Introduction to Nanofabrication

Erli Chen

Center for Imaging and Mesoscale Structure Harvard University

Typical Nanofabrication Steps

Developer (Development)

3

(Pattern Transfer)

Nanofabrication and Its Trend

Why smaller? - faster, cheaper, more functionality, and new phenomenon

Outline

- I. Lithography
 - Optical Lithography
 - E-beam Lithography
- II. Thin Film Deposition
 - Physical Vapor Deposition (PVD)
 - Chemical Vapor Deposition (CVD)
- III. Etching
 - Wet Etching
 - Dry Etching

Optical Lithography

Three Types of Aligners

Contact Printing

Proximity Printing

Projection Printing

Characteristics of a Microlithography System

Resolution

The resolution of an optical system is its capability to distinguish closely spaced objects. For a microlithography system, resolution defines the minimum linewidth or space that the system can print.

Registration Capability

A measure of degree to which the pattern being printed can be fit (aligned) to previously printed patterns

➡ A microlithography exposure system is also called "aligner"

Dimensional Control

Ability to produce the same feature size with the same tolerance and position accuracy across an entire wafer and wafer-to-wafer

Throughput

The time to complete a print

Resolution – Diffraction of Optical System

Fraunhofer Diffraction (far field - project system)

What is the smallest distance, R, an optical system can resolve?

Rayleigh suggested that a reasonable criterion was that the central maximum of each point sources lie at the first minimum of the Airy disk

Rayleigh Criterion

$$R = 0.61 \frac{\lambda}{NA}$$

Where:

$$NA = n\sin(\alpha)$$

-- System's capability to collect diffracted light

11

Resolution Limit of Project Aligner

$$2b = K_1 \frac{\lambda}{NA}$$

 $k_1 \approx 0.3 - 0.9$ depends on the lithography system

Resolution Improvement Method

- Decrease λ
- Increase NA
- Reduce K1

Reduce Wavelength

13

CD Node

E. Chen (4-12-2004)

Applied Physics 298r

Depth of Focus (DOF) Requirement

DOF - The range over which there are clear optical images

$$DOF = K_2 \frac{\lambda}{NA^2} \qquad \propto \frac{1}{NA^2}$$

DOF decreases much faster than that of resolution when NA increase!

Why need to meet DOF Requirement?

- Substrate is not flat (~ 10 um across a wafer)
- There are previously fabricated patterns on the wafer (~ um)

Example $K_2 = 0.5, \lambda = 435 \text{ nm}$ (G-line), NA = 0.6, DOF ~ 0.6 um!

DOF and Practical Resolution

Off-Axis Illumination

High-order diffracted light is lost

Some high-order diffracted light is captured

16

Resolution of Contact and Proximity Printing

- Fresnel Diffraction (near filed)

Contact Printing:

$$2b = k\sqrt{0.5\lambda d}$$

Proximity Printing:
$$2b = k\sqrt{\lambda(s+0.5d)} = k\sqrt{0.5\lambda d} \cdot \sqrt{1 + \frac{2s}{d}}$$

λ = exposure wavelength
d = resist thickness
2b = line-space pitch resolution
s = mask-resist spacing
k ~ 3

Example			
λ = 435 nm (g-line) d = 0.5 μm s = 10 μm			
b (contact) b (Proximity)	~ 0.5 μm ~ 2.6 μm		

Comparison of Three Systems

System	Pros	Cons	
Contact	High resolutionLow costHigh throughput	 Mask contamination and damage Defects impact 	
Proximity	 Low mask contamination 	Poor resolution	
Projection	 High resolution Low mask contamination High throughput 	• Expensive	

Mask Components

Substrate Requirement

- High transmission at exposure wavelength
- Small thermal expansion coefficient
- High degree of flatness
- Low non-linear effect

Common material: Quartz, fused-silica or borosilicate glasses

Opaque Material Requirement

- No transmission at exposure wavelength
- Good adhesion to the substrate
- High degree of durability

Choice of material: Chrome, emulsion and ion oxide

Mask Polarity

Dark-Field (negative)	Grating	Clear-Field (Positive)			
Dark-Field Mask: • Less adjacent/background exposure • Less defect impact					
Applied Physics 298r	20	E. Chen (4-12-2004)			

Optical Proximity Correction (OPC)

Phase-Shift Mask (PSM)

