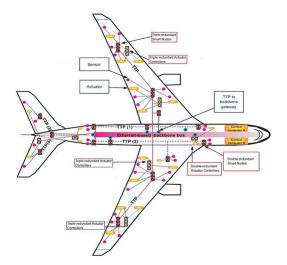
Outline

- Introduction to Networked Embedded Systems
 - Embedded systems → Networked embedded systems → Embedded Internet
 - Network properties
- Layered Network Architectures
 - OSI framework descriptions of layers
 - Internet protocol stack
- Physical Layer Options
 - Guided transmission media
 - Wireless transmission media
- Data Link Layer Services and MAC Protocols
- Embedded System Communication Protocols
 - Wired protocols: Ethernet, CAN, TTP, BACnet
 - Wireless protocols: Wi-Fi, ZigBee, WirelessHART
- TCP/IP Stack and 6LoWPAN Stack
- Modeling and Analysis of Communication Protocols

NETWORKS FOR ALL SIZES AND SCALES

- NoCs connecting processors inside MPSoCs
- SPI, I2C, UART... connecting discrete components inside boards
- USB, FireWire... connecting peripherals around a PC
- Bluetooth, RFID, NFC... connecting peripherals or sensors in small areas (BANs, PANs ...)
- CAN, fieldbuses... connecting sensors, actuators and controlling equipment in a monitoring or control system (DCS)
- Zigbee, WirelessHART... connection of self-organized wireless sensors (WSNs)
- Ethernet, WiFi... connection of PCs and equipment in local areas (LANs)
- 10G Ethernet, ATM... connection of large systems in large areas (MANs, WANs)
- GSM, LTE, WiMax... wide area communications (MANs, WANs)


WHY NETWORKED AND DISTRIBUTED ARCHITECTURE

- Processing closer to data source / sink
 - Intelligent sensors and actuators
 - Reduce the computational overhead on the central processing node
- Dependability
 - Error-containment within nodes
- Composability
 - System composition by integrating components and subsystems
- Scalability
 - Easy addition of new nodes with new or replicated functionality
 - Especially for wireless
- Maintainability
 - Modularity and easy node replacement
 - Simplification of the cabling, especially for wireless

DISTRIBUTED VS. NETWORKED EMBEDDED SYSTEMS

Distributed Embedded Systems

- System-centered (designed as a whole)
 - Confined in space (despite possibly large)
 - Normally fixed set of components
 - Preference for wired networks w/ fixed topology
- Most common non-functional requirements
 - Real-time
 - End-to-end constraints on response to stimuli
 - Jitter constraints on periodic activities
 - Dependability
 - Ultra high reliability and safety, high availability
 - Composability
 - Maintainability

Networked Embedded Systems

- Interconnected stand-alone equipment or systems for extra functionality (communication-centered)
 - Fuzzy notion of global system
 - Variable set of components
 - A combination of wireless/wired networks
 - Structured / Ad-hoc connections
 - Varying topology
 - Multi-hop communication
- Most common non-functional requirements
 - Scalability
 - Heterogeneity
 - Self-configuration
 - (Soft) real-time

NETWORK PROPERTIES

- Supported topologies
 - star, line, tree, mesh, bus, ring...
- Media access mechanisms
 - controlled access vs. uncontrolled access
- Network performance metrics
 - Bandwidth, throughput and goodput
- Network real-time performance
 - latency, jitter, coherent notion of time
- Network Security
 - Cryptosecurity, Emission, Transmission and Physical security

Outline

- Introduction to Networked Embedded Systems
 - Embedded systems → Networked embedded systems → Embedded Internet
 - Network properties
- Layered Network Architectures
 - OSI framework descriptions of layers
 - Internet protocol stack
- Physical Layer Options
 - Guided transmission media
 - Wireless transmission media
- Data Link Layer Services and MAC Protocols
- Embedded System Communication Protocols
 - Wired protocols: Ethernet, CAN, TTP, BACnet
 - Wireless protocols: Wi-Fi, ZigBee, WirelessHART
- TCP/IP Stack and 6LoWPAN Stack
- Modeling and Analysis of Communication Protocols

- Layer architecture simplifies the network design.
 - Explicit structure allows identification, relationship of complex system's pieces.
 - Modularization eases maintenance, updating of system.
 - Change of implementation of layer's service transparent to rest of system.
- It is easy to debug network applications with a layered architecture.
- The network management is easier due to the layered architecture.
- Network layers follow a set of rules, called protocol.
- The protocol defines the format of the data being exchanged, and the control and timing for the handshake between layers.

