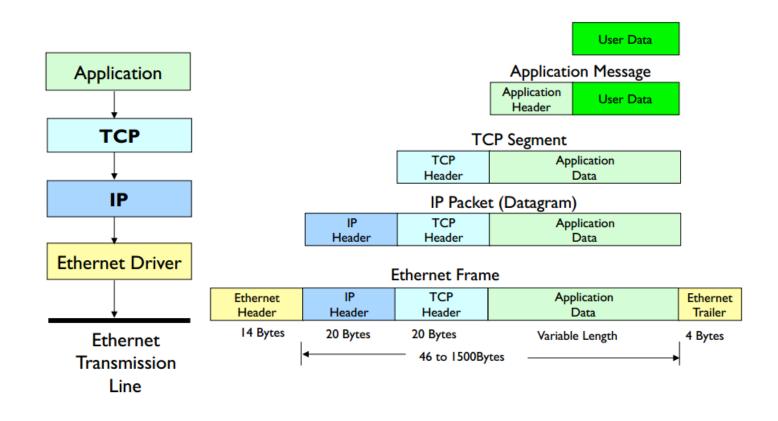
Introduction to Network Troubleshooting with Wireshark


Introduction

In this class we'll look at the basics of using Wireshark to troubleshoot common network problems. We'll start with a basic Ethernet introduction and move on to using Wireshark to display data. Finally we'll look at real-world Ethernet data from a flight test scenario.

OSI 7-layer Model

Layer	Application/Example	Central Device/ Protocols			DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	Use Applicat SMT	tions		
Presentation (6)	Syntax layer encrypt & decrypt (if needed)				Process
Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	EBDIC/TIF	F/GIF	G	Process
Session (5)	Synch & send to ports (logical ports)	Logical Ports		Α	T
Allows session establishment between processes running on different stations.	Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	RPC/SQL/NFS NetBIOS names		T E	
Transport (4)	TCP Host to Host, Flow Control			w	Host to
Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	Message segmentation • Message acknowledgement • A L Message traffic control • Session multiplexing	TCP/SPX/UDP		A	Host
Network (3)	Packets ("letter", contains IP address)	Routers		Y Can be used	Internet
Controls the operations of the subnet, deciding which physical path the data takes.	h physical path the Routing • Subnet traffic control • Frame fragmentation • G				
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame achowledgment • Frame delimiting • Frame error checking • Media access control	Switch		on all layers	Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub		HELWOIK	

Data in Layers

Layer 1 – Physical

- Standards define:
 - Signaling
 - Cabling
 - Connectors
- IEEE 802 is a family of standards covering the Data Link and Physical layer of the OSI networking reference model
- IEEE 802.3 defines Ethernet
- IEEE 802.11 defines Wireless LAN

Layer 2 – Data Link

- The Data Link layer is split into two sub layers
 - Logical Link Control (LLC)
 - Media Access Control (MAC)
- Addressing at this level is hardware unique MAC address
- Channel access control mechanism
 - Most common is Carrier Sense Multiple Access / Carrier Detect (CSMA/CD) (802.3 standard)
 - Wireless uses CSMA/CA, ALOHA, TDMA, OFDMA
- Layer 2 Protocols
 - L2DP, LLDP, PPP, PPTP
- Layer 2 + 3 Protocols
 - ARP, RARP, SPB, X.25

MAC Addresses

- Six bytes of information
 00-1D-92-98-36-8A
- Globally Unique
 - Conflicts not allowed
- First three bytes = OUI = Vendor ID
 - Organizationally Unique Identifier assigned by IEEE
 - 00:1D:92 = Micro-star International
 - http://aruljohn.com/mac/001D92

