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�Overview

Goal: To learn to use the various computer tools available to acquire and analyze experimen-
tal data.  

Materials: 

•	Computer with LabVIEW and MATLAB

•	NI USB-6008

•	SummaSketchIII

•	Conductive paper with electrodes

•	Various cables

•	Brain

This lab exercise is meant to give a sweeping overview of a couple of the tools available to a 
modern experimental physicist.  The tools that this exercise will focus upon are LabVIEW and MAT-
LAB.

In general, LabVIEW is a useful programming language when you need to produce some code 
that will acquire some data in a lab environment.  You can quickly create code that will allow you 
to acquire some data, do some data analysis, display real-time results of that data, and export it 
in a format that will be capable of being read by other data analysis software (such as, in our case, 
MATLAB).  

MATLAB, on the other hand, is a handy mathematical toolbox that comes with many features 
that are useful for data analysis.  It is also a widely accepted industry standard, so LabVIEW comes 
with built-in support for directly interfacing with the script server for MATLAB.  This allows you to 
input commands from LabVIEW directly into the MATLAB kernel and have them executed as if you 
were typing them in the MATLAB command window.  We will be exploiting this feature in order to 
generate some detailed visualization of the electric field between two electrodes.

  This paper will not but scratch the surface of the functionality available to you through the 
LabVIEW and MATLAB platforms; however, my goal is to make you conversant enough to where you 
know what questions to ask/documentation to search for and you can understand the answers that 
you are given.  The more acute functionality is left for you to discover yourself as you need it.

Furthermore, if you already know something that I am discussing in the LabVIEW and/or MAT-
LAB sections, feel free to skip it and move on to something else.  There are no exercises or any-
thing in those two sections; the most important thing is that you are able to perform the final task 
presented to you in the actual lab.

In case you are having trouble, each example has its corresponding .vi or .m file on my web 
site at http://www.evanescenthorizons.com/.  To find the examples, look under Labs > Introduc-
tion to Modern Data Acquisition.

If you get stuck or have any questions, comments, complaints, or corrections, feel free to e-
mail me at mhollin3@utk.edu.  I’d be more than happy to help, and I welcome your feedback.

Overview

http://www.evanescenthorizons.com/
mailto:mhollin3@utk.edu


�

LabVIEW



�Section 1.1: Introduction to LabVIEW

Section 1.1: Introduction to LabVIEW

LabVIEW is a graphical programming language/IDE combination that is tailored for use in a 
lab environment.  The basic analogy throughout LabVIEW is that of a virtual instrument or VI.  In a 
LabVIEW program, just like a real instrument, you have controls (input), indicators (output), and 
logic to define the relationship between input and output. Here is a sample of a very basic LabVIEW 
program:

Figure 1.1.1

 

As you can probably already tell, this program takes two numbers, x and y, and outputs its 
sum.  In LabVIEW, the lines that show data flow (in this case, they are thin orange lines, meaning 
they are single length, double accuracy numbers) are called wires.  Inputs are called controls and 
outputs are called indicators.  The plus sign inside the triangle is called a subVI, which is analogous 
to a subroutine or function in text-based languages.  In this case, the sum subVI accepts two num-
bers as arguments and outputs the sum.
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Logic and interface are two separate entities in a LabVIEW program.  The interface is called 
the front panel, while the programming logic itself is called the block diagram.  Here is the front 
panel for the program pictured above:

Figure 1.1.2

In order to run a program, you simply click the run arrow in the top left corner.  To toggle 
looped execution, click the button with the revolving arrows (this causes the program to run con-
tinuously).  The main program execution buttons are detailed below.

Figure 1.1.3 - Typical Execution Bar

: Run Button

: Run Continuously Button

: Abort Button

: Pause Button
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Section 1.2: A Simple LabVIEW Program

To begin writing a new LabVIEW program, simply start up LabVIEW, click new, and select blank 
VI when you are asked for a template.  You now have a blank front panel and a blank block dia-
gram.  Navigate to the menu bar at the top of the screen, click window, and select “Show Block 
Diagram” (or press Ctrl + E).  Right click anywhere in the white space of the block diagram to pop 
up the functions menu.  Click “All Functions” in the bottom right of the popup window, and then 
click the thumbtack in the top right corner to keep the functions window open.  Your screen should 
look something like this:

Figure 1.2.1

 

Click on the numeric box in the functions pallet (the on with the + and the 123 in it).  Click 
and drag a sum subVI and a multiplication subVI onto the block diagram.  Now we have some pro-
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gram logic, but we need something to input data.  Navigate back to the front panel by select-
ing Window > Show Front Panel from the menu bar at the top.  Right click anywhere on the front 
panel, select the “Num Ctrls” box, and click and drag a “Num Ctrl” onto the front panel.  Repeat 
so that there are two numeric controls on the front panel.  Double click on the label of one of the 
controls (“Numeric” by default) to change the name of the control to “x”.  Change the other to 
“y”.  After all is said and done, your front panel/block diagram should look something like this:

 

Figure 1.2.2 
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Now, we will tell LabVIEW to output z, where z = (x+y)*x.  To do this, we wire x and y to the 
sum subVI, wire the output of sum to one of the inputs of multiply, and then wire x to the other 
input of multiply, like so:

Figure 1.2.3

 
*Side Note* If you ever see wires appear as dotted lines with x’s in various places on them, 

you wired something wrong.  If this happens you may either right click the wire and tell it to delete 
the wire branch, left-click somewhere on the wire and finish wiring it properly, or hit Ctrl + B to 
remove all broken wires from the block diagram.

Now all that is left is to create an indicator.  You can return to the front panel and create a 
numeric indicator the same way that you created the numeric controls, but there is a quicker way.  
Right click on the output of the multiplication subVI (the right most tip of the triangle).  You’ll see 
a menu pop up; select Create > Indicator.  LabVIEW adds and automatically wires an indicator the 
output.  For future reference, you may do the same thing when creating both indicators and con-
stant terms.  

Here is the completed VI:
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Figure 1.2.4

 

The program is now complete.  Now, to test your new VI simply click the run button ( ) to 
run your VI.  Every time that you change x/y and run the VI, you should see an output, called “out-
put” in our program, that corresponds to output = x*(x+y)

If your program is not functioning properly, you may always click the little light bulb that is 
by the pause button in the menu bar of the block diagram.  When this button is toggled, “Highlight 
Execution Mode” is turned on.  This allows you to see your program execute step by step—a very 
useful debugging feature.  

Furthermore, you may go to Window > Show Tools Palette, and place a probe on a wire by 

clicking the  button and then clicking on a wire of which you would like to monitor the output.  
Here is what a probed VI with execution highlighting turned on looks like.
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Figure 1.2.5

It is not necessary that every initial input be either the output of a control or the output of 
another subVI.  If desired, you may also wire a constant to an input of a subVI.  To add a numerical 
constant, go to the numerical palette and find the numerical constant object (the blue box with 
123 in it).  Put it on the block diagram.  You can then right click on it and go to “Representation” 
to choose the data type (double precision, long integer, short integer, etc).  You can then wire this 
constant to any numerical input of a subVI.  There are other types of constants, such as array con-
stants, enum constants, ring constants, etc., and they all work the same way.

