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Objective

The aim of the course is to give students an introduction to the new developments
in nonlinear dynamics and fractals. Emphasis will be on the basic concepts of stability,
bifurcations and intermittency, based on intuition rather than mathematical proofs. On
successful completion of this course, students should understand and apply the theory
to simple nonlinear dynamical systems and be able to evaluate the importance of
nonlinearity in various environments.
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Plan of the Course

1. Introduction

e Dynamical and Geometrical View of the World
e Fractals
e Stability of Linear Systems
2. Nonlinear Dynamics
e Attracting and Stable Fixed Points
e Nonlinear Systems: Pendulum

3. Fractals and Chaos

e Strange Attractors and Deterministic Chaos
e Bifurcations
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4. Strange Attractors

Stretching and Folding Mechanism
Baker's Map

Logistic Map
Hénon Map

5. Conclusion: importance of nonlinearity and fractals
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Poincaré

Birkhoff
Kolmogorov
Amol'd
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- A Capsule History

Invention of calculus, explanation of planetary motion
Flowering of calculus and classical mechanics

Analytical studies of planetary motion
Geometric approach, nightmares of chaos
Nonlinear oscillators in physics and engmeenng
invention of radio, radar, laser

Complex behavior in Hamiltonian mechanics

Strange attractor in simple model of convection

Turbulence and chaos
Chaos in logistic map

Universality and renormalization, connection between
chaos and phase transitions

Experimental studies of chaos

Nonlinear oscillators in biology
Fractals

Widespread interest in chaos, fractals, oscillators,
and their applications
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Growth, decay, or Oscillations Collective phenomena Waves and patterns
equilibrium

Linear oscillator Civil engineering, Coupled harmonic oscillators Elasticity
Exponential growth . structures ) : .

Mass and spring Solid-state physics Wave equations
RC circuit

Radioactive decay

Fixed points
Bifurcations
Overdamped systems,

relaxational dynamics

Logistic equation
for single species

RLC circuit

2-body problem
(Kepler, Newton)

Pendulum

Anharmonic oscillators

Limit cycles

Biological oscillators
(neurons, heart cells)
Predator-prey cycles

Nonlinear electronics

(van der Pol, Josephson)

Electrical engineering

Molecular dynamics
Equilibrium statistical
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The frontier

Chaos
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(Lorenz)

3-body problem (Poincaré)
Chemical kinetics

Iterated rriaps (i‘eigenbaum)
Fractals

(Mandelbrot)

Forced nonlinear oscillators
(Levinson, Smale)

,__',._.___

| Practical uses of chaos
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Coupled nonlinear oscillators
Lasers, nonlinear optics
Nonequilibrium statistical
mechanics

Nonlinear solid-state physics
(semiconductors)

Josephson arrays

Heart cell synchronization
Neural networks

Immune system

Ecosystems

Economics

Electromagnetism (Maxwell)
Quantum mechanics
(Schrtdinger, Heisenberg, Dirac)
Heat and diffusion

Acoustics

Viscous fluids

Spatio-temporal complexity

Nonlinear waves (shocks, solitons)
Plasmas .

Earthquakes

General relativity (Einstein)
Quantum field theory
Reaction-diffusion,

biological and chemical waves
Fibrillation

Epilepsy

Turbulent fluids (Navier-Stokes)
Life
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Fractals
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A fractal is a rough or o Y% 2% ¥ 2 Ty 8

fragmented geometrical object — 1 b=
that can be subdivided in ‘ ' : :
parts, each of which is (at least
approximately) a reduced-size
copy of the whole.

Fractals are generally self-
similar and independent of
scale (fractal dimension).
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If N, is the number of elements of
size r, needed to cover a set (C is a
constant) is:

Nn:_ (1)

then in case of self-similar sets:

Nn+1 — C/(rn+1)Ds
and hence the fractal similarity
dimension D is

D= ln(Nn+1/Nn)/ln(rn/rn+l)° (2)

e Cantorset D =1n2/In3

e Koch curve D =1n4/1n3

e Sierpinski carpet D =1n8/In3
e Mengor sponge D =1n20/1n3
e Fractal cube D=1n6/In2
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Stability of Linear Systems

Two-Dimensional System
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Attracting and Stable Fixed Points
We consider a fixed point x* of a system x = F(x), where F(x*) = 0.
We say that x* is attracting if there is a 6 > 0 such that limx() = x*

f—yo0
whenever [x(0) —x*|| < &: any trajectory that starts within a distance § of x* is

guaranteed to converge to x*.