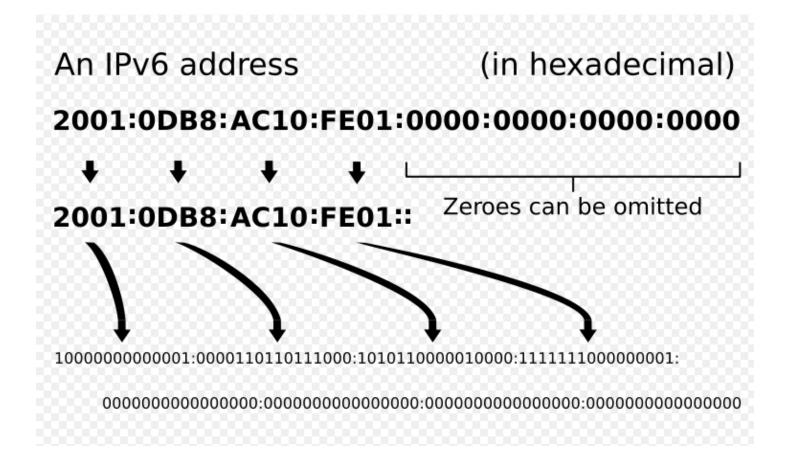
Layer 3 – Network

- IP lives here
- Protocols
 - ICMP Internet Control Message Protocol (PING)
 - IGMP Internet Group Management Protocol
 - IGRP Interior Gateway Routing Protocol
 - IPv4 / IPv6 Internet Protocol version 4 / 6
 - IPSec Internet Protocol Security
 - IPX Internetwork Packet Exchange
 - NDP Neighbor Discovery Protocol
 - RIP Routing Information Protocol

Packet Fundamentals

- IP Header = 24 Bytes
- TCP Header = minimum of 24 Bytes
- UDP Header = 8 Bytes exactly
- Maximum Transmission Unit (MTU) = 1500 bytes
 Windows defaults to 1480 bytes
- Jumbo Frames
 - 9000-bytes long
 - Goal is to reduce packet overhead
 - CRC-based checksum

IP Addressing Basics

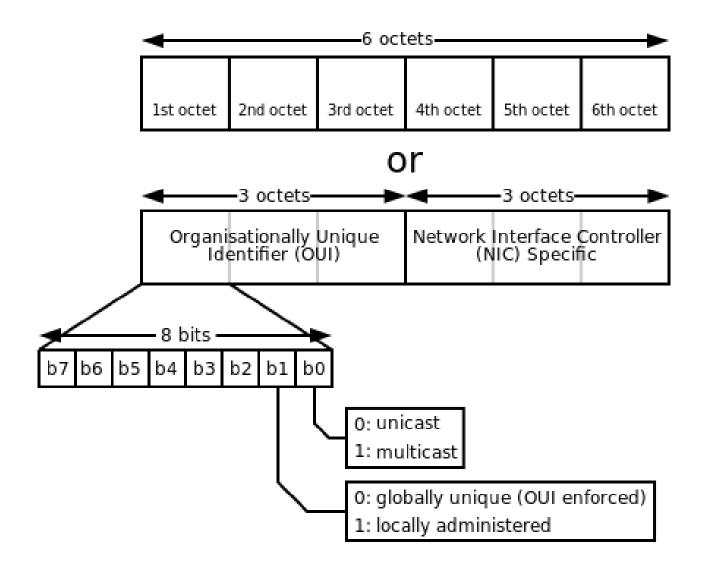

- IPv4 uses 32-bit addresses
- Class A (24-bit), B (20-bit) and C (16-bit)
- IPv4 addresses reserved in RFC 1918
- Dotted-decimal notation 192.168.1.1
- IPv6 uses 128-bit addresses
- IPv6 addresses reserved in RFC 4193
- Last octet may not be 0 or 255
 - 0 used for network identifier
 - 255 = broadcast address

IPv4 Addressing Details

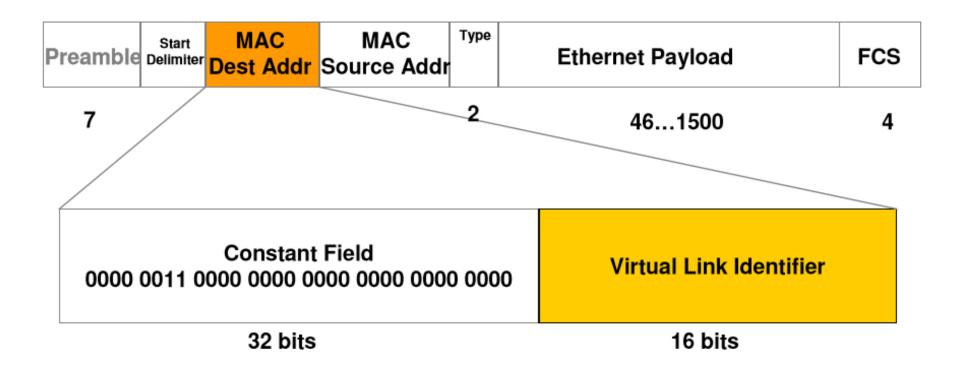
192.168.10.100 ↓ ↓ ↓ 11000000.10101000.00001010.01100100 One byte = Eight Bits