Finally, if you ever get stuck, you should turn on the Context Help feature.  To enable this 
feature, go to the help menu and click “Show Context Help.”  As long as this mode is on, whenever 
you hover over a subVI a window will show you help information pertaining to the usage of that 
particular VI.  This is quite useful as a quick reference for times in which you know what a subVI 
does, but don’t know exactly how to use it.
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Just as with any other programming language, LabVIEW comes complete with for loops and 
while loops.  A “for loop” loops some code a set number of times, and a “while loop” loops until a 
certain condition is met.  In LabVIEW, loops are represented by a box that surrounds the code that 
is being looped.  For example, the following code counts from 1 to 10 on 1 second intervals:

Figure 1.3.1
 

Section 1.3: Structures and Execution Control
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The demonstrated loop is a for loop.  N is the number of iterations you would like to do, and 
i is the zero based index of the current iteration.  An equivalent way to formulate this algorithm, 
using a while loop instead, can be done like so:

Figure 1.3.2

In a while 
loop, the stop sign is the termination condition.  In this case, the stop condition is that the itera-
tion index + 1 = 10, which is equivalent to a for loop with N = 10.  By default, the loop terminates 
if the condition is true.  However, you may change this to continue as long as the condition is true 
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by right clicking on the stop sign and selected “continue if true.”  This code takes the logistic map,  
, with alpha = 1.1 and terminates when the difference between   and  is less than .01.  We will re-
turn to this example later for a more thorough discussion.

Figure 1.3.3 

Now is a good time to introduce feedback nodes/shift registers.  These two objects provide a 
way to pass data from one iteration of a loop to the next.  For example, say that you want a loop 
to add one to a number every iteration, i.e., x0=0, x1=1….xn=n.  To do this in LabVIEW, you would 
first wire a 0 to the initializer terminal (the terminal created on the edge of the left side of the 
loop that looks like a rectangle with a diamond in it).  This dictates the first value that the feed-
back node will return.  You then wire the new value to the “back” of the feedback node (mean-
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ing the tail of the arrow as opposed to the head).  Thus every iteration of the loop will give a new 
value to the feedback node, and the feedback node will report that new value when the next itera-
tion begins.  Here is an example of using a feedback node.  

Figure 1.3.4
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*Warning*  An easy mistake to make when using feedback nodes is to forget to wire the initial-
izer terminal.  If you don’t wire it, it will pull whatever value it last reported when the program 
last ran.  Also, what it does reports when the program first starts (when it doesn’t really have any 
idea what to report) is somewhat unpredictable in that its dependant upon many things.  In general 
it is best practice to wire the initializer terminal; do it unless you have a specific reason to not do 
it.

As you may be able to guess from the code, this example does the same exact thing as the 
example pictured in figure 1.3.1, except it starts at 0 instead of 1.

Now that you know about the feedback node, the last thing that we need to discuss, in order 
to fully interpret the example demonstrated in Figure 1.3.3, is the Waveform Chart.  A Waveform 
Chart is an indicator that you may place on the front panel by right clicking on the front panel, 
selecting “Graph Inds,” and then selecting “Chart,” like so:

Figure 1.3.5 

The corresponding indicator icon appears in the block diagram, as you can see above in Figure 
1.3.3.  Whenever the Waveform Chart is passed data, by default, it scoots over one x value and 
then plots the new value on the y-axis.  This default action can be changed to plot the new value 
vs. absolute time or relative time as well.  You change this behavior by right clicking the chart, 
selecting properties, selecting the “Format and Precision” tab, and then selecting absolute time or 
relative time.

Now to introduce the final structure that we will be discussing: the case structure.  This struc-
ture fulfills the role of both If...Then statements and Case statements in your typical text-based 
programming languages. Basically, for the If...Then statement functionality, you wire a boolean 
value to the control terminal of the case structure that controls which part of the case structure 
will be executed; you only have two options in this case.  If you want to have more than one pos-
sibility, you can create more than one case, and wire another data type to the control terminal.  
Here is an example of a simple case structure.
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Figure 1.3.6a

Figure 1.3.6b
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Figure 1.3.6a shows the true case and 1.3.6b shows the false case.  As you can see, you put 
whatever code that you want to execute when the ? box has a true value wired to it in the true 
case structure box and vice versa for the false case (you change the case by using the arrows at 
the top of the case structure).  You do a similar thing when you want more than one case, but I will 
leave that up to you to tinker with if it becomes useful to you.
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Section 1.4: Data and Execution Flow

The way that LabVIEW handles data flow and order of execution is unique when contrasted 
with other text-based programming languages.  In text-based languages, every command is ex-
ecuted sequentially, and the only way to perform tasks in varying order is to make functions or 
subroutines out of them.  In LabVIEW, the order on the block diagram is irrelevant (although it is 
somewhat accepted to make programs go from left to right, in general).  Take a look at the follow-
ing example.

Figure 1.4.1

This program does the same exact thing that the example in Figure 1.2.4 did, except the or-
der is rearranged.

LabVIEW decides execution order based upon the order in which each terminal receives data.  
It will now be useful to define a term, “zapdonk,” to simplify later explanations.  This is not a 
LabVIEW term, but rather one I have coined to better explain this concept.  A zapdonk is a collec-
tion of commands that has no conditions on its execution at some given part of the execution of 
the program.  This means that once you reach a particular zapdonk in a program, all members of 
that zapdonk must execute before the program leaves the zapdonk to continue onward to the next 
zapdonk.  As confusing as this is, it deserves an example.
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Figure 1.4.2

In this figure, each separate zapdonk is surrounded by a separate color.  In LabVIEW, each 
member of an executing zapdonk that can report data immediately does so.  Any member that does 
not yet have each data terminal supplied with data yet waits until every data terminal is supplied 
with data before it executes.  If it is not supplied with data, it will not execute, therefore it crash-
es.  This is a similar crash to trying to reference a variable before it has been assigned a value in a 
text-based language.  Here is a breakdown of what happens in this example.

 Red Zapdonk executes
 Boolean and numeric-integer control report their data
 Case commits to perform the true or false statements
 If true, blue Zapdonk executes
 The beep subVI executes at the same time (separate threads) that the while loop executes
 When the while loop executes, the blue Zapdonk executes
 The “1000” constant/wait path and the counting path both execute at the same time
 When the loop finishes, the blue Zapdonk will be finished
 When the blue Zapdonk finishes, the red Zapdonk will be finished
   The program terminates

This is much easier to see if you go download the example, turn on highlight execution mode, 

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
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and watch it execute to see that order that it does things in.  The most important thing to remem-
ber is that a LabVIEW program executes in the order in which its components are wired, and data 
is reported “on demand.”  Considering the fact that all members of a zapdonk execute simultane-
ously, it can sometimes be a problem to get things to execute in the order that you desire.  

To help out with this problem, LabVIEW gives you two tools: the flat sequence and the stacked 
sequence.  Both of these do essentially the same thing, they simply look different on the block 
diagram.  You find both of them under “Structures” on the “All Functions” palette (the same place 
that for loops and while loops reside).  

Figure 1.4.3

This example does the same thing as the example shown in Figure 1.4.2, except it forces the 
program to execute the beep subVI prior to executing the counting code.  A flat sequence executes 
from the left to the right.

To use a flat sequence structure, simply select it from the Structures area of the functions 
palette and drag a box somewhere on the block diagram to create the structure.  When it is cre-
ated, simply right click on the border to add frames.  After all the frames that you desire are cre-
ated, add the code to the sequence in the order that you want it to execute, and you’re done.