A fixed point x* is Lyapunov stable if for each ¢ > 0 there is a 6 > 0
such that ||x(r) — x*|| < € whenever ¢+ > 0 and [|x(0) —x*|| <& : all
trajectories that start within 6 of x* remain within ¢ of x* for all positive time.

radius = 6 l radius =&

Attracting Liapunov stable
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Nonlinear Systems: Pendulum
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Attractors

An ATTRACTOR is a closed set A with the properties:

1. Ais an INVARIANT SET:
any trajectory x(¢) that start in A stays in A for ALL time ¢.

2. A ATTRACTS AN OPEN SET OF INITIAL CONDITIONS:
there is an open set U containing A (C U) such that if x(0) € U, then the
distance from x(¢) to A tends to zero as t — oe.

3. Ais MINIMAL:
there is NO proper subset of A that satisfies conditions 1 and 2.

STRANGE ATTRACTOR is an attracting set that is a fractal: has zero
measure in the embedding phase space and has FRACTAL dimension.
Trajectories within a strange attractor appear to skip around randomly.

Dynamics on CHAOTIC ATTRACTOR exhibits sensitive (exponential)
dependence on initial conditions (the ’'butterfly’ effect).
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Deterministic Chaos
CHAOS (yaog) is

e NON-PERIODIC long-term behavior
e in a DETERMINISTIC system
e that exhibits SENSITIVITY TO INITIAL CONDITIONS.

We say that a bounded solution x(¢) of a given dynamical system is
SENSITIVE TO INITIAL CONDITIONS if there is a finite fixed distance r > 0
such that for any neighborhood ||Ax(0)|| < 8, where & > 0, there exists (at
least one) other solution x(¢) + Ax(¢) for which for some time r > 0 we have
1A (z)]| > r.

There is a fixed distance r such that no matter how precisely one specify
an initial state there is a nearby state (at least one) that gets a distance r
away.

Given x(t) = {x(¢),...,x,(¢)} any positive finite value of Lyapunov

| Axk(t)
exponents A, = lim —1
P C e A (0)

t—oo f

, Where k=1,...n, implies chaos.
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Types of Bifurcations

Figure 2.15 Generic
bifurcations of
differentiable one-
dimensional maps.
The system parameter
r increases toward the
right. The vertical
scale represents the
value of the map
variable. Dashed lines
represent unstable
orbits. Solid lines
represent stable orbits.
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Bifurcation Diagram for the Logistic Map
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Intermittency

In dynamical systems theory: occurrence of a signal that alternates
randomly between long periods of regular behavior and relatively short
irregular bursts. In other words, motion in intermittent dynamical system is
nearly periodic with occasional irregular bursts.
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Pomeau & Manneville, 1980
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Intermittent Behavior
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Bifurcation and Intermittency

Figure 2.13(a) x,, 4 1.0 A = "\
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Horseshoe Map
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Henon Map

The Hénon map is given by

Koo =Y, t1=axy | 3, =bx,,

where a and b are adjustable parameters.
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Baker’s Ma

The baker’s map B of the square 0 < x <1, 0 < y <1 to itself is given by

(2%, dy,) for0<x, <%
(Vi) =

(2x, -1 ay,+%) fori<x, <1

where a is a parameter in the range 0 <a <4

()

J ;77 S 7777J d =lim Al im ln[(a/i?’"] =1+ Ing

;) noeIn(a™) Clna
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Conclusions

e Fratal structure can describe complex shapes in the real word.

e Nonlinear systems exhibit complex phenomena, including bifurcation,
iIntermittency, and chaos.

e Strange chaotic attractors has fractal structure and are sensitive to initial
conditions.
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