

Introduction to NASA's "Black Marble" Night Lights Data

December 3, 2020

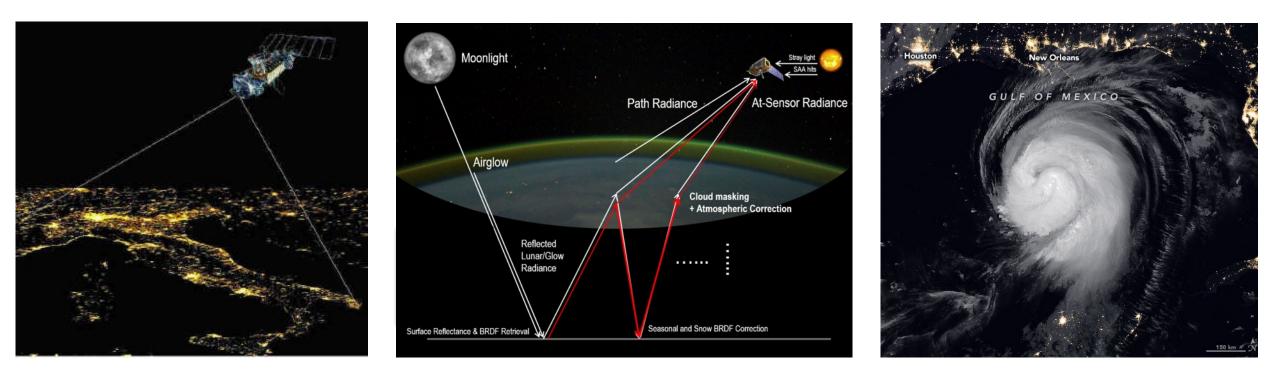
Course Structure and Details

- 1 Session: December 3, 2020
- Webinar recording, PowerPoint presentation, and homework assignment can be found at: https://appliedsciences.nasa.gov/join-mission/training/english/introduction-nasas-blackmarble-night-lights-data
- Q&A: 20 minutes following the lecture
- Certificate of Completion
 - Attend webinar
 - Complete assignment accessed from the ARSET Black Marble webinar website (above)
 - You will receive a certificate approximately 1 month after completion of the course.

Course Instructors

- Eleanor C. Stokes, Ph.D.
 - Science PI of NASA's Black Marble Product Suite
 - Scientist at USRA's Earth from Space Institute

- Ranjay Shrestha, Ph.D.
 - Scientific Programmer/Analyst
 at NASA Goddard Space Flight Center



Course Outline

Part 1 (30 min)

Part 2 (15 min)

Part 3 (15 min)

Basics and Background of Nighttime Remote Sensing Black Marble Processing & Data Analysis

Science and Applications

Learning Objectives

By the end of this presentation, you will understand:

Basics and Background:

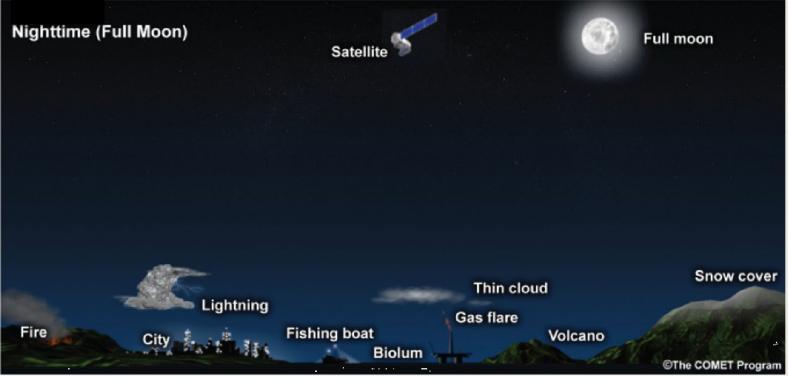
- The light sources that are captured in Nighttime Lights (NTL) data.
- Differences between existing nighttime lights products.
- What is corrected and not corrected for in the Black Marble algorithm.

Acquiring and Using the Data:

- How to download Black Marble images via the Level-1 and Atmosphere Archive & Distribution System (LAADS).
- What are the different bands in the Black Marble Product?
- How to consider Quality Assessment indicators.
- How to process Black Marble data to get a time series.

Applying the Data:

- How night lights data is being applied to
 - urban studies
 - disaster monitoring
 - COVID-19

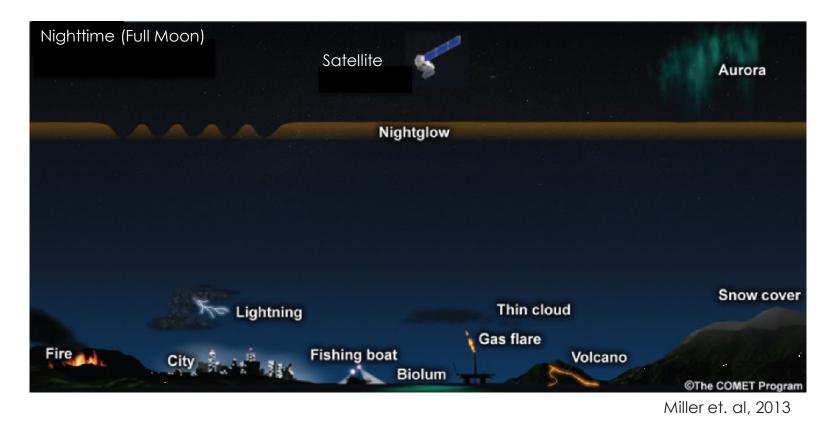


Part 1: Basics and Background of Nighttime Remote Sensing

What can we study with nighttime remote sensing?

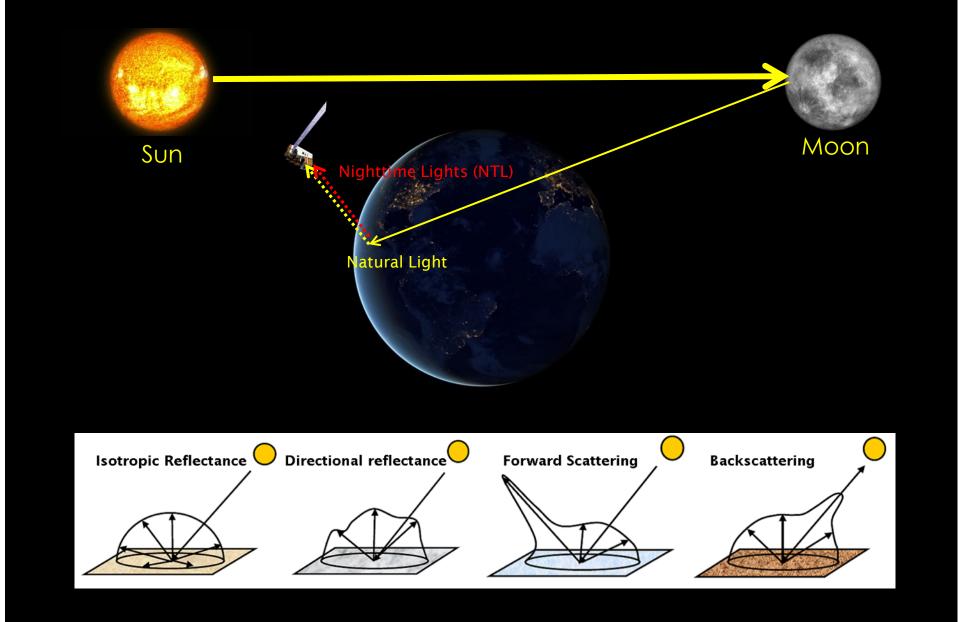
With moonlight:

- The reflectance of snow cover, smoke, airborne dust, sea ice, and land surface features are visible
- Imaging cloud cover to support short-term weather prediction is the primary purpose of nighttime sensors.

