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Bandwidth Selection for

Regression Discontinuity De

Motivation: RD Estimates of the Effect of Head Start
Assistance by Ludwig and Miller (2007, QJE)

Variable Nonparametric

Bandwidth 9 18 36

Number of obs. with nonzero weight [217, 310] [287, 674] [300, 1877]

1968 HS spending per child

RD estimate 137.251 114.711 134.491°F
(128.968)  (91.267) (62.593)

1972 HS spending per child
RD estimate 182.119% 88.959 130.153%
(148.321)  (101.697)  (67.613)

Age 5-9, Mortality, 1973-83
RD estimate -1.895** -1.198* -1.114*%
(0.980) (0.796) (0.544)

Blacks age 5-9, Mortality, 1973-83
RD estimate -2.275 -2.719** -1.589
(3.758) (2.163) (1.706)
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Introduction

Observations

» Estimates can change dramatically by the choice of bandwidths.

» Statistical significance can also change depending on the choice of
bandwidths.

Lessons

» It would be nice to have objective criterion to choose bandwidths!
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Introduction

MSE (MISE): Measures of Discrepancy

Suppose your objective is to estimate
» some function 7 (x) (f evaluated at x), or

» some function f over entire support.

Let ?h be some estimator based on a bandwidth h.
Most Popular Measures of Discrepancy of f from the true objective f

» MSE(x) = E[{fn(x) = F(x)}?] (Local Measure).

» MISE = [ E[{fn(x) - f(x)}?]dx (Global Measure).

» MSE and MISE changes depending on the function 1 as well as
estimation methods.
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Introd
Bandwidth Selection for Estimation of Del
al Linear R

Regression Discontinu

Kernel Functions

Table : Popular Choices for Kernel Functions

Name Function
Normal (27)" 12X
Uniform (1/2)1{|x| < 1}
Epanechnikov  (3/4)(1 - x?)1{|x| < 1}
Triangular (1-|xD1{|x| <1}

Practical Choices

> It is well-known that nonparametric estimates are not very sensitive
to the choice of kernel functions.

» For estimating a function at interior points or globally, a common
choice is the Epanechnikov kernel (Hodges & Lehmann, 1956).

» For estimating a function at boundary points (by LLR), a popular
choice is that the triangular kernel (Cheng, Fan & Marron,1997).
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Introduction

Bandwidth Selection

Contrary to the selection of kernel functions, it is well-known that
estimates are sensitive to the choice of bandwidths.

In the following, we briefly explain 3 popular approaches for bandwidth
selection

1. Rule of Thumb Bandwidth
2. Plug-In Method
3. Cross-Validation

See Silverman (1986) for more about basic treatment on density
estimation.
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Bandwidth Selection for Estimation of Densities

AMSE for Kernel Density Estimators

Given a random sample {X;,i=1,2,...,n}, we are interested in
estimating its density f.

For the kernel density estimator

? 1

=hi( )

the asymptotic approximation of the MSE (AMSE) is given by

KQf(X)

AMSE (x) = {“2 F@(x )h2} —

where £(") is the r-th derivative of f.

Similarly, the asymptotic approximation of the MISE (AMISE) is given by
2
AMISE = % { f f<2>(x)2dx} B4 2
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Bandwidth Selection for Estimation of Densities

Optimal Bandwidth

Bandwidths that minimize the AMSE and AMISE are given, respectively,
by

1/5
F(x) }/ s

hawse = C(K){f(z)(x)z

and

1 1/5
h = C(K .+ -1/5
AMISE (K) {ff(2)(x)2dx} n
depends on Kk

depends on

where C(K) = {ka/u3}'/>. Both hamse and hamise depend on 3 things

1. K (Kernel function),
2. f (true density including the 2nd derivative f(?)),
3. n (sample size).

In addition, hapse depends on the evaluation point x.
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I
Bandwidth Selection for Estimation
Local Linear

Regression Discontinuity

Bandwidth Selection |I: Rule of Thumb Bandwidth

Rule of Thumb (ROT) Bandwidth can be obtained by specifying, for
hamise,

» Gaussian kernel for K, and

» Gaussian density with variance o2 for f,

implying
hROT = 1.060’/‘1_1/5.

Remark
» In practice, we use an estimated & for o.

This is the default bandwidth used by Stata command kdensity.
Obviously, hgoT works well if the true density is Gaussian.

v

v

» Not necessarily works well if the true density is not Gaussian.
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Int
Bandwidth Selection for Estimation of

Local Linear R
Regression Discontinuity

Bandwidth Selection II: Plug-In Method
Rather than assuming Gaussian density, the plug-in method estimates
» f and f(2) for hAMSE:
> w = f f2(X)2dX for hAMISE-

A standard kernel density and density derivative estimator is given by

n

2 1 Z x - X; A 1 x— X:
Fu(x) = — > K(—=), 90 =—= K(d)(—')
W (0= (27). #2 T =

1) can be estimated by

b =nt YD (X).
i=1
Remark

» These require to choose the bandwidths a;, a; and as.

» Those are usually chosen by a simple rule such as the ROT rule.

