all generalized eigenvalues we have thatRe(λj(Q,A))≤ 0,
and all generalized eigenvalues for which Re(λj(Q,A)) = 0 are simple. The set of
generalized eigenvalues σ(Q,A) is defined as the collection of eigenvalues of the
generalized eigenvalue problem

Qx = λAx.

In this case, the pair of matrices (Q,A) is termed a matrix pencil. This pencil is said
to be regular if there exists at least one eigenvalue λ for which Q + λA is regular.
Just as for the simpler system discussed in the above, stability can also be formulated
in terms of the poles of the corresponding transfer function.

2.5 Positive Real Matrices

The concept of stability explained in the previous subsection leads us to consider
other properties of matrices. First we have the following theorem.

Theorem 1. If Re(x∗Ax > 0 for all x ∈ Cn, then all eigenvalues of A have a
positive real part.
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The converse of this theorem is not true, as can be seen when we take

A =
(
− 1

3 −1
1 2

)
,

and

x =
(

1
0

)
.

Matrices with the property that Re(x∗Ax > 0 for all x ∈ Cn are termed positive
real. The counter example shows that the class of positive real matrices is smaller
than the class of matrices for which all eigenvalues have positive real part. In the
next section, this new and restricted class will be discussed in more detail. For now,
we remark that a number of properties of positive real matrices are easily derived. If
A is positive real, then this also holds forA−1 (if it exists). Furthermore,A is positive
real if and only if A∗ is positive real. If two matrices A and B are both positive real,
then any linear combination αA+ βB is also positive real provided Re(α) > 0 and
Re(β) > 0.

There is an interesting relation between positive real and positive definite ma-
trices. Evidently, the class of positive definite matrices is a subclass of the set of
positive real matrices. But we also have:

Theorem 2. A matrix A ∈ Cn×n is positive real if and only if the Hermitian part
of A (i.e. 1

2 (A+A∗)) is symmetric positive definite.

Similarly one can prove that a matrix is non-negative real if and only if its
Hermitian part is symmetric positive semi-definite.

2.6 Passivity

Stability is a very natural property of physical structures. However, stability is not
strong enough for electronic structures that contain no sources. A stable structure can
become unstable if non-linear components are connected to it. Therefore, another
property of systems should be defined that is stronger than stability. This property
is called passivity. Being passive means being incapable of generating energy. If a
system is passive and stable, we would like a reduction method to preserve these
properties during reduction. In this section the principle of passivity is discussed and
what is needed to preserve passivity.

To define the concept, we consider a system that has N so-called ports. The total
instantaneous power absorbed by this real N-port is defined by:

winst(t) ≡
N∑

j=1

vj(t)ij(t),

where vj(t) and ij(t) are the real instanteneous voltage and current at the j-th port.
An N -port contains stored energy, say E(t). If the system dissipates energy at rate
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wd(t), and contains sources which provide energy at rate ws(t), then the energy
balance during a time interval [t1, t2] looks like:∫ t2

t1

(winst + ws − wd)dt = E(t2) − E(t1). (5)

An N -port is termed passive if we have∫ t2

t1

winstdt ≥ E(t2) −E(t1), (6)

over any time interval [t1, t2]. This means that the increase in stored energy must
be less than or equal to the energy delivered through the ports. The N-port is called
lossless if (6) holds with equality over any interval. Assume that the port quantities
exhibit purely exponential time-dependence, at a single complex frequency s. We
may then write:

v(t) = v̂ exp(it), i(t) = î exp((it)),

where v̂ and î are the complex amplitudes. We define the total complex power ab-
sorbed to be the inner product of î and v̂,

w = î∗v̂,

and the average or active power as:

< w > =Re(w).

For an N-port defined by an impedance relationship, we may immediately write
< w > in terms of the voltage and current amplitudes:

< w >=
1
2
(̂i∗v̂ + v̂∗î) =

1
2
(̂i∗Zî+ î∗Z∗î) =

1
2
(̂i∗(Z + Z∗)̂i).