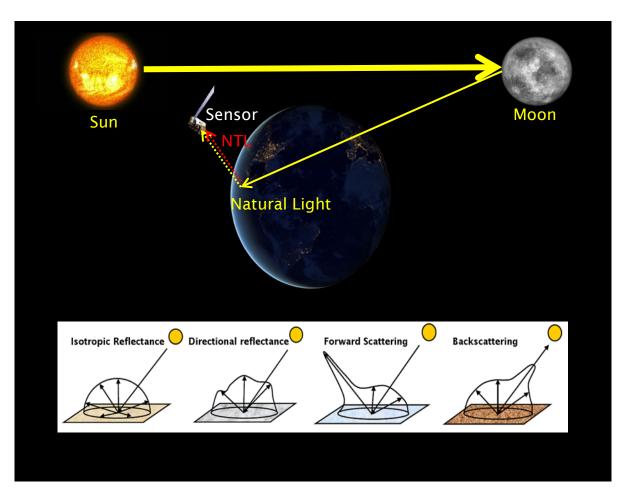


What can we study with nighttime remote sensing?

Without moonlight:

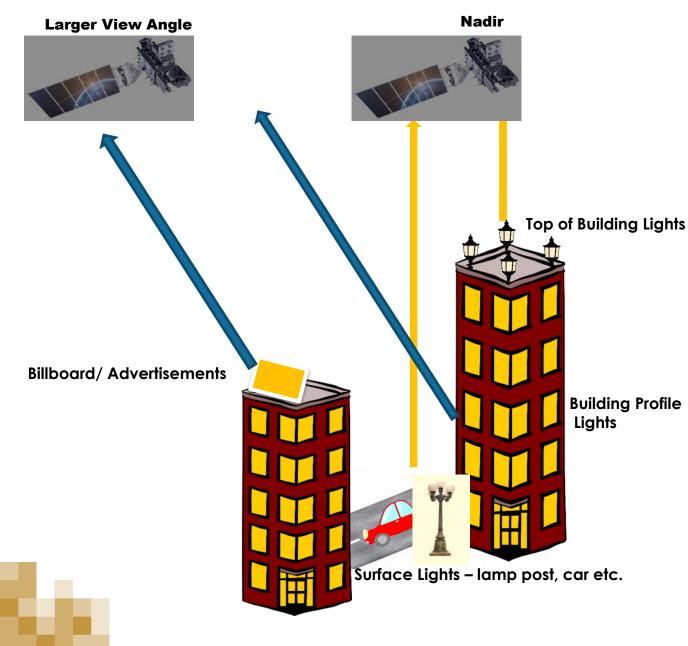

- Artificial lights like street and building lighting
- Fishing boats
- Gas flares

- Fires
- Aurora
- Bioluminescence
- Nightglow from the atmosphere



Principles of Nighttime Remote Sensing

Principles of Nighttime Remote Sensing

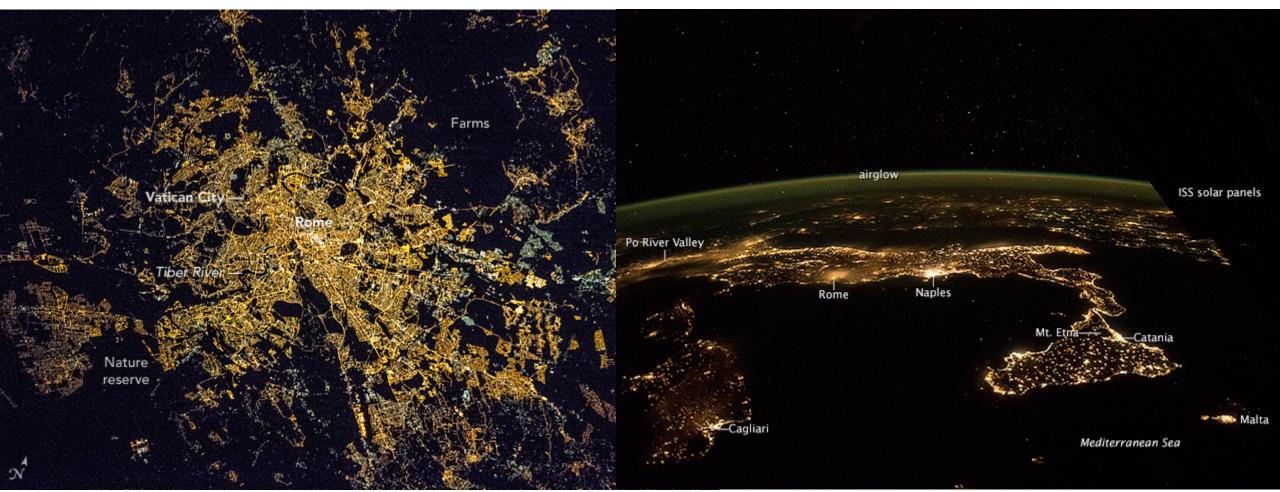


Unlike in daytime remote sensing:

- There are multiple light sources.
- Observations include moonlight, light directly emitted by a source (e.g., buildings and transport), and light scattered by the ground.
- Snow (both under moon-illuminated and moon-free conditions) can also increase the signal during winter months.
- Land features (such as buildings and trees) can also block the light source during different time periods.

Principles of Nighttime Remote Sensing

- Light sources have different angular emission and reflection profiles.
- Different satellite viewing angles may change light sources captured.
- Angular differences are more prominent in city centers (downtown areas) with tall buildings.



International Space Station (ISS) Images

- Astronaut photographs of the Earth at night.
- Provides imagery information in 3 visible spectral bands (R,G,B).
- Quality greatly improved (10m-resolution) with the installation of the NightPod instrument in 2012.
- Images are not scientific data.
 - Lack of georeferencing makes it difficult to locate a specific city among millions of images.
 - No consistency across space or time.
- Images are available at NASA's "The Gateway to Astronaut Photography of Earth" (<u>https://eol.jsc.nasa.gov/</u>).
- "Atlas of astronaut photos of Earth at night" developed as an open directory with geotagged images of cites at night (<u>http://www.citiesatnight.org/</u>).

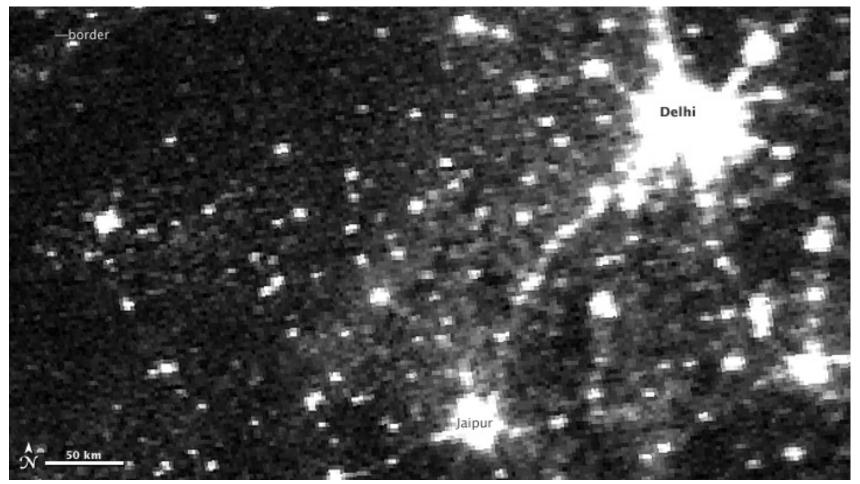
International Space Station (ISS) Images

Rome at Night - Acquired on April 8, 2015, with a Nikon D4 digital camera, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. (nasa.gov/mission_pages/station/images) Italy at Night - acquired on October 21, 2014, with a Nikon D4 digital camera, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. (nasa.gov/mission_pages/station/images)

Previous-Generation Nighttime Light Sensor/Product

Defense Meteorological Satellite/Operational Linescan System (DMPS/OLS)

- Longest running system of global nighttime light detection from satellites.
- The digital data stream for the collection of DMSP-OLS began in 1992 and continues to this day.
- Many studies have taken advantage of extensive historical data to monitor artificial lights from space and study relationships between human activity and socio-economic variables.



