
 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 1

Piotr Romaniuk, Ph.D.

Introduction to Multithreaded
Programming in Embedded Systems

Examples use:
- the DioneOS Real-Time Operating System,
- Code Composer Studio syntax,
- Texas Instruments msp430 microcontroller
Nevertheless, the DioneOS is available for ARM Cortex-M3 + GCC.

Nov 14, 2013
ver. 1.1

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 2

Contents

● Bad practices and implicated problems
● 'One-threaded' programming
● Concurrency
● Why to use multithreaded programming?
● Multithreading aspects:

● thread and its context,
● CPU time assignment and context switch,
● how to control concurrency and manage shared resources,
● periodic and deferred actions,
● is your function reentrant?

● Testing methods

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 3

Naive implementation of transmission a text over UART:

● characters are written to UART buffer one after another,
● after each character, 'busy-waiting' is performed in second 'while' loop,
● until the character is transmitted processor is 'busy', execution will not return

from the function, so nothing else can be done.

Bad Practices: “busy-waiting”

Waiting for the end of transmission
of each character

void print_uart(char * txt)
{
 int i = 0;
 while(txt[i])
 {
 UCA0TXBUF = txt[i];
 while(UCA0STAT & UCBUSY);
 i++;
 }
}

“busy-waiting” example

● print_uart() function blocks until whole text is transmitted,
● CPU time is wasted in 'busy-waiting' loop.

Problem

● avoid 'busy-waiting',
● use interrupts

Solution

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 4

Bad Practices: Polling

Polling example

char prev = 0;
while(1)
{

some_action(); //do some operations here

char now = P1IN & TRIG_PIN;
if(now ^ prev)

trigger_action();
prev = now;

}

Program should do some operations and execute another function
when an edge appears on selected pin on input port P1:

Polling the pin in each 'while'
loop iteration.

Problem

Solution

● triggered action is not run immediately after the edge, but may be delayed,
● latency depends on some_action() execution time,
● some edges may be missed if intermediate processing (i.e. some_action()) is long.

● avoid polling,
● use interrupts

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 5

'One-threaded' Programming

'One-threaded' programming is very common style of programming small embedded
system. This style consists in:
● splitting program jobs into 'tasks',
● critical parts triggered by interrupts are located in ISRs,
● 'tasks' are executed sequentially.

● 'Tasks' are run in 'Run-To-Completion' mode:
● one task must wait until previous one has finished its job,
● even if the task has nothing to do (e.g. because it waits for something), CPU

time is wasted for it, at least for a call and condition check,
● the task should return CPU control as soon as possible,

otherwise it delays others.

// Example
// Two 'tasks' are executed:
// (1) decoding commands from UART,
// (2) processing some commands:

While(1) //main loop
{
 decode_uart_cmd(); //task #1
 process_commands();//task #2
}

ISR - Interrupt Service Routine

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 6

'One-threaded' Programming, cont.

Signalling from ISR

volatile char signalling_flag = 0;
//'volatile' is required, otherwise compiler can optimize access to this variable.
 // Testing it in main loop may refer to once loaded value into register instead of
 // variable in memory. This behaviour may be affected by compiler options.

#pragma vector=TIMER0_A0_VECTOR
__interrupt void timer0_isr(void)
{
 signalling_flag = 1;
}

int main(){
...
while(1) //main loop
{
 if(signalling_flag) // *
 {
 signalling_flag = 0;
 execute_action(); //action executed when timer expired
 }
 ...
}

Example: hardware timer triggers interrupt that cause ISR execution which
 signals this event to main loop:

*) - concurrency issue is intentionally neglected here. It may happen that timer interrupt appear between
positive check (by 'if') and following clear of the signalling_flag. How to prevent such problem is described
in further sections about concurrency.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 7

Guidelines for Interrupt Service Routine (ISR)

● check if ISR nesting is used:
 - by default, in msp430 nesting is not used, interrupts are disabled at ISR call;
 - ARM Cortex-M3 uses more complex interrupts system that involve preempting groups
 and subpriorities. By default, nesting is available and enabled.

