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1. What is Nonparametric Regression?
Regression analysis traces the average value of a response variable (y)
as a function of one or several predictors (x’s).

Suppose that there are two predictors, x1 and x2.
• The object of regression analysis is to estimate the population regression

function µ|x1, x2 = f(x1, x2).

• Alternatively, we may focus on some other aspect of the conditional
distribution of y given the x’s, such as the median value of y or its
variance.
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As it is usually practiced, regression analysis assumes:
• a linear relationship of y to the x’s, so that

µ|x1, x2 = f(x1, x2) = α + β1x1 + β2x2

• that the conditional distribution of y is, except for its mean, everywhere
the same, and that this distribution is a normal distribution

y ∼ N(α + β1x1 + β2x2, σ
2)

• that observations are sampled independently, so the yi and yi0 are
independent for i 6= i0.

• The full suite of assumptions leads to linear least-squares regression.
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These are strong assumptions, and there are many ways in which
they can go wrong. For example:
• as is typically the case in time-series data, the errors may not be

independent;

• the conditional variance of y (the ‘error variance’) may not be constant;

• the conditional distribution of y may be very non-normal — heavy-tailed
or skewed.
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Nonparametric regression analysis relaxes the assumption of linearity,
substituting the much weaker assumption of a smooth population
regression function f(x1, x2).
• The cost of relaxing the assumption of linearity is much greater

computation and, in some instances, a more difficult-to-understand
result.

• The gain is potentially a more accurate estimate of the regression
function.
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Some might object to the ‘atheoretical’ character of nonparametric
regression, which does not specify the form of the regression function
f(x1, x2) in advance of examination of the data. I believe that this objection
is ill-considered:
• Social theory might suggest that y depends on x1 and x2, but it is unlikely

to tell us that the relationship is linear.

• A necessary condition of effective statistical data analysis is for statistical
models to summarize the data accurately.
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In this short-course, I will first describe nonparametric simple re-
gression, where there is a quantitative response variable y and a single
predictor x, so y = f(x) + ε.

I’ll then proceed to nonparametric multiple regression — where there
are several predictors, and to generalized nonparametric regression
models — for example, for a dichotomous (two-category) response
variable.

The course is based on materials from Fox, Nonparametric Simple
Regression, and Fox, Multiple and Generalized Nonparametric Regression
(both Sage, 2000).

Starred (*) sections will be covered time permitting.
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2. Preliminary Examples
2.1 Infant Mortality

Figure 1 (a) shows the relationship between infant-mortality rates (infant
deaths per 1,000 live births) and GDP per capita (in U. S. dollars) for 193
nations of the world.
• The nonparametric regression line on the graph was produced by a

method called lowess (or loess), an implementation of local polynomial
regression, and the most commonly available method of nonparametric
regression.

• Although infant mortality declines with GDP, the relationship between
the two variables is highly nonlinear: As GDP increases, infant mortality
initially drops steeply, before leveling out at higher levels of GDP.
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Because both infant mortality and GDP are highly skewed, most
of the data congregate in the lower-left corner of the plot, making it
difficult to discern the relationship between the two variables. The linear
least-squares fit to the data does a poor job of describing this relationship.
• In Figure 1 (b), both infant mortality and GDP are transformed by taking

logs. Now the relationship between the two variables is nearly linear.
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Figure 1. Infant-mortality rate per 1000 and GDP per capita (US dollars)
for 193 nations.
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2.2 Women’s Labour-Force Participation

An important application of generalized nonparametric regression is to
binary data. Figure 2 shows the relationship between married women’s
labour-force participation and the log of the women’s ‘expected wage rate.’
• The data, from the 1976 U. S. Panel Study of Income Dynamics were

originally employed by Mroz (1987), and were used by Berndt (1991) as
an exercise in linear logistic regression and by Long (1997) to illustrate
that method.

• Because the response variable takes on only two values, I have vertically
‘jittered’ the points in the scatterplot.

• The nonparametric logistic-regression line shown on the plot reveals
the relationship to be curvilinear. The linear logistic-regression fit, also
shown, is misleading.
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Figure 2. Scatterplot of labor-force participation (1 = Yes, 0 = No) by the
log of estimated wages.
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2.3 Occupational Prestige

Blishen and McRoberts (1976) reported a linear multiple regression of the
rated prestige of 102 Canadian occupations on the income and education
levels of these occupations in the 1971 Canadian census. The purpose
of this regression was to produce substitute predicated prestige scores
for many other occupations for which income and education levels were
known, but for which direct prestige ratings were unavailable.
• Figure 3 shows the results of fitting an additive nonparametric regression

to Blishen’s data:
y = α + f1(x1) + f2(x2) + ε

• The graphs in Figure 3 show the estimated partial regression functions
for income bf1 and education bf2. The function for income is quite
nonlinear, that for education somewhat less so.
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Figure 3. Plots of the estimated partial-regression functions for the ad-
ditive regression of prestige on the income and education levels of 102
occupations.
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3. Nonparametric Simple Regression
Most interesting applications of regression analysis employ several
predictors, but nonparametric simple regression is nevertheless useful for
two reasons:

1. Nonparametric simple regression is called scatterplot smoothing,
because the method passes a smooth curve through the points in a
scatterplot of y against x. Scatterplots are (or should be!) omnipresent
in statistical data analysis and presentation.

2. Nonparametric simple regression forms the basis, by extension, for
nonparametric multiple regression, and directly supplies the building
blocks for a particular kind of nonparametric multiple regression called
additive regression.
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3.1 Binning and Local Averaging

Suppose that the predictor variable x is discrete (e.g., x is age at last
birthday and y is income in dollars). We want to know how the average
value of y (or some other characteristics of the distribution of y) changes
with x; that is, we want to know µ|x for each value of x.
• Given data on the entire population, we can calculate these conditional

population means directly.

• If we have a very large sample, then we can calculate the sample
average income for each value of age, y|x; the estimates y|x will be
close to the population means µ|x.

Figure 4 shows the median and quartiles of the distribution of income
from wages and salaries as a function of single years of age. The data
are taken from the 1990 U. S. Census one-percent Public Use Microdata
Sample, and represent 1.24 million observations.
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Figure 4. Simple nonparametric regression of income on age, with data
from the 1990 U. S. Census one-percent sample.
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3.1.1 Binning

Now suppose that the predictor variable x is continuous. Instead of age at
last birthday, we have each individual’s age to the minute.
• Even in a very large sample, there will be very few individuals of

precisely the same age, and conditional sample averages y|x would
therefore each be based on only one or a few observations.

• Consequently, these averages will be highly variable, and will be poor
estimates of the population means µ|x.
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Because we have a very large sample, however, we can dissect the
range of x into a large number of narrow class intervals or bins.
• Each bin, for example, could constitute age rounded to the nearest

year (returning us to single years of age). Let x1, x2, ..., xb represent the
x-values at the bin centers.

• Each bin contains a lot of data, and, consequently, the conditional
sample averages, yi = y|(x in bin i), are very stable.

• Because each bin is narrow, these bin averages do a good job of
estimating the regression function µ|x anywhere in the bin, including at
its center.

c° 2005 by John Fox ESRC Oxford Spring School

Nonparametric Regression Analysis 19

Given sufficient data, there is essentially no cost to binning, but in
smaller samples it is not practical to dissect the range of x into a large
number of narrow bins:
• There will be few observations in each bin, making the sample bin

averages yi unstable.

• To calculate stable averages, we need to use a relatively small number
of wider bins, producing a cruder estimate of the population regression
function.
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There are two obvious ways to proceed:

1. We could dissect the range of x into bins of equal width. This option is
attractive only if x is sufficiently uniformly distributed to produce stable
bin averages based on a sufficiently large number of observations.

2. We could dissect the range of x into bins containing roughly equal
numbers of observations.

Figure 5 depicts the binning estimator applied to the U. N. infant-
mortality data. The line in this graph employs 10 bins, each with roughly
19 observations.
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Figure 5. The binning estimator applied to the relationship between infant
mortality and GDP per capita.
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Treating a discrete quantitative predictor variable as a set of categories
and binning continuous predictor variables are common strategies in the
analysis of large datasets.
• Often continuous variables are implicitly binned in the process of data

collection, as in a sample survey that asks respondents to report income
in class intervals (e.g., $0–$5000, $5000–$10,000, $10,000–$15,000,
etc.).

• If there are sufficient data to produce precise estimates, then using
dummy variables for the values of a discrete predictor or for the class
intervals of a binned predictor is preferable to blindly assuming linearity.

• An even better solution is to compare the linear and nonlinear specifica-
tions.
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3.1.2 Statistical Considerations*

The mean-squared error of estimation is the sum of squared bias and
sampling variance:

MSE[ bf(x0)] = bias2[ bf(x0)] + V [ bf(x0)]
As is frequently the case in statistical estimation, minimizing bias and
minimizing variance work at cross purposes:
• Wide bins produce small variance and large bias.

• Small bins produce large variance and small bias.

• Only if we have a very large sample can we have our cake and eat it too.

• All methods of nonparametric regression bump up against this problem
in one form or another.
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Even though the binning estimator is biased, it is consistent as long
as the population regression function is reasonably smooth.
• All we need do is shrink the bin width to 0 as the sample size n grows,

but shrink it sufficiently slowly that the number of observations in each
bin grows as well.