DMSP Satellite Source: NOAA

Previous-Generation Nighttime Light Sensor/Product

DMSP/OLS

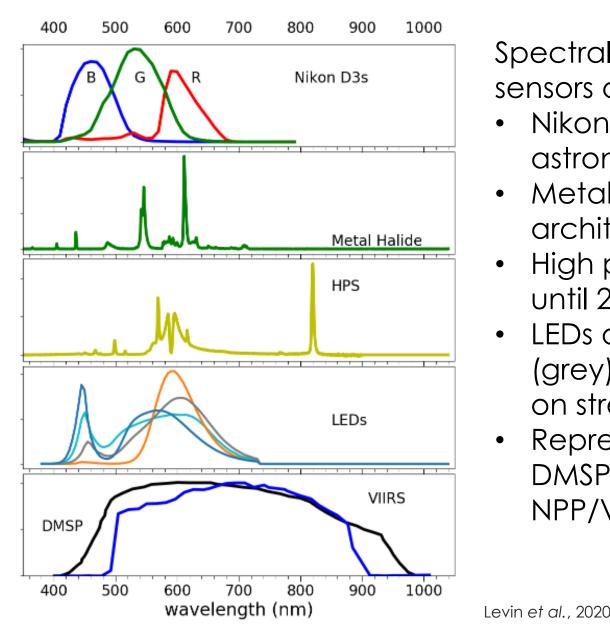
City, Village, and Highway Lights Near Delhi, India - Acquired in November, 2012

- Monthly product
- 2.7 km
- No on-board calibration
- 20:00 overpass
- Saturates in urban centers (6 bit)
- Available since 1992

Next-Generation Nighttime Light Sensor/Product

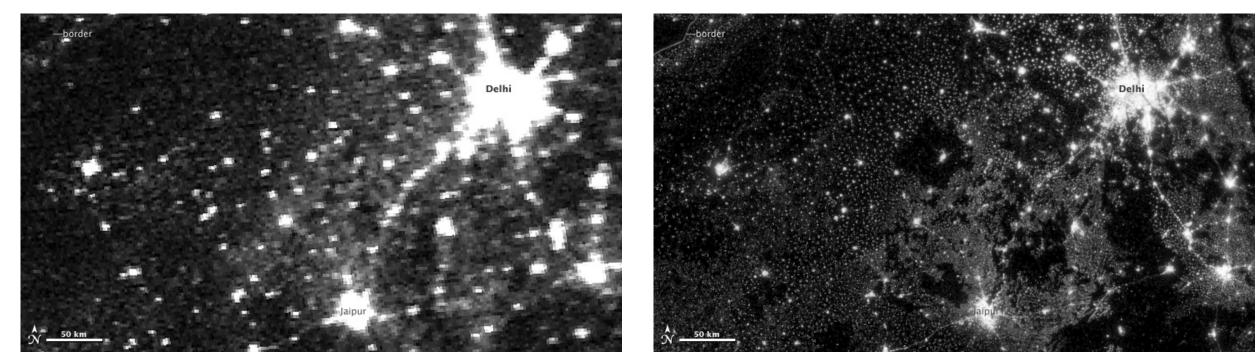
The Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS DNB)

- One of the 5 instruments onboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) and Joint Polar Satellite System (JPSS) satellite platform operational since 2012.
- Joint partnership between NASA and NOAA.
- Orbits the Earth in ~102 mins, providing global coverage at ~14 orbits per day at 824 km orbital altitude.
- Sun-synchronous satellite captures the observation near 01:30 local solar time.


Suomi-NPP Satellite Source NASA

Comparison DMSP/OLS and VIIRS DNB

Attribute	DMSP/OLS	VIIRS DNB
Orbital Details	Sun-synchronous, ~850 km	Sun-synchronous, 824 km
Nighttime Overpass Time	~1930 UTC	~0130 UTC
Swath Width	3000 km	3000 km
Spectral Passband Bandwidth	Panchromatic 500–900 nm	Panchromatic 500–900 nm
Spectral Passband Center	~600 nm	~700 nm
Horizontal Spatial Resolution	5 km (Nadir)/~7 km (Edge)	<0.770 km (Scan) <0.750 km (Track)
Minimum Detectable Signal	$4 \times 10^{-5} \text{ W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	$3 \times 10^{-5} \text{ W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$
Noise Floor	$\sim 5 \times 10^{-6} \text{ W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	\sim 5 × 10 ⁻⁷ W·m ⁻² ·sr ⁻¹ (Nadir)
Radiometric Quantization	6 bit	13–14 bit
Radiometric Calibration	None	On-Board Solar Diffuser
Saturation, Stray Light Artifacts	Urban Cores, Substantial, Uncorrectable	None, Near-Terminator, Corrected


Spectral responses of the most popular sensors and light sources:

- Nikon D3s Cameras used by the astronauts at the ISS
- Metal Halide lamp, popular on architectural lights
- High pressure sodium (HPS) light, popular until 2014 on street lighting
- LEDs of 5000K (blue), 4000K (cyan), 2700K (grey), and PC-Amber (amber), popular on street lighting
- Representative spectral response of DMSP/OLS(black) and Suomi-NPP/VIIRS/DNB(blue)

DMSP/OLS

City, Village, and Highway Lights Near Delhi, India - Acquired in

November, 2012

- Monthly product
- 2.7 km
- No on-board calibration
- 20:00 overpass
- Saturates in urban centers (6 bit)
- Available since 1992

- Daily product
- 500 m
- On-board calibration
- 1:30 overpass
- Can measure both bright and very dim lights (14 bit)
- Available since 2012

NASA's Black Marble (VNP46) Data Product

Product Overview

- Data from VIIRS DNB aboard Suomi-NPP satellite (Collection V001)
- Level 3 product
- Available for the entire Suomi-NPP time series record (c. 2012 – YTD) through NASA's Level-1 and Atmosphere Archive and Distribution System (LAADS) for science research and long-term analysis
- Processed within 3-5 hours after acquisition through NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) system, for rapid response applications

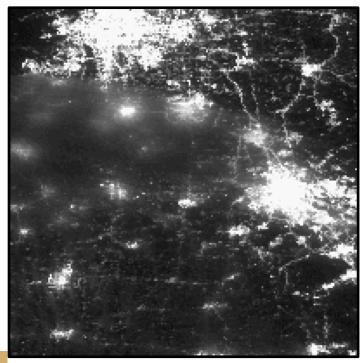
The image for the continental United States of NASA's Black Marble 2016 annual composite.

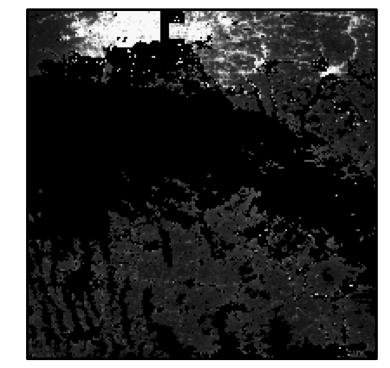
Comparison of NOAA (DMSP-heritage) VIIRS Nighttime Lights and NASA Black Marble - What is corrected for?

	NOAA VIIRS V1	NASA Black Marble V1
Frequency	Monthly and annual composites	Daily, monthly, and annual composites
Moonlight	Uses moon-free nights	Uses all nights and corrects lunar reflectance effects
Snow	Uncorrected for snow reflectance	Corrects for snow BRDF effects
Stray light	Filtered	Filtered
Ephemeral Lights	Filtered (for Annual Products)	Not filtered
Atmospheric effects	Not corrected	Corrected
Clouds	Cloud-free	Cloud-free

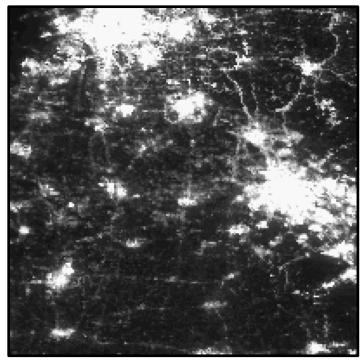
For more information about the algorithm, refer to Román, M.O., Wang, Z., Sun, Q., Kalb, V., Miller, S.D., Molthan, A., Schultz, L., Bell, J., Stokes, E.C., Pandey, B. and Seto, K.C., 2018. NASA's Black Marble nighttime lights product suite. *Remote Sensing of Environment*, 210, pp.113-143.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35


The Suomi-NPP VIIRS linear latitude/longitude (or geographic) grid consists of 460 non-overlapping land tiles which cover approximately 10° x 10° regions. Examples presented in this webinar are enclosed in red boxes. <u>https://blackmarble.gsfc.nasa.gov/tools/BlackMarbleTiles.zip</u>

