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Motivation: RD Estimates of the Effect of Head Start
Assistance by Ludwig and Miller (2007, QJE)

Variable Nonparametric

Bandwidth 9 18 36
Number of obs. with nonzero weight [217, 310] [287, 674] [300, 1877]

1968 HS spending per child
RD estimate 137.251 114.711 134.491∗∗

(128.968) (91.267) (62.593)

1972 HS spending per child
RD estimate 182.119∗ 88.959 130.153∗

(148.321) (101.697) (67.613)

Age 5–9, Mortality, 1973–83
RD estimate −1.895∗∗ −1.198∗ −1.114∗∗

(0.980) (0.796) (0.544)

Blacks age 5–9, Mortality, 1973–83
RD estimate −2.275 −2.719∗∗ −1.589

(3.758) (2.163) (1.706)
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Observations

▸ Estimates can change dramatically by the choice of bandwidths.

▸ Statistical significance can also change depending on the choice of
bandwidths.

Lessons

▸ It would be nice to have objective criterion to choose bandwidths!
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MSE (MISE): Measures of Discrepancy

Suppose your objective is to estimate

▸ some function f (x) (f evaluated at x), or

▸ some function f over entire support.

Let f̂h be some estimator based on a bandwidth h.

Most Popular Measures of Discrepancy of f̂ from the true objective f

▸ MSE(x) = E [{f̂h(x) − f (x)}2] (Local Measure).

▸ MISE = ∫ E [{f̂h(x) − f (x)}2]dx (Global Measure).

▸ MSE and MISE changes depending on the function f as well as
estimation methods.
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Kernel Functions

Table : Popular Choices for Kernel Functions

Name Function

Normal (2π)−1/2e−x2
/2

Uniform (1/2)1{∣x ∣ < 1}
Epanechnikov (3/4)(1 − x2)1{∣x ∣ < 1}
Triangular (1 − ∣x ∣)1{∣x ∣ < 1}

Practical Choices

▸ It is well-known that nonparametric estimates are not very sensitive
to the choice of kernel functions.

▸ For estimating a function at interior points or globally, a common
choice is the Epanechnikov kernel (Hodges & Lehmann, 1956).

▸ For estimating a function at boundary points (by LLR), a popular
choice is that the triangular kernel (Cheng, Fan & Marron,1997).
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Bandwidth Selection

Contrary to the selection of kernel functions, it is well-known that
estimates are sensitive to the choice of bandwidths.

In the following, we briefly explain 3 popular approaches for bandwidth
selection

1. Rule of Thumb Bandwidth

2. Plug-In Method

3. Cross-Validation

See Silverman (1986) for more about basic treatment on density
estimation.
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AMSE for Kernel Density Estimators
Given a random sample {Xi , i = 1,2, . . . ,n}, we are interested in
estimating its density f .

For the kernel density estimator

f̂h =
1

nh

n

∑
i=1

K (x −Xi

h
) ,

the asymptotic approximation of the MSE (AMSE) is given by

AMSE(x) = {µ2

2
f (2)(x)h2}

2

+ κ2f (x)
nh

where f (r) is the r -th derivative of f .

Similarly, the asymptotic approximation of the MISE (AMISE) is given by

AMISE = µ
2
2

4
{∫ f (2)(x)2dx}h4 + κ2

nh
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Optimal Bandwidth
Bandwidths that minimize the AMSE and AMISE are given, respectively,
by

hAMSE = C(K){
f (x)

f (2)(x)2}
1/5

n−1/5

and

hAMISE = C(K)
²

depends on K

{ 1

∫ f (2)(x)2dx
}
1/5

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
depends on f

n−1/5

where C(K) = {κ2/µ2
2}1/5. Both hAMSE and hAMISE depend on 3 things

1. K (Kernel function),

2. f (true density including the 2nd derivative f (2)),

3. n (sample size).

In addition, hAMSE depends on the evaluation point x .
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Bandwidth Selection I: Rule of Thumb Bandwidth

Rule of Thumb (ROT) Bandwidth can be obtained by specifying, for
hAMISE ,

▸ Gaussian kernel for K , and

▸ Gaussian density with variance σ2 for f ,

implying
hROT = 1.06σn−1/5.

Remark

▸ In practice, we use an estimated σ̂ for σ.

▸ This is the default bandwidth used by Stata command kdensity.

▸ Obviously, hROT works well if the true density is Gaussian.

▸ Not necessarily works well if the true density is not Gaussian.
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Bandwidth Selection II: Plug-In Method
Rather than assuming Gaussian density, the plug-in method estimates
▸ f and f (2) for hAMSE ,
▸ ψ = ∫ f 2(x)2dx for hAMISE .

A standard kernel density and density derivative estimator is given by

f̂a1(x) =
1

na1

n

∑
i=1

K (x −Xi

a1
) , f̂ (d)a2 (x) =

1

nad+12

n

∑
i=1

K (d) (x −Xi

a2
)

ψ can be estimated by

ψ̂ = n−1
n

∑
i=1

f̂ (4)a3 (Xi).