• Under these circumstances, bias[ bf(x)] → 0 and V [ bf(x)] → 0 as
n→∞.
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3.1.3 Local Averaging

The essential idea behind local averaging is that, as long as the regression
function is smooth, observations with x-values near a focal x0 are
informative about f(x0).
• Local averaging is very much like binning, except that rather than

dissecting the data into non-overlapping bins, we move a bin (called a
window) continuously over the data, averaging the observations that fall
in the window.

• We can calculate bf(x) at a number of focal values of x, usually equally
spread within the range of observed x-values, or at the (ordered)
observations, x(1), x(2), ..., x(n).

• As in binning, we can employ a window of fixed width w centered on the
focal value x0, or can adjust the width of the window to include a constant
number of observations, m. These are the m nearest neighbors of the
focal value.
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• Problems occur near the extremes of the x’s. For example, all of the
nearest neighbors of x(1) are greater than or equal to x(1), and the
nearest neighbors of x(2) are almost surely the same as those of x(1),
producing an artificial flattening of the regression curve at the extreme
left, called boundary bias. A similar flattening occurs at the extreme
right, near x(n).

Figure 6 shows how local averaging works, using the relationship of
prestige to income in the Canadian occupational prestige data.

1. The window shown in panel (a) includes the m = 40 nearest neighbors
of the focal value x(80).

2. The y-values associated with these observations are averaged,
producing the fitted value by(80) in panel (b).

3. Fitted values are calculated for each focal x (in this case x(1), x(2), ..., x(102))
and then connected, as in panel (c).
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• In addition to the obvious flattening of the regression curve at the left
and right, local averages can be rough, because bf(x) tends to take small
jumps as observations enter and exit the window. The kernel estimator
(described shortly) produces a smoother result.

• Local averages are also subject to distortion when outliers fall in the
window, a problem addressed by robust estimation.
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Figure 6. Nonparametric regression of prestige on income using
local averages.
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3.2 Kernel Estimation (Locally Weighted Averaging)

Kernel estimation is an extension of local averaging.
• The essential idea is that in estimating f(x0) it is desirable to give greater

weight to observations that are close to the focal x0.

• Let zi = (xi − x0)/h denote the scaled, signed distance between the
x-value for the ith observation and the focal x0. The scale factor h,
called the bandwidth of the kernel estimator, plays a role similar to the
window width of a local average.

• We need a kernel function K(z) that attaches greatest weight to obser-
vations that are close to the focal x0, and then falls off symmetrically and
smoothly as |z| grows. Given these characteristics, the specific choice
of a kernel function is not critical.
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• Having calculated weights wi = K[(xi − x0)/h], we proceed to compute
a fitted value at x0 by weighted local averaging of the y’s:bf(x0) = by|x0 = Pn

i=1wiyiPn
i=1wi

• Two popular choices of kernel functions, illustrated in Figure 7, are the
Gaussian or normal kernel and the tricube kernel:
– The normal kernel is simply the standard normal density function,

KN(z) =
1√
2π

e−z
2/2

Here, the bandwidth h is the standard deviation of a normal distribution
centered at x0.
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Figure 7. Tricube (light solid line), normal (broken line, rescaled) and rec-
tangular (heavy solid line) kernel functions.
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– The tricube kernel is
KT (z) =

½
(1− |z|3)3 for |z| < 1

0 for |z| ≥ 1
For the tricube kernel, h is the half-width of a window centered at the
focal x0. Observations that fall outside of the window receive 0 weight.

– Using a rectangular kernel (also shown in Figure 7)

KR(z) =

½
1 for |z| < 1
0 for |z| ≥ 1

gives equal weight to each observation in a window of half-width h
centered at x0, and therefore produces an unweighted local average.
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I have implicitly assumed that the bandwidth h is fixed, but the kernel
estimator is easily adapted to nearest-neighbour bandwidths.
• The adaptation is simplest for kernel functions, like the tricube kernel,

that fall to 0: Simply adjust h(x) so that a fixed number of observations
m are included in the window.

• The fraction m/n is called the span of the kernel smoother.
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Kernel estimation is illustrated in Figure 8 for the Canadian occupa-
tional prestige data.
• Panel (a) shows a neighborhood containing 40 observations centered on

the 80th ordered x-value.

• Panel (b) shows the tricube weight function defined on the window; the
bandwidth h[x(80)] is selected so that the window that accommodates the
40 nearest neighbors of the focal x(80). Thus, the span of the smoother
is 40/102 ' .4.

• Panel (c) shows the locally weighted average, by(80) = by|x(80).
• Panel (d) connects the fitted values to obtain the kernel estimate of the

regression of prestige on income. In comparison with the local-average
regression, the kernel estimate is smoother, but it still exhibits flattening
at the boundaries.
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Figure 8. The kernel estimator applied to the Canadian occupational pres-
tige data.
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Varying the bandwidth of the kernel estimator controls the smoothness
of the estimated regression function: Larger bandwidths produce smoother
results. Choice of bandwidth will be discussed in more detail in connection
with local polynomial regression.
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3.3 Local Polynomial Regression

Local polynomial regression corrects some of the deficiencies of kernel
estimation.
• It provides a generally adequate method of nonparametric regression

that extends to multiple regression, additive regression, and generalized
nonparametric regression.

• An implementation of local polynomial regression called lowess (or
loess) is the most commonly available method of nonparametric
regression.
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Perhaps you are familiar with polynomial regression, where a p-degree
polynomial in a predictor x,

y = α + β1x + β2x
2 + · · · + βpx

p + ε

is fit to data, usually by the method of least squares:
• p = 1 corresponds to a linear fit, p = 2 to a quadratic fit, and so on.

• Fitting a constant (i.e., the mean) corresponds to p = 0.
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Local polynomial regression extends kernel estimation to a polynomial
fit at the focal point x0, using local kernel weights, wi = K[(xi − x0)/h].
The resulting weighted least-squares (WLS) regression fits the equation

yi = a+ b1(xi − x0) + b2(xi − x0)
2 + · · · + bp(xi − x0)

p + ei
to minimize the weighted residual sum of squares,

Pn
i=1wie

2
i .

• Once the WLS solution is obtained, the fitted value at the focal x0 is justby|x0 = a.

• As in kernel estimation, this procedure is repeated for representative
focal values of x, or at the observations xi.

• The bandwidth h can either be fixed or it can vary as a function of the
focal x.

• When the bandwidth defines a window of nearest neighbors, as is
the case for tricube weights, it is convenient to specify the degree of
smoothing by the proportion of observations included in the window.
This fraction s is called the span of the local-regression smoother.
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• The number of observations included in each window is then m =
[sn], where the square brackets denote rounding to the nearest whole
number.

Selecting p = 1 produces a local linear fit, the most common case.
• The ‘tilt’ of the local linear fit promises reduced bias in comparison with

the kernel estimator, which corresponds to p = 0. This advantage is
most apparent at the boundaries, where the kernel estimator tends to
flatten.

• The values p = 2 or p = 3, local quadratic or cubic fits, produce more
flexible regressions. Greater flexibility has the potential to reduce bias
further, but flexibility also entails the cost of greater variation.

• There is a theoretical advantage to odd-order local polynomials, so p = 1
is generally preferred to p = 0, and p = 3 to p = 2.
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Figure 9 illustrates the computation of a local linear regression fit to
the Canadian occupational prestige data, using the tricube kernel function
and nearest-neighbour bandwidths.
• Panel (a) shows a window corresponding to a span of .4, accommodating

the [.4× 102] = 40 nearest neighbors of the focal value x(80).

• Panel (b) shows the tricube weight function defined on this window.

• The locally weighted linear fit appears in panel (c).

• Fitted values calculated at each observed x are connected in panel (d).
There is no flattening of the fitted regression function, as there was for
kernel estimation.
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Figure 9. Nearest-neighbor local linear regression of prestige on income.
c° 2005 by John Fox ESRC Oxford Spring School

Nonparametric Regression Analysis 43

3.3.1 Selecting the Span by Visual Trial and Error

I will assume nearest-neighbour bandwidths, so bandwidth choice is
equivalent to selecting the span of the local-regression smoother. For
simplicity, I will also assume a locally linear fit.

A generally effective approach to selecting the span is guided trial and
error.
• The span s = .5 is often a good point of departure.

• If the fitted regression looks too rough, then try increasing the span; if
it looks smooth, then see if the span can be decreased without making
the fit too rough.

• We want the smallest value of s that provides a smooth fit.
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An illustration, for the Canadian occupational prestige data, appears
in Figure 10. For these data, selecting s = .5 or s = .7 appears to provide
a reasonable compromise between smoothness and fidelity to the data.
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Figure 10. Nearest-neighbor local linear regression of prestige on income,
for several values of the span s.
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3.3.2 Selecting the Span by Cross-Validation*

A conceptually appealing, but complex, approach to bandwidth selection
is to estimate the optimal h (say h∗). We either need to estimate h∗(x0)
for each value x0 of x at which by|x is to be evaluated, or to estimate an
optimal average value to be used with the fixed-bandwidth estimator. A
similar approach is applicable to the nearest-neighbour local-regression
estimator.
• The so-called plug-in estimate of h∗ proceeds by estimating its compo-

nents, which are the error variance σ2, the curvature of the regression
function at the focal x0, and the density of x-values at x0. To do this
requires a preliminary estimate of the regression function.
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• A simpler approach is to estimate the optimal bandwidth or span by
cross-validation In cross-validation, we evaluate the regression function
at the observations xi.
– The key idea in cross-validation is to omit the ith observation from the

local regression at the focal value xi. We denote the resulting estimate
of E(y|xi) as by−i|xi. Omitting the ith observation makes the fitted valueby−i|xi independent of the observed value yi.

