
Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
1 

I N T R O D U C T I O N  T O  M U L T I A G E N T  
S Y S T E M S ,  2 0 1 2  

If you read any of my work before, you already know the drill: this document is a best-effort, brief, 
inconclusive summary of the course’s material that I compiled for my own use. If it happens to help 
you, that’s great, but don’t blame me for missing something. Comments are welcome at sashag@cs. 

This text is organized in the same order the material was presented in class. However, I used the 
second edition of Wooldridge’s “Introduction to Multiagent Systems” book, so the book’s chapters 
are not presented in order. 

WOOLDRIDGE, CHAPTER 1: INTRODUCTION 

Trends in computing: 

 Ubiquity – processors everywhere 

 Interconnection – networks of billions of processors are possible 

 Intelligence – tasks delegated to computers have increasing complexity 

 Delegation – we trust computers with safety-critical tasks 

 Human-orientation – abstractions make HMI more approachable to humans 

Challenges for agents: 

 Operate independently 

 Represent our best interests 

 Cooperate, negotiate and reach agreements 

An agent is a computer program capable of independent action on behalf of its owner. Figures out 
what it has to do on itself, does not have to be told. A multiagent system consists of several 
interacting agents that cooperate, coordinate and negotiate. 

The field of multiagent systems deals with agent design (micro) and society design (macro). The 
field borrows from: 

 Software engineering – interaction as key in complex software 

 Economics – self-interested entities interacting, but computational aspects paramount 

 Social sciences – agents help in simulating human societies, but agents are computational 

 Distributed systems – but agents are more autonomous and self-interested 

 Artificial intelligence – but don’t need all of AI to build agents, and need social aspects 

WOOLDRIDGE, CHAPTER 2: INTELLIGENT AGENTS 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
2 

An agent is a computer system situated in some environment, capable of autonomous action to 
meet its delegated objectives. 
[Trivial examples: thermostat, daemon; better examples: auto-pilot, nuclear reactor control system.] 

An agent consists of: 

 Sensors – perception of the world 

 Deliberation logic based on objectives and percepts that leads to action 

 Effectors – influence the environment 

Agents must be prepared for failure because they have incomplete control of their environment. 
Classification of environments: 

 Accessible vs. inaccessible – whether all information is available to the agent 

 Static vs. dynamic – changes without the agent’s control 

 Deterministic vs. non-deterministic – whether there is uncertainty about action effects 

 Episodic vs. non-episodic – history matters 

 Discrete vs. continuous – finite number of actions/percepts 

Additional challenges: 

 Agents are reactive (harder to program) 

 Agents often make long-term considerations (e.g. resource allocation fairness) 

 Agents often must make decisions in real-time 

AN INTELLIGENT AGENT 

 Reactive – perceives and responds to the environment in a timely fashion 

 Proactive – takes the initiative to satisfy its goals 

 Social – interacts with agents/humans to satisfy its goals (negotiation, cooperation &c.) 

Agents must strike a balance between reactive and proactive behavior; must be flexible. 

Agents are not objects: 

 Agents request actions from each other, can refuse 

 Agents are autonomous, flexible 

 Agents are active (concurrent, thread of execution per agent) 

Agents are not expert systems: 

 Expert systems are not situated in an environment 

 Expert systems are not capable of reactive/proactive behavior 

 Expert systems do not have social ability 

Intentional stance: describe agents using mental states – beliefs, desires, intentions: 

 Useful when the system is sufficiently complex and its structure is not completely known 

 Not useful if we have a simpler, mechanistic description 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
3 

 An abstraction mechanism for managing complexity 

FORMAL MODEL 

 Environment states E 

 Agent actions Ac 

 Run – sequence of environment states and actions 

 State transformer function τ – maps a run that ends with an agent action to a set of 

possible environment states (non-deterministic) 

 Environment Env – triple of E, initial state, τ 

 Agent Ag – maps runs that end with an environment state to an action (deterministic) 
o Purely reactive agent – function from E to Ac (no history) 
o Stateful agent – maintains state, the function is from state to Ac 

 Set of runs of agent in environment R(Ag, Env) – terminated runs only 

TASK SPECIFICATION 

Utility functions specify tasks for agents. Some alternatives: 

 Gives utility value to environment states (very short-term) 

 Gives utility value to runs (very long-term), possibly with decay 

The optimal agent in an environment maximizes the expected utility. Bounded optimality 
introduces the constraints of a given machine into the equation. 

It’s often hard to reason in terms of utility. Instead, can use predicate task specifications that map 
a run to either 1 or 0. Two common types of tasks: 

 Achievement task G – in every run, bring about one (or more) of the states in G 

 Maintenance task B – in every run, stay away from all the states in B 

Synthesizing agents for task environments: take an environment and task specification and 
generate an agent. Ideal synthesis is both sound and complete. 

FRANKLIN, GRAESSER: AGENT OR PROGRAM 

Some properties by which agents are defined: 

 Autonomous execution oriented towards goals 

 Domain-oriented reasoning 

 Perceiving its environment and acting upon it 

 Situated in a dynamic, complex environment / real-world 

 Persistent in its agenda 

 Delegation – acts on behalf of a user 

 Social, reactive, proactive [see above] 

 Capable of negotiation and coordination 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
4 

 Learning, adaptive, flexible 

Definition: a system situated within an environment that senses it and acts upon it, pursuing an 
agenda so as to effect what it senses in the future. 

Agents can be classified based on these properties – control mechanism, environment, mobility, 
reasoning, purpose &c. 

WOOLDRIDGE, CHAPTER 3: DEDUCTIVE REASONING AGENTS 

Symbolic AI – maintain a symbolic representation of the environment and behavior and 
manipulate it syntactically. In deductive reasoning agents, the symbols are logical formulae and 
the manipulation is theorem proving. 
Problems: 

 Transduction problem – translate the real world into a symbolic description 

 Representation/reasoning problem – represent information symbolically and reason on it 
within reasonable time constraints 

PURELY LOGIC-BASED AGENTS 

 Try to deduce some action a to perform – prove Do(a) – from the internal database 

 If nothing is deduced, try to find an action a whose negation  Do(a) cannot be deduced 
from the internal database 

 Perform an action and modify the state of the database accordingly 

 Repeat 

The agent specification is directly executed – transparent, elegant. 

Objections – entirely impractical: 

 First-order logic theorem proving is undecidable 

 Number of formulas is immense 
o Frame axioms – work very hard to specify what does not change 

 Calculative rationality – recommended action is for the environment when the 
deliberation began, which might have changed 

 Not obvious how to map environment to symbolic formulae (e.g. images) – transduction 

 Not obvious how to represent temporal information – representation 

AGENT-ORIENTED PROGRAMMING [SHOHAM] 

Shoham: an agent is any entity described using mental terms such as beliefs, capabilities, choices, 
commitments. 
Planning to provide: 

 Formal language for describing mental state 

 Programming language for defining agents (LISP-based) 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
5 

 Agentifier – converting neutral programs into agents (not implemented) 

Agent-oriented programming embeds beliefs, decisions/commitments and capabilities in 
agents as programming language constructs. These mental constructs are used to design 
(specify) the system, not just analyze it. 