- Structured layering implies that the functions of each layer are carried out completely before the protocol data unit is passed to the next layer.
- This means that the optimization of each layer has to be done separately.
- Such ordering constraints are in conflict with efficient implementation of data manipulation functions.

ISO/OSI REFERENCE MODEL

- Application: Network processes to applications
 - FTP, SMTP, HTTP...
- Presentation: Data representation
 - encryption, compression, machine-specific conventions
- Session: Interhost communication
 - synchronization, checkpointing, recovery of data exchange
- Transport: End-to-end connections
 - TCP, UDP
- Network: Addressing and routing
 - IP, routing protocols
- Link: Access to media
 - Ethernet, 802.111 (WiFi), PPP
- Physical: bits "on the wire"

application
presentation
session
transport
network
link
physical

- Internet stack "missing" presentation and session layers.
 - These services, if needed, must be implemented in applications.

Application: supporting network applications - FTP, SMTP, HTTP	application
Transport: process data transfer - TCP, UDP	transport
Network: routing of datagrams from source to destination - IP, routing protocols	network
Link: data transfer between neighboring network elements	link
- Ethernet, 802.111 (WiFi), PPP Physical: bits "on the wire"	physical

EMBEDDED / REAL-TIME PROTOCOL STACK

• The OSI 7 layers impose a considerable overhead

- Time to execute the protocol stack
- Time to transmit protocol control information
- Memory requirements (for all intermediate protocol invocations)

Many embedded / real-time networks

- are dedicated to a well defined application
- use single broadcast domain (no need for routing)
- use short messages (no need to fragment/reassemble)

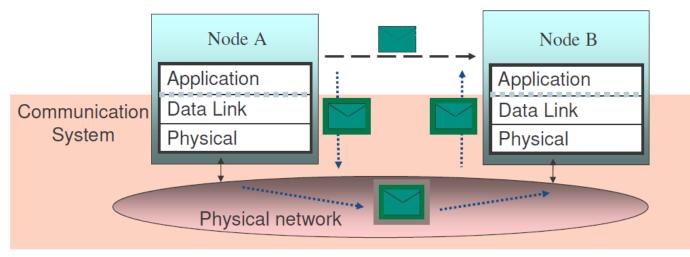
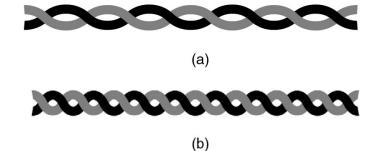


Figure from Dr. Luis Almeida

Outline

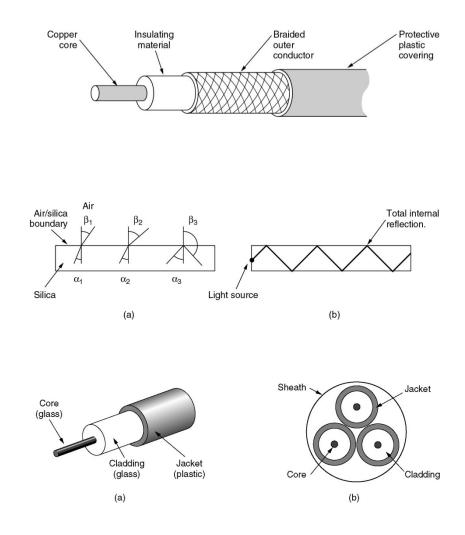

- Introduction to Networked Embedded Systems
 - Embedded systems → Networked embedded systems → Embedded Internet
 - Network properties
- Layered Network Architectures
 - OSI framework descriptions of layers
 - Internet protocol stack
- Physical Layer Options
 - Guided transmission media
 - Wireless transmission media
- Data Link Layer Services and MAC Protocols
- Embedded System Communication Protocols
 - Wired protocols: Ethernet, CAN, TTP, BACnet
 - Wireless protocols: Wi-Fi, ZigBee, WirelessHART
- TCP/IP Stack and 6LoWPAN Stack
- Modeling and Analysis of Communication Protocols

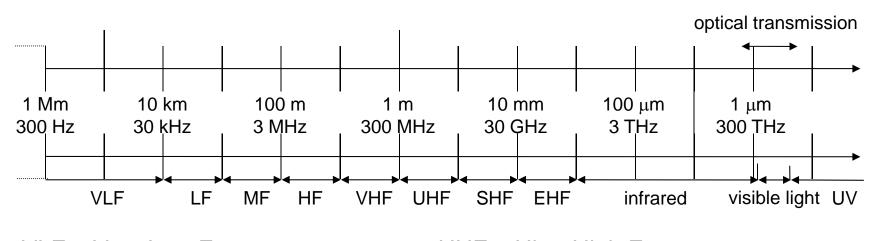
Magnetic Media

- HP Ultrium tape =100GB. A box 60x60x60 holds 2000 tapes =>200 Tera bytes=1600 Tbits.
- A box can be delivered in 24 hours anywhere in USA => throughput: 1600 Tbits/86400 sec = 19 Gbps!