For such a real linear time invariant (LTI) N-port, passivity may be defined in the
following way. If the total active power absorbed by an N-port is always greater than
or equal to zero for frequencies s such that Re(s) ≥ 0, then it is called passive. This
implies that Z + Z∗ ≥ 0 for Re(s) ≥ 0. Hence, the matrix Z must be positive real.

Given our discussion and the definition of passivity based on an energy argument,
we can formulate the following theorem.

Theorem 3. The transfer function H(s) of a passive system is positive real, i.e.

H∗(s) +H(s) ≥ 0

for all s with Re(s) ≥ 0.

Sometimes another definition of passivity is used, for instance in [35]. Under certain
assumptions these definitions are equal.
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3 A Short Account of Techniques for Model Order Reduction

Having discussed the need for model order reduction, and several essential prereq-
uisites, this section will now give an overview of the field by discussing the most
important techniques. The methods and new developments discussed in subsequent
chapters of this book build on these basic algorithms. Adequate referencing is pro-
vided, so that readers can go into more detail when desired.

3.1 Asymptotic Waveform Evaluation

One of the basic and earliest methods in Model Order Reduction is Asymptotic
Waveform Evaluation (AWE), proposed by Pillage and Rohrer in 1990 [7, 29]. The
underlying idea of the method is that the transfer function can be well approximated
by a Padé approximation. A Padé approximation is a ratio of two polynomials P (s)
and Q(s). AWE calculates a Padé approximation of finite degree, so the degree of
P (s) and Q(s) is finite and deg(Q(s)) ≥ deg(P (s)). There is a close relation be-
tween the Padé approximations and Krylov subspace methods (see Chapter 2). To
explain this fundamental property, consider the general system:

(sIn −A)X(s) = BU(s).

Expanding X(s) around some expansion point s0 ∈ C we obtain:

(s0In −A+ (s− s0)In)(X0 + (s− s0)X1 + . . .) = BU(s).

Here, the Xi(s) are the moments. Assuming U(s) = 1, and equating like powers of
(s− s0)i, we find:

(s0In −A)X0 = B,

for the term corresponding to i = 0, and for i ≥ 1

(s0In −A)Xi = −Xi−1.

We conclude that, in fact, a Krylov space is built up (see Chapter 2):

K((s0In −A)−1B, (s0In −A)−1).

The process can be terminated after finding a sufficient number of moments, and
the hope is that then a good approximation has been found for the transfer function.
Clearly, this approximation is of the form

H̃(s) =
n∑

k=0

mk(s− s0)k,

for some finite n.
Once the moments have been calculated, a Padé approximation Ĥ(s) of the trans-

fer function H(s) can be determined:



Introduction to MOR 19

Ĥ(s) =
P (s− s0)
Q(s− s0)

.

Letting

P (s) =
p∑

k=0

ak(s− s0)k, Q(s) =
p+1∑
k=0

bk(s− s0)k,

we find that the following relation must hold:
p∑

k=0

ak(s− s0)k =

(
n∑

k=0

mk(s− s0)k

)(
p+1∑
k=0

bk(s− s0)k

)
.

Equating like powers of s − s0 (for the higher powers), and setting b0 = 1, we find
the following system to be solved:⎛⎜⎜⎜⎝

m0 m1 . . . mp

m1 m2 . . . mp+1

...
...

. . .
...

mp mp+1 . . . m2p

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
bp+1

bp
...
b1

⎞⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎝
mp+1

mp+2

...
m2p+1

⎞⎟⎟⎟⎠ , (1)

from which we can extract the coefficients bi, i = 1, . . . , p + 1 of Q. A similar step
can be used to subsequently find the coefficients of the polynomial P .

The problem with the above method, and with AWE in general, is that the coeffi-
cient matrix in (1) quickly becomes ill-conditioned as the number of moments used
goes up. In fact, practical experience indicates that applicability of the method stops
once 8 or more moments are used. The method can be made more robust by using
Complex Frequency Hopping [29], meaning that more than one expansion point is
used. However, the method remains computationally demanding and, for that reason,
alternatives as described in the next subsections are much more popular nowadays.