AGENT0 agents: 

 Capabilities –     
   

 Initial beliefs -   
  , initial commitments -       

   

 Commitment rules – message condition, mental condition (beliefs), action (commitment) 
o Interpreted at runtime, do not require theorem proving 
o To ensure easy belief consistency checking with new facts, facts are very restricted 

All of these have a temporal component – “i believes that at time t, b will believe…” &c. 

AGENT0 supports private (internal) and public messages: request, unrequest, inform, refrain. 

Sending messages and acting upon them is constrained by the agent’s mental state, e.g.: 

 Consistency of beliefs and obligations 

 Commit only to what you are capable of 

 Awareness of obligations 

 By-default persistence of beliefs and obligations 

PLACA – subsequent work that introduces the ability to plan and communicate via high-level goals; 
similar to AGENT0. 

CONCURRENT METATEM 

Supports direct execution of temporal logic formulae in multiple agents concurrently. 
Concurrent MetateM agents: 

 Interface – ID, messages accepted, messages emitted 

 Computational engine – program rules of the form past → present/future 

Rules are based on temporal logic operators such as ~open(door) U request(you), meaning the 
door is not open until you request it, or ⦿request(you) → ◊open(door), meaning that if you just 
requested it, the door will open at some point in the future. 

Agent execution revolves around constructing proofs of satisfiability for the rules. 

SHOHAM: AGENT-ORIENTED PROGRAMMING 

[This paper is described in the preceding section.] 

WOOLDRIDGE, CHAPTER 4: PRACTICAL REASONING AGENTS 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
6 

Practical reasoning consists of figuring out what to do – it is directed towards action and not 
theoretical beliefs. Consists of: 

 Deliberation – what state of affairs to achieve (goals, intentions) 

 Means-ends reasoning – how to achieve them (plans, actions) 

DELIBERATION 

Properties of intentions: 

 Intentions are stronger than desires – they lead to action, although can be overridden 

 Intentions persist over time, you try again if you fail 

 Intentions can be dropped if unrealistic or if goals change 

 Intentions constrain future reasoning, e.g. incompatible intentions 

 Intentions influence future beliefs, e.g. for reasoning post-achievement of the intention 

 Agents must believe their intentions are achievable 

 Agents will not adopt as intentions something they believe to be inevitable 

 Agents need not intend all possible consequences of their intentions – package deal 

Deliberation consists of: 

1. Option generation – produces new desires from beliefs and intentions 
2. Filtering – produces new intentions from beliefs, desires and intentions 
3. Belief revision – produces new beliefs from existing beliefs and perceptions 

PLANNING 

Means-ends reasoning (planning) produces from beliefs and intentions a plan of concrete actions. 

STRIPS planner: 

 World modeled as first-order logic formulae 

 Action schemata available to planner – name, preconditions, delete list, add list 

 Initial state, goal – planner produces actions from initial state to goal 

STRIPS works using a goal stack – this is limiting (also in PRS), can’t pursue multiple goals at once: 
must finish with a certain goal before moving to a sibling. 

Plans can be generated from a plan library – for each plan, see if it brings about the intentions 
required. 

PRACTICAL REASONING AGENT 

1. Generate beliefs, desires, intentions from world perception 
2. Generate plan from beliefs, indentions, actions available 
3. Execute first step of the plan 
4. Revise beliefs from world perception 
5. If it’s worthwhile [*] to reconsider the intentions, repeat deliberation 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
7 

o Blind commitment – maintain intention until it’s achieved 
o Single-minded commitment – maintain intention until it’s achieved / impossible 
o Open-minded commitment – maintain intention as long as it’s believed possible 

6. If plan not sound, re-plan 
7. If plan done, got to step 1; if plan not done, go to step 3 

[*] Constant deliberation is expensive, but blindly executing in a changing world is expensive, too – 
cheap meta-level control determines whether it’s worthwhile to reconsider: bold vs. cautious 
agents in a world with varying rate of environment change (static/dynamic environment). 

BDI LOGIC 

Path quantifiers: A x means “on all paths, x is true”, E x means “on some paths, x is true”. 

BDI connectives: (Bel i x), (Des i x), (Int i x). 

Axioms of KD45: 

1.    ( →  ) → (     →      ) 
2.      →         
3.      →           
4.       →            
5. If p and p → q, then q 
6. If p is a theorem, then so is Bel p 

CTL* notation: 

1. A = for every path 
2. E = there exists a path 
3. G = globally (on all states on the path) 
4. F = future (on some state on the path) 

BDI logic: 

1. Belief-goal compatibility – (     ) → (     ) 
2. Goal-intention compatibility – (     ) → (     ) 

3. Volitional commitment – (        ( )) →     ( ) 

4. Awareness of goals and intentions – (     ) → (    (     )), (     ) → (    (     )) 

5. No unconscious actions –     ( ) →    (    ( )) 

6. No infinite deferral – (     ) →   ( (     )) 

o The agent will drop the intention or act on it 

IRMA – INTELLIGENT RESOURCE-BOUNDED MACHINE 

IRMA has a plan library and explicit representations of beliefs, desires and intentions. 
Consists of: 

1. Reasoner – inference engine 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
8 

2. Means-ends analyzer – which plans might be useful 
3. Opportunity analyzer – generates new options from the environment 
4. Filtering process – which options are compatible with intentions 
5. Deliberation process – which intentions are best to adopt 

PROCEDURAL REASONING SYSTEM (PRS) 

First BDI architecture, applied to real-world multiagent systems. 

Planning relies on BDI database and a plan library constructed by the programmer. Plans in PRS 
have goals (post-conditions), contexts (pre-conditions) and bodies (actions). 

Actions can consist of sub-goals to be achieved, loops. Planning starts with a single top-level goal. 
Deliberation between competing options is done using meta-level plans (or utilities for plans). 

PRS executes plans using an intention stack – no branching, which means only one goal can be 
pursued at a time. [This is limiting, current AI uses graph search algorithms instead.] 

BRATMAN, ISRAEL, POLLACK: PLANS AND RESOURCE-BOUNDED 
PRACTICAL REASONING 

When dealing with deliberation and means-ends reasoning, it is critical to remember that agents 
are resource bounded. The longer the agent deliberates, the more likely the deliberation results to 
become stale. 
Mechanisms for limiting reasoning time: 

 Existing plans – constrain means-ends reasoning to a clear purpose, narrow deliberation, 
influence future reasoning (the agent is committed to doing what it plans) 

 Partial plans – shorter deliberation, less need to reevaluate every detail 

WOOLDRIDGE, CHAPTER 5: REACTIVE AND HYBRID AGENTS 

Reactive agents position, contrary to symbolic AI: 

1. Symbolic representations and deductive reasoning are not necessary 
2. Intelligent behavior is product of interaction with the environment, situated in the world 
3. Intelligent behavior emerges from simpler behaviors 

REACTIVE AGENTS 

Advantages: 

1. Computationally cheap – constant-time decision making instead of intractable deduction 
2. Simple to build 
3. Robust to failure 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
9 

Disadvantages: 

1. Difficult to model a learning process, long-term view 
2. Designed for a specific environment, hard to adapt 
3. “Emergent” means we don’t understand it well, no methodology 
4. Exponentially harder to build when there are dozens of layers 

SUBSUMPTION ARCHITECTURE 

Brooks’ subsumption architecture proposes that intelligent behavior emerges without explicit 
symbolic representations and reasoning. 