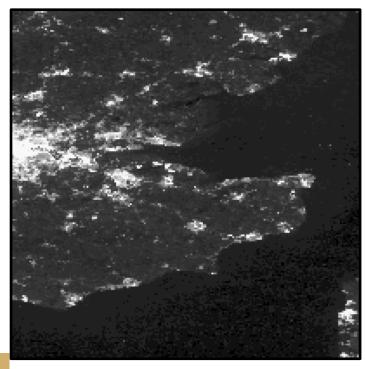

NASA's Black Marble Data Product

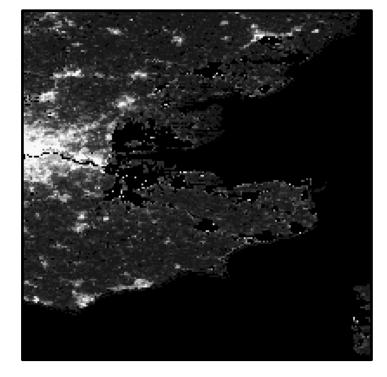
Location: Beijing, China Tile: h29v05 DOY: 2020-063 Moon-Illuminated Fraction: 42.02%


VNP46A1-TOA

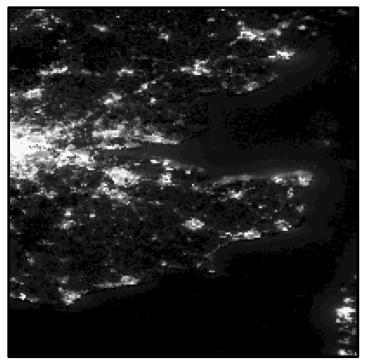
VNP46A2-Daily

VNP46A2-GapFilled

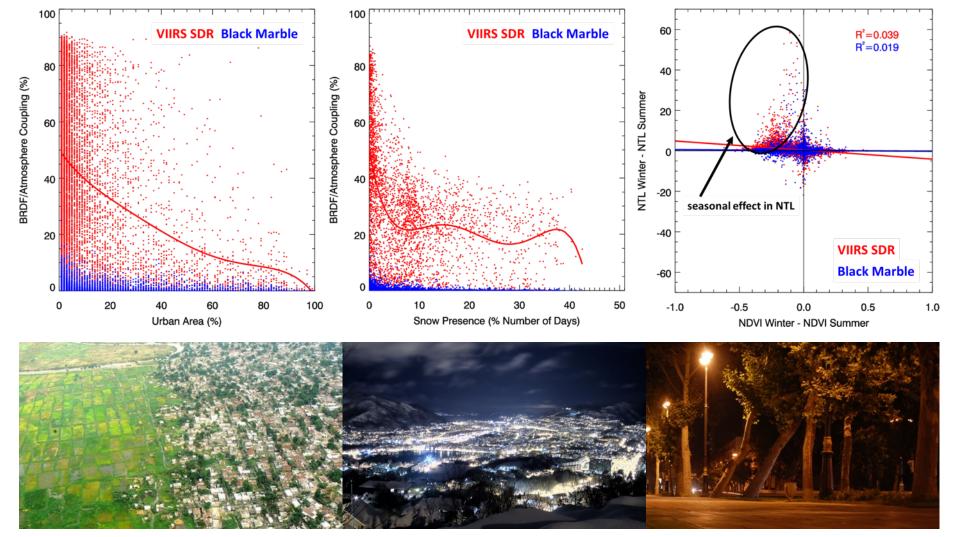



NASA's Black Marble Data Product

Location: London, United Kingdom Tile: h18v03 DOY: 2020-096 Moon-Illuminated Fraction: 57.91%


VNP46A1-TOA

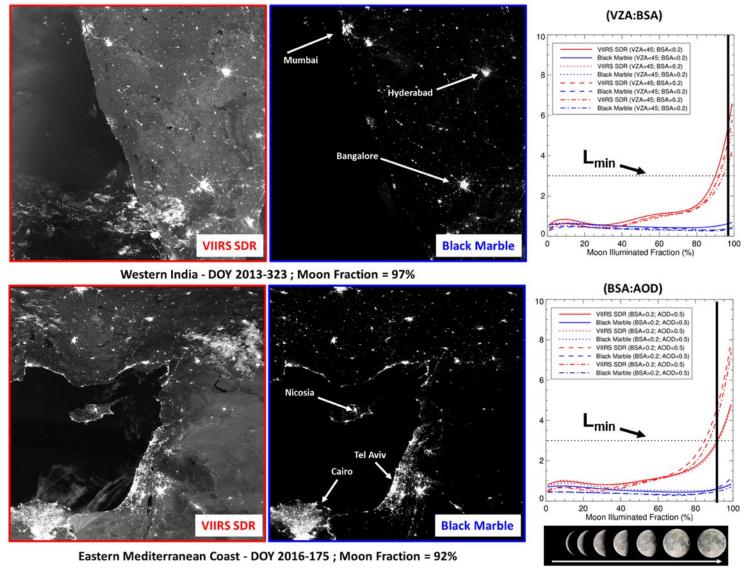
VNP46A2-Daily



VNP46A2-GapFilled

Product Quality Assessment

Rural-Urban Gradient Test

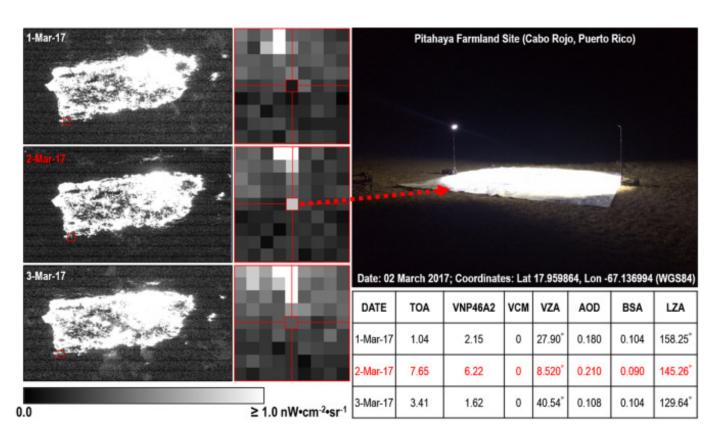

Snow BRDF Test

Vegetation Occlusion Test

For more information, refer to Román, M.O., Wang, Z., Sun, Q., Kalb, V., Miller, S.D., Molthan, A., Schultz, L., Bell, J., Stokes, E.C., Pandey, B. and Seto, K.C., 2018. NASA's Black Marble nighttime lights product suite. *Remote Sensing of Environment*, 210, pp.113-143.

5

Product Quality Assessment


For more information, refer to Román, M.O., Wang, Z., Sun, Q., Kalb, V., Miller, S.D., Molthan, A., Schultz, L., Bell, J., Stokes, E.C., Pandey, B. and Seto, K.C., 2018. NASA's Black Marble nighttime lights product suite. *Remote Sensing of Environment*, 210, pp.113-143.

Product Validation

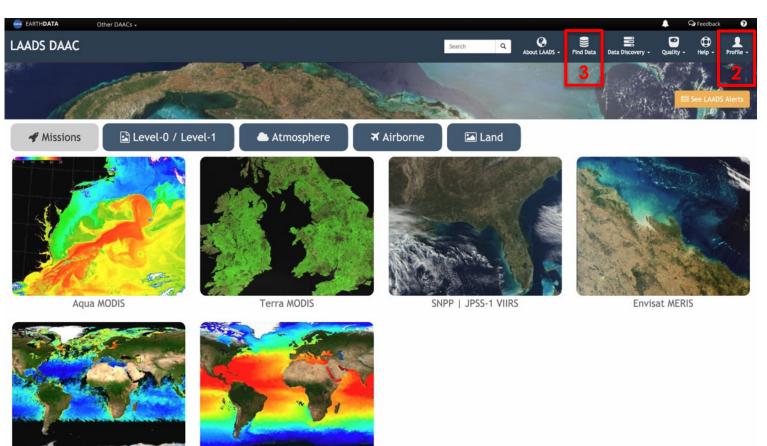
Field Experiments

- Conducted across multiple light pollution abatement zones in Puerto Rico
- Partnered with Puerto Rico's Working Group on Light Pollution (PRWGLP)
- A stable point source was reflected by a 30 m² Lambertian target to generate an in-band DNB radiance at sensor.

The NTL radiances at the Pitahaya Farmland site in Cabo Rojo, PR on 1st, 2nd and 3rd March 2017. The topright image shows the setup of the stable point source. TOA and VNP46A2 values are in nW·cm-2·sr-1. VCM = 0 represents cloud free overpasses. LZA is lunar zenith angle, and the values larger than 108° correspond to moonless nights.