3.2 The PVL Method

Although AWE was initially considered an attractive method for approximating the
transfer function, soon the disadvantages of the method were recognized. Then, in
1993, Roland Freund and Peter Feldmann [9] published their method named Padé-
via-Lanczos or PVL. In this method, the Padé approximation based on the moments
is calculated by means of a two-sided Lanczos algorithm (see also Chapter 2). The
algorithm requires approximately the same computational effort as AWE, but it gen-
erates more poles and is much more robust.

To explain the method, consider the transfer function of a SISO system:

H(s) = cT (sIn −A)−1b.

Let s0 ∈ C be the expansion point for the approximation. Then the transfer function
can be cast into the form

H(s) = cT (In − (s− s0)Â)−1r,
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where
Â = −(s0In −A)−1,

and
r = (s0In −A)−1b.

This transfer function can, just as in the case of AWE, be approximated well by a
rational function in the form of a Padé approximation. In PVL this approximation is
found via the Lanczos algorithm. By running q steps of this algorithm (see Chapter 2
for details on the Lanczos method), an approximation of Â is found in the form of a
tridiagonal matrix Tq, and the approximate transfer function is of the form:

Hq(s) = cT r · eT
1 (In − (s− s0)Tq)−1e1, (2)

where e1 is the first unit vector. The moments can also be found from this expression:

cT Âkr = cT r · eT
1 T

k
q e1.

A proof of these facts can be found in the original paper [9].
Every iteration leads to the preservation of two extra moments. This makes PVL

a very powerful and efficient algorithm. Unfortunately, there are also disadvantages
associated with the algorithm. For example, it is known that PVL does not always
preserve stability. The reason for this is that PVL is based on a two-sided Lanczos
algorithm, and uses non-orthogonal or skew projections. The problem has been stud-
ied by several authors; in [9], it is suggested to simply delete the poles which have a
positive real part. However, such “remedies” are not based upon theory, and should
probably be avoided. In the case of symmetric matrices, the problem can be resolved
by using a one-sided Lanczos process, which would preserve stability.

Another problem associated with PVL is that the inner products wT
n+1vn+1 in

the bi-orthogonal sequence may be zero or near to zero, in which case the Lanczos
algorithm breaks down. To avoid this, a look-ahead version of the Lanczos process
has been suggested in [10].

The PVL method has been very successful since 1993, and many new devel-
opments are based upon it. We mention the matrix PVL method, published by the
inventors of PVL [10]. In [1] a more extensive version of MPVL with look-ahead
and deflation is described. Another method presented by Freund and Feldmann is
SymPVL [12–14], which is an efficient version of PVL for the case of symmetric
matrices. Te method cures the stability problem observed for PVL. A similar (and
earlier) development is SyPVL [11] The main idea of all these methods is to make
use of the fact that the matrix is symmetric, so that it can be decomposed using a
Cholesky decomposition. This then automatically leads to stability of the associated
approximate models.

Another nice development worth mentioning is the two-step Lanczos algorithm.
It splits the problem of reducing the original system into two separate phases. First a
Lanczos process is performed using a Krylov subspace based upon the matrix itself,
rather than its inverse. Clearly, this is much more efficient, and so it is easy to perform
many steps of this procedure. This then leads to a reduction of the original problem
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to a system of size, say, a few thousand. In the second phase, the ‘ordinary’ Lanczos
procedure is used to reduce the problem much further, now using the inverse of the
coefficient matrix. For more details, see [35, 36].

3.3 Arnoldi and PRIMA Method

The Lanczos process is most suitable for symmetric matrices (see Chapter 2), but
for general matrices the Arnoldi method is a better choice. It can also be used as the
basis for a model order reduction method like PVL. Similar to PVL, one can define
an expansion point s0, and work with the shift-and-invert transfer function:

H(s) = CT (sIn −A)−1B = CT (In + (s− s0)Â)−1R,

with
Â = (s0In −A)−1,

and
R = (s0In −A)−1B.