Twisted Pair/ Unshielded TP (UTP)

- Classic telephone lines
 - Category 3 (a) 16MHz
 - Category 5 (b) 100 MHz
 - Category 6 250 MHz
 - Category 7 600 MHz
- Throughput : a few Mbit/sec Gbits/sec.
- Works up to 100m, afterwards repeaters needed.


GUIDED TRANSMISSION MEDIA (CONT.)


Coaxial Cable

- Bandwidth ~ 1 GHz (better shielding)
- Up to 200m

Fiber Optics

- Rather used at higher bandwidths
- Invulnerable to electric and electromagnetic signals
- Could be very long
- Hard to tamper with -> Security
- Usually simplex transmission

VLF = Very Low FrequencyUHF = Ultra High FrequencyLF = Low FrequencySHF = Super High FrequencyMF = Medium FrequencyEHF = Extra High FrequencyHF = High FrequencyUV = Ultraviolet Light

VHF = Very High Frequency

- Frequency and wave length: $\lambda = c/f$, wave length λ , speed of light $c \cong 3x10^8$ m/s, frequency f
- Radio spectrum is part of the electromagnetic spectrum from 1Hz to 3THz: <u>http://en.wikipedia.org/wiki/Radio_spectrum</u>

DATA LINK LAYER SERVICES

- Framing, link access:
 - encapsulate datagram into frame, adding header, tailer
 - channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, destination
- Reliable delivery between adjacent nodes
 - Seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
- Flow control:
 - Pacing between adjacent sending and receiving nodes
- Error detection:
 - Errors caused by signal attenuation, noise.
 - Receiver detects presence of errors: signals sender for retransmission or drops frame
- Error correction:
 - Receiver identifies and corrects bit error(s) without resorting to retransmission
- Half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

- Single shared broadcast channel
- Two or more simultaneous transmissions by nodes: interference
 - *Collision* if node receives two or more signals at the same time

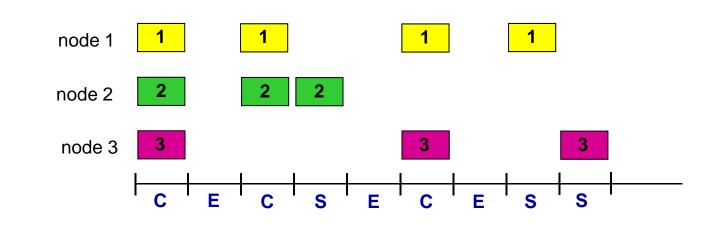
Multiple Access Protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit.
- communication about channel sharing must use channel itself.
 - no out-of-band channel for coordination

given: broadcast channel of rate *R* bps

desiderata:

- 1. when one node wants to transmit, it can send at rate *R*.
- 2. when *M* nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple


Three broad classes:

- Channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- Random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "Taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

RANDOM ACCESS PROTOCOLS

- When node has packet to send:
 - Transmit at full channel data rate R.
 - No *a priori* coordination among nodes
 - Two or more transmitting nodes → "collision"
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - Slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

SLOTTED ALOHA

Pros:

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

Cons:

- Collisions, wasting slots
- Idle slots
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- prob that given node has success in a slot = p(1-p)^{N-1}
- prob that any node has a success = Np(1-p)^{N-1}

- max efficiency: find p* that maximizes Np(1-p)^{N-1}
- for many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives:

max efficiency = 1/e = .37

at best: channel used for useful transmissions 37% of time!

PURE (UNSLOTTED) ALOHA

- Unslotted Aloha: simpler, no synchronization
- When frame first arrives:
 - transmit immediately
- Collision probability increases:
 - frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

P(success by given node) = P(node transmits) -

P(no other node transmits in $[t_0-1,t_0]$. P(no other node transmits in $[t_0,t_0+1]$

$$= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$
$$= p \cdot (1-p)^{2(N-1)}$$

... choosing optimum p and then letting n $\longrightarrow \infty$

= 1/(2e) = .18

even worse than slotted Aloha!