● work without nesting is more popular, ISR coding is easier,
● if you use nesting set-up priorities properly,
● if interrupt services are not nested it assures that code in ISR is never interrupted,
● but it means that all pending interrupts are delayed until the exit from running ISR,

ISR nesting

● keep ISR execution time short,
● do not wait in ISR,
● never block in ISR,
● in ISR, execute only time critical jobs, that require immediate response,
● defer other jobs to main loop (signal and execute it there).

Guidelines

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 8

Concurrency in 'One-threaded' Model

Concurrency between execution in main loop and in ISR

volatile long counter = 0;

//in ISR:
counter=0;

//in main loop:
while(1)
{
 some_function();
 counter++;
}

Example: program that counts iterations in main loop between two execution of ISR.

● this is unsafe, because access to common variable (i.e. counter) is not atomic.
● one operation in C is translated into a pair of CPU instructions:

If no extra measures are applied, interrupt can appear between these two assembler
instructions in main loop.

volatile long counter = 0; //four bytes in memory

//in ISR:
counter=0; CLR.W &counter
 CLR.W &counter+2

//in main loop:
counter++; INC.W &counter <- increments the least significant word of counter,
 ADC.W &counter+2 <- if Carry appeared, add it to the highest sign. word

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 9

Concurrency in 'One-threaded' Model, cont.

//in main loop counter Carry
 0x0000 FFFF 0
counter++;

 INC.W &counter
 0x0000 0000 1
 ---> INTERRUPT
 status register containing Carry flag is saved
 //ISR
 counter=0;
 CLR.W &counter
 0x0000 0000
 CLR.W &counter+2
 0x0000 0000
 <--- CPU status register is restored on ISR exit
 1

 ADC.W &counter+2
 0x0001 0000

● value of the counter is incorrect after incrementation, it should be 0x0000 0000,
 or 0x0000 0001 depending on the interrupt location but is 0x0001 0000,

● modification done in ISR is lost - it looks like last one has not happened,
● counting will be continued until next execution of ISR (next interrupt),
● this next result of counting will be incorrect, because of above issue,
● such issue will be very rare,
● it will be difficult to find it by debugging, because it is hard to repeat it,
● nevertheless it may ruin your firmware, so it must not be neglected!

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 10

Concurrency in 'One-threaded' Model, cont.

Make common modifications atomic:

volatile long counter = 0;

//in ISR:
counter=0;

//in main loop:
while(1)
{
 some_function();
 __disable_interrupts();
 counter++;

__enable_interrupts(); //it is assumed here that interrupts are
 //enabled during regular work

}

● interrupts are disabled for a period when common variable is modified,
● do not disable interrupts for long time, otherwise it affects interrupts latency
 (pending ISR would be delayed by this period)
● in above example it is assumed that interrupts are enabled during regular work;
 if you need more general solution, then store the interrupt state before you have
 disabled it and restore at the end (refer to next slide).

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 11

Concurrency in 'One-threaded' Model, cont.

If you have interrupts disabled sometimes (but ISR never exits with disabled
interrupts*) you may use following guarding template:

volatile long counter = 0;

//in ISR:
counter=0;

//in main loop:
while(1)
{
 some_function();

 unsigned short SR_saved = __get_SR_register(); //save interrupts state
 __disable_interrupts();

 counter++;

 if(SR_saved & GIE)//restore interrupts state
 __enable_interrupts();

*) the condition is required because the sequence:

 unsigned short SR_saved = __get_SR_register(); //save interrupts state
 __disable_interrupts();

is not atomic.
If the condition [*] is not true (that is very rare) other more sophisticated protection is needed.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 12

Concurrency in 'One-threaded' Model, cont.

● test-modify sequence

if(common_variable == SOME_VALUE)
{

 common_variable += OFFSET_VALUE;
 //unexpected value may be in common_variable, one can assume that
 // it should contain SOME_VALUE+OFFSET_VALUE
 …

 }

 //issue appears if the sequence is interrupted by ISR, where common_variable is modified

● access to information spread in a few variables (a set of data, structure fields):

unsigned char last_item = 0;
unsigned char items[10];

//adding an item:
items[last_item++] = SOME_VALUE; MOV.B &last_item, R15
 MOV.B #SOME_VALUE, &items(R15)
 INC.B &last_item

● value of last_item is updated in last CPU instruction, if ISR would try to add an item,
 it will overwrite the one that is being added.