Then, in the Arnoldi process, a Krylov space associated with the matrices Â and R
is generated:

Kq(R, Â) = span{R, ÂR, . . . , ÂqR}.
The main differences with PVL are that only one Krylov space is generated, namely
with the (block) Arnoldi process [31], and that the projections are performed with
orthogonal operators.

The expansion point in the above can be chosen either real or complex, leading
to different approximations of the poles of the system. A real shift may be favorable
over a complex shift, as the convergence of the reduced transfer function towards the
original transfer function is more global.

A very important new development was published in 1998, with a method now
known as PRIMA [26]. Up till then, the methods developed suffered from non-
passivity. Odabasioglu and Celik realized that the Arnoldi method had the poten-
tial to resolve these problems with passivity. The PRIMA method, in full passive
reduced-order interconnect macromodeling algorithm, builds upon the same Krylov
space as in the Arnoldi method and PVL, using the Arnoldi method to generate an
orthogonal basis for the Krylov space. The fundamental difference with preceding
methods is, however, that the projection of the matrices is done explicitly. This is in
contrast with PVL and Arnoldi, where the tridiagonal or the Hessenberg matrix is
used for this purpose. In other words, the following matrix is formed:

Aq = V T
q AVq,

where Vq is the matrix containing an orthonormal basis for the Krylov space.
Although more expensive, the explicit projection onto the Krylov space has

strong advantages. It makes PRIMA more accurate than the Arnoldi method and
it ensures preservation of stability and passivity. As such, it was the first method to
achieve this in a provable way. A slight disadvantage of the method, as compared to
PVL, is that only one moment per iteration is preserved additionally. This is only a
minor disadvantage, if one realizes that PVL requires iterating both with A and its
transpose.
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3.4 Laguerre Methods

The search for provable passive model order reduction techniques continued after the
publication of PRIMA. A new development was the construction of approximations
using the framework of Laguerre functions, as proposed in [23,24]. In these methods,
the transfer function is not shifted-and-inverted, as is the case in the PVL and Arnoldi
methods. Instead, it is expanded in terms of Laguerre functions that are defined as

φα
k (t) ≡

√
2α exp (−αt)�k(2αt),

where α is a positive scaling parameter, and �k(t) is the Laguerre polynomial

�k(t) ≡ exp (t)
k!

dk

dtk
(exp (−t)tk).

The Laplace transform of φα
k (t) is

Φα
k (s) =

√
2α

s+ α

(
s− α

s+ α

)k

.

Furthermore, it can be shown (see [20]) that the Laguerre expansion of the transfer
function is

H(s) =
2α

s+ α
CT

∞∑
k=0

(
(αIn −A)−1(−αIn −A)

)k
(αIn −A)−1B

(
s− α

s+ α

)k

.

Clearly, this expansion gives rise to a Krylov space again. The number of linear
systems that needs to be solved is equivalent to that in PRIMA, so the method is
computationally competitive.

The algorithm presented in [23] then reads:

1. select a value for α and q
2. solve (αIn −A)R1 = B
3. for k=2,...,q, solve (αIn −A)Rk = (−αIn −A)Rk−1

4. define R = [R1, ..., Rq] and calculate the SVD of R: R = V ΣWT

5. Ã = V TAV
6. C̃ = V TCV
7. B̃ = V TBV

In [23] it is argued that the best choice for α is to take it equal to 2πfmax, where
fmax is the maximum frequency for which the reduced order model is to be valid.

As can be seen from the algorithm, the Krylov space is built without intermediate
orthogonalisation. Instead, a singular value decomposition (SVD) is performed after
the process has terminated. Consequently, V is an orthonormal basis of R. SVD is
known to be a very stable and accurate way to perform this orthogonalisation, on the
other hand it is computationally expensive. There are good alternatives, such as the
QR method or Modified Gram-Schmidt. In [21], an alternative to the Laguerre-SVD
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method is presented that makes use of intermediate orthogonalisation, and has been
shown to have certain advantages over using an SVD.