CSMA: listen before transmit

- If <u>channel sensed idle</u>: transmit entire frame
- If <u>channel sensed busy</u>: defer transmission
- Human analogy: don't interrupt others!

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- Collision detection:
 - easy in wired media: measure signal strengths, compare transmitted, received signals
 - difficult in wireless media: received signal strength overwhelmed by local transmission strength
- Human analogy: the polite conversationalist

- CSMA/CA:
 - Wireless MAC protocols often use collision avoidance techniques, in conjunction with a (physical or virtual) carrier sense mechanism
 - To be discussed more in WiFi and ZigBee protocols
- Collision avoidance
 - Nodes hearing RTS or CTS stay silent for the duration of the corresponding transmission.
 - Once channel becomes idle, the node waits for a randomly chosen duration before attempting to transmit.
- Carrier sense
 - Nodes stay silent when carrier sensed (physical/virtual)
 - Physical carrier sense: carrier sense threshold
 - Virtual carrier sense using Network Allocation Vector (NAV): NAV is updated based on overheard RTS/CTS/DATA/ACK packets

Channel partitioning MAC protocols:

- Share channel *efficiently* and *fairly* at high load
- Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- Efficient at low load: single node can fully utilize channel
- High load: collision overhead

"taking turns" protocols

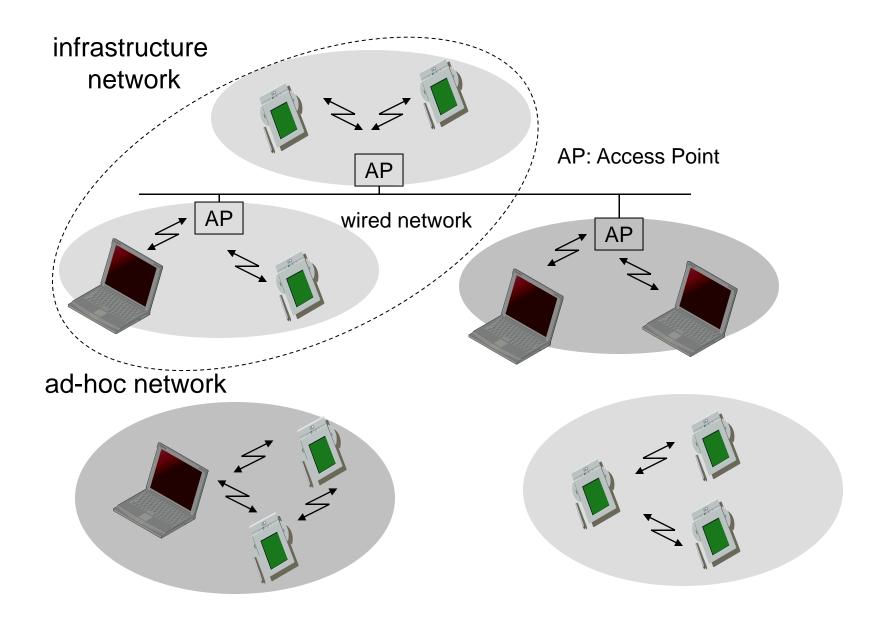
Look for best of both worlds.

SUMMARY OF MAC PROTOCOLS

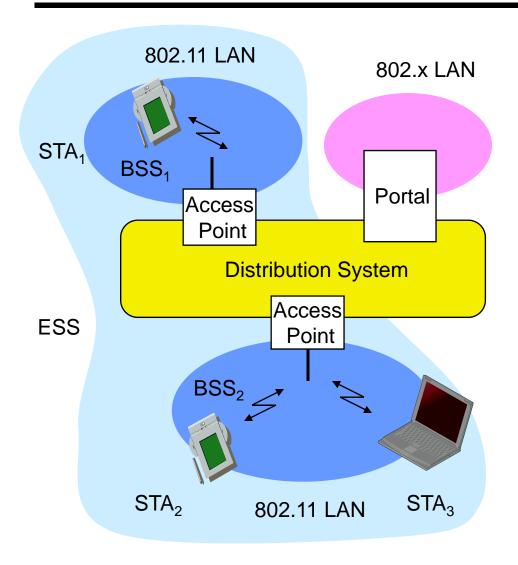
- Channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- Random access (dynamic)
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - Carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- Taking turns
 - Polling from central site, token passing
 - Bluetooth, FDDI, token ring