For more information, refer to Román, M.O., Wang, Z., Sun, Q., Kalb, V., Miller, S.D., Molthan, A., Schultz, L., Bell, J., Stokes, E.C., Pandey, B. and Seto, K.C., 2018. NASA's Black Marble nighttime lights product suite. *Remote Sensing of Environment*, 210, pp.113-143.

Part 2: Black Marble Processing & Data Analysis


Where to Obtain the Black Marble Product

NASA's Level-1 Land and Atmosphere Archive and Distribution System Distributed Active Archive Center (LAADS-DAAC)

. Go to:

1 <u>ladsweb.modaps.eosdis.</u> <u>nasa.gov</u>

- 2. Create a username and profile
- 3. Click "Find Data"

Sentinel-3 OLCI

Sentinel-3 SLSTR

Downloading Black Marble Images via LAADS

Nasa	LAADS DAAC				About LAADS 🗸	Find Data	Data Discovery 🗸	Quality 🗸	Help 🗸	Profile
Search by		1 PRODUCTS	2 TIME	3 LOCATION	4 F	LES	5 REVIEW	/ & ORDER		
Product		o products selected.	No date selected.	No location selected.	No fil	es selected.		¢\$ re:	set	
3 Online Archive	All Sensors All Searchable Co	ollections	~	All All Standard Collections			(keyword	Browse pro	oducts
Q	T									
Filename Search				AERDB_D3_VIIRS_SNPP VIIRS/SNPP Deep Blue Level 3 daily a	aerosol data, 1x1 degr	ee grid				0
Image Viewer				AERDB_L2_VIIRS_SNPP VIIRS/SNPP Deep Blue Aerosol L2 6-I	Min Swath 6 km					0
				AERDB_M3_VIIRS_SNPP VIIRS Deep Blue Level 3 monthly aero	osol data, 1x1 degree	grid				0
, Load/Save Search				AERDT_L2_VIIRS_SNPP VIIRS/SNPP Dark Target Aerosol L2 6	-Min Swath 6 km					0
Past Orders				ALBWS066 MODIS-derived 0.66 micron white-sky	albedo on a global, 1	minute equal an <u>o</u>	gle grid			0
				ALBWS086 MODIS-derived 0.86 micron white-sky	albedo on a global, 1	minute equal ang	gle grid			0

NASA	LAADS DAAC			About LAADS 🗸	Find Data	Data Discovery 🗸	Quality 🗸	Help 🗸	Profile 🗸
Search by Product	1 PRODUCTS	2 TIME	3 LOCATION	4 F	ILES	5 REVIEV	V & ORDER		$ \overline{} $
	Add product) date selected.	No location selected.	No fil	es selected.		¢ ¢ re	eset	
Online Archive	All Sensors VNP46A2 (5000)	All All All Stand	dard Collections					Browse p	roducts
Q Filename Search			P46A2 NPP Gap-Filled Lunar BRDF-M	iusted Nighttime Ligi	hts Daily L3 Glot		cted Products Grid		0
Image Viewer									
Joad/Save Search									
ast Orders									

- In the search bar, type "VNP46A2"
- Select the dataset

Dataset added

AREAN	LAADS DAAC				About LAADS -	Find Data	Data Discovery 👻	Quality 🗕 H	elp 🗕	Profile 🗸
Search by		ODUCTS	2 TIME	3 LOCATION	4 F	ILES	5 REVIEW	& ORDER		$\mathbf{\mathbf{\hat{s}}}$
Product	VNP46A2	(5000)	2014-08-01	No location selected.	No fil	es selected.		¢° reset		
3 Online Archive					Date Selection:			Clear A		
Q Filename Search	Date Range	e as: YYYY-MM-DD	Single Date		2014-08-01			<i>i</i> ×		
		2014-08-01								
Image Viewer		Add Date								
.oad/Save Search	+ Advanced									
ast Orders	Coverage Selection:	☑ Day □ Night			n night data only)					
		🗹 Day-Night Boi	undary	(granules contair	n data over the seaso	onal, latitude b	oundary between day	and night)		

LAADS E	DAAC		About LAADS	S 🗸 Find Data	Data Discovery -	Quality 🗸	Help - Profile -
Search by	1 PRODUCTS	2 TIME	3 LOCATION	4 FILES	5 REVIEW	& ORDER	€
Search by Product 1 2 3 Coline Archive C C C C C C C C C C C C C			W86.6°, N. 32.4°, E77.8°, S. 24.2°			Vorld Countries Files /alidation Sites Draw Custom Bo	A OF INTEREST

NASA	LAADS DAAC				About LAADS -	Find Data [Data Discovery 🗸	Quality 🗸 🕴	Help 🗸 Profile 🕇
Search by	¢	1 PRODUCTS	2 TIME	3 LO		ES	5 REVIEW	& ORDER	•
Product		VNP46A2 (5000)	2014-08-01	W: -86.6°, N	N: 32.4°, E: -77.8°, S: 24.2° 4 files s	selected		¢¦ reset	
3 Online Archive	* Download search:	elected files 🗸 as json	or csv Select All	Clear All		Query Results	Selected	(4)	Images
Q	Filename			\$	Product (collection)	\$	Date / Time	♦ Dow	nload
Filename Search	VNP46A2.A2014	213.h10v06.001.202020521541	4.h5	0	VNP46A2 (5000)	20	014-08-01 00:00:00	± 84	40 kB
	VNP46A2.A2014	213.h09v06.001.202020522163	0.h5	0	VNP46A2 (5000)	20	014-08-01 00:00:00	± 2	2 MB
Image	VNP46A2.A2014	213.h10v05.001.202020522502	9.h5	0	VNP46A2 (5000)	20	014-08-01 00:00:00	± 2	2 MB
Viewer	VNP46A2.A2014	213.h09v05.001.202020612003	3.h5	0	VNP46A2 (5000)	20	014-08-01 00:00:00	± 5	5 MB
Load/Save Search	Showing 1 to 4 of 4	4 entries						Previous	1 Next

NASA	LAADS DAAC				About LAADS -	Find Data	Data Discovery 🗸	Quality 🗸	Help 🗸	Profile 🗸
Search by	¢	1 PRODUCTS	2 TIME	3 LOCATION	4 FI	ILES	5 REVIEW	/ & ORDER		
Product		VNP46A2 (5000)	2014-08-01	-86.6, 32.4, -77.8, 24.2	4 file:	s selected		¢ ₀ re:	set	
Online Archive	Files Summa					Post-pro	cessing not availal	ole.		
Q Filename Search	2014-08-01	Collection 5000) 00:00:00 2014-08-01 00 generate 4 files.):00:00]	Total: 4 files 🗙	Select Delivery Method					•
Image					·	The order may	/ generate as many a	s 4 files.		
Viewer					Add another s	earch		Submit C	order	
Load/Save Search										
Past Orders										

Downloading Black Marble Images via LAADS Online Archive

NASA	LAADS DAAC				About LAADS 🗸	Find Data	Data Discovery 🗸	Quality -	Help 🗸	Profile 🗸
Search by		1 PRODUCTS	2 TIME	3 LOCATION	4 F	ILES	5 REVIEV	V & ORDER	(
		No products selected.	No date selected.	No location selected.	No fil	es selected.		¢ ₿ re	set	
Online Archive	All Sensors All Searchable	e Collections	~	All All Standard Collections			(keyword C	Browse pro	ducts
Filename Search				AERDB_D3_VIIRS_SNPP VIIRS/SNPP Deep Blue Level 3 daily a	erosol data, 1×1 degr	ee grid			(9
Image Viewer				AERDB_L2_VIIRS_SNPP VIIRS/SNPP Deep Blue Aerosol L2 6-W	lin Swath 6 km				(9
				AERDB_M3_VIIRS_SNPP VIIRS Deep Blue Level 3 monthly aeros	sol data, 1x1 degree	grid			(9
Load/Save Search				AERDT_L2_VIIRS_SNPP VIIRS/SNPP Dark Target Aerosol L2 6-1	Min Swath 6 km				(9
Past Orders				ALBWS066 MODIS-derived 0.66 micron white-sky a	albedo on a global, 1	-minute equal ar	ngle grid		(9
_				ALBWS086 MODIS-derived 0.86 micron white-sky a	albedo on a global, 1	-minute equal ar	ngle grid		(9