– The cross-validation function is

CV(s) =
Pn

i=1 [by−i(s)− yi]
2

n
where by−i(s) is by−i|xi for span s. The object is to find the value of s
that minimizes CV.

– In practice, we need to compute CV(s) for a range of values of s.
– Other than repeating the local-regression fit for different values of
s, cross-validation does not increase the burden of computation,
because we typically evaluate the local regression at each xi anyway.
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– Although cross-validation is often a useful method for selecting
the span, CV(s) is only an estimate, and is therefore subject to
sampling variation. Particularly in small samples, this variability can
be substantial. Moreover, the approximations to the expectation and
variance of the local-regression estimator are asymptotic, and in small
samples CV(s) often provides values of s that are too small.

– There are sophisticated generalizations of cross-validation that are
better behaved.

Figure 11 shows CV(s) for the regression of occupational prestige on
income. In this case, the cross-validation function provides little specific
help in selecting the span, suggesting simply that s should be relatively
large. Compare this with the value s ' .6 that we arrived at by visual trial
and error.
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Figure 11. Cross-validation function for the local linear regression of pres-
tige on income.
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3.4 Making Local Regression Resistant to Outliers*

As in linear least-squares regression, outliers — and the heavy-tailed
error distributions that generate them — can wreak havoc with the
local-regression least-squares estimator.
• One solution is to down-weight outlying observations. In linear regres-

sion, this strategy leads to M -estimation, a kind of robust regression.

• The same strategy is applicable to local polynomial regression.

Suppose that we fit a local regression to the data, obtaining estimatesbyi and residuals ei = yi − byi.
• Large residuals represent observations that are relatively remote from

the fitted regression.
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• Now define weights Wi = W (ei), where the symmetric function W (·)
assigns maximum weight to residuals of 0, and decreasing weight as the
absolute residuals grow.
– One popular choice of weight function is the bisquare or biweight :

Wi =WB(ei) =

⎧⎨⎩
∙
1−

³ ei
cS

´2¸2
for |ei| < cS

0 for |ei| ≥ cS
where S is a measure of spread of the residuals, such as S =
median|ei|; and c is a tuning constant.

– Smaller values of c produce greater resistance to outliers but lower
efficiency when the errors are normally distributed.

– Selecting c = 7 and using the median absolute deviation produces
about 95-percent efficiency compared with least-squares when the
errors are normal; the slightly smaller value c = 6 is usually used.
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– Another common choice is the Huber weight function:

Wi =WH(ei) =

½
1 for |ei| ≤ cS

cS/|ei| for |ei| > cS
Unlike the biweight, the Huber weight function never quite reaches 0.

– The tuning constant c = 2 produces roughly 95-percent efficiency for
normally distributed errors.

The bisquare and Huber weight functions are graphed in Figure 12.

• We refit the local regression at the focal values xi by WLS, minimizing
the weighted residual sum of squares

Pn
i=1wiWie

2
i , where the Wi

are the ‘robustness’ weights, just defined, and the wi are the kernel
‘neighborhood’ weights.

• Because an outlier will influence the initial local fits, residuals and
robustness weights, it is necessary to iterate this procedure until the
fitted values byi stop changing. Two to four robustness iterations almost
always suffice.
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Figure 12. The bisquare (solid line) and Huber (broken line, rescaled)
weight functions.
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Recall the United Nations data on infant mortality and GDP per capita
for 193 countries. Figure 13 shows robust and non-robust local linear
regressions of log infant mortality on log GDP. The non-robust fit is pulled
towards relatively extreme observations such as Tonga.

Local regression with nearest-neighbour tricube weights and bisquare
robustness weights was introduced by Cleveland (1979), who called the
procedure lowess, for locally weighted scatterplot smoothing.
• Upon generalizing the method to multiple regression, Cleveland, Grosse,

and Shyu (1992) rechristened it loess, for local regression.

• Lowess (or loess) is the most widely available method of nonparametric
regression.
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Figure 13. Non-robust (solid line) and robust (broken line) local linear re-
gressions of log infant-mortality rates on log GDP per capita. Both fits use
the span s = .4.
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3.5 Statistical Inference for Local Polynomial
Regression

In parametric regression, the central objects of estimation are the
regression coefficients. Statistical inference naturally focuses on these
coefficients, typically taking the form of confidence intervals or hypothesis
tests.
• In nonparametric regression, there are no regression coefficients. The

central object of estimation is the regression function, and inference
focuses on the regression function directly.

• Many applications of nonparametric regression with one predictor simply
have as their goal visual smoothing of a scatterplot. In these instances,
statistical inference is at best of secondary interest.
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3.5.1 Confidence Envelopes*

Consider the local polynomial estimate by|x of the regression function
f(x). For notational convenience, I assume that the regression function is
evaluated at the observed predictor values, x1, x2, ..., xn.
• The fitted value byi = by|xi results from a locally weighted least-squares

regression of y on the x values. This fitted value is therefore a weighted
sum of the observations: byi = nX

j=1

sijyj

where the weights sij are functions of the x-values.
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• Because (by assumption) the yi’s are independently distributed, with
common conditional variance V (y|x = xi) = V (yi) = σ2, the sampling
variance of the fitted value byi is

V (byi) = σ2
nX

j=1

s2ij

• To apply this result, we require an estimate of σ2. In linear least-squares
simple regression, we estimate the error variance as

S2 =

P
e2i

n− 2
where ei = yi − byi is the residual for observation i, and n − 2 is the
degrees of freedom associated with the residual sum of squares.

• We can calculate residuals in nonparametric regression in the same
manner — that is, ei = yi − byi.
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• To complete the analogy, we require the equivalent number of parame-
ters or equivalent degrees of freedom for the model, dfmod, from which
we can obtain the residual degrees of freedom, dfres = n− dfmod.

• Then, the estimated error variance is

S2 =

P
e2i

dfres
and the estimated variance of the fitted value byi at x = xi isbV (byi) = S2

nX
j=1

s2ij

• Assuming normally distributed errors, or a sufficiently large sample,
a 95-percent confidence interval for E(y|xi) = f(xi) is approximatelybyi ± 2qbV (byi)
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• Putting the confidence intervals together for x = x1, x2, ..., xn produces
a pointwise 95-percent confidence band or confidence envelope for the
regression function.

An example, employing the local linear regression of prestige on
income in the Canadian occupational prestige data (with span s = .6),
appears in Figure 14. Here, dfmod = 5.0, and S2 = 12, 004.72/(102 −
5.0) = 123.76. The nonparametric-regression smooth therefore uses the
equivalent of 5 parameters.
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Figure 14. Local linear regression of occupational prestige on income,
showing an approximate point-wise 95-percent confidence envelope.
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The following three points should be noted:

1. Although the locally linear fit uses the equivalent of 5 parameters,
it does not produce the same regression curve as fitting a global
fourth-degree polynomial to the data.

2. In this instance, the equivalent number of parameters rounds to an
integer, but this is an accident of the example.

3. Because by|x is a biased estimate of E(y|x), it is more accurate to
describe the envelope around the sample regression as a “variability
band” rather than as a confidence band.
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3.5.2 Hypothesis Tests

In linear least-squares regression, F -tests of hypotheses are formulated
by comparing alternative nested models.
• To say that two models are nested means that one, the more specific

model, is a special case of the other, more general model.

• For example, in least-squares linear simple regression, the F -statistic

F =
TSS− RSS
RSS/(n− 2)

with 1 and n − 2 degrees of freedom tests the hypothesis of no linear
relationship between y and x.
– The total sum of squares, TSS =

P
(yi − y)2, is the variation in y

associated with the null model of no relationship, yi = α + εi;
– the residual sum of squares, RSS =

P
(yi − byi)2, represents the

variation in y conditional on the linear relationship between y and x,
based the model yi = α + βxi + εi.
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– Because the null model is a special case of the linear model, with
β = 0, the two models are (heuristically) nested.

• An analogous, but more general, F -test of no relationship for the
nonparametric-regression model is

F =
(TSS− RSS)/(dfmod − 1)

RSS/dfres
with dfmod − 1 and dfres = n− dfmod degrees of freedom.
– Here RSS is the residual sum of squares for the nonparametric

regression model.
– Applied to the local linear regression of prestige on income, using

the loess function in R with a span of 0.6, where n = 102, TSS
= 29, 895.43, RSS = 12, 041.37, and dfmod = 4.3, we have

F =
(29, 895.43− 12, 041.37)/(4.3− 1)

12, 041.37/(102− 4.3) = 43.90

with 4.3 − 1 = 3.3 and 102 − 4.3 = 97.7 degrees of freedom. The
resulting p-value is much smaller than .0001.
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• A test of nonlinearity is simply constructed by contrasting the
nonparametric-regression model with the linear simple-regression
model.
– The models are properly nested because a linear relationship is a

special case of a general, potentially nonlinear, relationship.
– Denoting the residual sum of squares from the linear model as RSS0

and the residual sum of squares from the nonparametric regression
model as RSS1,

F =
(RSS0 − RSS1)/(dfmod − 2)

RSS1/dfres
with dfmod − 2 and dfres = n− dfmod degrees of freedom.