● structure contents may be inconsistent until all modifications are finished,
● General note: access to shared resources must be managed.

Other operations can be unsafe, like:

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 13

Why Multithreaded Programming?

●

●

Multithreaded programming has following advantages:
● separation of tasks, each task has its thread,
● separated parts of code for each tasks help to it keep more clear,
● easier, more flexible programming, because of threads separation,
● semi-parallel execution (step toward parallel programming*),
● loosing time dependencies unavoidable in 'one-threaded' model,
● avoiding 'busy-waiting' (effective CPU time usage),
● waiting on system objects, task is woken up when it is needed.

Still must be taken into consideration:
● concurrency issues, not only between thread and ISR but also between threads
 (threads are switched from one to another),
● one thread can be preempted by the operating system in any location, even
 if you do not call any system function (true for preemptive OS).

*) as long as CPU has one core it is only semi-parallel, only one program is executed in particular time.

New requirements
● extra RAM memory needed for each thread context (own stack),
● CPU time spent on thread switch or system clock tick (check each OS for detailed
 data in this characteristic).

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 14

How to Start Multithreaded Programming?

● use operating system for your MCU,
● if you take care about your system real-time properties use Real-Time OS,
● if you work on ARM Cortex-M3 (e.g. STM32L162) or msp430 you can use the DioneOS
 http://www.elesoftrom.com.pl/en/os/

The operating system provides:
● threads management including CPU time scheduling,
● necessary synchronisation objects (also useful for guarding access to shared resources),
● time dependencies support (i.e. timers, sleeping),
● communication objects,
● memory management,
● etc.

When you develop your firmware on the basis of Operating System:
● large part of the code is provided by OS vendor (standard objects, e.g. ringbuffer),

you do not need to spend a time for their implementation,
● code of the OS is tested and ready to use,
● you follow well known concurrency formalism (e.g. threads, semaphores, mutexes, etc.)
● you can model your firmware and expect designed behaviour,
● if the OS is commercial, you have support from its vendor.

http://www.elesoftrom.com.pl/en/os/
http://www.elesoftrom.com.pl/en/os/

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 15

Example of Minimal Program in the DioneOS

Above code will initialize the system (main function) and further by calling os_scheduler_run()
multithreaded environment is built. Threads are started, so the thread function thr_idle() is
entered. The function should work in infinite loop and perform its jobs inside. The system
will manage CPU time and schedules it for threads.
The example will generate square signal on D_IDLE pin (external output).

 /* ================== IDLE THREAD =========================== */
 os_result_t thr_idle(void * args)
 {
 while(1) //infinite loop,
 {
 debug_pin_inv(D_IDLE);//invert D_IDLE pin – only for signalling
 __delay_cycles(40);
 }
 }

/* ==================== MAIN function ======================== */
 int main(void)
 {
 ...
 // initialization parts of the system:
 debug_pin_init(); // 1. DEBUG_PORT pins
 os_timers_init(); // 2. timers
 os_thread_init(); // 3. internal threads data
 os_thread_create(15, thr_idle, NULL, 256); // thread creation
 os_timers_start();// start timers support, inc. system tick interrupt

 os_scheduler_run(); //run scheduler and switch the context to the thread
 //it should not return here, otherwise means that it failed to run scheduler
 while(1);
 }

Thread code that
runs in infinite loop.

System
initialization and
the thread creation.

Example of program in multithreaded real-time operating system (the DioneOS).
Each thread code is separated and runs in endless loop.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 16

What is a Thread in the DioneOS ?

Each thread has its context, i.e.:
● its own stack,
● local contents of the CPU registers.

Thread is characterized by:
● stack size,
● thread function,
● thread priority.

Note that the same code may be executed in the context of different threads.
The context determines what thread is executed.