Outline

- Introduction to Networked Embedded Systems
 - Embedded systems → Networked embedded systems → Embedded Internet
 - Network properties
- Layered Network Architectures
 - OSI framework descriptions of layers
 - Internet protocol stack
- Physical Layer Options
 - Guided transmission media
 - Wireless transmission media
- Data Link Layer Services and MAC Protocols
- Embedded System Communication Protocols
 - Wired protocols: Ethernet, CAN, TTP, BACnet
 - Wireless protocols: Wi-Fi, ZigBee, WirelessHART
- TCP/IP Stack and 6LoWPAN Stack
- Modeling and Analysis of Communication Protocols

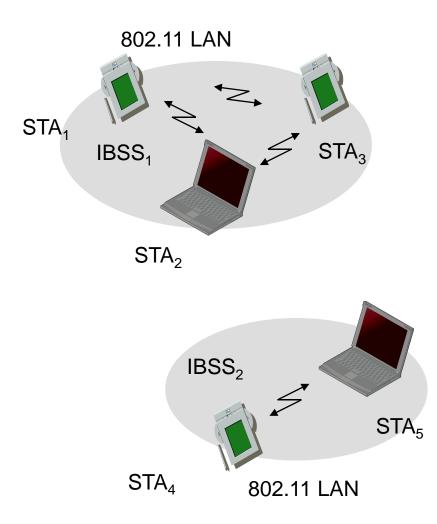

Wired communication protocol examples:

- Ethernet (802.3)
- CAN
- TTP
- BACnet


Wireless communication protocol examples:

- Wi-Fi (802.11)
- ZigBee (based on 802.15.4 PHY and MAC)
- WirelessHART (Not discussed in this lecture)

INFRASTRUCTURE VS. AD-HOC NETWORKS



802.11: INFRASTRUCTURE

- Station (STA)
- terminal with access mechanisms to the wireless medium and radio contact to the access point
- Access Point
- station integrated into the wireless
 LAN and the distribution system
- Basic Service Set (BSS)
- group of stations using the same AP
- Portal
- bridge to other (wired) networks
- Distribution System
- interconnection network to form one logical network (EES: Extended Service Set) based on several BSS

802.11: AD HOC MODE

Direct communication within a limited range

- Station (STA): terminal with access mechanisms to the wireless medium
- Independent Basic Service Set (IBSS): group of stations using the same network

- Data rate
 - 1, 2, 5.5, 11 Mbit/s, depending on SNR
 - User data rate max. approx. 6 Mbit/s
- Transmission range
 - 300m outdoor, 30m indoor
 - Max. data rate ~10m indoor
- Frequency
 - Free 2.4 GHz ISM-band
- Availability
 - Many products and vendors

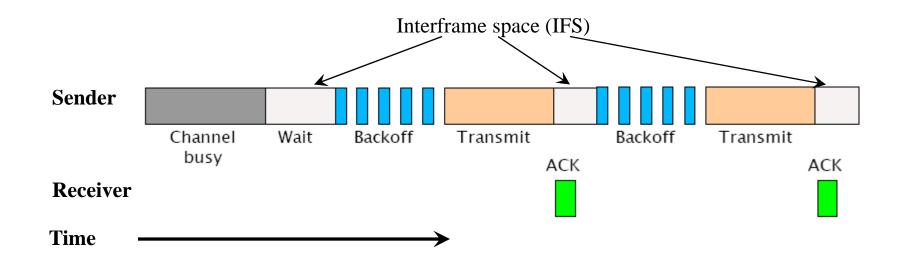
- Quality of Service
 - Best effort, no guarantees (unless polling is used, limited support in products)
- Pros
 - Many installed systems and vendors
 - Available worldwide
 - Free ISM-band
- Cons
 - Heavy interference on ISM-band
 - No service guarantees
 - Relatively low data rate

WLAN: IEEE 802.11A

- Data rate
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR
 - User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32 (54)
 - 6, 12, 24 Mbit/s mandatory
- Transmission range
 - 100m outdoor, 10m indoor
 - E.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25 m, 24 up to 30m, 18 up to 40 m, 12 up to 60 m
- Frequency
 - Free 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz ISM-band

- Availability
 - Some products, some vendors
- Quality of Service
 - Best effort, no guarantees (same as all 802.11 products)
- Pros
 - Fits into 802.x standards
 - Free ISM-band
 - Available, simple system
 - Uses less crowded 5 GHz band
 - Higher data rates
- Cons
 - Shorter range