Just as in the PRIMA method, the Laguerre-based methods make use of explicit
projection of the system matrices. Consequently, these methods preserve stability and
passivity. Since α is a real number, the matrices in the Laguerre algorithm remain real
during projection, thereby making it suitable for circuit synthesis (see [21, 24]).

3.5 Truncation Methods

As mentioned before, model order reduction has its roots in the area of systems and
control theory. Within this area, methods have been developed that differ consider-
ably from the Krylov based methods as discussed in subsections 3.1-3.5. The basic
idea is to truncate the dynamical system studied at some point. To illustrate how it
works, consider again the linear dynamical system (1):

dx
dt

= Ax +Bu,

y = CT x +Du.

Applying a state space transformation

T x̃ = x,

does not affect the input-output behavior of the system. This transformation could be
chosen to be based on the eigenvalue decomposition of the matrix A:

AT = TΛ.

When T is non-singular, T−1AT is a diagonal matrix consisting of the eigenvalues
of A, and we could use an ordering such that the eigenvalues on the diagonal occur
in order of decreasing magnitude. The system can then be truncated by restricting
the matrix T to the dominant eigenvalues. This process is termed modal truncation.

Another truncation method is that of balanced truncation, usually known as
Truncated Balanced Realization (TBR). This method is based upon the observation
that only the largest singular values of a system are important. As there is a very
good reference to this method, containing all details, we will only summarize the
main concepts. The reader interested in the details of the method is referred to the
book by Antoulas [2].

The controllability Gramian and the observability Gramian associated to the lin-
ear time-invariant system (A,B,C,D) are defined as follows:

P =
∫ ∞

0

eAtBB∗eA∗tdt, (3a)

and

Q =
∫ ∞

0

eAtC∗CeA∗tdt, (3b)

respectively.
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The matrices P and Q are the unique solutions of two Lyapunov equations:

AP + PA∗ +BB∗ = 0, (4a)

A∗Q+QA+ C∗C = 0. (4b)

The Lyapunov equations for the Gramians arise from a stability assumption of A.
Stability in the matrix A implies that the infinite integral defined in (3) is bounded.
Finding the solution of the Lyapunov equation is quite expensive. There are direct
ways and iterative ways to do this. One of the interesting iterative methods to find a
solution is vector ADI [8,33]. New developments are also in the work of Benner [3].

After finding the Gramians, we look for a state space transformation which bal-
ances the system. A system is called balanced if P = Q = Σ = diag(σi). The
transformation will be applied to the system as follows:

A′ = T−1AT

B′ = T−1B

C ′ = CT

D′ = D.

This transformation also yields transformed Gramians:

P ′ = T−1PT−∗

Q′ = T ∗QT.

Because P and Q are positive definite, a Cholesky factorization of P can be calcu-
lated, P = RTR, with R ∈ R

n×n. Then the Hankel singular values are derived as
the singular values of the matrix RQRT, which are equal to the square root of the
eigenvalues of RQRT and QP . So:

RQRT = UTΣ2U. (5)

Then the transformation T ∈ Rn×n is defined as:

T = RTUTΣ−1/2. (6)

The inverse of this matrix is:

T−1 = Σ1/2UR−1. (7)

This procedure is called balancing. It can be shown that T indeed balances the
system:

Q′ = TTQT = Σ−1/2URQRTUTΣ−1/2 = Σ−1/2Σ2Σ−1/2 = Σ

P ′ = T−1PT−T = Σ1/2UR−TPR−1UTΣ1/2 = Σ1/2Σ1/2 = Σ.

Since a transformation was defined which transforms the system according to the
Hankel singular values [2], now very easily a truncation can be defined.
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Σ can be partitioned:

Σ =
(
Σ1 0
0 Σ2

)
, (8)

where Σ1 contains the largest Hankel singular values. This is the main advantage of
this method, since now we can manually choose an appropriate value of the size of
the reduction, instead of guessing one.

A′, B′ and C ′ can be partitioned in conformance with Σ:

A′ =
(
A11 A12

A21 A22

)
(9)

B′ =
(
B1

B2

)
(10)

C ′ =
(
C1 C2

)
. (11)

The reduced model is then based on A11, B1 and C1:
˙̃x = A11x̃ +B1u

y = C1x̃.