In general, you will want to try to use the wires to control the data flow because it makes 
your programs much simpler.  However, flat sequences are useful in many cases, especially when 
you need to synchronize different aspects of your program; just make sure you resist the urge to 
overuse them
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Section 1.5: Interactive LabVIEW Programs

Thus far, the only programs that we have seen have been programs that you simply run, watch 
it finish, and look at the result.  Our goal in this section is to establish a program that will dynami-
cally adapt to user input.

The main component in such a program is, without a doubt, the while loop.  In general, you 
create a while loop around your entire program that has the termination condition wired to some 
sort of stop button.  Let’s return to our example regarding the logistic map.

Here is a version of the program that lets you vary “a” as the program runs:

Figure 1.5.1
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This program continuously iterates the logistic map and displays the results in real-time on a 
waveform chart.  As you can see from the code, in general, all that you need to do to make a pro-
gram interactive is assign a control to some parameter and put the entire program in a while loop.  
This allows the program to continue until a user tells it to stop. 

Thus all one needs to do to make a program interactive in LabVIEW is insert a control in what-
ever loop contains the contains the continuously executing code that you want to control.  It is 
important that you insert the control in the loop and not outside the loop (remember what was said 
in Section 1.4 about execution order).  To demonstrate this, the following example allows for run-
time change of parameters.

Figure 1.5.2

And the next example will have the same functionality, except one cannot change the param-
eters while the program is running.
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Figure 1.5.2

While writing a LabVIEW program, it is generally best to put the control in the same zapdonk 
as the parameter that it is controlling, in order to provide the user with control over that param-
eter during the execution of the program.  However, there will be many cases in which you will 
not want the user to control parameters of certain things during execution time (when controlling 
parameters of a data acquisition device that is actively taking data during the main program execu-
tion, for example).  Just make sure that you think about exactly what you wish to accomplish with 
a control when you place it in the block diagram.
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Section 1.6: SubVI’s

Thus far, we have focused on using the various subVI’s that are packaged with LabVIEW.  Now 
we shall learn to make our own.  SubVI’s are analogous to subroutines or functions in text-based 
programming languages.  There are many reasons to use custom-written subVI’s in your programs.  
For one, you can imagine that as programs get more and more complicated, you tend to run out of 
room on the block diagram if you put every single bit of code directly in the block diagram you are 
working on.  SubVI’s work to organize your block diagram.  Secondly, if you work hard to write a 
good, adaptable subVI you may reuse your code at a later time to do a similar task.  

You create a subVI very close to the same way that you create a top-level VI, only you do a 
little bit extra when you are done working.  You begin by creating controls and indicators for every 
input and output that you want your subVI to have.  Then, you use the connector pane to link ter-
minals of your subVI to the corresponding control or indicator.  The figure below shows you where 
the connector pane is located.

Figure 1.6.1

Until you tell LabVIEW otherwise, the connector pane shows the icon for your VI.  To show 
the connector, navigate to the front pane, right click anywhere in the connector pane, and select 
“show connector.”  You will see a series of boxes appear in the connector pane.  Each of these 
boxes corresponds to a potential connection that can be made to your subVI.  If you right-click 
somewhere on the connector pane when the connector is showing, you may add/remove terminals 
and control which connections are required (or optional...called “recommended” in LabVIEW) for 
execution.  Required connections will throw an error when there is nothing wired to it when it is 
called.

To wire a control or indicator to your connector simply click on a connector box (you’ll see 
the wire spool cursor pop up) and then click on the corresponding control or indicator.  You will see 
the color of the appropriate box in the connector pane change to the color that corresponds to the 
data type of the control or indicator that you wired to the connector.  

Now to design the icon.  It is generally best to design an icon in a separate graphics editor 
such as Photoshop or GIMP.  All you must do is design a 32 x 32 pixel graphic that you want to use 
as the icon and then drag it from anywhere on your file system to the connector pane.  However, if 
you do not have such software available to you, LabVIEW provides a very rudimentary and not very 
easy to use icon editor.  



24 Section 1.6: SubVI's

To access the LabVIEW editor, all you must do is right-click in the connector pane and se-
lect “edit Icon.”  The icon editor is pretty obvious in its frustrating usage, so I’ll just let you play 
around with using it. 

You now know all the basics for creating a subVI; here is an example.  I’ll take the first com-
plete subVI that we made and turn it into a subVI (see Figure 1.2.4).

Figure 1.6.2

As you can see, the only differences between this program and the program of Figure 1.2.4 
are that is has an icon that I made and that, although you can’t see it, I connected the X, Y, and 
Z terminals to the appropriate connector in the connector pane.  To place a subVI that you have 
made on the block diagram, you may do one of two things.  You may find it in the file system and 
click and drag it onto the block diagram, or you may go the “All Functions” area of the functions 
palette, find “Select a VI...” and then navigate to the location of your subVI that you desire.  Ei-
ther way the effect is the same; you end up with your subVI on the block diagram.  You may choose 
which method you prefer.  Now here is an example that uses this new subVI from Figure 1.6.2.
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Figure 1.6.3

To edit a subVI that you have created when it is already in your block diagram, simply double-
click it to open up a new LabVIEW window with the content of the subVI present to be edited.  Any 
changes that you make to the subVI will be reflected in any other VI’s that call it, so be careful 
when you do this.

If you run this program, you will see that it has the same output as the program in Figure 
1.2.4; it is simply a little bit neater.  While making a subVI to do something this simple is overkill, 
it is easy to imagine times that the content of a subVI would not be quite so trivial (just double 
click the Function Generator subVI that we used in Figure 1.5.2 for a prime example of a non-trivial 
subVI).

There is one other way to create subVI’s that is useful when you have already written a pro-
gram, and you would like to clean it up a bit.  To create a subVI this new way, you simply highlight 
(marquee around) all the code that you have written that you wish to turn into a subVI and then 
go to Tools > Create SubVI.  To demonstrate this new functionality, I will return to the VI found in 
Figure 1.5.2.  All that I will do is select the “50” constant, the Wait subVI, and the function genera-
tor then navigate to Edit > Create SubVI.  What results is a subVI that contains all the code that I 
selected; LabVIEW even wires all the terminals to the proper terminals for you.
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Figure 1.6.4

Figure 1.6.4 (subVI for Figure 1.6.5)

As you can see, the subVI simply takes the place of the previous code.  The default icon is 
created for your new subVI; you may double-click on it and edit the icon to be whatever you would 
like, just like any other subVI. 

Just remember that when you make a subVI, you remove any potential interactivity with the 
contents of that subVI--you simply pass it arguments, and it gives you results.  Thus you don’t gen-
erally want to put one of your loops that are designed to provide interactivity (like we discussed in 
section 1.5) in a subVI, since that removes any control that the user may have over the contents of 
that loop at runtime.  
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There are many ways to save the data that you take in LabVIEW.  The primary way that we 
will focus upon is exporting the data in a spreadsheet format.  Luckily, LabVIEW comes with a built-
in subVI that handles exporting data in various delimited formats, including comma separated and 
tab separated (the two that we will be dealing with most often).

Most of the File I/O operations may be found in the File I/O area of the All Functions palette.  
The main VI that we will be using is the “Write To Spreadsheet File” VI.  This VI writes a 1 dimen-
sional or 2 dimensional array to a spreadsheet formatted file using whatever delimiter that you tell 
it to use.  By default, the Write to Spreadsheet File VI uses a tab as its delimiter which is exactly 
what we want it to use.  First, to get a basic understanding of what the VI does, I suggest turning 
on context help and reading about what it does.  When you have a general understanding of how it 
works, look at the following example.