 /* ================== IDLE THREAD =========================== */
 os_result_t thr_idle(void * args)
 {
 while(1) //infinite loop,
 {
 debug_pin_inv(D_IDLE);//invert D_IDLE pin – only for signalling
 __delay_cycles(40);
 }
 }

/* ================ MAIN function ============================ */
 int main(void)
 {
 ...
 os_thread_create(15, thr_idle, NULL, 256); // thread creation
 ...
 }

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 17

Thread States

● In the DioneOS system the thread can be in one of following states:
 - Running – thread is in 'running' state when the CPU executes the code

 in its context. Because there is only one core only one thread
 can be in running state.
 - Ready – thread is in 'ready' state when it is ready to run, but other thread

 with higher priority is still running.
 - Waiting – thread is in 'waiting' state if it waits on some waiting object

 (e.g. semaphore, mutex or is sleeping).
● Initially thread is in 'ready' state after creation.
● After os_scheduler_run() system starts the thread with the highest priority,
 setting this thread to 'running' state.
● Thread state is managed by the operating system.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 18

Scheduling the CPU Time

● The inherent part of the operating system is a scheduler.
 It is responsible for allocation the CPU time to the threads.
● The scheduler determines when to switch execution to another thread
 and to what thread it should be switched.
● The scheduler is driven by system events, like timer expiration, a release of waiting
 objects, etc.
● The scheduler implements a scheduling rule, that define how to order
 threads execution (there is a few scheduling rules, e.g. Round-Robin).
● The DioneOS uses maximum priority scheduling:

● each thread has assigned priority number,
● ready threads (including running one) are ordered by their priorities,
● thread with maximum priority in set to running state.

● If the system is preemptive, like the DioneOS, it can break execution of the current
 thread immediately when new candidate for running state change its state to ready.
● Switching the execution from one thread to another requires a context switch.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 19

Context Switching

● Switching from one thread to another
● Changing the context means:

- switching to another stack,
- switching the contents of the CPU registers

● Context switching is done in following sequence:
- store execution point
- store CPU flags
- disable interrupts
- store other CPU registers on stack
- store SP in private thread structure
- switch to new thread stack (load its SP)
- restore CPU registers, including flags and interrupts state
- jump to last executed instruction in this thread

● Context switch is atomic operation and is considered as very critical,
 hence it is done with disabled interrupts to provide unique access to system descriptors
● Time of context switch is a critical parameter of the RTOS, because it is an overhead of
 all multithreaded system; the DioneOS has been optimized for short switching time,
 including fast signalling from ISR by a semaphore.
 The DioneOS switches in: 8 - 9.3us* for ARM Cortex-M3 and 10-12us* for msp430

*)- the value depends on switching conditions, for detail please visit:
 http://www.elesoftrom.com.pl/en/os/performance.php

http://www.elesoftrom.com.pl/en/os/performance.php

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 20

When the Thread Can Lose the CPU?

● a consequence of context switch is losing CPU - the CPU is switched to another thread
● it may happen because of two types of events:

i. action in running thread - calling a system function,
ii. concurrent system event that is independent on running thread and has its origin

somewhere else.

● in case [i] the switch is due the thread call:
● the system function that blocks, e.g. os_sema_wait(),
● the function that releases higher priority thread that has been waiting

(os_sema_post())

● in case [ii] the switch is initiated by:
● a change of higher priority thread to 'ready' state, because one of conditions:

- releasing a waiting object on which it has been stopped (e.g. semaphore);
 it may be initiated by ISR (os_sema_post_intr()) or callback on timer expiration,
- end of waiting on the object due to the timeout (os_sema_wait_timeouted())
- elapsed sleeping time (in os_sleep())

● in case [ii] the running thread loses CPU in preemption,
● preemption can be controlled by running thread (os_preempt_disable/enable()).
 (it is independent on interrupt control, so when preemption is disabled

 ISRs can be still called)

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 21

How to Control Concurrency?

Method

Can be
inter-
rupted
by ISR?

Does it
affect
interrupts
latency?

Can be
preempted
or swithed to
another
thread?