It is sometimes proposed to apply Balanced Truncation-like methods as a second
reduction step, after having applied a Krylov method. This can be advantageous in
some cases, and has also been done by several authors.

A remark should be made on solving the Lyapunov equation. These equations
are normally solved by first calculating a Schur decomposition for the matrix A.
Therefore, finding the solution of the Lyapunov is quite expensive, the number of
operations is at least O(n3), where n is the size of the original model. Hence, it is
only feasible for small systems. Furthermore, because we arrived at this point using
the inverse of an ill-conditioned matrix we have to be careful. B can have very large
entries, which will introduce tremendous errors in solving the Lyapunov equation.
Dividing both equations by the square of the norm of B spreads the malice a bit,
which makes finding a solution worthwhile. In recent years, however, quite a lot of
progress has been made on solving larger Lyapunov equations. We refer to the work
of Benner [3].

Another remark: since the matrices are projected by a similarity transform,
preservation of passivity is not guaranteed in this method. In [27] a Balanced Trunca-
tion method is presented which is provably passive. Here also Poor Man’s TBR [28]
should be mentioned as a fruitful approach to implement TBR is a more efficient
way. We refer to a later chapter in this book for more information on this topic.

3.6 Optimal Hankel Norm Reduction

Closely related to Balanced Truncation is Optimal Hankel Norm reduction [18]. In
the Balanced Truncation norm it was not clear whether the truncated system of size
say k was an optimal approximation of this size. It is seen that this optimality can be
calculated and reached given a specific norm, the Hankel norm.
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To define the Hankel norm we first have to define the Hankel operator H:

H : u → y =
∫ 0

−∞
h(t− τ)u(τ), (12)

where h(t) is the impulse response in time domain: h(t) = C exp(At)B for t > 0.
This operator considers the past input, the energy that was put into the system before
t = 0, in order to reach this state. The amount of energy to reach a state tells some-
thing about the controllability of that state. If, after t = 0, no energy is put into the
system and the system is stable, then the corresponding output will be bounded as
well. The energy that comes out of a state, gives information about the observability
of a state. The observability and controllability Gramians were defined in (3).

Therefore, the maximal gain of this Hankel operator can be calculated:

‖Σ‖H = sup
u∈L2(−∞,0]

‖y‖2

‖u‖2
. (13)

This norm is called the Hankel norm. Since it can be proved that ‖Σ‖H=λ1/2
max

(PQ)=σ1, the Hankel norm is nothing but the largest Hankel singular value of the
system.

There exists a transfer function and a corresponding linear dynamical system
which minimizes this norm. In [18] an algorithm is given which explicitly generates
this optimal approximation in the Hankel-norm. The algorithm is based on a balanced
realization.

3.7 Selective Node Elimination

Krylov based methods build up the reduced order model by iterating, every iteration
leading to a larger size of the model. Hence, the first few iterations yield extremely
small models that will not be very accurate in general, and only when a sufficient
number of iterations has been performed, the approximate model will be sufficiently
accurate. Hence, characteristic for such methods is that the space in which approx-
imations are being sought is gradually built up. An alternative would be to start ‘at
the other end’, in other words, start with the original model, and reduce in it every
iteration, until we obtain a model that is small and yet has sufficient accuracy. This is
the basic idea behind a method termed selective node elimination. Although it can,
in principle, be applied in many situations, it has been described in literature only for
the reduction of electronic circuits. Therefore, we limit the discussion in this section
to that application.

Reduction of a circuit can be done by explicitly removing components and nodes
from the circuit. If a node in a circuit is removed, the behaviour of the circuit can be
preserved by adjusting the components around this node. Recall that the components
connected to the node that is removed, are also removed. The value of the remaining
components surrounding this node must be changed to preserve the behavior of the
circuit. For circuits with only resistors this elimination can be done exactly.
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We explain the idea for an RC circuit. For this circuit we have the following
circuit equation Y (s)v = (G + sC)v = J. The vector v here consists of the node
voltages, J is some input current term. Suppose the n-th node is eliminated. Then,
we partition the matrix such that the (n, n) entry forms one part:[

Ỹ y
yT γn + sχn

] [
ṽ
vn

]
=
[
J1

jn

]
.