Thirty-two bits (4 x 8) in 4 bytes

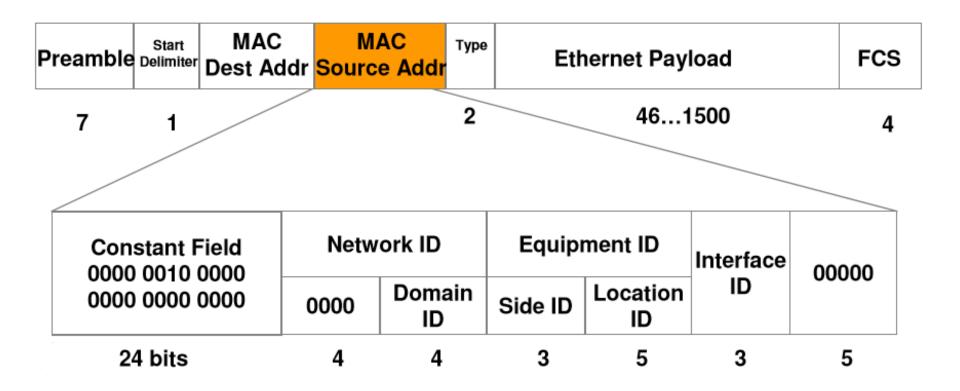
IPv6 Addressing Details



IP – Internet Protocol


Datagram

- Send it let it rattle around to its destination
- If it takes too long throw it away
- Address Format (V4)
 - 192.168.0.188 4 Octets (bytes)
- Sits on top of a Data Link Protocol
 - Ethernet
 - MAC Address Allocated by Card Manufacturer
 - http://aruljohn.com/mac.pl
 - But could be any of these
 - IEEE 802-2, Token Ring, FDDI, SMDS, SDLC, LAPB, etc.


Hardware (MAC) Address

ARINC-664 MAC Destination Address

ARINC-664 MAC Source Address

IP V4 Packet Format

Version	Header Length	Differentiated Services	Total Length		
Identification		ication	Fragment Info		
Time	to Live	Protocol	Header Checksum		
Source Address					
Destination Address					
Multiple 32 bit words of "Options"					
Data					

IP Packet Header Details

- Version = 4 for IPv4
- Header length = number of 32-bit words in header
 - Min length = 5 words or 20 bytes
 - Max length = 15 words if all options present
- Header length can be used as an offset from the start of the header to the beginning of data
- Time to Live actually a hop count which is decremented by each gateway
- Identification unique number for entire datagram used to reassemble fragments

IP Packet Header Details (cont)

- Protocol
 - -ICMP = 1
 - -IGMP = 2
 - -TCP = 6
 - -UDP = 17
- Address
 - 32-bits with each octet (byte) representing one of four digits in address

IP Address Aspects

- The IP Address applies to a connection not a host
- "Networks" and Subnets
 - Conceptual Class A, B, C
 - Actual implementation is Subnets
 - Defined by Subnet Mask 255.255.255.0
 - Works with IP Address
- Network Address Translation (NAT)
 - Routable address for public IP
 - Non-routable address behind firewall
 - http://en.Wikipedia.org/wiki/Private_network

Private IP Address

- Private IP Address Ranges (non-routable)
 - 10.0.0.0 to 10.255.255.255
 - 172.16.0.0 to 172.31.255.255
 - 192.168.0.0 to 192.168.255.255
- Gateway provides Address Translation (and other fire wall services)
 - Typically home router or Gateway Computer at .1 or .254 address
 - ISP provides global (WAN) IP address
 - For outgoing traffic NAT maintains a cross reference table
 - Incoming traffic must have handling rules (Port forwarding)