» The plug-in method introduced here is often called direct plug-in
(DPI).
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Introduction
Bandwidth Selection for Estimation of Densities
Local Linear Regression

Bandwidth Selection I: Rule of Thumb Bandwidth
Bandwidth Selection Il: Plug-In Method
i ion I11: Cross idati

Regression Discontinuity Design

Bandwidth Selection Il: Plug-In Method

There exists a more sophisticated method proposed by Sheather and
Jones (1991, JRSS B).

» The pilot bandwidths such as aj, a», az can be written as a function
of h.

» Determine the bandwidths h and the pilot bandwidths
simultaneously.

The bandwidth chosen in this manner is called the solve-the-equation
(STE) rule.
Remark

» Simulation studies show the STE bandwidths perform very well.

» The DPI and STE bandwidths can be obtained by the Stata
command kdens.

» See also Wand and Jones (1994) for more about these bandwidths.
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Bandwidth Selection for Estimation of Densities

Bandwidth Selection IlI: Cross Validation
Least Squares Cross Validation (LSCV) bandwidth minimizes

LSCV/(h) = f F(x)%dx =207 3 F i p(X0)
i=1

where the leave-one-out kernel density estimator is given by

Poa() = —— (X‘Xf).

n—qut,- h

Rationale for the LSCV
» Observe that
f(?h(x) ~f(x))%dx = R(F) + f F(x)2dx.
where R(F) = f 7u(x)2dx - 2 f 7 () F (x) dx.
» Then we can show that
E[LSCV(h)] = E[R(F)].
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Bandwidth Selection for Estimation of Densities

Bandwidth Selection Ill: Cross Validation

Some Remarks on the LSCV
» The LSCV is based on the global measure by construction.
» The LSCV requires numerical optimization.
» Then the LSCV can be computationally very intensive.

» Some simulation studies show that the LSCV bandwidth tends to be
very dispersed.
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Local Linear Regression

AMSE for the Local Linear Regression

Given a random sample {(Y;, X;),i=1,2,...,n}, we are interested in
estimating the regression function

m(x) = E[Yi|Xi = x].

The local linear regression can be obtained by minimizing

izil{y,- —a-B(X; —x)}zK(¥)

and the resulting & estimates m(x).

The AMSE for the LLR is given by

K202 (x)

2
AMSE (x) = ’%m@)(x)h‘* )

LLR is popular because of design adaptation property especially at
boundary points. (See Fan and Gijbels, 1996.)
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Bandwidth Select

R ssion Discontinuity Design

Optimal Bandwidth for the Local Linear Regression
The optimal bandwidth is given by

Uz(X) 1/5
e = €0 )

For global estimation, the commonly used bandwidth minimizes
/ AMSE (x)w(x)dx
where w(x) is a weighting function and it is given by

[ 2w F)d s
w0 | ) "

hamise =
—
depends on K

depends on m® ,62,¢, and w
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Bandwidth Selection I|: Plug-In Method

The plug-in bandwidth is given by

hrot = C(K) &2 [ w(x)dx s
T Sy MG (X2w(X) |
where 62 and M are obtained by the global polynomial regression of
order 4.
Remark:

» A possible choice for w(x) is the uniform kernel constructed to
cover 90% of the sample.

» This is the default bandwidth used by the Stata command 1poly.
» This bandwidth is also called the ROT bandwidth.

17/30



Local Linear Regression

Bandwidth Selection Il: Cross-Validation

The bandwidth based on the cross-validation minimizes
CV(h) = Z{y,‘ — ?_;,h(X,‘)}z
i=1

where f; is the leave-one-out LLR estimates.

That is
hey = arg mhin CV(h)

Remark

» This bandwidth can be obtained by the Stata command locreg
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Introduction q a
Bandwidth Selection for Estimation of Densities Bandw!dth Select!on :.I-P(I:ug-ln fetiog

. : 2 idation
Local Linear Regression ion 111: More P Method

Regression Discontinuity Design

Bandwidth Selection Ill: More Sophisticated Method
Remember that the AMSE for the LLR is given by

ka0 (X)

2
AMSE (x) = %m@)(x)h“ R

There exists a method to obtain the finite sample approximation of the

whole bias and variance component proposed by Fan, Gijbels, Hu and
Huang (1996).

Let MSE(x, h) be a finite sample approximation of the AMSE. Then the
refined bandwidth is given by

hg = argm}jn[ MSE (x, h)dx
Remark

» This bandwidth works better than the plug-in bandwidth but not
universally.

» There exist several modified bandwidths.
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Bandwidth Selection for

Regression Discontinuity Design

Sharp RD Design

Let

» Y1, Yo: potential outcomes for treated and untreated,
» Y: observed outcome, Y = DY; +(1-D)Yy,

» D be a binary indicator for treatment status, 1 for treated and 0 for
untreated.

In the sharp RD design, the treatment D is determined by the assignment

variable Z
1 fZ>c
Dz{o if Z<c

where c is the cut-off point.