Figure 1.7.1

This VI generates N random numbers (the user can control N) and then writes all of them, in 
the order that they were generated, to a spreadsheet file that is named via a dialog box.  The first 
thing to explain in this example is the indexing role of the tunnel (a tunnel is the little box on the 
edge of the for loop that gives you access to the data inside of it).  Whenever you have indexing 
turned on (toggled on or off by right clicking on the tunnel and selecting “enable indexing” or “dis-
able indexing”), every iteration of the loop writes appends a new value to an array that grows as 
long as the loop executes.  The net effect of indexing an output is that the 0th element of the out-
put array is the first value that the loop reported, the 1st element is the second value that the loop 
reported, etc.  If you disable indexing, only the final value that is reported as the loop terminates 
is output through the tunnel.

In this example, we wired the indexed output of the random number generator to the 1D 
input of the Write to Spreadsheet File VI.  This causes the Write to Spreadsheet File VI to write that 
entire array horizontally if the transpose flag is false or vertically if the transpose flag is true.  It 
is noteworthy that this particular VI only writes numeric data--no strings, waveforms, etc are al-
lowed.  

Section 1.7: Saving Data
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The method described in the previous example is a good way to write data in some cases, but 
it is generally not the best way to write data that has been acquired in a lab setting.  The reason 
for this is that it doesn’t include any sort of disaster recovery, meaning that if for some reason the 
for loop crashed, all the data that was taken in previous iterations is lost.  This is not a big problem 
for our little random number generation, but it is a huge problem if you have been taking data for 
a day and a piece of equipment gives you an error that you weren’t prepared for that crashes your 
program (this has happened to me 3-4 times before I changed my way of doing things).  Thus we 
want a way that exports data continuously, not as one big bundle at the very end of execution.  We 
can do this using the append functionality of the Write to Spreadsheet File VI.

Take a look at the following example:

Figure 1.7.2

 

This example gets a filename/path from the user when the VI is first executed. This filename/
path is then passed to a tunnel on the loop.  Thus every iteration, 3 random numbers are generated 
(which, since transpose is not on, means that one row with three columns of data is generated) and 
appended to the file that is specified by the filename that was acquired at execution.  On the first 
iteration, when the file doesn’t exist, the file is created.

The major concern with this method is finding some way to make sure that the user does not 
append data to a file that already exists, unless they specifically mean to.  In most cases, you will 
want to include functionality that keeps users from making this sort of mistake by throwing an er-
ror if the file already exists when you first procure the path and filename.  Unfortunately, this is a 
relatively complicated process that is out of the scope of this particular paper; ask me how if you 
would like to know, and I’d be happy to tell you.
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Section 1.8: Data Acquisition

One of the strengths of LabVIEW lies in its seamless integration of data acquisition.  The pro-
cess is simplified even more if you use National Instruments hardware, since they have absolutely 
superb drivers written for all of their equipment.  When you are using NI hardware, you may use 
a handy VI called the DAQ Assistant, which is found under the “NI Measurements” area of the All 
Functions Palette.  This VI allows you to create virtual channels that serve as a handy, migratable 
way of handling data acquisition.  First, however, I must introduce you to MAX (Measurement Auto-
mation eXporer).  Here is a screen shot of MAX that also shows where the USB-6008 appears.  

Figure 1.8.1

 

If you right click on a device, you will see a selection entitled “Test Panels.”  The test panel 
allows you to do simple read/write operations for testing purposes.  You may also rename a partic-
ular device from the default of “Dev1” to something more user-friendly.  This device name is what 
you will refer to when you are using LabVIEW to interface with the device.

Getting data from a NI data acquisition device is fairly simple.  The first step is to put a DAQ 
Assistant VI on your block diagram.  You may find this VI under the “All Functions” in the “NI Mea-
surements” section.  When you first place the VI on the block diagram, it pops up a dialog box that 
lets you configure your data acquisition job.  Here you choose what you want to measure (we will 
be using voltage analog input), what channels you wish to use, what acquisition mode you wish to 
use (continuous, N samples, etc).  After you finish, you may reconfigure the VI by double clicking 
the DAQ Assistant VI.

The DAQ Assistant VI outputs data in a data type called “Dynamic Data.”  This data type is ba-
sically a way of keeping all the channel information, number of samples, acquired data, device in-
formation, etc., all in one place.  Often times, you must convert this data type to other data types 
to make use of the data.  For example, if you take only one sample and you just want a number to 
represent the measurement (commonly a voltage) you must extract the sample value and convert 
that to a scalar.  You use the “Convert From Dynamic Data” VI to do that.

The “Convert From Dynamic Data” VI is found in the “Signal Manipulation” area of the de-
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fault Functions popup, next to the “All Functions” area (in other words, it is in the first area that 
pops up when you right click on the block diagram).  Once you place it on the block diagram, it will 
pop up a dialog box that allows you to choose what output format you wish to use.  Generally, the 
simples and most common use is the “Single Scalar” output format, but you may choose whatever 
is most useful to you.  After you click “Ok,” all you must do is wire the dynamic data source to the 
VI, and then wire the output to whatever you wish.

Thus, in general, there are two main steps to performing data acquisition: configure the DAQ 
Assistant and convert the dynamic data to a more specific format.  Here is an example that does 
just that; as you can see, it takes very little code to perform a data acquisition task.

Figure 1.8.2

This VI Simply reads channel zero (as configured by the dialog box associated with the DAQ 
Assistant) and outputs its data to an indicator.  When you are using NI-DAQmx-ready hardware (such 
as the USB-6008 that we are using), it is as simple as telling the DAQ Assistant what you want to do 
and then letting it do the rest.
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Section 1.9: Closing Comments

Now you know the most important basics of programming in LabVIEW.  There are many, many as-
pects of LabVIEW that I have not covered here, but I believe that after you have read this, you will 
understand enough to be able to go out on your own, read some documentation, and understand 
what you read.  

When you finally get to the lab exercise, you will undoubtedly run into something that you 
need to do that you do not know how to do.  I encourage you to first familiarize yourself with the 
help menu (there are many nice examples, as well as very thorough documentation available to 
you) and then with my e-mail address, mhollin3@utk.edu.  I will be happy to help in any way pos-
sible.

Furthermore, if you want more information, there are some very good forums available to 
LabVIEW users to be found at http://zone.ni.com/devzone/cda/main.  There are many people 
there who know what they are talking about, and chances are, whatever your problem is, it has 
already been solved; the problem lies in tracking down the answer to it.

Finally, over time I will have more and more LabVIEW content available on my web site, http://
www.evanescenthorizons.com/.  For now, I have all the examples contained in this text available 
online under Labs > Introduction to Modern Data Acquisition.  That is also the location of the elec-
tronic version of this text, assuming at the moment that you are reading a printed version...other-
wise, I guess you found it :).

mailto:mhollin3@utk.edu
http://zone.ni.com/devzone/cda/main
http://www.evanescenthorizons.com/
http://www.evanescenthorizons.com/
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MATLAB



33Section 2.1: Introduction to LabVIEW

Section 2.1: Introduction to MATLAB

MATLAB is an industry standard numerical computing tool that is useful in all kinds of scenar-
ios.  Its prime use that we will be focusing upon is that of data analysis.  MATLAB comes with many 
built in functions that can import data formatted in common spreadsheet formats (such as tab and 
comma separated), and we will be using these functions to import data for analysis when we finally 
come to the lab exercise itself.  In the meantime, I will work to familiarize you with the basics of 
the MATLAB platform.