– This test is constructed according to the rule that the most general
model — here the nonparametric-regression model — is employed
for estimating the error variance, S2 = RSS1/dfres.
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– For the regression of occupational prestige on income, RSS0 =
14, 616.17, RSS1 = 12, 004.72, and dfmod = 5.0; thus

F =
(14, 616.17− 12, 041.37)/(4.3− 2)

12, 041.37/(102− 4.3) = 9.08

with 4.3 − 2 = 2.3 and 102 − 4.3 = 97.7 degrees of freedom.
The corresponding p-value, approximately .0001, suggests that the
relationship between the two variables is significantly nonlinear.
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4. Splines*
Splines are piecewise polynomial functions that are constrained to join
smoothly at points called knots.
• The traditional use of splines is for interpolation, but they can also be

employed for parametric and nonparametric regression.

• Most applications employ cubic splines, the case that I will consider
here.

• In addition to providing an alternative to local polynomial regression,
smoothing splines are attractive as components of additive regression
models and generalized additive models.
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4.1 Regression Splines

One approach to simple-regression modeling is to fit a relatively high-
degree polynomial in x,

yi = α + β1xi + β2x
2
i + · · · + βpx

p
i + εi

capable of capturing relationships of widely varying form.
• General polynomial fits, however, are highly nonlocal: Data in one region

can substantially affect the fit far away from that region.

• As well, estimates of high-degree polynomials are subject to consider-
able sampling variation.

• An illustration, employing a cubic polynomial for the regression of
occupational prestige on income:
– Here, the cubic fit does quite well (but dips slightly at the right).
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Figure 15. Polynomial fits to the Canadian occupational prestige data: (a)
a global cubic fit; (b) independent cubic fits in two bins, divided at Income
= 10, 000; (c) a natural cubic spline, with one knot at Income = 10, 000.
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As an alternative, we can partition the data into bins, fitting a different
polynomial regression in each bin.
• A defect of this piecewise procedure is that the curves fit to the different

bins will almost surely be discontinuous, as illustrated in Figure 15 (b).

• Cubic regression splines fit a third-degree polynomial in each bin under
the added constraints that the curves join at the bin boundaries (the
knots), and that the first and second derivatives (i.e., the slope and
curvature of the regression function) are continuous at the knots.

• Natural cubic regression splines add knots at the boundaries of the
data, and impose the additional constraint that the fit is linear beyond
the terminal knots.
– This requirement tends to avoid wild behavior near the extremes of the

data.
– If there are k ‘interior’ knots and two knots at the boundaries, the

natural spline uses k + 2 independent parameters.
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– With the values of the knots fixed, a regression spline is just a linear
model, and as such provides a fully parametric fit to the data.

– Figure 15 (c) shows the result of fitting a natural cubic regression
spline with one knot at Income = 10, 000, the location of which was
determined by examining the scatterplot, and the model therefore
uses only 3 parameters.
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4.2 Smoothing Splines

In contrast to regression splines, smoothing splines arise as the solution
to the following nonparametric-regression problem: Find the functionbf(x) with two continuous derivatives that minimizes the penalized sum of
squares,

SS∗(h) =
nX
i=1

[yi − f(xi)]
2 + h

Z xmax

xmin

[f 00(x)]2 dx

where h is a smoothing constant, analogous to the bandwidth of a kernel
or local-polynomial estimator.
• The first term in the equation is the residual sum of squares.

• The second term is a roughness penalty, which is large when the
integrated second derivative of the regression function f 00(x) is large —
that is, when f(x) is rough.
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• If h = 0 then bf(x) simply interpolates the data.

• If h is very large, then bf will be selected so that bf 00(x) is everywhere 0,
which implies a globally linear least-squares fit to the data.
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It turns out that the function bf(x) that minimizes SS∗(h) is a natural
cubic spline with knots at the distinct observed values of x.
• Although this result seems to imply that n parameters are required,

the roughness penalty imposes additional constraints on the solution,
typically reducing the equivalent number of parameters for the smoothing
spline greatly.
– It is common to select the smoothing constant h indirectly by setting

the equivalent number of parameters for the smoother.
– An illustration appears in Figure 16, comparing a smoothing spline with

a local-linear fit employing the same equivalent number of parameters
(degrees of freedom).

• Smoothing splines offer certain small advantages in comparison with
local polynomial smoothers, but generally provide similar results.
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Figure 16. Nonparametric regression of occupational prestige on income,
using local linear regression (solid line) and a smoothing spline (broken
line), both with 4.3 equivalent parameters.
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5. Nonparametric Regression and Data
Analysis*
The scatterplot is the most important data-analytic statistical graph. I am
tempted to suggest that you add a nonparametric-regression smooth to
every scatterplot that you draw, since the smooth will help to reveal the
relationship between the two variables in the plot.

Because scatterplots are adaptable to so many different contexts in
data analysis, it is not possible to exhaustively survey their uses here.
Instead, I will concentrate on an issue closely related to nonparametric
regression: Detecting and dealing with nonlinearity in regression analysis.
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• One response to the possibility of nonlinearity is to employ nonparamet-
ric multiple regression.

• An alternative is to fit a preliminary linear regression; to employ
appropriate diagnostic plots to detect departures from linearity; and
to follow up by specifying a new parametric model that captures
nonlinearity detected in the diagnostics, for example by transforming a
predictor.
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5.1 The ‘Bulging Rule’

My first example examined the relationship between the infant-mortality
rates and GDP per capita of 193 nations of the world.
• A scatterplot of the data supplemented by a local-linear smooth, in

Figure 1 (a), reveals a highly nonlinear relationship between the two
variables: Infant mortality declines smoothly with GDP, but at a rapidly
decreasing rate.

• Taking the logarithms of the two variables, in Figure 17 (b), renders the
relationship nearly linear.
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Figure 17. Infant-mortality rate per 1000 and GDP per capita (US dollars)
for 193 nations. (Figure 1 repeated.)
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Mosteller and Tukey (1977) suggest a systematic rule — which they
call the ‘bulging rule’ — for selecting linearizing transformations from the
family of powers and roots, where a variable x is replaced by the power
xp.
• For example, when p = 2, the variable is replaced by its square, x2;

when p = −1, the variable is replaced by its inverse, x−1 = 1/x; when
p = 1/2, the variable is replaced by its square-root, x1/2 =

√
x; and so

on.

• The only exception to this straightforward definition is that p = 0
designates the log transformation, log x, rather than the 0th power.

• We are not constrained to pick simple values of p, but doing so often
aids interpretation.
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• Transformations in the family of powers and roots are only applicable
when all of the values of x are positive:
– Some of the transformations, such as square-root and log, are

undefined for negative values of x.
– Other transformations, such as x2, would distort the order of x if some
x-values are negative and some are positive.

• A simple solution is to use a ‘start’ — to add a constant quantity c to all
values of x prior to applying the power transformation: x→ (x + c)p.

• Notice that negative powers — such as the inverse transformation, x−1
— reverse the order of the x-values; if we want to preserve the original
order, then we can take x→ −xp when p is negative.

• Alternatively, we can use the similarly shaped Box-Cox family of
transformations:

x→ x(p) =

½
(xp − 1)/p for p 6= 0
loge x for p = 0
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Power transformation of x or y can help linearize a nonlinear
relationship that is both simple and monotone. What is meant by these
terms is illustrated in Figure 18:
• A relationship is simple when it is smoothly curved and when the

curvature does not change direction.

• A relationship is monotone when y strictly increases or decreases with
x.
– Thus, the relationship in Figure 18 (a) is simple and monotone;
– the relationship in Figure 18 (b) is monotone but not simple, since the

direction of curvature changes from opening up to opening down;
– the relationship in Figure 18 (c) is simple but nonmonotone, since y

first decreases and then increases with x.
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Figure 18. The relationship in (a) is simple and monotone; that in (b) is
montone but not simple; and that in (c) is simple but nonmonotone.
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Although nonlinear relationships that are not simple or that are
nonmonotone cannot be linearized by a power transformation, other forms
of parametric regression may be applicable. For example, the relationship
in Figure 18 (c) could be modeled as a quadratic equation:

y = α + β1x + β2x
2 + ε

• Polynomial regression models, such as quadratic equations, can be fit
by linear least-squares regression.

• Nonlinear least squares can be used to fit an even broader class of
parametric models.
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Mosteller and Tukey’s bulging rule is illustrated in Figure 19:
• When, as in the infant-mortality data of Figure 1 (a), the bulge points

down and to the left, the relationship is linearized by moving x ‘down the
ladder’ of powers and roots, towards

√
x, log x, and 1/x, or moving y

down the ladder of powers and roots, or both.

• When the bulge points up, we can move x up the ladder of powers,
towards x2 and x3.

• When the bulge points to the right, we can move y up the ladder of
powers.

• Specific linearizing transformations are located by trial and error; the
farther one moves from no transformation (p = 1), the greater the effect
of the transformation.
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In the example, log transformations of both infant mortality and GDP
somewhat overcorrect the original nonlinearity, producing a small bulge
pointing up and to the right.
• Nevertheless, the nonlinearity in the transformed data is relatively

slight, and using log transformations for both variables yields a simple
interpretation.