Automatic Private IP Addressing

- Defined in RFC 3927
 - Dynamic Configuration of IPv4 Link-Local Addresses "This document describes how a host may automatically configure an interface with an IPv4 address within the 169.254/16 prefix that is valid for communication with other devices connected to the same physical (or logical) link."
 - In the absence of a DHCP service an address in the 169.254/16 range may be assigned.
 - Bonjour is Apple's implementation of RFC 3927
 - Linux uses Avahi which implements the Apple Zeroconf specification

Multicast IP Address

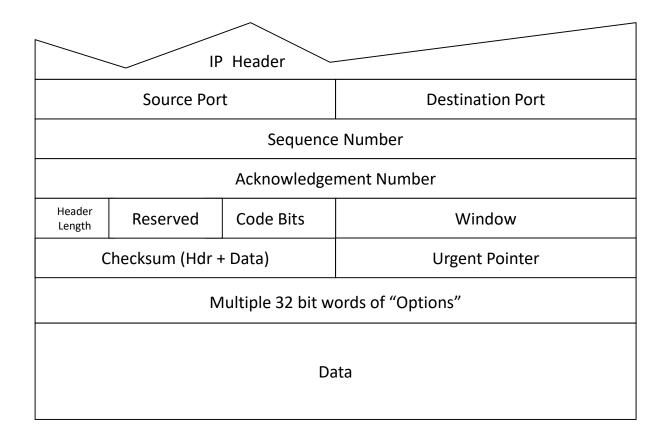
- Reserved range 224.0.0.0 to 239.255.255.255
- Well know addresses use 224.0 prefix
 - IGMP uses 224.0.0.22
 - PTP uses 224.0.0.107
 - NTP clients listen on 224.0.1.1
 - Zeroconf mDNS uses 224.0.0.251
- Ethernet multicast MAC addresses
 - FF:FF:FF:FF:FF:FF for broadcast
 - 01:80:C2:00:00, :03, :0E for Link Layer Discovery Protocol (LLDP)

Layer 4 - Transport

- TCP and UDP live here
- Also where encapsulation happens
 GRE Generic Routing Encapsulation for tunneling
- At this layer the data can be either connection oriented (TCP) or connectionless (UDP)
- A host operating system typically provides all services related to this layer
 - For a TCP connection the OS would handle all retransmit requests and return error status to the calling routine

TCP and UDP Port Numbers

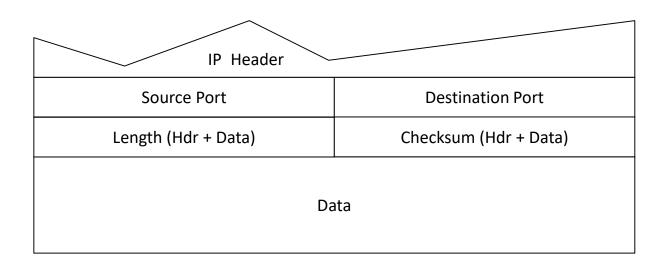
- Destination Port # is the "application" or "service" host address
 - Applications/services register to listen for incoming data on the defined port
 - IANA port numbers: <u>http://www.iana.org/assignments/port-numbers</u>
 - 0 to 1023 Well Known ports managed by IANA
 - 1024 to 49151 Registered by IANA as a convenience
 - 49152 to 65535 Dynamic (used for source address)
 - C:\WINDOWS\system32\drivers\etc\services
 - Source Port number used with IP addresses and destination port number to create a unique identifier for the connection
 - Source port number incremented at each use in dynamic case


TCP

- Transmission Control Protocol
- Described in RFC 793
- Highly reliable
- Connection oriented
- Error detection through checksum
- ACK / NAK

TCP Distinctions

- Ordered data transfer sequence number used to reassemble packets
- Retransmission of lost packets not acknowledged packets resent
- Error-free data transfer checksum used to ensure reliable transfer
- Flow control limits transfer rate to ensure reliable delivery
- Congestion control
- PDU = Protocol Data Unit which for layer 4 is either a segment for TCP or datagram for UDP