Downloading Black Marble Images via LAADS

🚳 Earth data	Other DAACs •				Feedback ?
LAADS DAA	AC		About LAADS - Find Data	Data Discovery 🗝	Quality - Help - Profile -
🕷 Home 🛛 I	LAADS Archive			Search	٩
C Search by	Index of /archive	/allData/5000/VNP46A2/			
Product	L Download Selected	See wget Download Command	lload Help	View as CSV	
} Online Archive	Name		Last Modified		Size
Q	🖞 Parent dire	ctory			
Filename Search	a 2012		2020-11-24 2	0:16	-
Image	a 2013		2020-11-24 2	0:16	-
Viewer	2014		2020-11-24 2	0:16	-
← Load/Save Search	2015		2020-11-24 2	0:16	-
B	2016		2020-11-24 2	0:16	-
Past Orders	2017		2020-11-24 2	0:16	-

You can also directly type the link

https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/5000/VNP46A2/

Downloading Black Marble Images via LAADS Online Archive

🞯 EARTH DATA	Other DAACs 🗸		🐥 🖓 Feedback 😯
LAADS DAAC	-	About LAADS - Find Data Data Discovery -	Quality - Help - Profile -
🖀 Home 🛛 L	AADS Archive	Searc	h Q
Search by	Index of /archive/allDa	ta/5000/VNP46A2/2012/	
Product	🖓 See wget Download Command	Download Help E View as JSON E View as CSV	
} Online Archive	Name	Last Modified	Size
Q	🖞 Parent directory		
Filename Search	1 019	2020-07-31 18:32	-
Image	020	2020-07-31 18:32	-
Viewer	1 021	2020-07-31 18:32	-
Load/Save Search	1 022	2020-07-31 18:32	-
B	1 023	2020-07-31 18:32	-
Past Orders	0 24	2020-07-31 18:32	-
	@ 025	2020-07-31 18:32	-
	a 026	2020-07-31 18:32	-
	a 027	2020-07-31 18:32	-
	@ 028	2020-07-31 18:32	-

 Choose the Julian Day of interest*

*Julian Days for each year can be found here: <u>https://landweb.modaps.eosdis.nasa.g</u> <u>ov/browse/calendar.html</u>

Downloading Black Marble Images via LAADS

🚳 EARTH DATA		Other DAACs •							Q Feedback	?
AADS DAA	ſĊ			About L	AADS -	Find Data	Data Discov	ery - Quality	• Help •	Profile +
🖀 Home 💿 L/	AADS Arc	thive					S	earch	C	٤
C Search by	Inde	ex of /archive	/allData/5000/VNP46A2	2/2012/020/						
Product	± 0	ownload Selected	💩 See wget Download Command	\rm Download Help	📴 View	as JSON	🔳 View as CS	/		
} Online Archive		file downloads: Click wnload	individual table rows (or hold down	Shift key for multiple)	to select f	files followe	ed by clicking "D	ownload Selected"	' to confirm multi	
Q	O se	elect All					Last	Modified	Siz	ze
Filename Search	<	월 Parent direc	tory				_			
Image	0	VNP46A2.A201	2020 <mark>.h00v01.</mark> 001.20200381	70951.h5		0	L 2020	-02-07 17:10	5 199.3 k	:В
Viewer	0	VNP46A2.A201	2020.h00v02.001.20200381	81229.h5		0	L 2020	-02-07 18:55	5 1.1 M	IB
Load/Save Search	0	VNP46A2.A201	2020 <mark>.h00v03.</mark> 001.20200381	71032.h5		0	Ł 2020	-02-07 17:10	5 196.0 k	B
Past Orders	0	VNP46A2.A201	2020 <mark>.h00v04.</mark> 001.20200381	71011.h5		0	Ł 2020	-02-07 17:10	5 132.6 k	B
	0	VNP46A2.A201	2020 <mark>.h00v05.</mark> 001.20200381	70832.h5		0	± 2020	-02-07 17:15	5 132.6 k	B

- Choose the file with your (h, v) grid coordinates of interest (Green boxes)*
- A rule of thumb to use is:

v=(90-lat)/10 h=(180+lon)/10

*You can download the spatial layer for the tile grid boundary from this link <u>https://blackmarble.gsfc.nasa.gov/tools/BlackMarbleTiles.zip</u>

Converting HDF-5 to GeoTIFF

- If you are using Black Marble in a GIS software like ArcGIS or QGIS, you will want to convert the HDF-5 data to a GeoTIFF data format.
- Use our HDF-5 to GeoTIFF converter tool here:
 - <u>https://blackmarble.gsfc.nasa.gov</u>
 <u>/Tools.html</u>

Useful Tools

Some useful tools and guidance using NASA's Black Marble Products

Python scripts to read, convert (GeoTiff), and display (QGIS) VNP46 files. If you do not have GDAL install, you can use the QGIS python console (Plugins -> Python Console) to run the script.

HDF To GeoTiff

Download the source code to convert NASA's Black Marble HDF5 product to GeoTiff <u>HERE</u> and HDF4 product to GeoTiff <u>HERE</u>

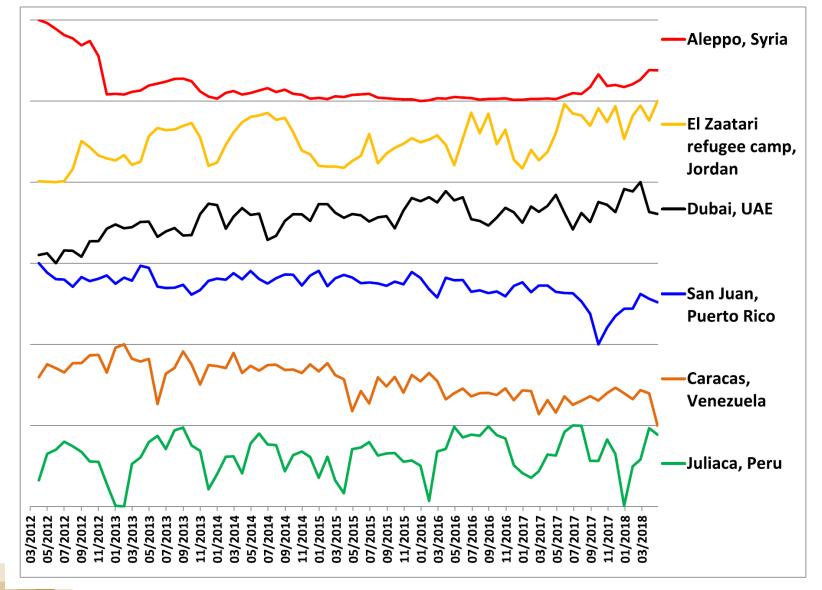
Below are some details on using the tool

Location of the input folder containing HDF images

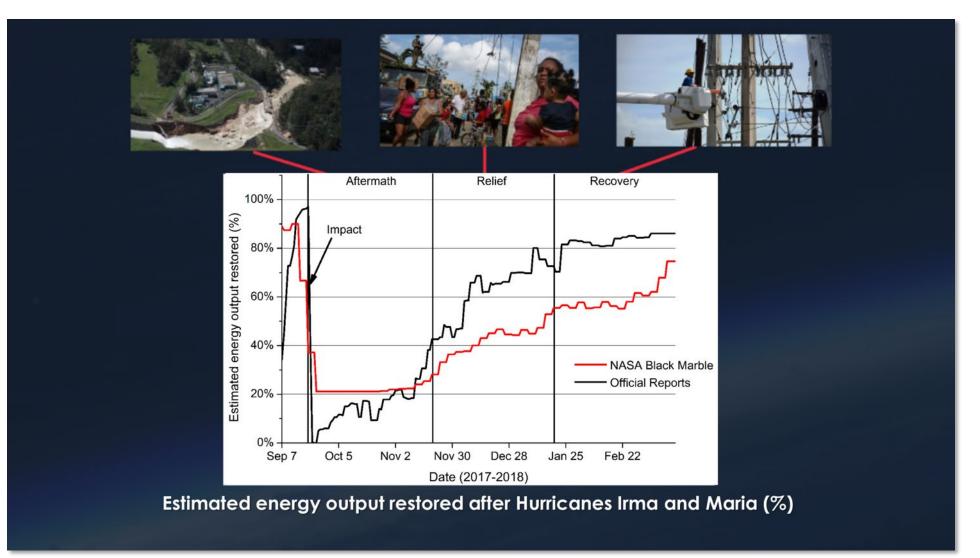
os.chdir('C:\\InputFolder')