Then the variable vn is eliminated, which leads to:

(Ỹ − E)v̂ = (J1 − F), (14)

with

Eij =
yiyj

γn + sχn
=

(gin + scin)(gjn + scjn)
γn + sχn

(15a)

Fi =
yi

γn + sχn
jn =

gin + scin
γn + sχn

jn. (15b)

If node n is not a terminal node, jn is equal to 0 and therefore F=0 for all i. We see
that the elimination can also be written in matrix notation. Hence, this approach is
analogous to solving the system by Gaussian elimination. This approach can be used
to solve PDE’s in an efficient way.

After the elimination process the matrix is not in the form G+sC anymore, but is
a fraction of polynomials in s. To get an RC-circuit representation an approximation
is needed. Given the approximation method that is applied, removing one node leads
to a larger error than removing the other.

Many others have investigated methods which are strongly related to the ap-
proach described here, for instance a more symbolic approach. The strong attributes
of the methods described above is that an RC circuit is the direct result. The error
made with the reduction is controllable, but can be rather large. A disadvantage is
that reducing an RLC-circuit in this way is more difficult and it is hard to get an
RLC-circuit back after reduction.

3.8 Proper Orthogonal Decomposition

Apart from Krylov subspace methods and Truncation methods, there is Proper
Orthogonal Decomposition (POD), also known as Karhunen-Loeve decomposition.
This method is developed within the area of Computational Fluid Dynamics and
nowadays used frequently in many CFD problems. The method is so common there,
that it should at least be mentioned here as an option to reduce models derived in
an electronic setting. The strong point of POD is that it can be applied to non-linear
partial differential equations and is at the moment state-of-the-art for many of such
problems.

The idea underlying this method is that the time response of a system given
a certain input, contains the essential behavior of the system. The most important
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aspects of this output in time are retrieved to describe the system. Therefore, the set of
outputs serves as a starting-point for POD. The outputs, which are called ‘snapshots’,
must be given or else be computed first.

A snapshot consists of a column vector describing the state at a certain moment.
Let W ∈ R

N×K be the matrix consisting of the snapshots. N is the number of
snapshots, K is the number of elements in every snapshot, say the number of state
variables. Usually we have that N < K.

Let X be a separable Hilbert space with inner product (., .), and with an ortho-
normal basis {ϕi}i∈I . Then, any element T (x, t) ∈ X can be written as:

T (x, t) =
∑

i

ai(t)ϕi(x) =
∑

i

(T (x, t), ϕi(x))ϕi(x). (16)

The time dependent coefficients ai are called Fourier coefficients. We are looking for
an orthonormal basis {ϕi}i∈I such that the averages of the Fourier-coefficients are
ordered:

〈a2
1(t)〉 ≥ 〈a2

2(t)〉 ≥ . . . , (17)

where 〈.〉 is an averaging operator. In many practical applications the first few ele-
ments represent 99% of the content. Incorporating these elements in the approxima-
tion gives a good approximation. The misfit, the part to which the remaining elements
contribute to, is small.

It can be shown that this basis can be found in the first eigenvectors of this
operator:

C = 〈(T (t), ϕ)T (t)〉. (18)

In case we consider a finite dimensional problem, in a discrete and finite set of time
points, this definition of C comes down to:

C =
1
N
WWT. (19)

Because C is self-adjoint, the eigenvectors are real and can be ordered, such that:

λ1 ≥ λ2 ≥ . . . (20)

A basis consisting of the first, say q eigenvectors of this matrix form the optimal
basis for POD of size q.

This leads to the following POD algorithm:

1. Input: the data in the matrix W consisting of the snapshots.
2. Define the correlation matrix C as:

C =
1
N
WWT.