The system is constructed in layers of task-accomplishing behaviors, simple rules of the form 
situation → action. Layers can suppress/replace inputs or inhibit outputs of other layers (e.g. 
collision avoidance will inhibit output of exploration layer if collision is imminent). 
Layers are constructed as levels of competence; for a mobile robot: 

0. Avoid contact with objects 
1. Wander aimlessly around 
2. Explore the world by reaching distant places 
3. Build a map and plan routes 
4. Notice changes in the environment 
5. Identify and reason about objects 
6. Formulate and execute plans for changing the world state 
7. Reason about the behavior of objects and modify plans 

Advantages: 

 Building the system in layers means a working system is available when level 0 is done 

 Layers can work in parallel 

 Failure, errors or slowness at higher levels does not cause the entire system to fail – it 
merely degrades 

SITUATED AUTOMATA 

Agents are specified in a logic of beliefs and goals, but compiled to a digital circuit that does no 
symbolic manipulation. Agents consist of perception component and action component. 

1. RULER builds the perception component: 
o Semantics of agent’s input bits 
o Set of static facts 
o Set of world state transitions 
o Semantics of perception output bits 
o Generates digital circuit with the correct semantics 

2. GAPPS builds the action component: 
o Goal reduction rules 
o Top-level goal 
o Generates digital circuit that realizes the goal 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
10 

The primary problem is around the compilation process, which can be extremely expensive or even 
theoretically impossible. 

OTHER IDEAS 

PENGI idea – most decisions encoded into an efficient low-level structure 
(digital circuit) and periodically updated for new problems. [PENGI is a 
simulated computer game of a penguin chased by bees.] 

Competence modules (agent network) – modules provide relevance in a 
particular situation; the higher the relevance, the more the module affects 
the agent’s behavior in that situation. Modules are interconnected, similarly 
to a neural network. 

HYBRID AGENTS 

Organize the system into layers: some layers capable of reactive behavior, some layers capable of 
proactive behavior. Control flow: 

 Horizontal layering – each layer connected to sensory input and action output, means 
there are many complex interactions and mediation required 

 Vertical layering – sensory input and action output dealt with by one layer (each), simpler; 
can be one-pass or two-pass 

TOURINGMACHINES 

Horizontally-layered architecture with three layers: 

 Reactive layer – situation → action rules such as obstacle avoidance 

 Planning/proactive layer using a library of skeleton plans to pursue goals 

 Modeling layer – generates goals for the planning layer, models other agents and the world 

A control subsystem decides which layer should have control of the agent – censorship rules for 
inputs (inhibition) and outputs. 

INTERRAP 

Vertically-layered two-pass architecture with three layers: 

 Behavior-based layer – reactive behavior 

 Local planning layer – plans to achieve goals 

 Cooperative planning layer – deals with social interactions with other agents 

Each layer has a knowledge base of corresponding information – raw sensory input, plans, models 
of other agents, &c. – depending on layer. 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
11 

Bottom-up activation – lower layer passes control to higher layer because it doesn’t know what to 
do. Top-down execution – higher layer uses lower layer to execute goals. Input and output are 
linked only to the lowest layer. 

BROOKS: A ROBUST LAYERED CONTROL SYSTEM FOR A MOBILE 
ROBOT 

[This paper is discussed in the preceding section.] 

WOOLDRIDGE, CHAPTER 11: MULTIAGENT INTERACTIONS 

Agents have multiple and sometimes overlapping spheres of influence, and are linked by 
hierarchical and other relationships. 

Simultaneous actions by agents on the environment result in a certain outcome. Agents have 
preferences, expressed as utility functions over outcomes. 

The relationship between money and utility is complicated: sometimes plenty of money brings 
little utility; risk-related factors also affect the “value” of money vs. utility. 

The utility functions introduce a preference ordering over outcomes:       if   ( )    ( 
 ). 

Agent preferences can be characterized over combinations of actions – e.g. 
(   )   (   )   (   )   (   ). 

Payoff matrices characterize games in a standard fashion: 

Game 1 

 i defects i cooperates 

j defects 
4 

4 
1 

4 

j cooperates 
4 

1 
1 

1 
 

Game 2 

 i defects i cooperates 

j defects 
3 

2 
1 

2 

j cooperates 
4 

1 
3 

3 
 

In strictly competitive games, agent preferences are diametrically opposed – an outcome 
preferred by one agent is feared by another. In zero-sum games, the sum of utilities for every 
outcome is 0. 

SOLUTION CONCEPTS 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
12 

Dominant strategy – a strategy s is dominant for player i if no matter what player j chooses, i will 
do at least as well with that strategy. This is the obvious choice, when it exists. 
[In Game 1, (D,D) is a dominant strategy.] 

Nash equilibrium – strategies s, t for players i, j respectively are in Nash equilibrium if (a) under 
the assumption i plays s, j can do no better than play t, and (b) under the assumption j plays t, i can 
do no better than play s. There might be 0, 1, or several NEs. 
[In Game 2, (D,D) is a Nash equilibrium.] 

Mixed strategies – introducing an element of randomness: play s with probability p, play t with 
probability q, &c. There is always a NE with mixed strategies. 
[In rock-paper-scissors, playing each with probability ⅓ is a strategy that is in NE with itself.] 

Sub-game perfect equilibrium – convert the game to extensive form, where players move 
sequentially, in order; a sub-game perfect equilibrium is a NE in every sub-game. 
(Or: work backwards from all the ends of the game, identify best responses, and move backward 
to previous player’s decision, etc.) 

Pareto optimal/efficient – an outcome is Pareto efficient if no other outcome improves some 
player’s utility without hurting some other player. Pareto inefficient outcomes are wasteful in terms 
of utility – usually we steer clear of them. 

Maximizing social welfare – an outcome maximizes social welfare if the sum of gained utilities is 
maximal over the outcomes. When all players have the same owner, this is ideal. 

PRISONER’S DILEMMA  

This game has the following payoff matrix: 

Prisoner’s Dilemma 

 i defects i cooperates 

j defects 
2 

2 
0 

5 

j cooperates 
5 

0 
3 

3 
 

Defection is a dominant strategy for both players, and (D,D) is the only Nash equilibrium. 
However, this outcome is not Pareto efficient and does not maximize social welfare – utility is 
wasted. 

In an infinite iterated tournament, the shadow of punishment encourages cooperation, and the 
rational behavior is to cooperate. 

In a finite iterated tournament when the number of rounds is known, defection is still the 
dominant strategy (backwards induction argument). This can be “fixed” by making the number of 
rounds unknown in advance. 

AXELROD’S TOURNAMENT  



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
13 

1980 tournament: programs competed against each other in Prisoner’s Dilemma games, 200 
rounds each. 
Some strategies: 

 Random – choose C or D at random with probability ½ 

 All-D – always defect 

 Tit-for-tat – cooperate initially, on subsequent rounds do what your opponent did last 

Tit-for-tat won the tournament – the key is that it interacted with like-minded strategies that 
favored cooperation. [Interestingly, it also won the second tournament!] 
Characteristic “rules”: 

1. Don’t have to beat your opponent to do well 
2. Don’t be first to defect – “nice” programs that didn’t defect first fared much better 
3. Reciprocate cooperation and defection – punish & forgive quickly, but don’t exaggerate 
4. Don’t be too clever – makes it hard for others to recognize you and cooperate 

Program equilibria – submit a program that plays the game. Programs can compare themselves to 
each other. In Prisoner’s Dilemma – equilibrium formed by “cooperate if the other program is 
identical to yours, otherwise defect”. 