While MATLAB contains very high quality, predictable functions, a large percentage of its 
strength lies in the sheer number of content that it contains.  There are thousands of functions, 
including ODE/PDE solvers, three dimensional interpolators, data fitting algorithms, numerical and 
symbolic differentiation/integration, etc.  Plus, it comes with a complete and extensive visualiza-
tion functionality that includes both 3d and 2d graphing capabilities.  It is this graphing function-
ality that will be the main focus of our dealings with MATLAB when it comes time to work on the 
actual lab exercise.

In addition to performing singular, one shot calculations, one may program MATLAB to do 
certain tasks or sets of calculations that you wish to use again in the future.  “Programming” in 
MATLAB is more akin to scripting than anything else.  In fact, code written in MATLAB is commonly 
referred to as a MATLAB script or m-file (named for the fact that the typical MATLAB script file 
extension is .m).  Scripting in MATLAB is straightforward once you get used to using the command 
window, since you simply type the same thing in the script that you would type in the command 
window.  Since you will be introduced to MATLAB first by using the command window, scripting, for 
the most part, will come along of its own accord.

My example scripts will be in the following format:

Example 2.x.x

%Filename
This is some sample MATLAB code
This is some more MATLAB code
Yep you guessed it...more MATLAB code

My example code, on the other hand, will simply be in line, like so:

>> MATLAB command
|| Output for MATLAB command
>> Second MATLAB command
|| Output for Second MATLAB command

In the example code, a return is implied for every new line, in other words, you would type 
“MATLAB command” then type enter before going on to the second line of commands.  The >> de-
notes input while the || denotes output.

Now that all the introductions are out of the way, I will begin by showing you around the MAT-
LAB interface.  When you start up MATLAB, you should see something similar to the following:
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Figure 2.1.1

The biggest window, called the “Command Window,” is where you do most of your work.  It 
is here that you call functions, do arithmetic, assign variables, call your scripts, etc.  The “Work-
space” window shows any variables that you have created.  It allows you to see what kind of vari-
able it is, check its value, delete it, or edit it.  You may also import variables by loading previously 
saved workspaces (saved as .mat files).  The “Current Directory” tab that is underneath the “Work-
space” tab is the area that allows you to see the contents of your current working directory.  It also 
lets you change your working directory to another directory if you would like.  Your current direc-
tory dictates what scripts will be executed when you type their name into the command window.  
For example if you have a script called “MyScript.m” in your current working directory, you could 
type MyScript into the command window to execute your script.

You may customize your interface by dragging each of these windows around your work area.  
Simply click on the window title and drag it around to reposition or tab it in another window.  If 
screen real estate is important to you, you can tab all windows together in one area.  You may also 
click the little arrow in the top right-hand corner of a window in order to give that window its own 
frame in Windows.  Additionally, there are more windows that you may find useful; you may find 
these under the “Desktop” menu.  
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Section 2.2: Simple Math with MATLAB

Now to do some math in MATLAB.   Take the following input to MATLAB for example:

>> 2+2
|| ans = 
||		  4

(remember the the || is simply my way of telling you that the text is output... MATLAB does 
not really output that)

When you input 2+2 into MATLAB, it returns the answer by assigning the answer to a variable 
called ans.  If you look under your workspace window, you will see that a variable named ans has 
indeed been created.  MATLAB always assigns its results to a variable.  It can be a variable that you 
assign, or if you don’t explicitly assign a variable, it assigns it to the ans variable.

A variable assignment is pretty straightforward in MATLAB.  All you have to do is state the 
variable name, type an equal sign, and then type what you want that variable’s assignment to be.  
Here are some examples

>> x = 2

|| x = 

||		  2

>> y = 2+2

|| y  = 

||		  4

>> z = x+y

|| z =

			  6

Make sure you don’t accidentally put the variable after the equal sign, ie, 2=x, as that will 
give an error.

All of these variables are of a numeric data type; however, there are other types of variables.  
We will discuss others when the time calls for them.  Regardless, all variable assignments are made 
in the same way, i.e., <variable name> = <desired expression>.

Also, if you wish to suppress the output of anything in MATLAB, simply put a semi-colon after 
the expression that you wish to silence.  For example, if you would like to set x equal to 4, but you 
don’t want MATLAB to repeat the assignment to you, do the following:

>> x = 4;

You will see no output when you do this; however, you may see that the variable was properly 
assigned by looking in your workspace.

Now, onward to functions.  MATLAB uses the common and familiar parenthetical method of 
passing arguments, which is function_name(argument_1, argument_2, ... argument_n).  
To use a function in MATLAB, you simply type the function’s name and arguments (separated by 
commas) and hit return.  For example:
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>> x = peaks(30);
>> y = sin(pi);
>> z = yourownfunction(2);

MATLAB comes with thousands of very useful functions (which is the most powerful part of 
MATLAB), so we will be using functions quite extensively.  

Now that we have the basics out of the way, we will concern ourselves with the next most 
important syntax consideration in MATLAB: matrices.
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Section 2.3: Matrices and Vectors
MATLAB sees all numeric variables as matrices; single numbers are seen as 1 x 1 matrices.  A 

vector, to MATLAB is any 1 x n or n x 1 matrix.  There are many ways to go about creating matrices.  
One of the easiest ways to deal with two dimensional ones is to use the bracket syntax.  It looks 
something like this:

>> x = [1,2,3;4,5,6;7,8,9]
||		  1     2     3
||		  4     5     6
||		  7     8     9

You start in the upper left-hand corner of the matrix you are creating, and work your way 
across, left to right.  Commas separate members of the same row, while the semi-colon separates 
the rows themselves.  Alternatively, you may assign elements in an array individually by using a 
parenthetical syntax in the form of variable(row,column), like this:

>> x(1,1) = 2
|| x =
||
||     2
>> x(1,2) = 3
|| x =
||
||     2     3
>> x(2,1) = 4
|| x =
||
||     2     3
||     4     0
>>x(2,2) = 5
|| x =
||
||     2     3
||     4     5

MATLAB displays zeroes when it doesn’t have any data for an element that must be displayed, 
such as in the third example above.  To make it a little more obvious, here is another example:

>> x(6,6) = 2; x(3,3) = 1
||
|| x =
||
||     0     0     0     0     0     0
||     0     0     0     0     0     0
||     0     0     1     0     0     0
||     0     0     0     0     0     0
||     0     0     0     0     0     0
||     0     0     0     0     0     2

(as you may have already figured out from the last example, you may use semi-colons as sepa-
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rators for commands if you wish to type multiple command on one line)

You may also use this syntax to create nth dimensional matrices by the generalized version of 
this syntax: variable(dimension1, dimension2, dimension3, ... dimensionN).  Here 
is an example:

>> y(2,2,2) = 2
|| y(:,:,1) =
||
||     0     0
||     0     0
||
|| y(:,:,2) =
||
||     0     0
||     0     2

When you tell a variable to be a multi-dimensional matrix in MATLAB, and you ask MATLAB to 
display the contents of said matrix, it will display a series of two dimensional matrices that col-
lectively reflect the contents of the variable .  You can see this in the above example.  So that you 
fully understand what you are seeing, I will explain what the colons mean.