Remark

▸ These require to choose the bandwidths a1, a2 and a3.
▸ Those are usually chosen by a simple rule such as the ROT rule.
▸ The plug-in method introduced here is often called direct plug-in
(DPI).
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Bandwidth Selection II: Plug-In Method

There exists a more sophisticated method proposed by Sheather and
Jones (1991, JRSS B).

▸ The pilot bandwidths such as a1, a2, a3 can be written as a function
of h.

▸ Determine the bandwidths h and the pilot bandwidths
simultaneously.

The bandwidth chosen in this manner is called the solve-the-equation
(STE) rule.

Remark

▸ Simulation studies show the STE bandwidths perform very well.

▸ The DPI and STE bandwidths can be obtained by the Stata
command kdens.

▸ See also Wand and Jones (1994) for more about these bandwidths.
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Bandwidth Selection III: Cross Validation
Least Squares Cross Validation (LSCV) bandwidth minimizes

LSCV (h) = ∫ f̂h(x)2dx − 2n−1
n

∑
i=1

f̂−i,h(Xi)

where the leave-one-out kernel density estimator is given by

f̂−i,h(x) =
1

n − 1
n

∑
j≠i

(x −Xj

h
) .

Rationale for the LSCV

▸ Observe that

∫ (f̂h(x) − f (x))2dx = R(f̂h) + ∫ f (x)2dx .

where
R(f̂h) = ∫ f̂h(x)2dx − 2∫ f̂h(x)f (x)dx .

▸ Then we can show that

E [LSCV (h)] = E [R(f̂ )].
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Bandwidth Selection III: Cross Validation

Some Remarks on the LSCV

▸ The LSCV is based on the global measure by construction.

▸ The LSCV requires numerical optimization.

▸ Then the LSCV can be computationally very intensive.

▸ Some simulation studies show that the LSCV bandwidth tends to be
very dispersed.
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AMSE for the Local Linear Regression
Given a random sample {(Yi ,Xi), i = 1,2, . . . ,n}, we are interested in
estimating the regression function

m(x) = E [Yi ∣Xi = x].

The local linear regression can be obtained by minimizing

n

∑
i=1

{yi − α − β(Xi − x)}2K (
Xi − x
h
)

and the resulting α̂ estimates m(x).
The AMSE for the LLR is given by

AMSE(x) = µ
2
2

4
m(2)(x)h4 + κ2σ

2(x)
nhf (x)

LLR is popular because of design adaptation property especially at
boundary points. (See Fan and Gijbels, 1996.)
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Optimal Bandwidth for the Local Linear Regression

The optimal bandwidth is given by

hAMSE = C(K){
σ2(x)

m(2)(x)2f (x)}
1/5

n−1/5.

For global estimation, the commonly used bandwidth minimizes

∫ AMSE(x)w(x)dx

where w(x) is a weighting function and it is given by

hAMISE = C(K)
²

depends on K

{∫ σ
2(x)w(x)/f (x)dx
∫ m(2)(x)2w(x)dx

}
1/5

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
depends on m(2),σ2,f , and w

n−1/5.
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Bandwidth Selection I: Plug-In Method

The plug-in bandwidth is given by

hROT = C(K){
σ̂2 ∫ w(x)dx

∑n
i=1 m̂

(2)(Xi)2w(Xi)
}
1/5

.

where σ̂2 and m̂(2) are obtained by the global polynomial regression of
order 4.
Remark:

▸ A possible choice for w(x) is the uniform kernel constructed to
cover 90% of the sample.

▸ This is the default bandwidth used by the Stata command lpoly.

▸ This bandwidth is also called the ROT bandwidth.
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Bandwidth Selection II: Cross-Validation

The bandwidth based on the cross-validation minimizes

CV (h) ≡
n

∑
i=1

{yi − f̂−i,h(Xi)}2

where f̂−i, is the leave-one-out LLR estimates.

That is
hCV = argmin

h
CV (h)

Remark

▸ This bandwidth can be obtained by the Stata command locreg
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Bandwidth Selection III: More Sophisticated Method
Remember that the AMSE for the LLR is given by

AMSE(x) = µ
2
2

4
m(2)(x)h4 + κ2σ

2(x)
nhf (x) .

There exists a method to obtain the finite sample approximation of the
whole bias and variance component proposed by Fan, Gijbels, Hu and
Huang (1996).

Let M̂SE(x ,h) be a finite sample approximation of the AMSE. Then the
refined bandwidth is given by

hR = argmin
h
∫ M̂SE(x ,h)dx

Remark

▸ This bandwidth works better than the plug-in bandwidth but not
universally.

▸ There exist several modified bandwidths.
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Sharp RD Design
Let

▸ Y1, Y0: potential outcomes for treated and untreated,

▸ Y : observed outcome, Y = DY1 + (1 −D)Y0,

▸ D be a binary indicator for treatment status, 1 for treated and 0 for
untreated.

In the sharp RD design, the treatment D is determined by the assignment
variable Z

D = { 1 if Z ≥ c
0 if Z < c

where c is the cut-off point.