OTHER SYMMETRIC 22 GAMES 

Stag hunt – (   )   (   )   (   )   (   ) – there are two NEs, with mutual defection and 
mutual cooperation. 

Game of chicken – (   )   (   )   (   )   (   ) – there are two NEs: if you believe your 
opponent is going to drive off the cliff, then you should steer away, and vice versa. 

AXELROD: THE EVOLUTION OF COOPERATION (CH. 1-3) 

Cooperation emerges from the norm of reciprocity: 

 It can only emerge if the players might meet again – “the shadow of the future” 

 Typically, a discount parameter is applied to payoff from future interactions 

Ecological approach to Axelrod’s tournament: if the representation of better strategies grows with 
their success, the “non-nice” programs become extinct and tit-for-tat grows faster than any other. 

Evolution of cooperation: 

1. Can evolve even in a world of unconditional detection where there are small clusters of 
cooperating individuals 

2. Reciprocity can thrive in a world of many different strategies 
3. Cooperation based on reciprocity can protect itself from invasion by other strategies 

Invasion: a strategy is invaded by a new strategy if the newcomer gets a higher score with a native 
than a native gets with another native. [Idea: the natives will then begin adopting the newcomer’s 
strategy, until the old strategy is evolutionally eliminated.] 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
14 

A collectively stable strategy cannot be invaded by any other strategy: 

 Tit-for-tat is collectively stable if the discount parameter is large enough 

 If the discount parameter is sufficiently small, any strategy which may be the first to 
cooperate can be invaded by All-D 

 A nice strategy that is collectively stable must retaliate for its opponent’s very first defection 

 All-D is always collectively stable 

Invasion in clusters: for a sufficiently large cluster of newcomers with a new strategy, new 
results are possible: 

 All-D can be invaded by a sufficiently large cluster of tit-fot-tat 

 A nice strategy that cannot be invaded by one newcomer cannot be invaded by any cluster 
of newcomers 

WOOLDRIDGE, CHAPTER 14: ALLOCATING SCARCE RESOURCES 

Desired properties of mechanism design (for auctions, negotiation &c.): 

 Convergence/guaranteed success 

 Maximizing social welfare – there is no “wasted” utility 

 Pareto efficiency 

 Individual rationality – no agent is asked to give up a better outcome 

 Stability – no one has incentive to defect 

 Simplicity 

 Distribution – can be executed in a distributed system, no single point of failure 

An auction is a mechanism for reaching agreement on allocating scarce resources. 
Characterization of auctions: 

 Public/private value – whether the item’s value is inherent to it, or specific to the bidder 
+ Correlated value – depends on what other bidders estimate the item, as well 

 Winner determination – highest bidder, &c. 

 Payment – first-price, second-price, everyone pays what they bid 

 Open cry/sealed-bid – whether agents see each other’s bids 

 Bidding mechanism – one-shot, multiple rounds: ascending, descending 

AUCTION TYPES AND STRATEGIES 

 Payment Visibility Mechanism Strategy Notes 

English first-price open cry ascending 

Bid a small amount more 
than the current bid; 
when bid reaches your 
private valuation, 
withdraw 

Winner’s curse: 
should I be worried 
because no one else 
was willing to pay that 
much? 

Vickrey 
second-
price 

sealed-
bid 

one-shot 
Bid exactly your private 
valuation 

Subject to antisocial 
behavior 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
15 

Dutch  open cry descending  Winner’s curse 

Sealed first-price 
sealed-
bid 

one-shot 
Bid somewhat less than 
your true valuation 

 

 
Expected revenues for the auctioneer: 

 Risk-neutral bidders – identical in all four types of auctions 

 Risk-averse bidders – Dutch and first-price sealed-bid leads to higher expected revenue 
(bidders are willing to pay slightly more than their valuation) 

 Risk-averse auctioneers – Vickrey and English auctions 

LIES AND COLLUSION 

All protocols discussed are subject to bidder collusion. Collusion can be prevented by modifying 
the protocol so that bidders can’t identify each other. 

All protocols discussed are subject to auctioneer manipulation (e.g. lie about second highest bid 
in Vickrey auction). Lies can be prevented by using a trusted third party or signing bids. 

Shills (bogus bidders) are a problem in English auctions. 

[Sections 14.3 and 14.4 skipped, as they were not discussed in class and are not in the first edition.] 

WOOLDRIDGE, CHAPTER 15: BARGAINING 

 Negotiation set – space of possible proposals agents can make 

 Protocol – legal proposals as a function of prior negotiations 
(also, whether the negotiation is one-to-one, many-to-one, or many-to-many) 

 Strategies – usually private, but proposals are usually seen by other parties 

 Rule – for determining a deal, what it is, and the conflict deal if no agreement reached 

[When multiple issues (for negotiation) are involved, the problems are considerably more complicated. 
The chapter examines only single-issue, symmetric, one-to-one negotiation.] 

DOMAIN THEORY 

Task-oriented domains: agents want to redistribute tasks. 

 Postmen delivering letters. 

 Clerks sending faxes. 

State-oriented domains: agents plan to reach acceptable final states, scheduling. 

 Moving blocks to reach a certain configuration (blocks world). 

Worth-oriented domains: utility function rates acceptability of states, agents plan to maximize it. 
[Note: negotiation is not over a single issue, but over states and how to reach them – plans, goals.] 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
16 

 Pushing tiles into holes of different value (tile world). 

ALTERNATING OFFERS 

The protocol: make offers, in turn, until someone accepts. If not accepted – go for conflict deal. 

Assuming that the conflict deal is the worst option, when the number of rounds is fixed, the player 
in the last round has all the power – the other player would rather accept than go for the conflict 
deal. 

The same applies to an infinite number of rounds: using the strategy “always propose that I get 
everything and reject anything else” is in NE with accepting that proposal. If you’re convinced 
that is what your opponent is doing, you should accept. 

To model impatient players, use a discount factor for each agent – the value of the good is reduced 
by the discount factor with each round. In a fixed or infinite number of rounds, there is still a NE 
strategy – the more patient the agent, the “bigger slice” he gets. 

Negotiation decision function – use a function that tells you how much to bid in every round. Can 
decrease price quickly or slowly, &c. 