You may use colons to tell MATLAB to display all of the contents of that matrix dimen-
sion.  In other words, if you want to display all the rows in one specific column, you type 
variablename(:,column_index).  Similarly, if you want to display all the columns in one row, 
you type variablename(row_index,:).  Here is an example:

>> x = [1,2;3,4]
|| x =
||     1     2
||     3     4
>> x(:,1)
|| ans =
||     1
||     3
>> x(:,2)
|| ans =
||     2
||     4
>> x(1,:)
|| ans =
||     1     2
>> x(2,:)
|| ans =
||     3     4

You may do numeric operations on matrices.  Adding and subtracting matrices adds and sub-
tracts each corresponding element of a matrix.  If you wish to do the same for multiplication, 
division, and exponentiation, you must use the “dot operators.”  The dot operators are .*, ./, and 
.^.  These to element by element operations on the matrices.  Of course, to do any of these opera-
tions, you need to have matrices of equal dimensions.  Here is an example of each operator:

>> a = [1,1;1,1];
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>> b = [1,2;3,4];
>> a+b
|| ans =
||     2     3
||     4     5
>> a-b
|| ans =
||     0    -1
||    -2    -3
>> a.*b
|| ans =
||     1     2
||     3     4
>> a./b
|| ans =
||    1.0000    0.5000
||    0.3333    0.2500

You can also generate monotonically increasing matrices very easily using the syntax 
matrix=startnumber:stepsize:stopnumber, like so:

>> t=0:1:5
t =
     0     1     2     3     4     5

Finally, you may also concatenate matrices.  This is a very straightforward process; you simply  
add the matrices that you want to concatenate together as elements of the bigger, final matrix.  
Here is an example:

>> a = [1;2;3];
>> b = [4;5;6];
>> c = [a,b]
|| c =
||     1     4
||     2     5
||     3     6
>> d = [a;b]
|| d =
||     1
||     2
||     3
||     4
||     5
||     6

You may also do everything in one step, like so:

>> mat = [[1;2;3],[4;5;6]]
|| mat =
||     1     4
||     2     5
||     3     6

That’s all you need to know about matrices at the moment; onto M-Files.
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Section 2.4: M-Files

M-Files are used for scripting in MATLAB.  Now that you have been introduced to the command 
window,  over half the work of understanding the scripting interface in MATLAB is finished.  Basical-
ly, an M-File is simply a text file that has all of the commands that you wish to execute, separated 
by either a return/line-feed or by semi-colons.  The percent sign (%) designates the area beginning 
at the percent sign to the end of a line as a comment.

Here is an example of an M-File:

Example 2.4.1
%BasicMFile

%This M-File takes a number that you specify, num1, and passes it as an
%argument to the peaks function, and then does a surface plot of the result

num1 = input(‘Please input desired matrix dimensions: ‘);

surf(peaks(num1))

This example would work exactly the same if you typed all of the non-comment commands 
into the command window.  surf is the surface plot function that is built into MATLAB, and peaks 
is a sample three dimensional function that plugs nicely into surf.  We will have a more detailed 
discussion of the surf function in the next section.

Right now, I want to talk about the input function.  The input function displays a message, 
that you specify as an argument for the function, in the command window, and waits for the user 
to input data.  When the user inputs data and hits return, the input function returns the value 
that the user put in.  In the M-File above, we assigned the user’s input to a variable called num1, 
which we then passed to the peaks function.  The input function simply provides a way to make 
your M-Files more dynamic.

You can use the input function to provide the familiar “Press any key to continue” functional-
ity in a program also. Simply make the message whatever you like, and ignore the output.

Another useful thing to do in an M-File is to make a for loop.  While you can do these in the 
command window as well, they are much more useful in the context of a script.  In MATLAB, the 
syntax for a for loop is very simple:

for iteration_variable=startindex:stepsize:endindex
	 <do some stuff>
end

Here is a simple example that counts from 1 to 10 for you:
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Example 2.4.2

%Ex-2.4.2

for i=1:1:10
    i
end

This example simply prints the iteration variable once every iteration.

While loops are very similar to for loops as far as syntax goes.  The syntax for a while loop is 
as follows:

while <condition>
	 <insert commands here>
end

Here is an example:

Example 2.4.3

%Ex_2_4_3

i = 1;
while i <= 10
    i
    i=i+1;
end

This example does the same thing that Example 2.4.2 did, only it does it with a while loop.

Finally, you may loop through different elements of matrices by doing the following:

Example 2.4.4

%Ex_2_4_4

a = input(‘Input any n x n matrix: ‘);

SIZE = size(a);

for i = 1:SIZE(1)
    a(i,:)
end

This example iterates through each row, displaying each one.  The size function accepts a 
matrix as an argument, and it returns the size of that matrix as a 1 x n matrix, where n is the num-
ber of dimensions of the argument.  You can use the size function to dynamically loop through 
matrices of different sizes.
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Section 2.5: Visualizing Data

MATLAB offers a great many ways to go about visualizing data.  You can do all kinds of basic 2d 
plots, as well many 3d plots.  We will mostly be focusing on 2d Cartesian plots, 3d surface plots, 3d 
contour plots, and 2d contour plots.  Here is a quick reference for the main visualization functions 
present in MATLAB.

2d Cartesian: plot

2d contour: contour

3d surface: surf

3d contour: contour3

Each of these functions have many levels of functionality; we will only be covering the basics.  
If you want to understand the more fancy things that they can do, check out the MATLAB help file 
entries for these functions for more detail.

First, we will start with the simplest one of all of these: the plot function.  The plot func-
tion, in its most basic form, simply accepts an x array and y array of the same size and pairs them.  
If you want to plot a function--say, f(x) = x2, you would need to generate a matrix that has all the 
x values in it, and then proceed to use the .^ operator on that matrix to generate the y values.  
Here is an example that does just that:

Example 2.5.1

%Ex_2_5_1

x = -4:.1:4;
y = x.^2;

plot(x,y)

If you run this M-File, you will see a nice graph of f(x) = x2 pop up.  You can do this with any 
sort of function you wish.  If you want to change the way that the line looks from the default of a 
solid blue line to, say, a series of red circles with red lines connecting them, you would do the fol-
lowing:

Example 2.5.2

%Ex_2_5_2

x = -4:.1:4;
y = x.^2;

plot(x,y,’r-o’)



43Section 2.5: Visualizing Data

This is just one of the many formatting choices that you have; I just wanted to let you know 
that you have the option of changing how it looks.  There are many, many more options.  Just look 
in the documentation for more information on how to go about formatting your graph as you would 
like it.  Contact me if you can’t find the information, and I’ll point you in the right direction.

That’s about it for the plot function; onto the 3-dimensional plots.  We’ll start with the con-
tour plot, since that is the simplest.  Each of the dimensional plots require you to pass them two 
square matrices that represent the x and y values.  The functions then match up the x and y values 
element, and couple those to a third z matrix.  If you are plotting a function, the easiest way to go 
about doing this is to use the meshgrid function.  This function takes two separate 1 x n matrices 
(n must be the same for both matrices), replicates the first across n columns, the second across n 
rows, and outputs both resultant n x n matrices.  It’s much easier to show you than explain it, so 
here you go:

Example 2.5.3

%Ex_2_5_3

x = [1,2,3,4];
y = [5,6,7,8];

[X, Y] = meshgrid(x,y)

The output of this M-File looks like this:

X =
     1     2     3     4
     1     2     3     4
     1     2     3     4
     1     2     3     4
Y =
     5     5     5     5
     6     6     6     6
     7     7     7     7
     8     8     8     8

As you can see, this allows you to get every possible combination of x and y, which is your 
goal.  These new matrices may then be acted upon to calculate a z matrix that you can plot with a 
3d plotting function.