• The straight line plotted in Figure 17 (b) has the equation
\log10 Infant Mortality = 3.06− 0.493× log10GDP

• The slope of this relationship, b = −0.493, is what economists call
an elasticity : On average, a one-percent increase in GDP per capita
is associated with an approximate one-half-percent decline in the
infant-mortality rate.
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Figure 19. Mosteller and Tukey’s ‘bulging rule’ for locating a linearizing
transformation.
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5.2 Component+Residual Plots

Suppose that y is additively, but not necessarily linearly, related to
x1, x2, ..., xk, so that

yi = α + f1(x1i) + f2(x2i) + · · · + fk(xki) + εi
• If the partial-regression function fj is simple and monotone, then we can

use the bulging rule to find a transformation that linearizes the partial
relationship between y and the predictor xj.

• Alternatively, if fj takes the form of a simple polynomial in xj, such as a
quadratic or cubic, then we can specify a parametric model containing
polynomial terms in that predictor.

Discovering nonlinearity in multiple regression is more difficult than
in simple regression because the predictors typically are correlated. The
scatterplot of y against xj is informative about the marginal relationship
between these variables, ignoring the other predictors, not necessarily
about the partial relationship fj of y to xj, holding the other x’s constant.
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Under relatively broad circumstances component+residual plots (also
called partial-residual plots) can help to detect nonlinearity in multiple
regression.
• We fit a preliminary linear least-squares regression,

yi = a+ b1x1i + b2x2i + · · · + bkxki + ei

• The partial residuals for xj add the least-squares residuals to the linear
component of the relationship between y and xj:

ei[j] = ei + bjxji

• An unmodeled nonlinear component of the relationship between y
and xj should appear in the least-squares residuals, so plotting and
smoothing e[j] against xj will reveal the partial relationship between y

and xj. We think of the smoothed partial-residual plot as an estimate bfj
of the partial-regression function.

• This procedure is repeated for each predictor, j = 1, 2, ..., k.

c° 2005 by John Fox ESRC Oxford Spring School

Nonparametric Regression Analysis 90

Illustrative component+residual plots appear in Figure 20, for the
regression of prestige on income and education.
• The solid line on each plot gives a local-linear fit for span s = .6.

• the broken line gives the linear least-squares fit, and represents the
least-squares multiple-regression plane viewed edge-on in the direction
of the corresponding predictor.
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Figure 20. Component+residual plots for the regression of occupational
prestige on income and education.
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• The left panel shows that the partial relationship between prestige and
income controlling for education is substantially nonlinear. Although the
nonparametric regression curve fit to the plot is not altogether smooth,
the bulge points up and to the left, suggesting transforming income
down the ladder of powers and roots. Visual trial and error indicates that
the log transformation of income serves to straighten the relationship
between prestige and income.

• The right panel suggests that the partial relationship between prestige
and education is nonlinear and monotone, but not simple. Consequently,
a power transformation of education is not promising. We could
try specifying a cubic regression for education (including education,
education2, and education3 in the regression model), but the departure
from linearity is slight, and a viable alternative here is simply to treat the
education effect as linear.
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• Regressing occupational prestige on education and the log (base 2) of
income produces the following result:

\Prestige = −95.2 + 7.93× log2 Income+ 4.00× Education
– Holding education constant, doubling income (i.e., increasing
log2Income by 1) is associated on average with an increment in
prestige of about 8 points;

– holding income constant, increasing education by 1 year is associated
on average with an increment in prestige of 4 points.
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6. Nonparametric Multiple Regression
I will describe two generalizations of nonparametric regression to two or
more predictors:

1. The local polynomial multiple-regression smoother, which fits the
general model

yi = f(x1i, x2i, ..., xki) + εi

2. The additive nonparametric regression model
yi = α + f1(x1i) + f2(x2i) + · · · + fk(xki) + εi
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6.1 Local Polynomial Multiple Regression

As a formal matter, it is simple to extend the local-polynomial estimator to
several predictors:
• To obtain a fitted value by|x0 at the focal point x0 = (x1,0, x2,0, ..., xk0)0 in

the predictor space, we perform a weighted-least-squares polynomial
regression of y on the x’s, emphasizing observations close to the focal
point.
– A local linear fit takes the form:

yi = a + b1(x1i − x1,0) + b2(x2i − x2,0)

+ · · · + bk(xki − xk0) + ei
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– For k = 2 predictors, a local quadratic fit takes the form
yi = a + b1(x1i − x1,0) + b2(x2i − x2,0)

+b11(x1i − x1,0)
2 + b22(x2i − x2,0)

2

+b12(x1i − x1,0)(x2i − x2,0) + ei
When there are several predictors, the number of terms in the local
quadratic regression grows large, and consequently I will not consider
cubic or higher-order polynomials.

– In either the linear or quadratic case, we minimize the weighted sum
of squares

Pn
i=1wie

2
i for suitably defined weights wi. The fitted value

at the focal point in the predictor space is then by|x0 = a.
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6.1.1 Finding Kernel Weights in Multiple Regression*

• There are two straightforward ways to extend kernel weighting to local
polynomial multiple regression:
(a) Calculate marginal weights separately for each predictor,

wij = K[(xji − xj0)/hj]

Then
wi = wi1wi2 · · ·wik

(b) Measure the distance D(xi,x0) in the predictor space between the
predictor values xi for observation i and the focal x0. Then

wi = K

∙
D(xi,x0)

h

¸
There is, however, more than one way to define distances between
points in the predictor space:
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∗ Simple Euclidean distance:

DE(xi,x0) =

vuut kX
j=1

(xji − xj0)2

Euclidean distances only make sense when the x’s are measured
in the same units (e.g., for spatially distributed data, where the two
predictors x1 and x2 represents coordinates on a map).
∗ Scaled Euclidean distance: Scaled distances adjust each x by a

measure of dispersion to make values of the predictors comparable.
For example,

zji =
xji − xj

sj
where xj and sj are the mean and standard deviation of xj. Then

DS(xi,x0) =

vuut kX
j=1

(zji − zj0)2

This is the most common approach to defining distances.
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(c) Generalized distance: Generalized distances adjust not only for the
dispersion of the x’s but also for their correlational structure:

DG(xi,x0) =
p
(xi − x0)0V−1(xi − x0)

where V is the covariance matrix of the x’s, perhaps estimated
robustly. Figure 21 illustrates generalized distances for k = 2
predictors.

• As mentioned, simple Euclidean distances do not make sense unless
the predictors are on the same scale. Beyond that point, the choice of
product marginal weights, weights based on scaled Euclidean distances,
or weights based on generalized distances usually does not make a
great deal of difference.

• Methods of bandwidth selection and statistical inference for local
polynomial multiple regression are essentially identical to the methods
discussed previously for nonparametric simple regression.
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Figure 21. Contours of constant generalized distance from the focal point
x0 = (x1, x2)

0, represented by the asterisk. Notice that the contours are
elliptical.
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6.1.2 Obstacles to Nonparametric Multiple Regression

Although it is therefore simple to extend local polynomial estimation to
multiple regression, there are two flies in the ointment:

1. The ‘curse of dimensionality’: As the number of predictors increases,
the number of observations in the local neighborhood of a focal point
tends to decline rapidly. To include a fixed number of observations in the
local fits therefore requires making neighborhoods less and less local.
– The problem is illustrated in Figure 22 for k = 2 predictors. This figure

represents a “best-case” scenario, where the x’s are independent and
uniformly distributed. Neighborhoods constructed by product-marginal
weighting correspond to square (more generally, rectangular) regions
in the graph. Neighborhoods defined by distance from a focal point
correspond to circular (more generally, elliptical) regions in the graph.
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– To include half the observations in a square neighborhood centered
on a focal x, we need to define marginal neighborhoods for each of
x1 and x2 that include roughly

p
1/2 ' .71 of the data; for k = 10

predictors, the marginal neighborhoods corresponding to a hyper-
cube that encloses half the observations would each include about
10
p
1/2 ' 0.93 of the data.

– A circular neighborhood in two dimensions enclosing half the data
has diameter 2

p
0.5/π ' 0.8 along each axis; the diameter of the

hyper-sphere enclosing half the data also grows with dimensionality,
but the formula is complicated.
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Figure 22. The ‘curse of dimensionality’: 1,000 observations for indepen-
dent, uniformly distributed random variables x1 and x2. The 500 nearest
neighbors of the focal point x0 = (.5, .5)0 are highlighted, along with the cir-
cle that encloses them. Also shown is the square centered on x0 enclosing
half the data.
c° 2005 by John Fox ESRC Oxford Spring School

Nonparametric Regression Analysis 104

2. Difficulties of interpretation: Because nonparametric regression does
not provide an equation relating the average response to the predictors,
we need to display the response surface graphically.
– This is no problem when there is only one x, since the scatterplot

relating y to x is two-dimensional and the regression “surface” is just
a curve.

– When there are two x’s, the scatterplot is three-dimensional and the
regression surface is two-dimensional. Here, we can represent the
regression surface in an isometric or perspective plot, as a contour
plot, or by slicing the surface. These strategies are illustrated in an
example below.