TASK ALLOCATION 

Formal model: 

 Agents negotiate a set of tasks T that can be redistributed 

 There is a cost function c which determines the cost of executing each subset of tasks 
c(∅)=0 and monotonic 

 The conflict deal Θ consists of the tasks originally allocated to the agents 

 They try to reach a better deal, where the utility of the deal for agent i is the difference 
between the cost of his original tasks and the cost of his tasks in the deal 

Criteria for deal selection: 

 A deal d dominates another deal e if it is not worse than e for any agent and better than e 
for at least one agent (in terms of utility) 

o We prefer non-dominated deals, which are Pareto optimal 

 A deal is individual rational if it weakly dominates the conflict deal 
o If there is no such deal, it makes no sense to bargain at all 

 The negotiation set is the set of individual rational and Pareto optimal deals 

MONOTONIC CONCESSION PROTOCOL 

1. Both agents propose deals       from the negotiation set 
2. If   (  )    (  ) or   (  )    (  ), the deal is accepted 

The exceeding deal is selected; if both exceed, the deal is selected at random 
3. Next, no agent is allowed to make a proposal that is less preferred by its opponent 
4. If no concession is made, negotiation terminates with the conflict deal 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
17 

The protocol terminates, but can proceed for an exponential number of rounds. Also, it isn’t clear 
how to start and how to concede. 
Zeuthen strategy: 

 First proposal – the agent’s most preferred deal 

 On subsequent rounds – the agent with the smaller risk concedes 

o Agent i’s risk for offer (     ) is (  (  )    (  ))    (  ) – utility lost in conflict 

o If risk is equal, flip a coin to decide who concedes 

 Make the smallest concession necessary to change the balance of risk, repeat 

This protocol terminates with a Pareto optimal deal, but still may proceed for an exponential 
number of rounds. The Zeuthen strategy is in NE with itself, which makes it a good “open” 
protocol. 
[Weakness: this requires the agents to know the opponent’s risk, and hence its agreement space.] 

DECEPTION 

Phantom task – pretend you have been allocated a task that you have not; decoy task – a phantom 
task that you can produce on demand, so it is also verifiable. 

Hidden task – pretend that you have not been allocated a task that you have. 

Sub-additive TOD – if for sets of tasks     it is true that  (   )   ( )   ( ). 

 In all-or-nothing deals, there is no incentive to hide a task. 

 In all-or-nothing or mixed deals, if there is a penalty for discovering a phantom, there is also 
no incentive to hide a task. 

 Decoy tasks are always beneficial. 

Concave TOD – for sets of tasks     and     it is true that  (   )   ( )   (   )   ( ). In 
other words, the cost Z adds to X is more than the cost it adds to Y, when X is a subset of Y. 

 In all-or-nothing deals, there is no incentive to lie at all. 

Modular TOD – for sets of tasks     it is true that  (   )   ( )   ( )   (   ). 

 In all kinds of deals, there is no incentive to create phantom/decoy tasks. 

 There is still incentive to hide tasks in pure or mixed deals. 

 [Section 15.4 skipped, as it was not discussed in class and does not appear in the first edition.] 

WOOLDRIDGE, CHAPTER 16: ARGUING 

Argumentation is about agreeing what to believe – a rationally justifiable position, resolving 
inconsistencies between the beliefs of multiple agents. 

Why argumentation? 

 Justifying a position can be more powerful than mere negotiation 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
18 

 Argumentation allows for understanding why an agreement was reached 

 Argumentation models position changes, e.g. preferences 

Types of argument between humans: 

 Logical mode – deductive, explicit, rational: “If A → B, and A, then B” 

 Emotional mode – appeals to feelings: “How would you feel if that were done to you?” 

 Visceral mode – physical aspect: stamp your foot or pound on the table 

 Kisceral mode – appeal to the intuitive, religious: “This is against Christian teaching!” 

ABSTRACT ARGUMENTS 

Abstract arguments can be described as a directed graph, where an edge (a, b) means that a 
attacks b. If c attacks a in this case, then we say c defends b. 

A set of arguments (position) is admissible if it is: 

 Conflict free – no argument in it attacks another, and 

 Mutually defensive – every attacked element is defended by some element in it 

An admissible position is a preferred extension if every superset of it is inadmissible. 

A grounded extension is computed as follows: 

 Begin with “in” arguments – those that don’t have any attackers 

 Eliminate arguments attacked by them – they are “out” 

 Continue until there are no changes in the graph that remains – that’s the GE 

DEDUCTIVE ARGUMENTS 

Deductive arguments are pairs (S, C) where S is in the database of logical formulae known to be 
true, C can be proved from S, and S is consistent and minimal. 

 (     ) attacks (     ) in the following cases: 

 Rebuttal –        

 Undercut –       for some      

[We tend to prefer arguments that can be undercut to arguments that can be rebutted, because 
undercuts can be “fixed” by choosing a different support set.] 

A dialogue between agents is a sequence of arguments that cannot be repeated and that attack one 
another. It ends when no further moves are possible. 
Types of dialogues: 

 Persuasion – convince the other party 

 Negotiation – get the best deal for yourself 

 Inquiry – find a “proof” for a theoretical problem 

 Deliberation – influence outcome of reaching a decision 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
19 

 Information seeking – spread knowledge, gain knowledge 

 Eristics – strike the other party (in a conflict), settlement is not the goal 

Persuader is a system for labor negotiation, exchanging proposals and counter-proposals over 
multiple issues (wages, pensions, &c.): 

 Determines violated goals and tries to find compensating actions and generates 
arguments 

 Models argument severity – e.g. an appeal to status quo is preferred to threats or 
prevailing practice 

JENNINGS, FARATIN, LOMUSCIO, PARSONS, SIERRA, WOOLDRIDGE: 
AUTOMATED NEGOTIATION: PROSPECTS, METHODS AND 

CHALLENGES 

Because agents are autonomous, negotiation is central to multiagent systems – an agent has to 
convince other agents to act in a particular way. 
Topics in negotiation: 

 Negotiation protocols – messages, parties, decisions 

 Negotiation objects – number of resources, dynamic resources 

 Decision making model – how agents achieve their objectives within the protocol 

[Also, it is unclear how users instruct agents to negotiate – attitude, autonomy, duration &c.] 

General model: 

 Negotiation is a distributed search through a space of potential agreements 

 Each agent has a space in which it is willing to make agreements 

 Agents make proposals within their space and move the boundaries of their space 

 Agents make counter-offers or critiques of proposals made to them 

 Agents may argue to justify their position or persuade others (threats, rewards, appeals) 
[Argumentation adds overhead, which means it’s not always suitable.] 

Heuristic methods: 

 Based on realistic assumptions 

 Agent designers can use less constrained models of rationality (than game theory) 

 Decision making is based on tactics that modify proposals heuristically 
o Include tradeoff (modifying the value of the offer) 
o Include issue manipulation (adding/removing issues to the negotiation set) 

 Might select sub-optimal outcomes 

 Hard to predict actual behavior under varying circumstances 

Argumentation is usually combined with negotiation – stop negotiating, go to a round of 
argumentation, go back to negotiating, &c. 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
20 

WOOLDRIDGE, CHAPTER 12: MAKING GROUP DECISIONS 

In a voting setting, a set of agents vote over a set of candidates. Can either choose one candidate, 
or provide a complete ordering of their preferences over all candidates. 
Then, use voting procedures: 

 Social welfare function – combines all preferences to an ordering of the candidates 

 Social choice function – combines all preferences to choose a single candidate 

VOTING METHODS 

Plurality voting – the winner is the candidate that appears first in the largest number of 
preference orders. 

 Simple to implement, easy to understand 

 Might select an outcome when another outcome is preferred by the majority 

 Subject to misrepresenting your preferences to manipulate the outcome 
(e.g. vote for Bibi because you know Yehimovitz won’t win and you don’t want Liberman) 

Sequential majority – series of pairwise elections, the winner proceeds to the next round; can be 
organized in a list or a tree (like the World Cup). 

 Depends on the order in which candidates face each other! 