Function

Concurrency
control

Threads
synchronization

Access
control to
shared
resources

Disable*
interrupts

No Yes No x x 0

Disable**
preemption

Yes No No x x 1

Semaphore^ Yes No Yes x x

Mutex^^ Yes No Yes x

0) – use if you share resource between ISR and threads, disable only for short period
1) – use if you do not access resource from ISR
*) - interrupts in ISR are already disabled, nothing can preempt nor interrupt ISR
**) - used in ISR only if you want to control behaviour of preemption outside of ISR
^) - do not use functions that would block in ISR
^^) - do not use mutex in ISR, if it were locked it would block in ISR – it is general

 constrain

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 22

Disabling Interrupts for Critical Section

● use if you need to protect the section of code from being interrupted and preempted,
● you can control in this way an access to shared resource that is also accessed from ISR,
● do not spend a lot of time in that critical section, because it disables interrupt –
 - if any interrupt happens it will be delayed, until the end of the section,
● you can nest such sections, it will handle interrupts state properly, but you need to use
 separated 'flags' variable for each pair of guards,
● you don't need to analyse if interrupts were enabled or disabled at the entry of this
 protected section. It is assured that inside interrupts are disabled and after that the state
 is restored,
● you must not use blocking functions inside this section.

 unsigned short flags; //local variable for storage the state of interrupts
 OS_DINT_SAVE (flags); //saves the state and disables interrupts

 // critical section

 OS_INT_RESTORE(flags); //restore saved state of interrupts

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 23

Disabling Preemption for Critical Section

● use if you need to protect the section of code from being preempted
by another thread,

● NOTE that interrupts can still happen inside the section,
● in above way, you can control an access to shared resource that is accessed from

threads but not from ISR,
● it does not affect interrupt latency because interrupts remain unchanged, it only

controls preemption,
● use preemtion control if you need to make a few things but one of them would

make preemption (e.g. you need to release two semaphores at once).
● you must not use blocking functions inside this section.

 unsigned char preempt_state; //local variable for preemption state
 preempt_state = os_preempt_disable(); //reads state of preemption and disables it
 // critical section

 if(preempt_state)
 os_preempt_enable(); //restore saved state of preemption

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 24

Threads Synchronization by the Semaphore

● use if you need to trigger the waiting thread from another one or from ISR,
● context switch to the waiter happens when it will be the highest priority from all ready
 threads (this in an implication of scheduler in the DioneOS system),
● example: the waiter is a commands processor that are taken from the queue.

os_sema_t sem1; //semaphore structure

 //initialisation
 os_sema_init(& sem1, 0); //initialised in locked state, initial count = 0

 //thread #1, trigger // thread #2, waiter
 os_sema_post(& sem1); os_sema_wait(& sem1);

 //triggering from ISR
 os_sema_post_intr(& sem1);

 os_ring_buffer_ev rb; //queue implemented as ring buffer – global

 os_event_t ev; //event to be sent
 ev.signal = SOME_CMD; //example of command

 //thread #1, command request // thread #2, command processor
 os_ringbuf_add_ev(&rb, ev);
 os_sema_post(& sem1); while(1)
 {
 os_sema_wait(& sem1);//'non-busy' waiting
 os_event_t ev_rec;//received event
 os_ringbuf_get_ev(&rb, &ev_rec);
 //process event ev_rec, e.g.
 if(ev_rec.signal == SOME_CMD)
 //make some action
 }

You avoid 'busy-waiting' because you use waiting on the semaphore.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 25

Access Control to Shared Resource by the Mutex

● mutex provides exclusive access control,
● when mutex is locked it is owned, only the owner can release it
 (trial of release by non-owner is considered as error, if you need to release from another

 thread use semaphore),
● mutex get/release functions can be nested, the system counts number of corresponding
 functions and release the mutex on the last matching release,
● mutex controlled section does not affect interrupts,
● do not use mutex in ISR,
● os_mutex_get() and ~release() may cause preemption,
● only one thread can access the resource.