TCP PDU Format

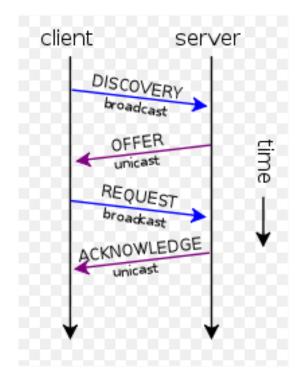
UDP

- User Datagram Protocol
- Described in RFC 768
- Minimal overhead
- Transaction oriented
- Delivery and duplicate protection not guaranteed

UPD PDU Format

Routing

- Routing is the act of moving information across an internetwork from source to destination. Along the way, at least one intermediate node typically is encountered. Routing occurs at Layer 3 (the network layer) of the OSI reference model.
- Routing algorithms
 - OSPF is the most common interior gateway protocol (IGP)
 - OSPF V2 defined in RFC 2328 for IPv4
 - OSPF V3 defined in RFC 5340 updated for IPv6
- Routing Information Protocol (RIP)
 - RFCs 1058, 1388, 1723


Domain Name System (DNS)

- Essentially a global phone book for the Internet
- Translates friendly names into IP addresses
- Original RFCs published in 1983 (882, 883)
- RFCs 1034, 1035 published in 1987 superseded previous versions
- Naming rules in RFCs 1035, 1123 and 2181
- Queries use UDP over port 53 using format specified in RFC 1035

DHCP

- Dynamic Host Control Protocol
- Described in RFC 1531 and RFC 2131
- IPv6 extensions in RFC 3315
- DHCP uses the same two <u>IANA</u> assigned ports as <u>BOOTP</u>: 67/udp for the <u>server</u> <u>side</u>, and 68/udp for the <u>client side</u>.
- Four basic phases: IP discovery, IP lease offer, IP request, and IP lease acknowledgement.

DHCP Sequence

The Basics

- Addressing
 - Physical (MAC)
 - Numerical (IPV4 192.168.1.1)
- Services
 - DHCP (give me an address)
 - DNS (find an address)
- Protocols
 - TCP (connection oriented, guaranteed delivery)
 - UDP (think streams)

MAC Addresses

- Six bytes of information
 - 00-1D-92-98-36-8A
- Globally Unique
 - Conflicts not allowed
- First three bytes = OUI = Vendor ID
 - Organizationally Unique Identifier assigned by IEEE
 - 00:1D:92 = Micro-star International
 - http://aruljohn.com/mac/001D92

UDP Traffic

- DNS
- SNMP Simple Network Management Protocol
- Video / Audio streaming

Common Problems

• Router

Ping outside IP address

- Broken DNS
- Firewall issues
- Addressing problems

Netmask – defaults on new gear

Expert Information

- Identifies potential problems
- Warnings Tab
 - Connection reset
 - Duplicate IP address
- Click on entry and jump to packet display

Bad Behavior

- Statistics -> Resolved Addresses
- Statistics -> Protocol Hierarchy
- Statistics -> Conversations
- Statistics -> Endpoints
- Statistics -> DNS
- Statistics -> Flow Graph

Wireshark IO Graphs

- Click in graph jumps to packet in main display
- Use Filter to show specifics
 tcp shows just TCP traffic
- Click on Graph 1 button to show / hide
- Y-axis units
 - Packets / tick as default
 - Bytes, bits / tick available

Wireshark Config

• Turn extra panes off

View / highlight and press space bar

- Turn colors off
- Set appropriate time
 - Delta time
 - Time of day

Links

- <u>http://wireshark.org</u>
- <u>http://wiki.wireshark.org</u>
- <u>http://www.riverbed.com/products/performance-management-control/network-performance-management/wireless-packet-capture.html</u>
- <u>https://www.youtube.com/channel/UCHBY7sUVdWK4bOSe7khG0UA</u>
- https://www.youtube.com/
 - Tony Fortunato LMTV
 - Chris Greer
 - The Technology Firm

QUESTIONS?