Example of PSM

assist feature PSM

RIM PSM Attenuated PSM (halt-tone PSM)

Alternating PSM phase edge PSM

Components of Photoresist

Conventional optical photoresist has three components:

- 1) Matrix material
 - 2) Sensitizer
 - 3) Solvent

<u>Sensitizer</u>

- Also called inhibitor
- Photoactive compound (PAC)
- Insoluble without radiation preventing resist to be dissolved
- Take photochemical reaction upon exposing to light, transferring from dissolution inhibitor to dissolution enhancer

Matrix and Solvent

Matrix Material

- Also called resin
- Serves a binder
- Inert to radiation
- Dissolves fast in developer
 (~ 150 A/s)
- Provides resistant to etchers
- Provides adhesion to the substrate
- Contributes to the mechanical properties of the resist

Solvent

- Keep photoresist in liquid state
- Allows spin coating of the resist
- Solvent content determines resist's viscosity and hence the its thickness

25

Function of PAC

Material	Dissolve Rate in Developer	Function of PAC
Matrix	150 A/s	NA
Matrix + Sensitizer without Radiation	10 – 20 A/s	Dissolution Inhibitor
Matrix + Sensitizer with Radiation	1000 – 2000 A/s	Dissolution Enhancer

Differential solubility before and after exposure:

100:1

Positive and Negative Photoresist

Positive Resist

- The solubility of exposed regions is much higher than the unexposed region in a solvent (called developer)
- Produces a positive image of the mask

Negative Resist

- The solubility of exposed regions is much lower than the unexposed region in developer
- Produces a negative image of the mask

Comparison of Positive and Negative Resists

Property Positive Photoresist		Negative Photoresist		
Resolution	High Low (~> 1um)			
Developer	Temperature sensitive (-)	Temperature non-sensitive (+)		
Mask Type	Dark-Field Mask: lower-defect	Clear-Field Mask: higher-defect		
Rinse	In Water (+)	In solvent (n-Butylacetate) (-)		
Cost	More Expensive	Cheaper		
Exposure Speed		3-4 times faster (+)		
Adhesion		Better		
Backing	In air (+)	In Nitrogen (-)		
Profile	Undercut (+)	Overcut (-)		
Lift-off	In Acetone	In solvent (Methyl Ethyl Ketone) (-)		

Resist Response Curve

Positive Resist

D₀ – Initial dissolution dose

D_f – 100% dissolution dose

Negative Resist

Ideally, 1) $D_f \sim D_0$, 2) Small D_f

Response Curve vs. Resist Profile

The slop of the response curve determines:

- Resolution (minimum linewidth)
 - Resist wall angle
 - Linewidth control

Applied Physics 298r

30

Contrast

Surface Reflection – Standing Wave

Applied Physics 298r

32

Surface Topographic Effect

Imagine control is a problem for surface with significant topographic non-uniformity

Surface Effect Elimination

Standing Wave

- Substrate anti-reflection coating (ARC)
- Add unbleachable dyes to resist
- Post baking after exposure (before development)
- Multi-wavelength

Topographic Non-uniformity

- Substrate palanarization, e.g. CMP
- Planarized photolithography process

Tri-Layer Resist Process

Tri-Layer Resist Process

Tri-Layer Resist Process

Adhesion Improvement and HMDS

Problems Associated with Poor

Resist Adhesion

- Resist peel off from the substrate
- Severe undercut during wet etch
- Loss of resolution

Typical Solutions

- Substrate dehydration bake
- Use adhesion primer, e.g. HMDS

HMDS (Hexamethyldisilazane)

Application of HMDS

- Particular helpful for SiO2 surface
- Only monolayer is necessary

Two Typical Process

- Spin coating: 3000 6000 rpm for 20 -30 s
- Vapor priming: in vapor chamber for ~ 10 min

Typical Lithography Process Steps (S1800)

Dehydration bake: 150-200 °C, drive off

water

Adhesion promoter: wafer primed with hexamethyldisilazane (HMDS) Resist coating: static or dynamic dispense, spin coating on vacuum chuck (a) 2-6 Krpm. Thickness (0.1 -10 µm) depends on speed and viscosity **Softbake:** drive off solvents (115 °C, 30s) Exposure: 60 - 120 mJ cm⁻² Post-Exposure Bake: remove standing waves by diffusing PAC Develop: Hydroxide, puddle or spray, with temperature control; rinse & dry bake (115°C) follows Inspection: of critical dimension (CD) structures Hard Bake: high temperature bake (115°C - 170°C) to harden resist against further energetic processes