– Although slicing can be extended to more predictors, the result
becomes difficult to examine, particularly when the number of
predictors exceeds three.

– These problems motivate the additive regression model (to be
described later).
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6.1.3 An Example: The Canadian Occupational Prestige Data

To illustrate local polynomial multiple regression, let us return to the
Canadian occupational prestige data, regressing prestige on the income
and education levels of the occupations.
• Local quadratic and local linear fits to the data using the loess function

in R produce the following numbers of equivalent parameters (dfmod) and
residual sums of squares:

Model dfmod RSS
Local linear 8.0 4245.9
Local quadratic 15.4 4061.8

The span of the local-polynomial smoothers, s = .5 (corresponding
roughly to marginal spans of

√
.5 ' .7), was selected by visual trial and

error.
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• An incremental F -test for the extra terms in the quadratic fit is

F =
(4245.9− 4061.8)/(15.4− 8.0)

4061.8/(102− 15.4) = 0.40

with 15.4− 8.0 = 7.4 and 102− 15.4 = 86.6 degrees of freedom, for which
p = .89, suggesting that little is gained from the quadratic fit.
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• Figures 23–26 show three graphical representations of the local linear
fit:
(a) Figure 23 is a perspective plot of the fitted regression surface. It

is relatively easy to visualize the general relationship of prestige to
education and income, but hard to make precise visual judgments:
∗ Prestige generally rises with education at fixed levels of income.
∗ Prestige rises with income at fixed levels of education, at least until

income gets relatively high.
∗ But it is difficult to discern, for example, the fitted value of prestige

for an occupation at an income level of $10,000 and an education
level of 12 years.
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Figure 23. Perspective plot for the local-linear regression of occupational
prestige on income and education.
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(b) Figure 24 is a contour plot of the data, showing “iso-prestige” lines for
combinations of values of income and education.
∗ I find it difficult to visualize the regression surface from a contour

plot (perhaps hikers and mountain climbers do better).
∗ But it is relatively easy to see, for example, that our hypothetical

occupation with an average income of $10,000 and an average
education level of 12 years has fitted prestige between 50 and 60
points.
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Figure 24. Contour plot for the local linear regression of occupational pres-
tige on income and education.
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(c) Figure 25 is a conditioning plot or ‘coplot’ (due to William Cleveland),
showing the fitted relationship between occupational prestige and
income for several levels of education.
∗ The levels at which education is ‘held constant’ are given in the

upper panel of the figure.
∗ Each of the remaining panels — proceeding from lower left to upper

right — shows the fit at a particular level of education.
∗ These are the lines on the regression surface in the direction of

income (fixing education) in the perspective plot (Figure 23), but
displayed two-dimensionally.
∗ The vertical lines give pointwise 95-percent confidence intervals for

the fit. The confidence intervals are wide where data are sparse —
for example, for occupations at very low levels of education but high
levels of income.
∗ Figure 26 shows a similar coplot displaying the fitted relationship

between prestige and education controlling for income.
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Figure 25. Conditioning plot showing the relationship between occupa-
tional prestige and income for various levels of education. (Note: Made
with S-PLUS.)
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Figure 26. Conditioning plot showing the relationship between occupa-
tional prestige and education for various levels of income. (Note: Made
with S-PLUS.)
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Is prestige significantly related to income and education?
• We can answer this question by dropping each predictor in turn and

noting the increase in the residual sum of squares.

• Because the span for the local-linear multiple-regression fit is s = .5, the
corresponding simple-regression models use spans of s =

√
.5 ' .7:

Model dfmod RSS
Income and Education 8.0 4245.9
Income 3.8 12, 006.1
Education 3.0 7640.2

• F -tests for income and education are as follows:
FIncome =

(7640.2− 4245.9)/(8.0− 3.0)
4245.9/(102− 8.0) = 7.8

FEducation =
(12, 006.1− 4245.9)/(8.0− 3.8)

4245.9/(102− 8.0) = 40.9

These F -statistics have, respectively, 5.0 and 94.0 degrees of freedom,
and 4.2 and 94.0 degrees of freedom. Both p-values are close to 0.
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Perspective plots and contour plots cannot easily be generalized to
more than two predictors:
• Although three-dimensional contour plots can be constructed, they are

very difficult to examine, in my opinion, and higher-dimensional contour
plots are out of the question.

• One can construct two-dimensional perspective or contour plots at fixed
combinations of values of other predictors, but the resulting displays are
confusing.

• Coplots can be constructed for three predictors by arranging combi-
nations of values of two of the predictors in a rectangular array, and
displaying the partial relationship between the response and the third
predictor for each such combination. By rotating the role of the third
predictor, three coplots are produced.

• Coplots can in principle be generalized to any number of predictors, but
the resulting proliferation of graphs quickly gets unwieldy.
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6.2 Additive Regression Models

In unrestricted nonparametric multiple regression, we model the con-
ditional average value of y as a general, smooth function of several
x’s,

E(y|x1, x2, ..., xk) = f(x1, x2, ..., xk)
• In linear regression analysis, in contrast, the average value of the

response variable is modeled as a linear function of the predictors,
E(y|x1, x2, ..., xk) = α + β1x1 + β2x2 + · · · + βkxk

• As the linear model, the additive regression model specifies that the
average value of y is a sum of separate terms for each predictor, but
these terms are merely assumed to be smooth functions of the x’s:

E(y|x1, x2, ..., xk) = α + f1(x1) + f2(x2) + · · · + fk(xk)

The additive regression model is more restrictive than the general
nonparametric-regression model, but more flexible than the standard
linear-regression model.
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• A considerable advantage of the additive regression model is that it
reduces to a series of two-dimensional partial-regression problems. This
is true both in the computational sense and, even more importantly, with
respect to interpretation:
– Because each partial-regression problem is two-dimensional, we can

estimate the partial relationship between y and xj by using a suitable
scatterplot smoother, such as local polynomial regression. We need
somehow to remove the effects of the other predictors, however — we
cannot simply smooth the scatterplot of y on xj ignoring the other x’s.
Details are given later.

– A two-dimensional plot suffices to examine the estimated partial-
regression function bfj relating y to xj holding the other x’s constant.

Figure 27 shows the estimated partial-regression functions for the
additive regression of occupational prestige on income and education.
• Each partial-regression function was fit by a nearest-neighbour local-

linear smoother, using span s = .7.
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• The points in each graph are partial residuals for the corresponding
predictor, removing the effect of the other predictor.

• The broken lines mark off pointwise 95-percent confidence envelopes
for the partial fits.

Figure 28 is a three-dimensional perspective plot of the fitted additive-
regression surface relating prestige to income and education.
• Slices of this surface in the direction of income (i.e., holding education

constant at various values) are all parallel,

• Llikewise slices in the direction of education (holding income constant)
are parallel

• This is the essence of the additive model, ruling out interaction between
the predictors. Because all of the slices are parallel, we need only view
one of them edge-on, as in Figure 27.

• Compare the additive-regression surface with the fit of the unrestricted
nonparametric-regression model in Figure 23.
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Figure 27. Plots of the estimated partial-regression functions for the addi-
tive regression of prestige on income and education.
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Figure 28. Perspective plot of the fitted additive regression of prestige on
income and education.
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Is anything lost in moving from the general nonparametric-regression
model to the more restrictive additive model?
• Residual sums of squares and equivalent numbers of parameters for the

two models are as follows:
Model dfmod RSS
General 8.0 4245.9
Additive 6.9 4658.2

• An approximate F -test comparing the two models is

F =
(4658.2− 4245.9)/(8.0− 6.9)

4245.9/(102− 8.0) = 8.3

with 1.1 and 94.0 degrees of freedom, for which p = .004. There is,
therefore, evidence of lack of fit for the additive model, although the R2’s
for the two models are not very different: .858 and .844, respectively.

Note: The additive model was fit with the gam function in the R gam
package, but the degrees of freedom were corrected to agree with gam
in S-PLUS.
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• To test the contribution of each predictor to the additive model, we
compare the full additive model with models omitting each predictor in
turn:

Model dfmod RSS
Additive 6.9 4658.2
Income only 4.5 11, 981.8
Education only 3.4 7626.9

Then
FIncome =

(7626.9− 4658.2)/(6.9− 3.4)
4658.2/(102− 6.9) = 17.31

FEducation =
(11, 981.8− 4658.2)/(6.9− 4.5)

4658.2/(102− 6.9) = 62.30

with, respectively, 3.5 and 95.1, and 2.4 and 95.1 degrees of freedom;
both F -statistics have p-values close to 0. Again these results are from
the gam function in the R gam package, but the degrees of freedom are
corrected.
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6.2.1 Fitting the Additive Model to Data*

For simplicity, consider the case of two predictors:
yi = α + f1(x1i) + f2(x2i) + εi

• Suppose, unrealistically, that the partial-regression function f2 is known,
but that f1 is not. Rearranging the regression equation,

yi − f2(x2i) = α + f1(x1i) + εi
So, smoothing yi − f2(x2i) against x1i will produce an estimate of
α + f1(x1i).