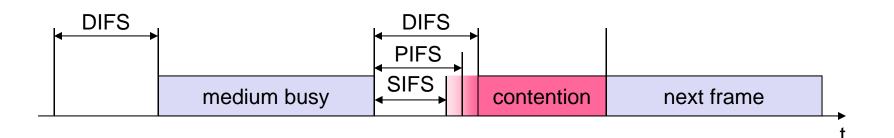
WLAN: IEEE 802.11N

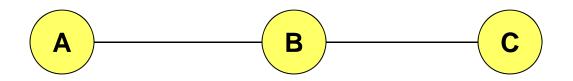

- Data rate
 - 7.2, 14.4, 21.7, 28.9, ..., 72.2 Mbit/s, depending on SNR
- Multiple input multiple output (MIMO)
- 20MHz and 40MHz bands
- Transmission range
 - Increase range by several factors due to MIMO
- Frequency
 - Free 2.4GHz ISM-band
 - Free 5.15-5.25, 5.25-5.35, 5.725 5.825 GHz ISM-band
- Availability
 - Some products, some vendors

- Quality of Service
 - Best effort, no guarantees (same as all 802.11 products)
- Pros
 - Fits into 802.x standards
 - Free ISM-band
 - Available, simple system
 - Uses dual band
 - Higher data rates
- Cons
 - Interference on ISM-band

Distributed and centralized access methods

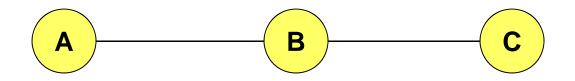
- DCF CSMA/CA (mandatory)
 - Collision avoidance via randomized "back-off" mechanism
 - Minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
- DCF w/ RTS/CTS (optional)
 - Distributed Foundation Wireless MAC
 - Avoids hidden terminal problem
- PCF (optional)
 - Access point polls terminals according to a list


DCF ILLUSTRATION

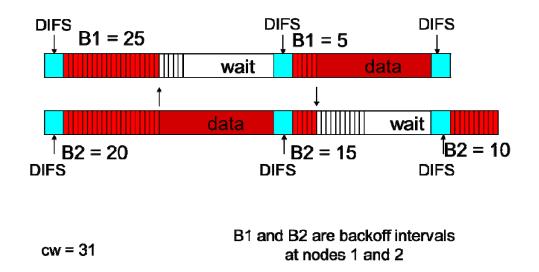


- Before a node transmits, it listens for activity on the network
- If medium is busy, node waits to transmit
- After medium is clear, don't immediately start transmitting...
- Otherwise all nodes would start talking at the same time!
- Instead, delay a random amount of time (random backoff)

Priorities defined through different inter frame spaces

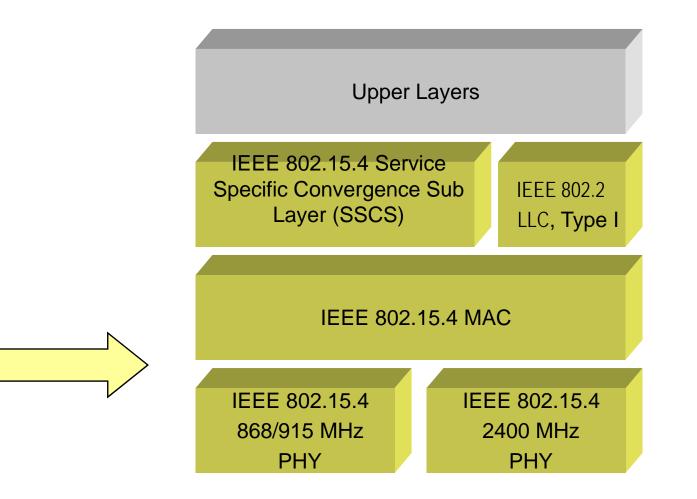

- No guarantee, hard priorities
- SIFS (Short Inter Frame Spacing)
 - Highest priority, for ACK, CTS, polling response
- PIFS (PCF IFS)
 - Medium priority, for time-bounded service using PCF
- DIFS (DCF, Distributed Coordination Function IFS)
 - Lowest priority, for asynchronous data service

- B can communicate with both A and C
- A and C cannot hear each other
- Problem
 - When A transmits to B, C cannot detect the transmission using the carrier sense mechanism
 - If C transmits, collision will occur at node B
- Solution
 - Hidden sender C needs to defer