 Can be manipulated 

Majority graph – directed graph of candidates, an edge (a, b) means a would beat b in direct 
competition. If the graph is a cycle, we can fix the order so that anyone can win! 

Condorcet winner – overall winner in any possible order of pair-wise elections (there is an edge 
from w to every other node in the majority graph). 

 Seems fair, easy to compute 

Borda count – for each preference tuple of size k, the first candidate gets k-1 points, the second k-2, 
and so on; the last candidate gets 0. 

 Takes into account all the preference information, not just the first element 

Slater ranking – choose ordering that needs the minimal number of fixes to be consistent with the 
majority graph (e.g. when the graph is a cycle, there are many orderings that need just one fix). 

 Computing the Slater ranking is NP-hard 

Copeland – a’s score is the number of candidates a beats in pairwise election; select the candidate 
with the highest score. 

Kemeny rule – produces a ranking that minimizes the total number of disagreements compared to 
voter preferences (summed over all voters). 

Plurality with run-off – select top two by plurality voting, and then match selected pair. 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
21 

Black’s procedure – if there’s a Condorcet winner, choose it; otherwise, use Borda count. 

Single transferable vote (STV) – election proceeds in rounds, in each round voters choose the 
highest ranking candidate and the candidate with least points is eliminated. 

Dodgson’s rule – elect candidate with minimum number of exchanges between adjacent 
candidates needed to make it a Condorcet winner. 
[Somewhat similar to Slater ranking.] 

CRITERIA FOR VOTING METHODS 

Pareto condition – if every voter ranks w above u, the voting method should not choose u (should 
not prefer u to w). 
[Sequential pairwise voting violates this criterion.] 

Condorcet winner condition – if there is a Condorcet winner, the voting method should choose it 
(prefer it to other candidates). 
[Borda count violates this criterion.] 

Smith’s generalized Condorcet criterion – if the candidates can be partitioned into sets A and B 
such that every candidate from A beats every candidate from B pairwise, the rule should not elect a 
candidate from B. 

Independence of irrelevant alternatives (IIA) – if the relative ranking of w and u is not changed 
(e.g.         changes to        ), the outcome should still rank w and u in the same way. 
[This is a strong requirement that we might want to lift – e.g. Borda count does not satisfy it.] 

Monotonicity – if x is a winner under a voting rule and one or more voters change their 
preferences in a way favorable to x, then x should still be the winner. 
[Plurality with run-off violates this criterion.] 

Dictatorship – only one voter’s preferences influence the outcome. 

IMPOSSIBILITY THEOREMS 

Arrow’s impossibility theorem: for more than two candidates, any voting procedure satisfying 
the Pareto condition and IIA is a dictatorship. 

Manipulable voting procedure – given the preferences         and voting function f, the voting 
function is manipulable if there exists   

  such that  (       
      )    (            ). 

Gibbard-Satterthwaite theorem: for more than two candidates, any voting procedure satisfying 
the Pareto condition that is not manipulable is a dictatorship. 

 Hopefully, finding the appropriate manipulation is computationally intractable 

 For second-order Copeland, manipulation is NP-complete (in the worst case, of course) 

MANIPULATION TECHNIQUES 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
22 

 Voters reveal false preferences – esp. to manipulate second-preference 

 Center (running the election) removes candidates, adds candidates, adds voters 

 A coalition cooperates to manipulate – fortunately, this is NP-hard for most voting rules 

SINGLE PEAKED PREFERENCES 

 Each voter chooses a point to build a grocery store, wants it close to his house. 

 Nonmanipulable solution: choose the median point. 

WOOLDRIDGE, CHAPTER 13: FORMING COALITIONS 

 Coalition – a subset of all the agents. 

 Grand coalition GC – the set of all agents. 

 Characteristic function v – assigns to each coalition a payoff to distribute to its members. 

 A coalition is stable if no member of it can do better by defecting. 
o Checking stability is computationally hard. 

 An outcome for a coalition C is a distribution of v(C) to C’s members that is: 
o Feasible – does not exceed v(C), and 
o Efficient – distributes all of v(C). 

 The core is the set of feasible distributions of payoff to the grand coalition that no sub-
coalition can object to 

o A coalition C objects to an outcome for GC if some outcome for C makes all members 
of C strictly better off 

o It is better for them to defect and work on their own 

 The core is non-empty ↔ the grand coalition is stable 
o Note that outcomes in the core might be “unfair” – but no member (or set thereof) 

can do better on their own 

SHAPLEY VALUE 

 Pre-imputation – efficient payoff vector (does not waste utility). 

 Imputation – individually rational pre-imputation (gets no less than it could get alone). 

Shapley value – the better an agent performs, the higher its reward. 
Axiomatically defined: 

 Symmetry – agents that make the same contribution get the same payoff 

 Dummy player – a player that contributes to any coalition only what it would make on its 
own should get exactly that 

 Additivity – a player does not gain or lose from playing more than once 

Shapley value of i is his marginal contribution to any order in which any coalition was formed: 

    
 

|  | 
∑ [ (  ( )  { })   (  ( ))]

      (  )

 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
23 

…where   ( ) is the set of all agents that appear before i in the permutation  . 

REPRESENTING THE CHARACTERISTIC FUNCTION 

Naïve representation is exponential in the number of agents. 
Alternatives: 

 Weighted subgraph – represent game as weighted graph, v(C) is the weight of the edges 
whose components are in C 

 Marginal contribution nets – represent game as a set of rules, pattern → value, where the 
pattern is a conjunction of agents such as        

 Weighted voting game – see below 

[Weighted subgraphs and weighted voting games are incomplete representations; marginal 
contribution nets are complete, but can have exponentially many rules. Note that in all cases but 
weighted voting games, checking whether the core is empty or whether a payoff is in the core are hard 
– NP, co-NP and similar classes.] 

VOTING GAMES 

The characteristic function is onto “win”, “lose” –      → {   }; alternatively, there is a set W of 
winning coalitions. 

Weighted voting games – each agent has weight   ; if the sum of weights in a coalition exceeds a 
quota q, the coalition wins. 

Shapley-Shubik power index – Shapley index adapted to weighted voting games. For agent i, it is 
the fraction of times i’s vote is decisive in any permutation of the votes. 

 In the game <8; 5, 5, 3> all members have equal power, ⅓, because it takes any two 
members to decide the vote. 

 In the game <8; 5, 3, 1> the member with weight 1 has no power, it is never the decisive 
vote. Permutations: (5, 3, 1), (5, 1, 3), (3, 5, 1), (3, 1, 5), (1, 3, 5), (1, 5, 3) – both 5 and 3 have 
voting power of ½, they are each pivotal half the time. 

 In the game <8; 5, 3, 3> - permutations: (5, 3, 3), (5, 3, 3), (3, 5, 3), (3, 3, 5), (3, 3, 5), (3, 5, 3) 
– 5 is pivotal 4 times, each 3 is pivotal once; 5 has weight ⅔ and the 3’s have weight ⅙ each. 

k-weighted voting games – there are multiple voting games with different weights, and a coalition 
has to win all of them to win the total game (e.g. Senate + Congress voting on a law, or sub-
committee approval followed by the general body voting). 

[Sections 13.4.2, 13.5, 13.6 skipped, as they were not discussed in class and do not appear in the first 
edition.] 