Advanced Lithography Technology

- E-Beam Lithography
- X-Ray Lithography
- Focused Ion Beam Lithography
- Alternative Lithography
 - Soft-lithography
 - Imprinting lithography

Electron-Beam Lithography (EBL)

General Characteristics

- Diffraction is not a limitation on resolution
- Resolution depends on beam size, can reach ~ 5 nm
- Two applications:
 - Direct Writing
 - Projection (step and repeat)
- Issues:
 - Throughput of direct writing is very low research tool or low pattern density manufacturing
 - Projection stepper is in development stage (primarily by Nikon). Mask making is the biggest challenge for projection method
 - Back-scattering and second electron result in proximity effect reduce resolution with dense patterns
 - Operate in high vacuum (10-6 10-10 torr) slow and expensive

Schematic of E-Beam System

Spherical Aberration

Coulomb Interaction

Boersch Effect

- Electrons repel each other in the beam direction
- Causes energy spread among electrons
- Result in chromatic aberration

• Electrons repel/collide each other in the radial direction

Loeffler Effect

e⁻

e⁻

e⁻

e⁻

- Causes trajectory change and energy spread among electrons
- Result in chromatic as well as spherical aberration

Applied Physics 298r

45

Beam Size (d)

$$d = \sqrt{d_{g}^{2} + d_{s}^{2} + d_{c}^{2} + d_{d}^{2}}$$

$$d_g^2$$
 (Virtual Source) = $\frac{d_v}{M}$

 $(d_v - Source size, M - demagnification)$

$$d_s^2$$
 (Spherical Aberration) = $\frac{1}{2}C_s\alpha^3$

$$d_c^2$$
 (Chromatic Aberration) = $C_c \alpha \frac{\Delta E}{V_b}$

 d_d^2 (Diffraction Limit) = $0.6 \frac{\lambda}{\alpha}$

(C_s – spherical aberration, α – beam convergence angle C_s \propto f (focal length))

(C_c – chromatic aberration, ΔE – electron energy spread, V_b – electron acceleration voltage)

$$\lambda = \frac{1.2}{\sqrt{V_b}} (nm)$$
 (electron wavelength)

<u>For High Resolution:</u> אר א ד M, א V_b, א∆E, א f

What about α ?

Resolution vs. Convergence Angle

Electron Source

Thermionic Emission					
Working Principle	Gun Material	Brightness (B) (A/cm ² /Sr)	Energy Width (eV)	Filament Temperature	Gun Vacuum (torr)
Electron Emission at High Temp.	w	~ 10⁵	2 - 3	~ 3000K	10 ⁻⁵ - 10 ⁻⁶
	LaB ₆	~ 10 ⁶	2 - 3	2000 – 3000K	10 ⁻⁷ - 10 ⁻⁸

Field Emission					
Working Principle	Gun Material	Brightness (B) (A/cm2Sr)	Energy Width (eV)	Filament Temperature	Gun Vacuum (torr)
Electron Tunneling in High field	w	10 ⁹ – 10 ¹⁰	0.2 - 0.5	Room	< 10 ⁻⁹

Electron Scattering in Resist and Substrate

The scattered electrons also expose the resist!

Applied Physics 298r

49

Scattering Energy Distribution

Double Gaussian Distribution

Proximity Effect

MTF is greatly reduced at high pattern density

51

Proximity Effect Correction

- Use thin resist
- Use thin substrate
- Adjust acceleration voltage
- Split pattern into several writings using different doses
- Adjust pattern size and shapes (remember diffraction correction in mask engineering?)
- Adjust dose level to compensate scattering

Proximity Correction – "Ghost" Exposure

Raith-150 EBL System at CIMS

Specification

- Direct Writing and SEM system
- Thermal assisted field emission (LaB₆)
- Acceleration voltage range: 200 30KV
- Probe Current Range: 5 pA -20 nA
- Field Size: $0.5 1000 \ \mu m$
- Beam Size: 2 nm @ 30 KeV
- Lithography Resolution : < 20 nm
- Field Stitching Capability: < 60nm
- Maximum wafer size: 6"
- Writing speed: 10MHz
- Load locked

54