 os_mutex_t mtx1; //mutex structure

 //initialization
 os_mutex_init(& mtx); //initialized in unlocked state

void fun_access_to_resource(void)//access resource only through this function
{
 os_mutex_get(& mtx); //lock and own mutex
 // exclusive access to shared resource – no one else can access it
 os_mutex_release(& mtx); //releasing mutex
}

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 26

Holding the Thread Execution

● the DioneOS system has internal clock interrupt,
● its frequency and hardware timer are selected and configured by developer,
● its period is a unit of time specified in function calls,
● if you need to hold thread execution for specific time, use os_sleep() function
● system will do other things in meantime – your waiting will not be 'busy-waiting'

● waiting on semaphore with timeout:

 os_sleep(10); //example of waiting 10 units of internal system clock

 os_result_t retc;
 retc = os_sema_wait_timeouted(& sem1, 10); //example of waiting 10 units of
 //internal system clock

 if(OS_TIMEOUT == retc) //waiting finished due to timeout elapsing
 ...
 if(OS_STATUS_OK == retc) //waiting broken because of semaphore release
 ...

● Note that the function can return with OS_TIMEOUT status code and
 the semaphore will be released after that. It means that semaphore
 has not been released within the period specified in function call.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 27

Periodic or Deferred Action by the Timer

● if you need periodic or deferred action use timer (it can be created as repetitive
 or 'one-shot' correspondingly)

● when timer expires attached callback function is called,
● you can pass arguments to the callback during timer creation,
● callback is run by system clock ISR, use ISR rules inside the callback,
● do not stay in callback too long, everything is blocked!
● trigger and event or semaphore and process further in a thread.

 os_timer_t tm1;//timer structure

 os_result_t timer_callback_fun(void * args)//callback function
 {
 //do an action on timer expired
 return OS_STATUS_OK;
 }

 ...
 os_timer_create(&tm1, OS_TIMER_REPETITIVE, 100, timer_callback_fun, NULL);
 //create and arm timer
 ...
 os_timer_delete(&tm1);//disarm and delete timer
 ...

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 28

Is Your Function Reentrant?

● in multithreaded program you need to consider reentrant property of your functions.
● function is reentrant if it can be called concurrently from multiple threads and it will not
 generate any issues.
● check the functions that are called from different threads and/or ISR,
● in practice, it means that it has no common (global) data required for its execution,

● function can also be not reentrant if it uses some global resources (e.g. serial port),
● if the function requires more data, form it in structure that serve as its execution context,
 Provide at least such separated context for each call from different thread,

● if your function is not reentrant add proper guards (e.g. lock mutex at the entry and
 release it on exit).

Example of non-reentrant function Example of reentrant function

char rtext[100]; char* create_msg(char* res, char* prefix_msg, int x)
 {
 sprintf(res, ”%s %d\n”, prefix_msg, x);
char * create_msg(char * prefix_msg, int x) return res;
{ }
 sprintf(rtext, ”%s %d\n”, prefix_msg, x); //the buffer for result is provided by a caller
 return rtext; //so it is independent for each thread
} //No common items are in this function.
//only one thread can execute the function
//rtext is common for all calls.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 29

Testing Methods

● Traditional debugger is not very useful in real-time environment. The system is
 dependent on external events and is required to create immediate responses. In a case
 of debugger, interactive mode is the most common testing method. It needs to froze the
 system and provide manual control over program execution for the developer by means
 of breakpoints, step-by-step execution and variable watching.
● In testing process of the real-time system more valuable are techniques that do not
 interfere the system time scale.
● They can provide observation of the system behaviour in form of trace that can be
 analysed later:

● Writing to log – a textual log is created during program execution. In selected
locations of the code extra instructions are inserted. They print logging messages that
describe its location (line number, function, module) and interested contents in that
place. Sometimes the messages has also marked by timestamps.

● Real-time observation by logic analyser – presence of selected events in the system
are shown on microcontroller pins and captured by logic analyser. Recorded digital
signals represent exact time sequence of the events that happened in the system.