» We can show that the ATE at the cut-off point is defined and
represented by

E[Yi- YolZ=c] = lim E[Y|Z=2z]- lim E[Y|Z=z].

zZ—>Cc+ zZ—>C—
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Regression Discontinuity Design

lllustration of Sharp RDD
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Fig. 2. Potential and observed outcome regression functions.

Figures are taken from Imbens & Lemiux (2008).
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Regression Discontinuity Design

Local Approach versus Global Approach

Local Approach
» It suffices to assume local continuity.

» Robust to outliers and discontinuities.

Global Approach
» Assumes global smoothness.
» Obviously vulnerable to outliers and discontinuities.

» Can use more observations.

Currently, it is popular to employ the LLR (local approach) to estimate
the RD estimator.
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Regression Discontinuity Design

Bandwidth Selection

» It is important to note that our objective is to estimate not
lim,cr E[Y|Z = z] (or lim .- E[Y|Z = z]) but the ATE at the
cut-off point.

Existing Approaches for Bandwidth Selection
1. Ad-hoc Approach: Choose optimal bandwidths to estimate
lim,cy E[Y|Z = z] (or lim,_._ E[Y|Z = z]).
2. Local CV: Local Version of Cross-Validation (quasi-local criterion)

3. Optimal Bandwidth with Regularization proposed by Imbens and
Kalyanaraman (2012)

4. Simultaneous Selection of Optimal Bandwidths proposed by Arai
and Ichimura (2014)
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Bandwidth Selection

Regression Discontinuity Design

Bandwidth proposed by Imbens and Kalyanaraman (2012)

Basic Idea
» Use a single bandwidth to estimate the ATE at the cut-off point.

» Propose the bandwidth that minimizes the AMSE and modify it
with regularization term.

Let f be the density of Z,
my(c) = lim E[Y|Z=2z], mo(c)= lim E[Y|Z =z],
Z—>C+ Z—>C—
o3(c) = |im+ Var[Y|Z =z], o2(c)= lim Var[Y|Z = z].
Z—>C Z—>C—
Then the AMSE for the RD estimator is given by

nhf(c)

AMSE () = {2 [() - mP(@)| )+ {ate) o).

where b; and v are the constants that depend on the kernel function.
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Bandwidth Selection for Estir

Regression Discontinuity Design

Bandwidth proposed by Imbens and Kalyanaraman (2012)
Then the optimal bandwidth is given by

hope = Ck oi(c) +a3(c) . n1/5
f(c) (mP(c) - mP ()

The bandwidth proposed by IK is

52 52
ik = Cx 61(c) +65(c) n1/5

7 |(mP(0) - mP () +7]

where 7 is, what they term, a regularization term.

Remark
@y _ (2 :
> hopt can be very large when m;™’(c) — mg™ (¢c) is small.
» The regularization term is basically to avoid the small denominator.
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Bandwidth Selection for Estir

Regression Discontinuity Design

Bandwidth proposed by Arai and Ichimura (2014)

Basic Idea
» Choose two bandwidths simultaneously.

» Propose the bandwidth that minimizes the AMSE with the
second-order bias term.

With two bandwidths, the AMSE is given by

AMSE, (h) = {% [ (c)h? - m(()z)(c)hé]}2 . nf‘gc) {afh(lC) N o%h(of-‘) }

Arai and Ichimura (2014) show

The minimization problem of the AMSE is not well-defined because
the bias-variance trade-off breaks down.
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Bandwidth Selectio

Regression Discontinuity Design

Bandwidth proposed by Arai and Ichimura (2014)

Instead, Arai and Ichimura (2014) propose the bandwidth hyse that
minimizes

MMSE,(h) = 2 [ ()8 - P (R + [ B ()00 butc)]

L (i, 8@
nf(c) | M ho

where the second term is the squared second-order-bias term.

Observations

» The bias of the RD estimator based on hjx can be large for some
designs.

» The RD estimator based on hyuse is robust to designs.

» The Stata ado file to implement the bandwidth is available at
http://www3.grips.ac.jp/~yarai/.
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Introduction
Bandwidth Selection for Estimation of Densities
Local Linear ion

Regression Discontinuity Design

Ludwig and Miller (2007) Data Revisited

Variable MMSE IK

1968 Head Start spending per child

Bandwidth [26.237, 45.925] 19.012

RD estimate 110.590 108.128
(76.102) (80.179)

1972 Head Start spending per child

Bandwidth [22.669, 42.943] 20.924

RD estimate 105.832 89.102
(79.733) (84.027)

Age 5-9, Mortality, 1973-1983

Bandwidth [8.038, 14.113] 7.074

RD estimate —-2.094**% —-2.359***
(0.606) (0.822)

Blacks age 5-9, Mortality, 1973-1983

Bandwidth [22.290, 25.924] 9.832

RD estimate -2.676""* -1.394
(1.164) (2.191)
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Introduction
Bandwidth Selection for Estimation of Densities Regression Discontinuity Design
Local Linear Regression Bandwidth Selection

Regression Discontinuity Design
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Introduction
Bandwidth Selection for Estimation of Densities
Local Linear ion

Regression Discontinuity Design
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