CONITZER: MAKING DECISIONS BASED ON THE PREFERENCES OF 
MULTIPLE AGENTS 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
24 

A language is required for expressing voter preferences over multiple outcomes (e.g. type of 
meal, time of meal, cost of meal). CP-net is such a language – specifies dependent preferences. 

Envy-freeness criterion – every agent prefers the tasks allocated to it than any other agent’s 
bundle. (This still might not be Pareto efficient, and deciding whether such an allocation exists is 
NP-hard.) 

Kidney exchanges – finding cycles of sequentially compatible donors for transplants; NP-hard 
when maximal cycle length is set, and greater than 2. 

Combinatorial auction – multiple resources are sold, and bidders indicate a value for every 
subset of the resources. Again, expressive bidding languages are required to prevent exponential 
explosion of bids, e.g.: 

 XOR language – ({a}, 5) XOR ({b, c}, 10) – a is worth 5, {a, b} is worth 5, {b} is worth 
nothing, {b, c} is worth 10, {a, b, c} is worth 10 

 Winner determination becomes NP-hard and inapproximable 

 Can proceed in multiple rounds, in which case we strive to minimize communication 

Donations – build a framework that conditions a donation on the total amount donated (this 
makes donors feel better about their donation). 

 Can also condition the donation on the total amount donated by a certain closed social 
group, making an even stronger stimulus. 

Prediction market – trading securities that pay out if an event occurs; then the price of the 
security represents the probability of the event (in the audience’s eyes). 

 The combinatorial explosion when multiple outcomes are involved complicates things. 

WOOLDRIDGE, CHAPTER 7: COMMUNICATING 

Agents aren’t objects – one agent can’t force another to perform an action. It can, however, 
communicate as to influence another agent’s actions. 

Austin’s performative verbs: request, inform, promise &c. 

Austin’s speech acts [1]: 

 Locutionary – the act of making an utterance that is grammatically correct and meaningful 

 Illocutionary – action performed by saying something, its meaning (request, inform &c.) 

 Perlocutionary – effect of the act (action, knowledge, inspiration, fear &c.) 

Searle’s speech act conditions: 

 Normal I/O conditions – hearer is able to hear, there is no interference &c. 

 Preparatory conditions – request only things the other party can do, &c. 

 Sincerity conditions – don’t ask for things you don’t mean, don’t speak untruthfully, &c. 

Searle’s types of speech acts: 

http://en.wikipedia.org/wiki/Speech_act


Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
25 

 Representatives – informing of something 

 Directives – requesting something 

 Commissives – promising something 

 Expressives – thanking for something 

 Declarations – declaring war 

PLAN-BASED THEORY 

Speech acts have preconditions and postconditions based on beliefs, abilities and wants 
(adapted from STRIPS planner). 
Examples: 

 Request – preconditions: 
o Speaker believes hearer can perform the action 
o Speaker believes the hearer believes he can perform the action 
o Speaker believes he wants the action to be performed 

 Request – postconditions: 
o Hearer believes the speaker believes the speaker wants the action to be performed 

COMMUNICATION LANGUAGES 

Knowledge query and manipulation language (KQML) – envelope format for messages, does not 
concern the content. 

 Metadata parameters – sender, receiver, ontology &c. 

 Performative – ask-one, broadcast, tell &c. (from a predefined set of 41) 

 Content parameter – message content 

Criticism: 

 Performative set is fluid, ad hoc, making interoperability difficult 

 Transport mechanisms not precisely defined 

 Semantics of performatives not rigorously defined 

 Missing commissives (for making promises, required for coordination) 

Knowledge interchange format (KIF) – representation of knowledge about some domain, 
requires ontology to be meaningful. 

FIPA Agent Communication Language (ACL) – defines outer language for messages with 20 
performatives and allows any language for the content. 
[Actual implementations exist, e.g. Java framework called JADE.] 

 Performatives well-defined, rigorous 

 Messages and performatives must comply with beliefs, desires and uncertain beliefs to be 
sent – feasibility condition 

o Example: inform requires that the agent believes what he informs, and believes 
that the recipient does not already know it 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
26 

o Example: request requires the agent believes the recipient is capable of the action, 

and believes the recipient has not yet performed it 

[Section 7.2.3 skipped, as it was not discussed in class and does not appear in the first edition.] 

COHEN, PERRAULT: ELEMENTS OF A PLAN-BASED THEORY OF 
SPEECH ACTS 

Speech acts are operators (actions) that have preconditions, effects and bodies – their effects 
are on the models speakers and hearers maintain. [Models – beliefs, intentions &c.] 

A plan-based theory takes an initial set of beliefs and goals and leads to the generation of plans 
for speech acts to issue. 

 Belief is modeled as an operator a Believe(P) with axioms somewhat similar to KD45. 

 Want (desire, goal) is modeled as an operator a Want(P). 

 Speech operators have preconditions – cando and want, begin with “speaker believes”. 

 Speech operators have effects – begin with “hearer believes”. 

 Planning involves checking preconditions, inserting sub-goals (e.g. to discover certain 
information), and so forth. 

Description of request operator [see also in the preceding section]: 

 Preconditions: 
o cando precondition: S Believe(H cando ACT)   S Believe(H Believe(H cando ACT)) 

Later refined to just “H cando ACT”, makes composition more flexible 
o want precondition: S Believe(S want request-instance) 

 Effects: 
o H Believe(S Believe(S want ACT)) 

Description of inform operator: 

 Preconditions: 
o cando precondition: S Believe(P) 

Later refined to just “P” 
o want precondition: S Believe(S want inform-instance) 

 Effects: 
o H Believe(S Believe(P)) 

Further operators are defined to plan wh-questions: informref, which is used to inform another 
agent; and yes/no questions – informif. Issuing a request to inform is the way of asking such a 

question. 

Finally, side effects from operators must also be modeled – e.g. after receiving a request the 

hearer knows that its preconditions hold (on the speaker’s side). 

WOOLDRIDGE, CHAPTER 8: WORKING TOGETHER 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
27 

Unlike distributed systems, agents have different (possibly contradictory) goals and must 
dynamically coordinate their activities. 

Cooperative Distributed Problem Solving (CDPS) – the entire system is designed to solve a 
problem together, common interest (benevolent), but no single node has enough knowledge, 
expertise, or processing power to solve alone. 

 This is not just parallelism – in parallelism, nodes are homogenous and “stupid” 

Coherence – how well the system behaves as a unit: efficiency, solution quality, performance. 

Coordination – no extraneous activity, little need of communication, no interference. 

TASK AND RESULT SHARING 

 Decompose the big problem into sub-problems – may involve several levels 

 Solve the sub-problems (possibly by different agents) – may involve sharing of information 

 Synthesize an answer from the sub-solutions – again, may be hierarchical 

Task sharing involves decomposition and allocation of tasks to agents. If agents are self-
interested, this may involve negotiation/auctions. 

Result sharing involves sharing information proactively or reactively. 

Contract Net protocol – task sharing: 

1. Manager announces task – broadcast, multicast or point-to-point 
2. Contractors bid for tasks (based on the task’s marginal cost for them) 
3. Manager awards task to some contractor 
4. Contractor reports task completion to the manager 

[Adaptations: retry if no one bid, revise the announcement e.g. with costs/requirements, decompose 
the problem in a different way. Another variation is for contractors to announce availability instead of 
the manager announcing tasks.] 