SOLUTION FOR HIDDEN TERMINAL PROBLEM: MACA

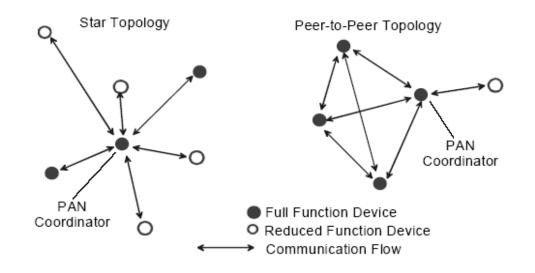
- When A wants to send a packet to B, A first sends a Request-to-Send (RTS) to B
- On receiving RTS, B responds by sending Clear-to-Send (CTS), provided that A is able to receive the packet
- When C overhears a CTS, it keeps quiet for the duration of the transfer
 - Transfer duration is included in both RTS and CTS

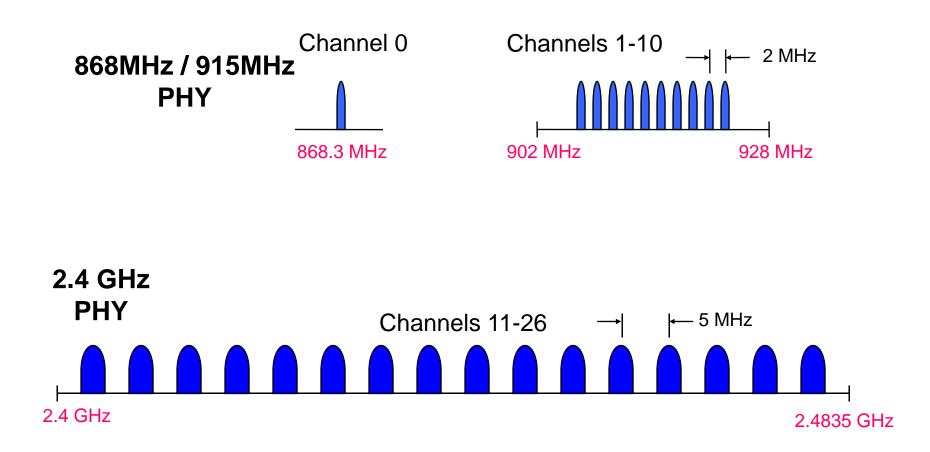
BACKOFF INTERVAL


- Collision avoidance
 - Backoff intervals used to reduce collision probability
- When transmitting a packet, choose a backoff interval in the range [0, CW]
 - CW is contention window
- Count down the backoff interval when medium is idle
 - Count-down is suspended if medium becomes busy
- Transmit when backoff interval reaches 0

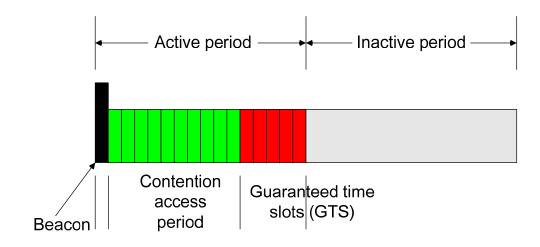
- The time spent counting down backoff intervals is a part of MAC overhead
- Important to choose CW appropriately
 - large CW \rightarrow large overhead
 - small CW → may lead to many collisions (when two nodes count down to 0 simultaneously)
- How to choose an appropriate CW?

- Types
 - control frames, management frames, data frames
- Sequence numbers
 - important against duplicated frames due to lost ACKs
- Addresses
 - Sender, receiver, BSS identifier
- Miscellaneous
 - sending time, checksum, frame control, data

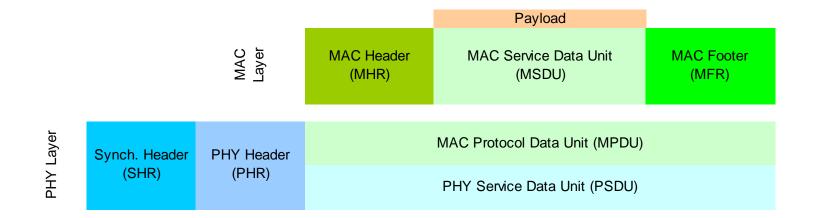

byte	es 2	2	6		6		6	2		6	0-2312	4
	Frame Control	Duratio ID	on/ Addr 1	ess	Addres 2	ss Ado	dress 3	Sequen Contro		ldress 4	Data	CRC
г 												
bits	2	2	4	1	1	1	1	1	1	1	1	
	Protocol version	Туре	Subtype	To DS	From DS	More Frag	Retry	Power Mgmt	More Data	WEP	Order	



- Two or more devices communicating on the same physical channel constitute a WPAN which includes at least one FFD (PAN coordinator).
- Each independent PAN will select a unique PAN identifier.
- All devices operating on a network shall have unique 64-bit extended address. This address can be used for direct communication in the PAN.
- An associated device can use a 16-bit short address, which is allocated by the PAN coordinator when the device associates.