It’s not generally useful to plot functions by manually creating matrices that include the 
points that you wish to plot.  Thus, we will generally be using the syntax introduced in Section 2.3 
that generates monotonically increasing matrices to plot 3d functions.  Here is an example that 
plots f(x,y) = x2 + y2:
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Example 2.5.4

%Ex_2_5_4

x = -4:.1:4;
y = -4:.1:4;

[X, Y] = meshgrid(x,y)

Z = X.^2 + Y.^2;

contour(X,Y,Z)

You’ll see a nice contour plot pop up in the figure window; that’s all there is to it.

You do the same exact thing with all of the other 3-dimensional plotting functions.  Everything 
is the same, as that last example, except you change contour to whatever 3-dimensional graph-
ing function that you would like.  Like the plot function, there are many other ways to format 
the graph by passing arguments to the function.  If you want to know how, either refer to the docu-
mentation or contact me.  

There are many other visualization functions available to you through MATLAB, including histo-
grams, vector fields (which we will be dealing with in the experiment itself), 3d vector fields, wire 
frame, 3d discrete points, etc.  We will not cover these here, since they are not applicable to the 
lab that we are about to get to; refer to the documentation if you wish to learn about them.
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Section 2.6: Importing Data
Importing data into MATLAB is very simple, so this will be a short section.  There are two main 

ways to do it; you can use the import dialog, or you can use the dlmread function.  Both require 
you to have your data in some standard ASCII spreadsheet format, such as tab separated or comma 
separated (as we discussed a little bit in the LabVIEW section).

The import dialog may be called from the Workspace window.  It is a button at the top that 
looks like a folder with an arrow pointing out of it.  If you click this, you will be presented with a 
wizard-type dialog that walks you through all the necessary steps of importing data.

The import dialog is useful if you just wish to do your work using the command window, but 
if you wish to script whatever you are doing, it is not so useful.  The best thing to use in scripting 
situations is the dlmread function.  This function accepts a file path as its first argument and the 
delimiter as the second argument.  It then outputs a single matrix that represents whatever data 
it read.  Make sure that whatever you’re reading doesn’t have anything but numbers in it; if it runs 
into something else, it will give an error.

To test the dlmread function, open up notepad (either find it buried wherever in the start 
menu, or go to Start > Run and type “notepad”), and create some sort of tab-separated data.  Tab-
separated data simply means that you designate each new column by a tab and each new row by a 
return.  Alternatively, if you don’t want to create it directly, you could open up Excel, type some 
data in, and tell it to save as tab-separated values.

Once you’ve created your data, do the following in the command window:

>> data = dlmread(‘C:\Your\file\path\yourfile.txt’, ‘\t’)
|| <MATLAB outputs whatever the contents of your file was>

It’s that simple.  You can script it also, of course (which is generally more useful).  The only 
other important thing to remember is that you must find some way to get your data into an ASCII 
standard file (text file in other words); MATLAB doesn’t (without an add-on anyways) support pro-
prietary formats such as XLS.  You can get it to work with Excel if you really want to, but you have 
to know what you are doing, and it is generally not worth the effort.  If you really want to know 
how, search for “Excel” in the documentation.
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Section 2.7: Closing Comments
As you have hopefully seen from what we have done so far, MATLAB is a very useful tool for 

data analysis.  Once again, I have only scratched the surface of its ability; to really understand it, 
you need to just play around with it.  Hopefully you are now familiar enough with it to understand 
the documentation, which is really the most important thing for our purposes, as far as the lab is 
concerned.

I didn’t bother putting these examples up on the web site, since they were all so simple; how-
ever, if you would like them to be up, I do have them, and it wouldn’t take very long to put them 
up.  You will have considerably more MATLAB content, that is a little more complicated, available 
to you for use in the actual lab exercise that begins on the next page.

Feel free to contact me with any questions or comments that you may have; I will be more 
than happy to assist you any way that I can. 
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Section 3.1: Introduction
This lab’s goal is to show you how to get computers to do the majority of your work for you.  

It will be setup a little different than normal, in that you are given free reign to do whatever you 
would like to do to reach your goal.  What goal?  Good question.

Goal: Use conducting paper, a SummaSketchIII, a power supply, a com-
puter with LabVIEW and MATLAB, a NI USB-6008 DAQ, and physics to de-
scribe the electric field and potential present on the conducting when the 
power supply is hooked up to the two electrodes on the conducting paper.  

The physics behind this experiment is purposefully very simple; the focus is on making your 
own experiment to show the results that you already know the answer (in great detail) to.  In the 
following pages, I will be presenting you with information on the various aspects of the equipment 
you are using, as well as things in LabVIEW and MATLAB that I think will come in particularly handy.  
It is then up to you to put those things together to come up with something useful.  

 Because this is so open ended, and hence easy to get lost in details, I will be happy to pro-
vide any sort of help that I can.  In fact, I will try to be in class fairly often, and if you ever request 
me to be there sometime during class, I will do my best to be there.  
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Section 3.2: Equipment

There are two key components to this experiment: the SummaSketchIII and the NI USB-6008.  I 
will begin by explaining what the SummaSketchIII does, and how we will be using it.

The SummaSketchIII is a digitizer pad that has a modified stylus that allows it to measure volt-
ages with its metal tip.  We will be using the pad to allow us to simultaneously measure coordinates 
and couple those coordinates to a voltage.  To do this, we will be placing the conducting paper on 
top of the SummaSketchIII and taking our measurements that way.  

To use the SummaSketchIII, you simply touch the stylus to where you want to measure, and 
press down on the pen itself or on the little blue button on the top of it.  This causes the SummaS-
ketchIII to report data.  This data is a short stream of bytes that is relatively complicated to ex-
plain.  Luckily, you won’t have to bother with that aspect of things; I have already written a driver 
that will handle it.  All you have to do is drop my little SubVI on the block diagram, and voila--out 
pops coordinates whenever you need them.  It is then your job to synchronize these coordinates 
with the voltage that is read though the DAQ.

To use the driver that I wrote, refer to the web site.  There, you can find the documentation 
as well as the SubVI itself.  It is under the “Lab Resources” area of the “Introduction to Modern 
Data Acquisition Lab” page.

The data acquisition device that we will be using is the NI USB-6008.  It is basically a fancy, 
computer-controlled volt-meter.  Thankfully, as we saw in the LabVIEW section on data acquisition, 
NI makes it really easy to control their instruments through LabVIEW using the DAQ-Assistant SubVI 
(see Section 1.8).

The USB-6008 will be used to measure the voltage that is present at the tip of the SummaS-
ketchIII stylus.  This will allows us, through LabVIEW, to take the different coordinates associated 
with physical locations on the conducting paper and assign a measured voltage to that position.  
With that data, you can proceed to do lots of interesting things.  
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Section 3.3: Goals

You already know the overall goal: to measure the voltage and electric field at multiple points 
on a piece of conducting paper.  This goal may be further broken in to multiple “sub-goals”; I will 
proceed to do that now.