Scientific Datasets Included with VNP46A2

Scientific Data Sets (SDS HDF Layers)	Units	Bit Types	Fill Value	Valid Range
DNB_BRDF-Corrected_NTL	nWatts ·cm ⁻² ·sr ⁻¹	16-bit unsigned integer	65,535	0 – 65,534
Gap_Filled_DNB_BRDF-Corrected_NTL	nWatts ·cm ⁻² ·sr ⁻¹	16-bit unsigned integer	65,535	0 – 65,534
DNB_Lunar_Irradiance	nWatts ∙cm ⁻² •sr ⁻¹	16-bit unsigned integer	65,535	0 – 65,534
Mandatory_Quality_Flag	Class Flag	8-bit unsigned integer	255	0 – 3
Latest_High_Quality_Retrieval	Number of days	8-bit unsigned integer	255	0 – 254
Snow_Flag	Class Flag	8-bit unsigned integer	255	0 – 1
QF_Cloud_Mask	Class Flag	16-bit unsigned integer	65,535	0 – 65,534


Considering QA indicators in the VNPA2 Product (DNB_BRDF-Corrected_NTL)

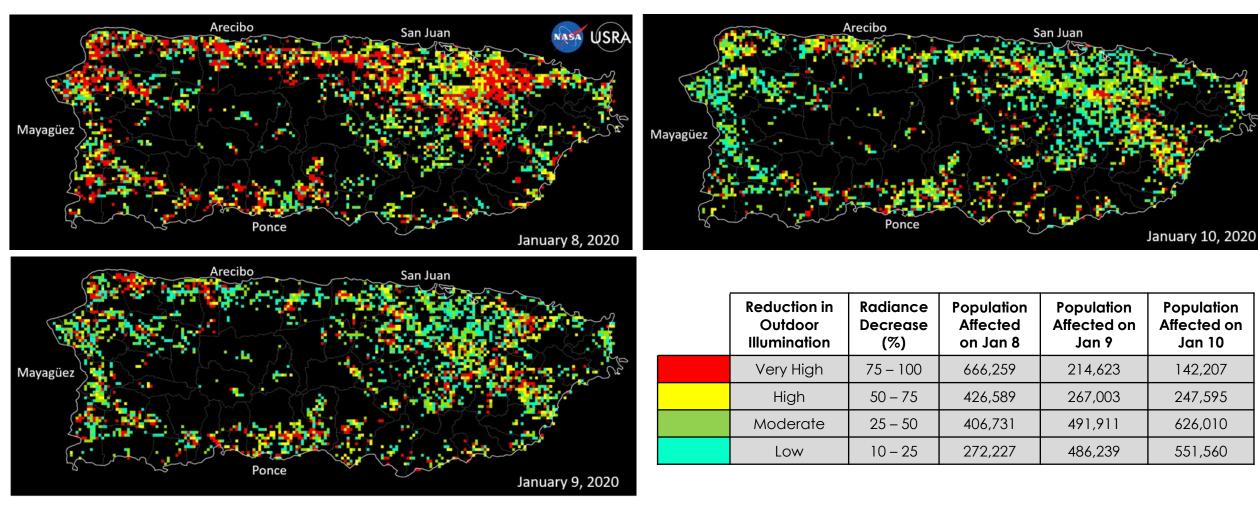
Value	Retrieval Quality	Algorithm Instance
00	High-quality	Main algorithm (persistent nighttime lights)
01	High-quality	Main algorithm (Ephemeral Nighttime Lights)
02	Poor-quality	Main algorithm (Outlier, potential cloud contamination or other issues)
255	No retrieval	Fill value


Part 3: Applying Black Marble Data

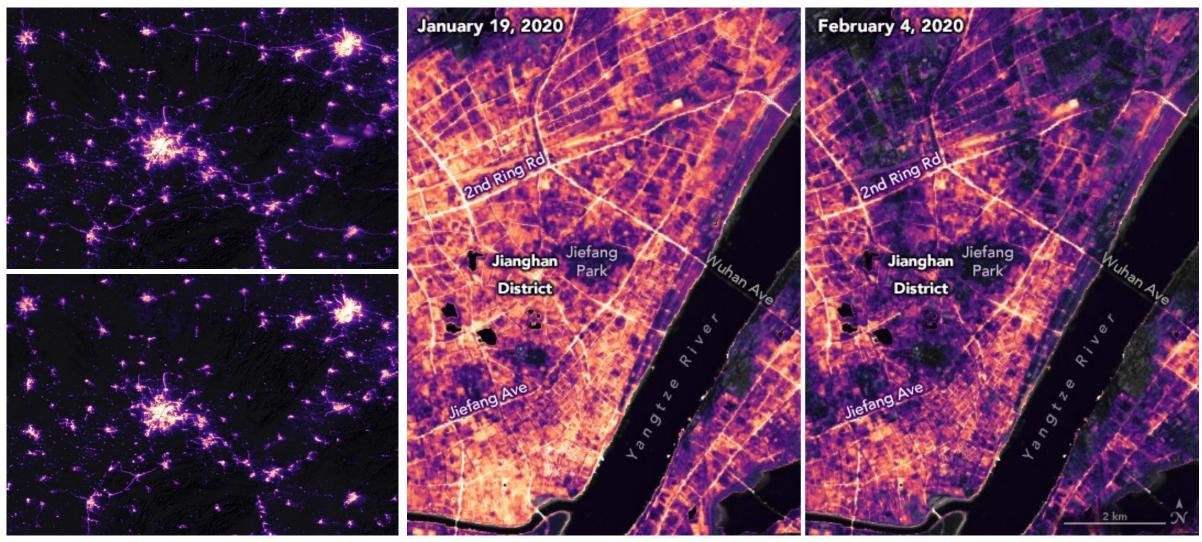
Case Study: Mapping Urban Areas and Urbanization

Monthly temporal changes in Black Marble nighttime brightness demonstrate various patterns. Each of the sites was normalized between its own min/max radiance values.

Monitoring Disaster Impacts in Puerto Rico (2017-2018)



Monitoring Disaster Impacts in Puerto Rico (2017-2018)


Monitoring Disaster Impacts in Puerto Rico – After Jan-2020 6.4 Earthquakes

Reductions in outdoor illumination are widespread even after 3 days.

Monitoring COVID-19 Impacts on Urban Areas

Loss of light is observed along highways (left) and inside the commercial districts of Wuhan (right) after the COVID-19 lockdown.