IEEE 802.15.4 SUPPORTED TOPOLOGIES

- MAC supports 2 topologies: star and peer-to-peer
- Star topology supports beacon and no-beacon structure
 - All communication done through PAN coordinator



- Star networks: devices are associated with coordinators
 - Forming a PAN, identified by a PAN identifier
- Coordinator
 - Bookkeeping of devices, address assignment, generate beacons
 - Talks to devices and peer coordinators
- Beacon-mode superframe structure
 - GTS assigned to devices upon request

IEEE 802.15.4 GENERAL FRAME STRUCTURE

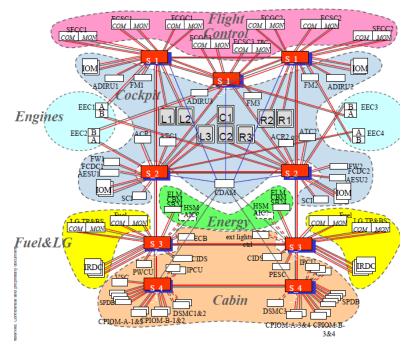
Four Types of MAC Frames:

- Data Frame
- Beacon Frame
- Acknowledgment Frame
- MAC Command Frame

EMBEDDED SYSTEM COMMUNICATION PROTOCOLS

Wired communication protocol examples:

- Ethernet (802.3)
- CAN
- TTP
- BACnet

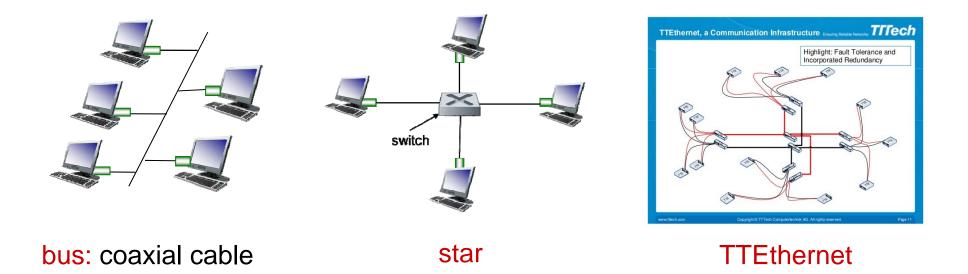

Wireless communication protocol examples:

- Wi-Fi (802.11)
- ZigBee (based on 802.15.4 PHY and MAC)
- WirelessHART (Not discussed in this lecture)

EMBEDDED SYSTEM COMMUNICATION PROTOCOL: ETHERNET

"dominant" wired LAN technology:

- cheap \$20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- kept up with speed race: 10 Mbps 10 Gbps



An example avionics communication network: AFDX network (Avionics Full Duplex Ethernet

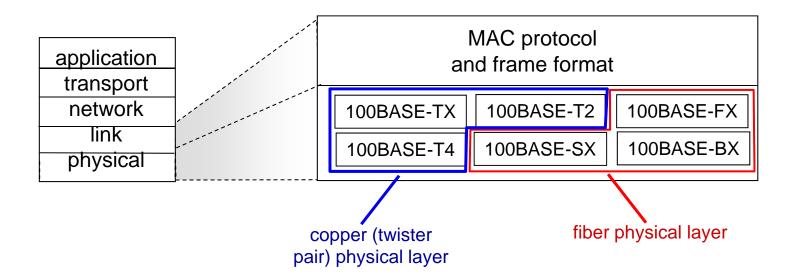
(Figure from Airbus, more details can be found at: <u>http://www.artist-</u> <u>embedded.org/docs/Events/2007/IMA/Slides/AR</u> <u>TIST2_IMA_Itier.pdf</u>)

ETHERNET: PHYSICAL TOPOLOGY

- Bus: traditional topology
 - All workstations are connected on a single cable.
 - All transmissions go to all the connected workstation.
- Star: the most common solution today
 - Active switch in center
 - Each "spoke" runs a (separate) Ethernet protocol

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble:


- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- Used to synchronize receiver, sender clock rates

ETHERNET: UNRELIABLE, CONNECTIONLESS

- Connectionless: no handshaking between sending and receiving NICs
- Unreliable: receiving NIC doesn't send ACKs or NACKs to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer reliable data transfer (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

Many different Ethernet standards

- Common MAC protocol and frame format
- Different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
- Different physical layer media: fiber, cable

https://en.wikipedia.org/wiki/Ethernet_physical_layer