First off, you must plug in everything properly.  Here is a picture of what the SummaSketchIII 
board should look like with the conducting paper, alligator clips, etc. hooked up.

Figure 3.3.1

Basically, all you must do is affix the conducting paper and alligator clips to the SummaS-
ketchIII.  You then connect the alligator clips to the power supply (set it to somewhere between 
+5V to +10V), and if you desire, patch the negative terminal to the ground terminal of the power 
supply.  Since we will be using differential measurements with the DAQ, the ground patch shouldn’t 
really matter, but you may do it if you would like.

Finally, you will want to hook the lead that comes out of the stylus to the positive terminal of 
the USB-6008, and the negative terminal of the USB-6008 should be patched to the negative termi-
nal of the power supply (or ground if you patched the ground to the negative terminal).  To make 
things simple, I would suggest using channel ai0 of the DAQ, but you may use whatever you wish to 
use.

Now you will want to test your setup.  There are several ways you can test it, but the simplest 
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would probably be to turn the power supply on, navigate to MAX, run the test panels for the DAQ, 
and touch a few places on the conducting paper to get logical results.  You may also want to di-
rectly start my “SummaSketchIII Get Coordinates” VI and see if the computer is getting coordinates 
properly.  Do whatever testing you think is proper.  

After all the equipment is properly setup, its time to begin constructing the program.  Here 
is a breakdown of the core steps that you must take to take the measurement that we are looking 
for:

Create a monitoring loop that waits until there are coordinates to be read from the SummaS-
ketchIII (using the “Anything to Read?” output of my driver)

Make this monitoring loop terminate when it finds that there are coordinates to read

When the monitoring loop terminates, immediately read a voltage from the DAQ

Find some way to store the results while you’re taking the data (either pop it into an array or 
append it to a file)

Put all of the above in a loop so that you can take multiple points

Export the data to a file for storage

Possibly use a MATLAB node to feed the data directly into MATLAB (that’s up to you to decide)

Use the data that you take to find out the electric field using whatever tools you wish (MATLAB 
is suggested)

Do whatever you wish as far as displaying the results (plots, tables, histograms, whatever)

That’s it!  Now, in the next section, I will discuss a specifics about LabVIEW and MATLAB that 
may be useful to you.  

•

•

•

•

•

•

•

•

•
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Section 3.4: MATLAB and LabVIEW Tips

First, I will begin by describing how to go about doing one of the integral parts of designing 
this experiment: reading the coordinates.  I will begin by describing a little bit about how the tab-
let works.  

There are two main modes for the SummaSketchIII (from now on, I will refer to it as the SSIII): 
Stream Mode and Point Mode.  Stream mode constantly reports data whenever the stylus is close 
enough to the pad to produce any data.  It reports data at 30 reports per second by default, but 
you can change that behavior fairly easily.  My driver will handle this mode, but it’s not very useful 
given what we wish to use the SSIII for; we need point mode for our application.  Point mode only 
takes data once for every push of the button or depression of the stylus.  You can set the mode to 
point mode simply by running the VI entitled “SSIII - Set Point Mode.”  See the documentation on 
how to use that VI (it’s very simple).

After you set the point mode, you may wish to configure the resolution of the pad.  Here is a 
list of the possible resolutions:

1 lpi

2 lpi

4 lpi

100 lpi

200 lpi

10 lpmm

400 lpi

500 lpi

20 lpmm

1000 lpi

40 lpmm

The resolution doesn’t matter too much as far as accuracy is concerned; however, it is essen-
tial to know what the numbers that are being reported as coordinates mean.  You must scale the 
dimensions according to what resolution that you select.  This is essential if you wish to report the 
field in standard units of any kind.

After you have set the tablet to point mode and set the resolution, you are ready to take 
coordinate data.  You use my VI called “SSIII - Get Coordinates” for that task.  Once again, read the 
documentation to see how to go about using that VI.

Here is a way that you might go about taking data with the SSIII.

•

•

•

•

•

•

•

•

•

•

•
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Figure 3.4.1

This VI begins by setting the SSIII to point mode.  It then sets the resolution to whatever reso-
lution is specified on the front panel.  Finally, it enters a loop that terminates when the SSIII Driver 
reports that there are coordinates to read, and it outputs those coordinates when the loop termi-
nates.

It could be made better by making use of the error reporting feature of the driver.  For ex-
ample, if an error is reported, you could make it so that the loop doesn’t terminate and the serial 
buffer gets cleared.  This lets you start over with a clean slate.  Also, you could add a stop button, 
or any other set of features that you desire; hopefully you get the picture.

Now, instead of giving a detailed tutorial on how to do the contour plot with the vector plot 
superimposed upon it, I will present it in generalized steps and leave the particulars up to you and 
the MATLAB help function.

First, I will present you with the problem.  As you saw in section 2.5, you have to have a grid 
of X and Y coordinates and you must have a Z value paired with every possible combination of 
them.  In other words, if you have X = [1 2 3 4] and Y = [5 6 7 8], you need a z data point for (1,5), 
(1,6), (1,7), (1, 8), (2,5), (2, 6)... etc.  But what do you do if you only have discrete points?  Lets 
say you take an X-Y coordinate pair off of the SSIII, and then you assign a voltage to that coordi-
nate.  When you do that multiple times, you’ll get lots of points that are not arranged in a grid 
pattern.  For example, you might have one X-Y coordinate that is (3,6) and then another that is 
(5,19).    In order to have it in grid form for plotting in MATLAB, you would need to have the points 
(3,19) and (5,6) as well.  But you won’t have those points.  So our task now is to find a fancy way to 
plot it anyways.

Here are the steps:

Take your data in the form of 3 vectors, X (x-coordinate), Y, (y-coordinate) and V (voltage)•
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Use MATLAB’s linspace function to generate a monotonically increasing set X Y data that 
starts at the minimum of your data’s X and Y coordinates (use min and max to find the max and 
min of the coordinate data)

Plug this new data into an interpolating function called griddata that will generate V values 
for the intermediate values; this will result in you having interpolated voltages associated with 
the linspace coordinates

meshgrid the results

Use the gradient function to take the gradient of the Voltage to get the electric field

Evaluate the gradient at the linspace generated points

Use contour to plot the original data

Turn hold on so that you can put two plots on top of one another

Use quiver to generate the vector (quiver) plot

You should then have a contour plot that has the electric field vectors on it

Turn hold off

Do a new figure so you can pop up a new window

Pass surf the meshgrid’ed linspace coordinates and the griddata voltages associated 
with them

Voila, you’re done

If you come up with any other big questions, feel free to ask me, and I will probably add them to 
this section.

•

•

•

•

•

•

•

•

•

•

•

•

•
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Section 3.5: Closing Comments
Now it looks like you’re on your own!  Feel free to be creative with anything that you can 

think of to do with this.  The things I’ve mentioned here are just the things that I thought of that 
you might want to do with something like this; there are many other possibilities.  In fact, this was 
born out of a desire to rework the undergraduate lab on this subject, so if you can come up with 
any good, new ideas, by all means, go for it.  A version of your idea may find its way into the un-
dergraduate curriculum. 

If you wish to ask me questions, I’ll do my best to be in the lab on most days that you are.  If 
not, I would be happy to arrange a time to meet with you outside of class; just let me know when 
would be a good time.
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