▸ We can show that the ATE at the cut-off point is defined and
represented by

E [Y1 −Y0∣Z = c] = lim
z→c+

E [Y ∣Z = z] − lim
z→c−

E [Y ∣Z = z].
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Illustration of Sharp RDD

Figures are taken from Imbens & Lemiux (2008).
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Local Approach versus Global Approach

Local Approach

▸ It suffices to assume local continuity.

▸ Robust to outliers and discontinuities.

Global Approach

▸ Assumes global smoothness.

▸ Obviously vulnerable to outliers and discontinuities.

▸ Can use more observations.

Currently, it is popular to employ the LLR (local approach) to estimate
the RD estimator.
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Bandwidth Selection

▸ It is important to note that our objective is to estimate not
limz→c+ E [Y ∣Z = z] (or limz→c− E [Y ∣Z = z]) but the ATE at the
cut-off point.

Existing Approaches for Bandwidth Selection

1. Ad-hoc Approach: Choose optimal bandwidths to estimate
limz→c+ E [Y ∣Z = z] (or limz→c− E [Y ∣Z = z]).

2. Local CV: Local Version of Cross-Validation (quasi-local criterion)

3. Optimal Bandwidth with Regularization proposed by Imbens and
Kalyanaraman (2012)

4. Simultaneous Selection of Optimal Bandwidths proposed by Arai
and Ichimura (2014)
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Bandwidth proposed by Imbens and Kalyanaraman (2012)

Basic Idea

▸ Use a single bandwidth to estimate the ATE at the cut-off point.

▸ Propose the bandwidth that minimizes the AMSE and modify it
with regularization term.

Let f be the density of Z ,

m1(c) = lim
z→c+

E [Y ∣Z = z], m0(c) = lim
z→c−

E [Y ∣Z = z],

σ2
1(c) = lim

z→c+
Var[Y ∣Z = z], σ2

0(c) = lim
z→c−

Var[Y ∣Z = z].

Then the AMSE for the RD estimator is given by

AMSEn(h) = {
b1
2
[m(2)1 (c) −m

(2)
0 (c)]h

2}
2

+ v

nhf (c)
{σ2

1(c) + σ2
0(c)} .

where b1 and v are the constants that depend on the kernel function.
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Bandwidth proposed by Imbens and Kalyanaraman (2012)
Then the optimal bandwidth is given by

hopt = CK

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ2
1(c) + σ2

0(c)

f (c) (m(2)1 (c) −m
(2)
0 (c))

2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n−1/5

The bandwidth proposed by IK is

hIK = CK

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ̂2
1(c) + σ̂2

0(c)

f̂ (c) [(m̂(2)1 (c) − m̂
(2)
0 (c))

2
+ r̂]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

n−1/5

where r̂ is, what they term, a regularization term.

Remark

▸ hopt can be very large when m
(2)
1 (c) −m

(2)
0 (c) is small.

▸ The regularization term is basically to avoid the small denominator.
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Bandwidth proposed by Arai and Ichimura (2014)

Basic Idea

▸ Choose two bandwidths simultaneously.

▸ Propose the bandwidth that minimizes the AMSE with the
second-order bias term.

With two bandwidths, the AMSE is given by

AMSEn(h) = {
b1
2
[m(2)1 (c)h

2
1 −m

(2)
0 (c)h

2
0]}

2

+ v

nf (c) {
σ2
1(c)
h1

+ σ
2
0(c)
h0
} .

Arai and Ichimura (2014) show

The minimization problem of the AMSE is not well-defined because
the bias-variance trade-off breaks down.
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Bandwidth proposed by Arai and Ichimura (2014)

Instead, Arai and Ichimura (2014) propose the bandwidth hMMSE that
minimizes

MMSEn(h) =
b21
4
[m̂(2)1 (c)h

2
1 − m̂

(2)
0 (c)h

2
0]

2
+ [b̂2,1(c)h31 − b̂2,0(c)h30]

2

+ v

nf̂ (c)
{ σ̂

2
1(c)
h1

+ σ̂
2
0(c)
h0
} ,

where the second term is the squared second-order-bias term.

Observations

▸ The bias of the RD estimator based on hIK can be large for some
designs.

▸ The RD estimator based on hMMSE is robust to designs.

▸ The Stata ado file to implement the bandwidth is available at
http://www3.grips.ac.jp/∼yarai/.
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Ludwig and Miller (2007) Data Revisited

Variable MMSE IK

1968 Head Start spending per child
Bandwidth [26.237, 45.925] 19.012
RD estimate 110.590 108.128

(76.102) (80.179)

1972 Head Start spending per child
Bandwidth [22.669, 42.943] 20.924
RD estimate 105.832 89.102

(79.733) (84.027)

Age 5–9, Mortality, 1973–1983
Bandwidth [8.038, 14.113] 7.074
RD estimate −2.094∗∗∗ −2.359∗∗∗

(0.606) (0.822)

Blacks age 5–9, Mortality, 1973–1983
Bandwidth [22.290, 25.924] 9.832
RD estimate −2.676∗∗∗ −1.394

(1.164) (2.191)
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