Result sharing makes it possible to: 

 Cross-check solutions, improving confidence 

 Achieve a better global view by combining local views 

 Increase the precision of other agents’ solutions 

 Derive a result more quickly 

FELINE – a system of coordinating experts in distinct knowledge areas: 

 Each agent maintained skills and interests (hypotheses requiring inquiry) for itself and its 
acquaintances in the network 

 Messages were of type request, response and inform 

 When evaluating hypotheses, agents checked their acquaintances recursively and broadcast 
information to interested agents 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
28 

BLACKBOARD 

First implementation – Hearsay II speech understanding system, required cooperation between 
multiple nodes (knowledge sources – KS) in a distributed system. 

Result sharing via blackboard – shared data structure: 

 Multiple agents can read/write, requires locking at multiple levels of granularity 

 Subscribe/notify over blackboard supported 

 Possible hierarchy 

 Possibly multiple dimensions 

 Can be a considerable bottleneck 

 Can be distributed to resolve bottleneck – information distribution (blackboard data), 
processing distribution, control distribution (scheduling, activation) 

Blackboard is modeled as a production system, precondition → action, executing in parallel. 
Nodes maintain local contexts (history), which are updated by the blackboard when events occur. 

INCONSISTENCIES 

Inconsistencies arise w.r.t. beliefs (information) and intentions (goals), and are inevitable. 

 Contract Net – do not allow inconsistencies to occur, centralized management 

 Resolve inconsistencies through bargaining 

 Degrade gracefully in the presence of inconsistency 

FA/C – functionally accurate/cooperative, do the best you can with partial information: 

 Problem solving progresses opportunistically and incrementally 

 Agents exchange high-level results 

 There are many redundant ways of arriving at the solution 

COORDINATION TYPOLOGY 

 Positive relationship between activities 
o Requested (explicit ask for help) 
o Non-requested (implicit opportunistic cooperation) 

 Only one agent performs an action another intended as well 
 One agent’s actions as a side-effect achieve another agent’s goals 
 One agent’s plan makes another’s goals easier to achieve 

 Negative relationship between activities 
o Incompatibility of desires 
o Resource bottleneck 

 Consumable resource 
 Non-consumable resource 

PARTIAL GLOBAL PLANNING 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
29 

Agents exchange information to reach common conclusions – partial planning because a plan for 
the entire problem is impossible, global planning because agents exchange local plans and 
construct bigger plans from them. 

1. Each agent generates short-term plans 
2. Agents exchange information about plans and goals 
3. Agents alter local plans to better coordinate 

Partial global plan: 

 Objective – system larger goal 

 Activity map – what agents are doing and what results to expect 

 Solution construction graph – how to interact and what information to exchange in order 
to generate a result 

Techniques for coordination: 

 Sharing local information – all, some, per request 

 Sharing results – to subscribers, broadcast to everyone, promised to someone 

 Redundancy – random selection when redundancy detected 

 Handling rescheduling for negative and positive relationships 

JOINT INTENTIONS 

A group of agents has a joint commitment to the overall goal – this commitment is persistent. A 
commitment has a social convention – when it can be dropped, how to behave, &c. 

An agent that believes the goal is impossible or the motivation for it is no longer present starts 
persuading others that this is the case, to drop the joint persistent goal (JPG). 

ARCHON – a system that has explicit rules modeling cooperation, such as “if the goal is satisfied 
then abandon all related activities and inform others”. 

TEAMWORK MODEL 

1. Recognition – some agent recognizes a potential for cooperation w.r.t. one of its goals. 
2. Team formation – the agent recruits others to help, and they agree on the joint goal. 
3. Plan formation – the team plans together (possibly negotiating) how to achieve the goal. 
4. Team action – the agents execute the plan (see JPG). 

MUTUAL MODELING 

MACE – a system that introduces acquaintance models, modeling other agents: class, name, role, 
skills, goals, plans. This helps agents coordinate. 

NORMS AND SOCIAL LAWS 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
30 

These conventions dictate agent behavior in certain situations, make it easier to plan and 
coordinate. 

Offline design – norms are hardwired into the agent. Obviously, not everything can be predicted 
and the dynamic nature of systems calls for greater flexibility. 

Emergence – conventions emerge from within a group of agents interacting with each other. 
Strategy update functions dictate how agents modify their norms: 

 Majority – change to another strategy if observed majority of agents following it 

 Majority with communication – exchange experiences/memories with other agents 

 Majority with success – communicate success to other agents 

 Highest cumulative reward – use the strategy that resulted in highest payoff to date 

Criteria: memory restart frequency, efficiency and time to convergence. 

PLANNING AND SYNCHRONIZATION 

 Centralized planning – master agent develops and distributes a plan to the slaves 

 Distributed planning – a group cooperates to form a centralized plan, they do not 
necessarily execute it 

 Distributed planning for distributed plans – a group cooperates to form individual 
plans and coordinate their activities; negotiation may be required 

Merging plans: 

 Use generalized STRIPS notation (pre-, post-conditions) and a during list – conditions that 
must hold during the action’s execution 

 Interaction analysis – identify how plans interact with each other (dependencies) 

 Safety analysis – identify harmful interactions 

 Interaction resolution – apply mutual exclusion to unsafe plan interactions 

Iterative planning – instead of centralized merging, agents generate successively more refined 
plans and interact with each other if necessary (e.g. if interference is detected). 

MOBILE AGENTS 

Mobile agents execute on a host on behalf of someone far from it on the network – good for 
minimizing latency, low-bandwidth networks, &c. 
Problems: 

 Security of host – sandboxing &c. 

 Integrity of agent – encryption &c. 

 Heterogeneity of hosts – requires interpreted/ubiquitous languages 

Types of mobile agents: 



Introduction to Multiagent Systems 2012 Sasha Goldshtein, sashag@cs 

 
31 

 Autonomous – decide when and where to go, e.g. TELESCRIPT language has go instruction, 

agents can meet at a host and cooperate, have limited resources and travel permits 

 On-demand – executed when the host demands them (Java applet) 

 Active mail – piggy backs on email, scripts executed as part of email parsing 

DURFEE: DISTRIBUTED PROBLEM SOLVING AND PLANNING 

Why distributed problem solving? 

 Speedup of problem solving thanks to parallelism 

 Distributed expertise – diverse capabilities (actual expertise or location-based &c.) 

 Distributed data – minimizing communication and centralization 

 Acting on results in small groups – again, minimizing communication and centralization 

Challenges in task distribution: 

 Backtracking makes it hard to hierarchically divide tasks – need to think of communication 

 Parallelization might compromise solution accuracy 

 Parallelization potential might be limited by the problem domain 

 Sub-problems might have very different sizes and require different expertise 

 The number of tasks produced by the decomposition might be >> the number of agents 

 The actual decomposition might be very time consuming 

Alternative to result-sharing blackboard: assign an agent to each resource and have it process the 
contending demands for the resource. Contention issues are settled before any subsequent work is 
performed – this avoids useless work later. 

Reduce communication by using the task decomposition structure – e.g. agents close to each 
other in a mapping effort communicate, or in general use the organization structure for 
communication: 

 Requests for information communicated only to some agents 

 Partial results communicated only to some agents 

 Degree of skepticism regarding received results/information 