More Information

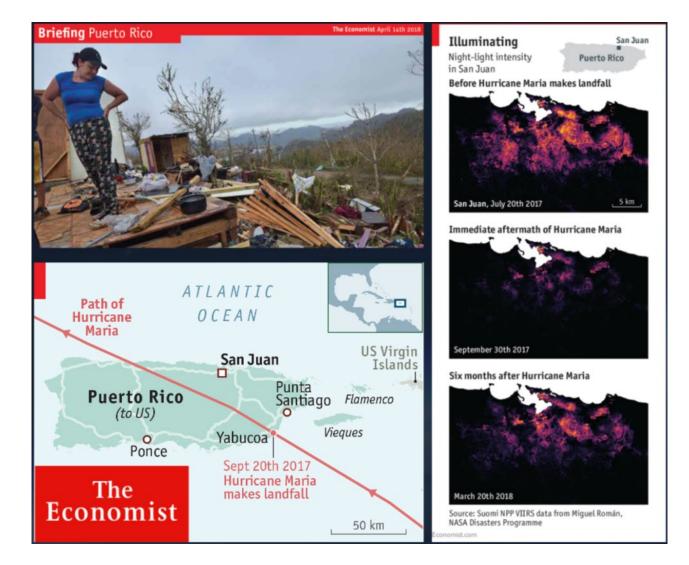
- Check out our Black Marble website at: https://blackmarble.gsfc.nasa.gov/
- These articles from our team are particularly useful:
 - As a reference manual:
 - Román, M. O., Z. Wang, Q. Sun, V. Kalb, S. D. Miller, A. Molthan, L. Schultz, J. Bell, E. C. Stokes, B. Pandey, K. C. Seto, D. Hall, T. Oda, R. E. Wolfe, G. Lin, N. Golpayegani, S. Devadiga, C. Davidson, S. Sarkar, C. Praderas, J. Schmaltz, R. Boller, J. Stevens, O. M. Ramos Gonzalez, E. Padilla, J. Alonso, Y. Detrés, R. Armstrong, I. Miranda, Y. Conte, N. Marrero, K. MacManus, T. Esch, and E. J. Masuoka. 2018. "NASA's Black Marble nighttime lights product suite." *Remote Sensing of Environment* 210 113-143 [doi:10.1016/j.rse.2018.03.017]
 - Case study of disaster applications:
 - M. O. Román, Eleanor C. Stokes, Ranjay Shrestha, Zhuosen Wang, Lori Schultz, Edil A. Sepúlveda Carlo, Qingsong Sun, Jordan Bell, Andrew Molthan, Virginia Kalb, Chuanyi Ji, Karen C. Seto, Shanna N. McClain, and Markus Enenkel. 2019. "Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria." PLoS ONE 14 (6) [doi:10.1371/journal.pone.0218883]
 - Application to urban activity patterns:
 - Román, M. O., and E. C. Stokes. 2015. "Holidays in lights: Tracking cultural patterns in demand for energy services." *Earth's Future 3 (6): 182-205 [doi:10.1002/2014ef000285]*
 - General review of Nightlights and future outlook:
 - Noam Levin, Christopher C. M. Kyba, Qingling Zhang, Alejandro Sánchez de Miguel, Miguel O. Román, Xi Li, Boris A. Portnov, Andrew L. Molthan, Andreas Jechow, Steven D. Miller, Zhuosen Wang, Ranjay M. Shrestha, Christopher D. Elvidge. 2020. "Remote sensing of night lights: A review and an outlook for the future." Remote Sensing of Environment. Volume 237 [doi:10.1016/j.rse.2019.111443]

Downloading Black Marble Images via LAADS

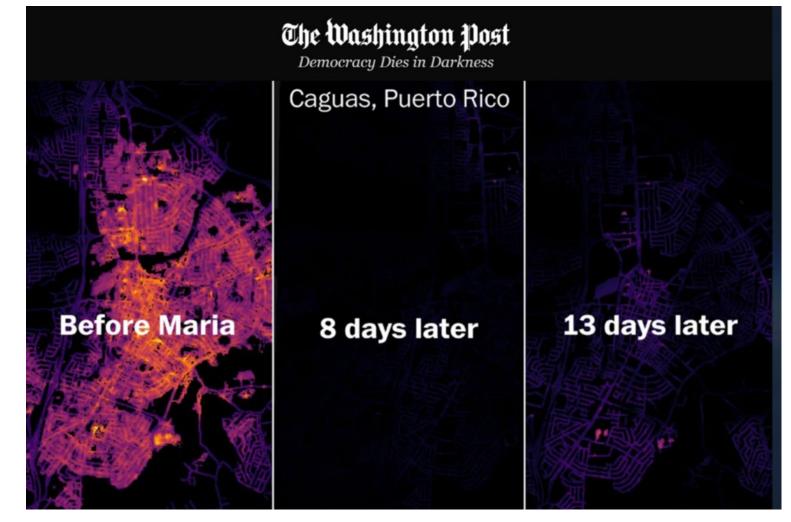
To batch download many files, consider using OPenDAP URL syntax to refer to each file.

For example, to download Suomi-NPP-VIIRS VNP46A2 product from January 19, 2012, in grid H18v03 (London, United Kingdom), type into internet browser:

ladsweb.modaps.eosdis.nasa.gov/opendap/allData/5000/VNP46A2/2012/019/VNP4 6A2.A2012019.h18v03.001.2020038165547.h5.html



Practical Exercise

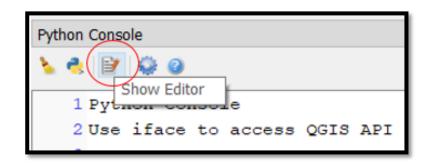

Case Study - Hurricane Maria in Puerto Rico

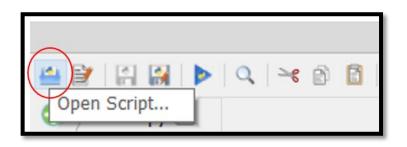
- Largest blackout in US history
- \$90 billion in damages
- -15% loss of gross national product (GNP)
- 4,645 human lives lost
- 200,000 people migrated

- Location Caguas, PR
- Date range:
 - July 1, 2017
 - Oct 26, 2017

1. VNP46A2 Data

- Download data zipped folder here
- <u>https://drive.google.com/file/d/1BDWFgLdUFS8SGNIvR0ypwgQEQ9hHFh</u> <u>MO/view?usp=sharing</u>
- Extract the data in your local folder


2. Python Script


- Download the Python script here
- <u>https://drive.google.com/file/d/1rvD8Bp7GP8BZAg0hhVpItctDpgj5ukJT/</u> view?usp=sharing
- Save it in your local folder

- 3. Executing the Python Script from QGIS
- Open QGIS
- From the <u>Plugins</u> menu, open <u>Python Console</u>.
- In the Python Console, click on the **Show Editor** icon.
- In the Editor, click on the
 <u>Open Script</u> icon, navigate
 to the Python Script you
 downloaded and open the
 script.

Q QGIS		10.00		
Project Edit View Layer Settings	Plugins Vector Raster Database Web Processing	Help		
🗋 📄 🗐 🔂 🔯 🥙 🏠 Manage and Install Plugins				
🦺 🎕 V° 🖉 🖏 🛝 /	Python Console Ctrl+Alt+P	•		

- 4. Code Update
- Once the Python Script is loaded in the editor, make the following <u>changes</u> in the script:

Line 11 – Change the folder path to the extracted VNP46A2 data folder you downloaded

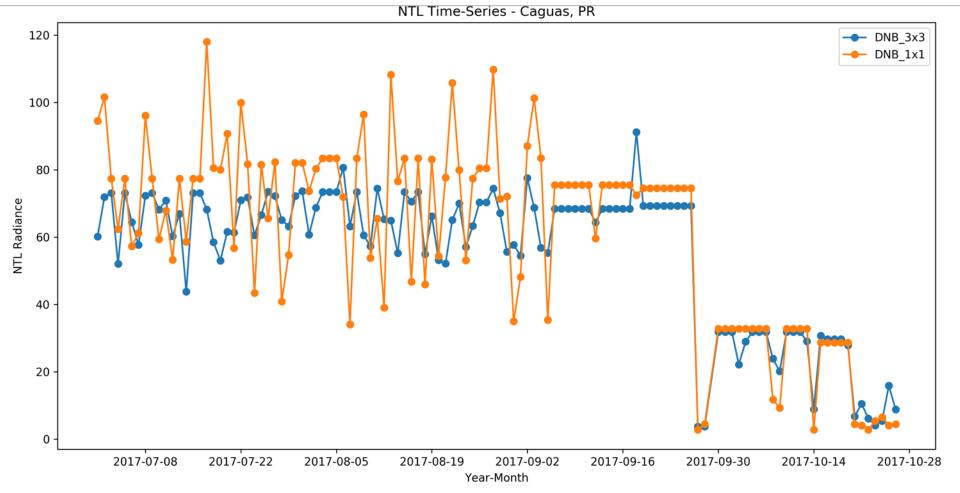
- >os.chdir('C:/ARSET/Assignment/Demo/Syria/Data_PR')
- 9 #Input·VNP46A2·-·PR
- 10 ####Change.it.to.your.input.Data.Folder###
- 11 os.chdir('C:/ARSET/Assignment/Demo/Maria2020/Data_PR')

Line 15 – Change the folder path to a separate local folder to hold temporary files >outputFolder = "C:/ARSET/Assignment/Demo/Syria/Output/"

13 #Output ·- · PR

- 14 ####Chage.This.Path.to.Output/Temp.Folder####
- 15 outputFolder ·= · "C:/ARSET/Assignment/Demo/Maria2020/Output/"

Note – Please use either "/" or " \setminus " to define folder path.



5. Executing the Python Script

- After the changes, execute the Python Script by clicking the **<u>Run Script</u>** icon.

3x3 pixel window-based time-series, smoother compared to a single (1x1) pixel-based.

Thank You!

NASA's Applied Remote Sensing Training Program