• The regression constant α is a bit of a nuisance. We could absorb
α into one of the partial-regression functions, or we could force the
partial-regression functions evaluated at the observed xji’s to sum of 0;
in this case, α becomes the unconditional expectation of y, estimated by
y. Then we estimate f1 by smoothing yi − y − f2(x2i) against x1i.
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• In a real application, neither f1 nor f2 is known.
(a) Let us start with preliminary estimates, denoted bf (0)1 and bf (0)2 , based

on the linear least-squares regression of y on the x’s:
yi − y = b1(x1i − x1) + b2(x2i − x2) + ei

Then bf (0)1 (x1i) = b1(x1i − x1)bf (0)2 (x2i) = b2(x2i − x2)

Expressing the variables as deviations from their means insures that
the partial-regression functions sum to 0.
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(b) Form the partial residual
e
(1)
i[1] = yi − y − b2(x2i − x2)

= ei + b1(x1i − x1)

which removes from y its linear relationship to x2, but retains the
linear relationship between y and x1, possibly along with a nonlinear
relationship in the least-squares residuals ei. Smoothing e

(1)
i[1] against

x1i provides a new estimate bf (1)1 of f1.

(c) Using the estimate bf (1)1 , form partial residuals for x2:
e
(1)
i[2] = yi − y − bf (1)1 (x1i)

Smoothing e
(1)
i[2] against x2i yields a new estimate bf (1)2 of f2.
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(d) The new estimate bf (1)2 , in turn, is used to calculate updated partial
residuals e

(2)
i[1] for x1, which, when smoothed against x1i, produce the

updated estimate bf (2)1 of f1.
(e) This iterative process, called backfitting, continues until the esti-

mated partial-regression functions stabilize. In the absence of a
generalization of collinearity (which Hastie and Tibshirani term con-
curvity), backfitting is “guaranteed” to converge to a unique solution
regardless of the starting partial-regression functions, using either
local-regression or spline smoothers.

Backfitting, by the way, is not the only approach to fitting additive
regression model.
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6.3 Semiparametric Models and Models with
Interactions

This section develops two straightforward relatives of additive regression
models:
• Semparametric models are additive regression models in which some

terms enter nonparametrically while others enter linearly.

• Models in which some of the predictors interact, for example in pairwise
fashion.

It is, as well, possible to combine these strategies, so that some terms
enter linearly, others additively, and still others are permitted to interact.
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The semiparametric regression model is written
yi = α + β1x1i + · · · + βrxri

+fr+1(xr+1,i) + · · · + fk(xki) + εi
• The first r predictors enter the model linearly, while the partial relation-

ships of y to the remaining k − r predictors are simply assumed to be
smooth.

• The semiparametric model can be estimated by backfitting. In each
iteration, all of the linear terms can be estimated in a single step: Form
partial residuals that remove the current estimates of the nonparametric
terms, and then regress these partial residuals on x1, ..., xr to obtain
updated estimates of the β’s.
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• The semiparametric model is applicable whenever there is reason to
believe that one or more x’s enter the regression linearly:
– In rare instances, there may be prior reasons for believing that

this is the case, or examination of the data might suggest a linear
relationship, perhaps after transforming an x.

– More commonly, if some of the x’s are dummy variables — represent-
ing one or more categorical predictors — then it is natural to enter the
dummy variables as linear terms.
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• We can test for nonlinearity by contrasting two models, one of which
treats a predictor nonparametrically and the other linearly.
– For example, to test for nonlinearity in the partial relationship between
y and x1, we contrast the additive model

yi = α + f1(x1i) + f2(x2i) + · · · + fk(xki) + εi
with the semiparametric model

yi = α + β1xi1 + f2(x2i) + · · · + fk(xki) + εi
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– To illustrate, let us fit three models for the regression of occupational
prestige on income and education:

Model dfmod RSS
1 Additive 6.9 4658.2
2 Income linear 4.4 5675.0
3 Education linear 5.5 4956.0

Model 1 is the additive regression model; model 2 is a semiparametric
model containing a linear term for income and a nonparametric term
for education; model 3 is a semiparametric model with a linear term
for education and a nonparametric term for income. (Once again,
the results are from the gam function in the R gam package, but the
degrees of freedom are corrected.)
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– Contrasting models 1 and 2 produces a test for nonlinearity in the
partial relationship of prestige to income; contrasting models 1 and
3 produces a test for nonlinearity in the relationship of prestige to
education:

FIncome(nonlinear) =
(5675.0− 4658.2)/(6.9− 4.4)

4658.2/(102− 6.9) = 8.30

FEducation(nonlinear) =
(4956.0− 4658.2)/(6.9− 5.5)

4658.2/(102− 6.9) = 4.34

The first of these F -test statistics has 2.5 and 97.1 degrees of freedom,
with p = .0002; the second has 1.4 and 97.1 degrees of freedom, with
p = .03.

– There is, therefore, much stronger evidence of a nonlinear partial
relationship between prestige and income than between prestige and
education.
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While semiparametric regression models make the additive model
more restrictive, incorporating interactions makes the model more flexible.
• For example, the following model permits interaction (nonadditivity) in

the partial relationship of y to x1 and x2:
yi = α + f12(x1i, x2i) + f3(x3i) + · · · + fk(xki) + εi

• Once again, this model can be estimated by backfitting, employing
a multiple-regression smoother (such as local polynomial multiple
regression) to estimate f12.

• Contrasting this model with the more restrictive additive model produces
an incremental F -test for the interaction between x1 and x2.

• This strategy can, in principle, be extended to models with higher-
order interactions — for example, f123(x1i, x2i, x3i) — but the curse of
dimensionality and difficulty of interpretation limit the utility of such
models.
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7. Generalized Nonparametric Regression
Generalized linear models encompass many of the statistical methods
most commonly employed in data analysis, such as
• linear models with normally distributed errors

• logit and probit models for dichotomous response variables

• Poisson-regression (log-linear) models for counts.
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A generalized linear models consists of three components:

1. A random component, in the form of a response variable yi, which,
conditional on the predictors, follows (in a traditional GLM) a distribution
in an exponential family
– normal
– Poisson
– binomial
– gamma
– inverse-normal

2. A linear predictor
ηi = α + β1x1i + β2x2i + · · · + βkxki

on which yi depends.
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3. A link function g(·) that transforms the mean of the dependent variable
µi = E(yi) to the linear predictor ηi. Standard link functions include:
– The identity link: g(µi) = µi;
– the log link: g(µi) = loge µi;
– the inverse link: g(µi) = 1/µi;
– the square-root link: g(µi) =

√
µi;

– the logit link: g(µi) = loge
µi[

1− µi
;

– the probit link: g(µi) = Φ(µi), where Φ(·) is the cumulative distribution
function of the standard normal distribution; and

– the complementary log-log link: g(µi) = loge [− loge(1− µi)].
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• The logit, probit, and complementary log-log links are intended for bino-
mial data, where yi represents the observed proportion of ‘successes’ in
ni binomial trials, and µi is the probability of successes.

• In many applications, all of the ni are 1, in which case yi is either 0 or 1;
this case is described as binary data.

• The logit and probit links are very similar; in particular, both approach
µ = 0 and µ = 1 asymptotically and symmetrically.

• The complementary log-log link is asymmetric and may therefore be
appropriate in a generalized linear model when the logit and probit links
are not.

• In generalized nonparametric regression, the regression curve is flexible,
and either the logit or probit link could be used to model an asymmetric
approach to 0 and 1.

• As long as a generally reasonable link function is employed, the specific
choice of link is not crucial in nonparametric regression.
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Generalized nonparametric regression models retain the random
component and link function of the generalized linear model, but substitute
a smooth function of the x’s for the linear predictor:

ηi = f(x1i, x2i, ..., xki)

Likewise, generalized additive models express the transformed
expectation of y as a sum of smooth functions of several predictors:

ηi = α + f1(x1i) + f2(x2i) + · · · + fk(xki)
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7.1 Local Likelihood Estimation

Figure 29 demonstrates why generalized regression models are needed
(and why scatterplot smoothing is especially helpful for dichotomous
responses).

The data on which this figure is based are from the 1976 U. S. Panel
Study of Income Dynamics, and were originally analyzed by Mroz (1987);
the data were employed by Berndt (1991) in an exercise on linear logistic
regression, and by Long (1997) to illustrate this method.
• The response variable is married women’s labour-force participation,

with ‘yes’ coded as 1 and ‘no’ as 0.

• The predictor is the log of the woman’s estimated wage rate.
– The estimated wage is the actual wage rate for women who are in the

labour force.
– For women who are not in the labour force, the wage rate is estimated

on the basis of a preliminary regression.
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Figure 29. Scatterplot of labor-force participation (1 = Yes, 0 = No) by
the log of estimated wages. The points are vertically jittered. Fits: linear
logistic regression (light solid line); local linear-logistic regression (heavy
solid line); local linear-least-squares regression (broken line).
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• Log wages are much less variable for women who are not in the labour
force: Predicted values are expected to be less variable than observed
values.

• The points are “jittered” vertically, but the summary curves on the graph
are fit to the unjittered data:
(a) The linear logistic regression suggests a positive relationship between

labour-force participation and estimated wages. Fitted values
between 0 and 1 are interpretable as the estimated proportion of
women in the labour force at various wage levels.

(b) The local linear least-squares fit suggests a curvlinear relationship.
The fit is defective in that it produces fitted values larger than 1 at
the extremes of estimated wages. Moreover assumptions of constant
error variance and normal errors are insupportable for binary data.