3. Compute the eigenvalue decomposition CΦ = ΦΛ.
4. Output: The basis to project the system on, Φ.
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This algorithm contains an eigenvalue problem of size K × K, which can be
computationally expensive. Therefore the ‘method of snapshots’ is designed. The
reason underlying this different approach is that the eigenvalues of C are the same
as the eigenvalues of K = 1

NWTW but K is smaller, namely N ×N .
Let the eigenvalues of K be Ψi, then the eigenvectors of C are defined as:

ϕi =
1

‖WsnapΨi‖
WsnapΨi. (21)

However, also the singular value decomposition of the snapshot matrix W is a
straightforward way to obtain the eigenvectors and eigenvalues of C.

W = ΦΣΨT, (22)

C =
1
N
WWT =

1
N
ΦΣΨTΨΣΦT =

1
N
ΦΣ2ΦT. (23)

The eigenvectors of C are in Φ:

CΦ =
1
N
ΦΣ2ΦTΦ = Φ

1
N
Σ2. (24)

From which it can be seen that the eigenvalues of C are 1
NΣ2.

Once the optimal orthonormal basis is found, the system is projected onto it. For
this, we will focus on the following formulation of a possibly non-linear model:

C(x)
d

dt
x = f(x,u)

y = h(x,u).

x consists of a part in the space spanned by this basis and a residual:

x = x̂ + r, (25)

where x̂ =
∑Q

k=1 ak(t)wk. When x̂ is taken as state space in (25) an error is made:

C(x̂)
d

dt
x̂ − f(x̂,u) = ρ �= 0. (26)

This error is forced to be perpendicular to the basis W . Forcing this defines the
projection fully. In the following derivation we use that d

dt x̂ =
∑Q

k=1
d
dtak(t)wk:

0 =
(
C(x̂)

d

dt
x̂ − f(x̂,u),wk

)
=

(
C(x̂)

Q∑
k=1

d

dt
ak(t)wk − f(x̂,u),wk

)

=
Q∑

k=1

d

dt
ak(t) (C(x̂)wk,wk) − (f(x̂,u),wk) ,

(27)
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for j = 1, . . . , Q. Therefore the reduced model of order Q can be formulated as:

A(a)
d

dt
a = g(a,u)

y = h

(
Q∑

k=1

akwk,u

)
,

where:

Aij =
(
C(
∑Q

k=1 ak(t)wk)wi,wj

)
aj = aj(t)

g(a(t),u(t)) =
(
f(
∑Q

k=1 ak(t)wk,u(t)),wj

)
Obviously, if the time domain output of a system has yet to be calculated, this method
is far too expensive. Fortunately, the much cheaper to obtain frequency response can
be used. Consider therefore the following linear system:

(G+ jωC)x = Bu

y = LTx.

Calculate a set of frequency states, for certain choices of ω:

xωj
= [jωjC +G]−1B, (29)

where xωj
∈ C

n×1. We can take the real and imaginary part, or linear combinations
of both, for the POD process. We immediately see that the correlation matrix is an
approximation of the controllability Gramian:

K =
1
M

M∑
j=1

[jωjC +G]−1BB∗[−jωjC
∗ +G∗]−1. (30)

This approach solves the problem of chosing which time-simulation is the most ap-
propriate.

3.9 Other Methods

In the foregoing sections, we have reviewed a number of the most important meth-
ods for model order reduction. The discussion is certainly not exhaustive, alternative
methods have been published. For example, we have not mentioned the method of
vector fitting. This method builds rational approximations of the transfer function
in a very clever and efficient way, and can be used to adaptively build reduced or-
der models. The chapter by Deschrijver and Dhaene contains an account of recent
developments in this area.

As model order reduction is a very active area of research, progress in this very
active area may lead to an entirely new class of methods. The development of such
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new methods is often sparked by an industrial need. For example, right now there is
a demand for reducing problems in the electronics industry that contain many inputs
and outputs. It has already become clear that current methods cannot cope with such
problems, as the Krylov spaces very quickly become inhibitively large, even after
a few iterations. Hence, new ways of constructing reduced order models must be
developed.
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