● The information can be also provided in aggregated form. In is any kind of statistical
 data like counters of events, average, min, max value, etc.
● When you test your code take into consideration multithreaded aspects: the same code
 can be concurrently called from different threads; multiple entries may happen.
● Do not forget about concurrency in debugging parts that you have created.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 30

Testing Methods: Writing to Log

● logging messages can be generated in the system and sent by
serial port to PC, where they are recorded in a file,

● universal textual form of the log – easy to browse, filter, search
● number of logging messages must be balanced, each

generated message is an extra load to the system,
● generate only the logging messages that you need,
● logging in many locations and with many details can slow

down the system and change its behaviour. This can be so
significant to system internal dependencies, that an analysed
bug will disappear (it is called 'Heisen-bug' from Heisenberg
uncertainty analogy: when you start debugging, you
observation tool influence the system, so you observe
something else that original one).

● use short messages to save bandwidth of logging channel, the
serial port speed and messages creation are 'bottle-necks',

● provide conditional compilation that controls debug messages,
you will be able to disable it globally by one #define. Even
function call, if executed in many places, may be significant
load for the system.

main:new connection
srv_handle_ev: [0] state=NOTCON (1)
srv_handle_ev: [0] conn.192.168.0.2
main: [0]: state=WAITREQ (2)
main: [1]: state=NOTCON (1)
main: waiting for data/connection
main: [0] srv=0: data 4
srv_handle_ev: [0] state=WAITREQ (2)
srv_nandle_ev: [0]->state=RECREQ (3)
srv_received: 12 bytes
dbg_request: msg. received
00 00 13 44 00 00 23 00 00 12 99 89
dbg_request: msg_len = 12
dbg_request: msg_type = 1
srv_proces_req: [0]->state=WAITREQ (2)
main: [0]: state=WAITREQ (2)
main: [1]: state=NOTCON (1)
main: waiting for data/connection
cmd_proc_stop: msg. Received 103
cmd_proc_send_rsp: send resp. T<P.1>
send_msg_xdataL sent by srv=0
srv_send: [0]<< state=WAITREQ (2)
exec_stop: sending STOP
...

Example of log file.

● if it is possible, provide a timestamp for each message,
● assure that messages are written to the log according to they order in time,
● create logging message levels (error, warning, info, debug) and allow for conditional filtering.

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 31

Testing Methods: RT Recording by Logic Analyser

● the signalling on microcontroller pins has very small impact on system behaviour,
● it can be recorder together with signals from hardware (possible latency testing, missing

events, etc.) - coherent software-hardware testing
● use the logic analyser capturing method, when you need to understand exact time

sequence of the events,
● use the analyser that is able to capture long period (long recording buffer),
● adjust sampling period to minimum gap width between events,
● available signalling options:

● if you need a few events signal each one on separated line,
● if you need more – code them as bits, capture and decode after that

(e.g. 4 lines allow to signal 16 types of events)
● if you need to signal small numbers – use set of lines

(e.g. 2 bits for thread id in following figure)
● if you need to signal larger numbers, use prefix code and partial transmission in digits.
● use edge for signalling fast events

Example of signals captured by logic analyser: [SwTh1,SwTh0] – thread id – allows observation
context switching; Tick – edge of signal represents system clock interrupt

 Introduction to Multithreaded Programming in Embedded Systems 2011-2013... (c) ELESOFTROM 32

Summary

● Develop your firmware as multithreaded. You will have more clear and well
structured code. Coding will be more flexible and your tasks will be more
independent.

● Use ready Real-Time Operating System. You will save a time and work, the
system provides tested and ready-to-use objects designed to develop
multithreaded firmware.

● Design your firmware using well known formal concepts (i.e. threads,
semaphores, mutexes, etc.)

● Create a model of threads dependencies and their inter-synchronisation.
● Manage common resources that are shared between threads.
● Remember about preemption, the CPU can switch to another thread in any

location.
● Consider reentrant property of common functions (avoid global variables).
● Insert in your code debugging parts, conditionally compiled.
● Use real-time methods adapted for testing this type of behaviour.
● Do not assume that something that is very rare will not happen.

Ignoring such an issue would ruin your efforts toward reliable software
development.

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32