(c) The local linear-logistic regression (to be described presently) is
similar to the local least-squares regression except when the fitted
proportion gets close to 1.
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• The curvilinear pattern of the regression function is probably an artifact
of the construction of estimated wages: Because estimated wages are
less variable for women not in the labour force, more extreme values are
observed for those in the labour force.
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Generalized linear models are typically estimated by the method of
maximum likelihood.
• The log-likelihood for these models takes the general form

loge l =
nX
i=1

l(µi; yi)

where the yi are the observed values of the response variable, and
µi = E(yi) = g−1(α + β1x1i + β2x2i + · · · + βkxki)

g−1 is the inverse of the link function (called the mean function).
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• For example, for a binary logistic-regression model, the components of
the log-likelihood are

l(µi; yi) = yi loge µi + (1− yi) loge(1− µi)

and the expected value of y is
µi = g−1(α + β1x1i + β2x2i + · · · + βkxki)

=
1

1 + exp[−(α + β1x1i + β2x2i + · · · + βkxki)]

• The maximum-likelihood estimates of the parameters are the valuesbα, bβ1, ..., bβk that maximize loge l.
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In generalized nonparametric regression, we estimate the regression
function at some set of focal values of the predictors.
• For simplicity, suppose that there is one predictor x, that the response

variable is dichotomous, and that we want to estimate µ|x at the focal
value x0.

• We can perform a logistic polynomial regression of the form
loge

µi
1− µi

= α + β1(xi − x0) + β2(xi − x0)
2

+ · · · + βp(xi − x0)
p

maximizing the weighted log-likelihood

loge lw =
nX
i=1

wil(µi; yi)

where wi = K[(xi − x0)/h] are kernel weights. Then bµ|x0 = g−1(bα).

c° 2005 by John Fox ESRC Oxford Spring School

Nonparametric Regression Analysis 146

• To trace the estimated regression curve, as in Figure 29, we repeat this
procedure for representative values of x or at the observed xi.

• As in local linear least-squares regression, the window half-width h can
either be fixed, or can be adjusted to include a fixed number of nearest
neighbors of the focal x.

• The extension of this approach to multiple regression is straightforward,
but the curse of dimensionality and the difficulty of interpreting higher-
dimensional fits are no less a problem than in local least-squares
regression.
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7.2 Generalized Additive Models

The generalized additive model replaces the parametric terms in the
generalized linear model with smooth terms in the predictors:

ηi = α + f1(x1i) + f2(x2i) + · · · + fk(xki)

• Local likelihood cannot be easily adapted to estimating the generalized
additive model.

• An alternative is to adapt the method of iteratively reweighted least
squares (IRLS), which is typically used to obtain maximum-likelihood
estimates for generalized linear models, combining it with back-fitting (or
another suitable approach).
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7.3 Statistical Inference

Once again, I will concentrate on binary logistic regression, with similar
results applying to other generalized additive models. Similar results also
apply to generalized nonparametric regression models estimated by local
likelihood.
7.3.1 Confidence Envelopes*

• After the IRLS-backfitting procedure converges, the fitted values bηi can
be written as a linear transformation of quantities zj called “pseudo-
response” values (which are used in the IRLS fit),

bηi = ri1z1 + ri2z2 + · · · + rinzn =
nX

j=1

rijzj
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• The pseudo-response zj has estimated asymptotic variance 1/[bµj(1 −bµj)], and because the observations are asymptotically independent, the
estimated asymptotic variance of bηi isbV(bηi) = nX

j=1

r2ijbµj(1− bµj)
• An approximate pointwise 95-percent confidence band for the fitted

regression surface follows asbηi ± 2qbV(bηi)
• The endpoints of the confidence band can be transformed to the

probability scale by using µ = 1/[1 + e−η)].

• Approximate confidence bands can also be constructed for the individual
partial-regression functions, fj.
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7.4 Hypothesis Tests

Likelihood-ratio tests of hypotheses for generalized linear models are
typically formulated in terms of the deviance for alternative, nested
models.
• The deviance for a model is the log-likelihood-ratio statistic contrasting

the model with a maximally specified or ‘saturated’ model, which
dedicates a parameter to each observation.
– Let (µ;y) represent the log-likelihood for the model in question, and
(y;y) the log-likelihood for the saturated model.

– The deviance is then
D(µ;y) = −2[ (µ;y)− (y;y)]

– The deviance is a generalization of the residual sum of squares for a
general linear model with normal errors.
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• For the binary linear-logit model, the log-likelihood for the saturated
model is 0, leading to a particularly simple expression for the deviance:

D(µ;y) = −2 (µ;y)
= −2

nX
i=1

(µi; yi)

= −2
nX
i=1

[yi loge bµi + (1− yi) loge(1− bµi)]
• The degrees of freedom associated with the deviance are n minus the

number of parameters in the model.
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• The log likelihood-ratio statistic for contrasting nested models is the
difference in the deviances for the two models. This statistic is
asymptotically distributed as chi-squared, with degrees of freedom given
by the difference in the number of parameters for the models.

• Tests based on the deviance can be extended by analogy to generalized
nonparametric-regression models, including generalized additive mod-
els. Degrees of freedom can be defined analogously to nonparametric
regression models, as described previously.
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7.5 An Illustration: Mroz’s Labour-Force Data

I will adapt an example that appears in Long (1997), based on Mroz’s
married women’s labour-force participation data, substituting a semipara-
metric logistic regression for the linear logistic regression in Long.
• The response variable is binary: labour-force participation (lfp).

• The predictor variables are as follows:
Predictor Description
k5 number of children ages 5 and younger
k618 number of children ages 6 to 18
age women’s age in years
wc wife’s college attendance
hc husband’s college attendance
inc family income excluding wife’s income
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Predictor Remarks
k5 0–3, few 3’s
k618 0–8, few > 5
age 30–60, single years
wc 0/1
hc 0/1
inc $1000s

• Because k5 and k618 are discrete predictors with small numbers of
distinct values, I modeled these terms as sets of dummy regressors,
capable of capturing any form of partial relationship to labour-force
participation.

• wc and hc are also dummy regressors, representing dichotomous
predictors.

• age and inc are modeled using nearest-neighbour locally linear logistic
smoothers; in each case, visual trial and error suggested a span of .5.
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Figure 30 graphs the estimated partial-regression functions for the
semiparametric logistic regression fit to Mroz’s data (model 1 in the table
below).
• Each panel of the figure shows the partial-regression function for one of

the predictors, along with a pointwise 95-percent confidence envelope
and partial residuals.

• The vertical (lfp) axis of each plot is on the logit scale.

• Panels (a) and (b), for age and family income, show the fit of local partial
logistic regressions. The nonlinearity in each of these partial regressions
appears slight; we will determine presently whether the departure from
linearity is statistically significant.

• The partial regression for children five and under, in panel (c), also
appears nearly linear.
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• labour-force participation seems almost unrelated to number of children
six to 18, in panel (d)

• labour-force participation appears to rise with wife’s college attendance
(panel e), and is apparently unrelated to husband’s college attendance
(panel f).

• Note: For the plots, I used versions of k5 with the last category as “2 or
more,” and of k618 with the last category as “5 or more.”
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Figure 30. Estimated partial-regression functions for the semi-parametric
logistic regression of married women’s labor-force participation on several
predictors.
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• Here are the deviance and residual degrees of freedom for several
models fit to Mroz’s data (using the gam function in the R gam package,
correcting the degrees of freedom):

Predictors
Model age inc k5 k618 wc hc Deviance dfres

0 L L L L D D 922.27 746.0
1 S S D D D D 906.40 730.6
2 L S D D D D 910.04 733.2
3 S L D D D D 913.10 734.4
4 S S L D D D 907.12 732.6
5 S S D L D D 911.78 737.6

The following code is used for terms in the models:
– L, a linear term;
– D, a dummy regressor or set of dummy regressors;
– S, a local-linear logit smooth.
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• From these models, I calculated the following tests for nonlinearity, all of
which are nonsignificant:

Models Difference
Predictor Contrasted in Deviance df p
age 2− 1 3.64 2.6 .24
inc 3− 1 6.70 3.8 .14
k5 4− 1 0.72 2.0 .70
k618 5− 1 5.38 7.0 .61

• An overall test, contrasting the linear-logit model (0) with the semipara-
metric logit model (1), produces a difference in deviance of 15.62 on
15.5 degrees of freedom, which is also nonsignificant (p = .44).
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• To test for each of the terms in the semiparametric model, I fit the
additional models:

Predictors
Model age inc k5 k618 wc hc Deviance dfres

6 – S D D D D 935.13 734.2
7 S – D D D D 930.16 735.4
8 S S – D D D 968.30 733.5
9 S S D – D D 913.98 738.6
10 S S D D – D 927.03 731.6
11 S S D D D – 907.50 731.6
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• The analysis of deviance table is as follows:
Models Difference

Predictor Contrasted in Deviance df p
age 6− 1 28.73 3.6 < .00001
inc 7− 1 23.76 4.8 .0002
k5 8− 1 61.90 2.9 ¿ .00001
k618 9− 1 7.58 8.0 .48
wc 10− 1 20.63 1.0 < .00001
hc 11− 1 1.10 1.0 .29

• There is strong evidence of partial relationships of women’s labour-force
participation to age, family income, children five and under, and wife’s
college attendance, but not to children six to 18 or to husband’s college
attendance.
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